
Computer Science Program, The University of Texas, Dallas

Lawrence Chung

Middleware

Dynamic Linking

Interoperability

Distributed Objects and Components

Middleware

NAS
OLE/COM
CORBA

Lawrence Chung

to create client/server solutions

Distributed Objects and Components

☛ Stovepipe systems
A stovepipe system is a set of legacy applications
that resists adaptation to user and organizational needs

✆ monolithic, vertically integrated applications
include in one tool all the services
(e.g., for a desktop publishing, include word processing, spreadsheet, database, etc.)
-> ever-growing tools

✆ closed system and custom proprietary solution
intolerant to outside services

✆ little discernible software architecture
system poorly understood by developers and maintainers

-> not easily reusable or extensible
-> slow development and deployment

-> expensive maintenance and evolution

✈ Architectural focus!
leave out details
understand the system: components, interfaces, constraints, patterns, & rationale
keep the size of components manageable and focus

✈ Interoperable distributed components

Legacy
Application

Lawrence Chung

Distributed Objects and Components
"An object is a living, breathing blob of intelligence that knows how to act in a given situation."

- Steve Jobs

☛ Client-server can be viewed as the precursor technology to distributed objects
Objects work together across machine and network boundaries

to create client/server solutions
☛Distributed objects = independent software components

A component is not bound to any particular
OSs, HWs, network, tools, PLs, Applications, Vendors

Plug&Play Portability

Unix OS/2 MAC

=

Coexistence

Interoperability
(communication (channel & protocol), (interpretable) request for fns & data, data interchange format, data semantics)

(through object wrappers)

Middleware

Middleware

Lawrence Chung

Interoperability

Custom Interface Solutions Framework-based Solutions� � � � � � � � � � � 	
 � 	 � � �
 � � � 	
 � 	 � � � � �
 � �

O(N) Interfaces2 O(N) Interfaces

� � � �
 � � � � � � �
 � � � � � � 	 � � �
 � � � � � � 	 � � � � � � � � � � �☛ Interoperability between N vendor databases ends up eing an N*N problem

☛ True database independence will not be possible without 3-tiered architectures� �
 � � � 	 � � � � � � � � �

Object code
/* code for MenuStatus */

/* code for ProcessMenu */

addr-1: ...

addr-2:
addr-3: indirect call via link0

relative branch to addr-1
addr-4: indirect call vai link1
addr-4: indirect call vai link2

Module Menu;
Import DisplayMenu, UserSelection;
Procedure MenuStatus(...);
Procedure ProcessMenu(...);

begin
DisplayMenu.MainMenu(...);
MenuStatus(...);
UserSelection.Accept(...);
DisplayMenu.MinorMenu(...)

end
end Menu.

Module DisplayMenu;
Procedure MainMenu(...);
Procedure MinorMenu(...);

end DisplayMenu.

Module UserSelection;
Procedure Accept(...);

end UserSelection.

Link table
link0: DisplayMenu.MainMenu
link1: UserSelection.Accept
link2: UserSelection.Accept

Entry table
entry0: MenuStatus@addr-1
entry1: ProcessMenu@addr-2

Object module Menu;

Lawrence Chung

Dynamic Linking

+
- � � � �
 	 � � � �
 � � � � � � �
 � � � � � � � 	
 � � � � � � � � � � � �
 !
 	 � � � � � �
 � �

Laboratory
(VAX)

Radiology
(MacIntosh)

Patient
History
(Terminal) (Windows)

Pharmacy Pathology
(Sun SPARC)

" # $ % # & '
(Notepad)

Lawrence Chung

Admissions
(PC-Linux)

Middleware: An Illustration

Claims
(ULTRIX)

Patient
History
(IMS)

☛ A system integration

Health Insurance

from many functional areas, for their information processing needs

☛ Each platform can have a local DB
E.g., Laboratory stores CAT scan results and other lab graphics;

☛ Many real benefits:

[Fox Chase Cancer Center]
substantial reduction in time delay between lab examination and doctor’s evaluation
reduction in cost

☛ Access to external services (e.g., Health Insurance) and
access from external sites (e.g., doctors on trip, at home)

() & ' * + ,
(MacIntosh)

Lawrence Chung

NAS (Network Application Support)

NursingAdmissions
Patient
History Pharmacy Pathology Doctors

- . . / 0 1 2 3 0 4 5

NAS

Emulator Windows OS
MacIntosh

DOS
Notepad

Unix

Sun SPARCPCTerminal

Linux

PC

DECnet, OSI, PC LANs, SNA, TCP/IP

Platforms/Network Transport Mechanisms

☛ Freedom in choosing network architecture, operating system architecture, and hw

DCE (Distributed Computing Environment) by OSF (The Open Software Foundation)
A (superset) implementation of industry middleware standards of☛

☛ by DEC towards open systems

✇ 6 7 7 8 9 : 6 ; 9 < = 7 < > ; 6 ? 9 8 9 ; @
✇ 6 7 7 8 9 : 6 ; 9 < = 9 = ; A > < 7 A > 6 ? 9 8 9 ; @
✇ B C A > 9 = ; A > D 6 : A 7 < > ; 6 ? 9 8 9 ; @

NAS APIs

Lawrence Chung

☛The NAS API (Application Programming Interface) consists of:
✇

- . . / 0 1 2 3 0 4 5

NAS Software Product
NAS Service

Operating System

Platforms/Network Transport Mechanisms
Hardware

System Interface

Network Transport Mechanism

PL Spec: defines, for each PL, the syntax and semantics of the common requestable fns

✇ Environment Spec:
(API service profile) defines which NAS services are available on a particular platform

✇ API Service Spec:
defines the syntax and semantics of the functions provided by a specific NAS service

NAS Computing Environment

☛ The NAS system interface (SI) spec. defines how an NAS service accesses
the services of OS/Network E F G H I J H K G L M N J O P Q R S E T H U G M G H U G H K G

Lawrence Chung

☛The NAS API (Application Programming Interface) consists of:
✇

- . . / 0 1 2 3 0 4 5

PL Spec: defines, for each PL, the syntax and semantics of the common requestable fns

✇ Environment Spec:
(API service profile) defines which NAS services are available on a particular platform

✇ API Service Spec:
defines the syntax and semantics of the functions provided by a specific NAS service

☛ The NAS system interface (SI) spec. defines how an NAS service accesses
the services of OS/Network E F G H I J H K G L M N J O P Q R S E T H U G M G H U G H K G

NAS Services

Platforms/Network Transport Mechanisms

NAS Infrastructure

Presentation ControlCommunication Information Computation Management
Services Services Services Services Services Services

Windowing
Terminal
Printing
Hyperinfo
Forms
Graphics

Mail
Data Access

Repository
File Sharing
EDI
Msg Queuing

Appl. Ctrl Arch

TP File Sharing
Data Access/

Directory
Repository
Compound Doc

Arch

Date/Time

Numeric

Text

Utility

Security

Reliability

✬❁◗❒❅■❃❅ ✣❈◆■❇

✬❏▼◆▲✑✍✒✍✓
✳❐❒❅❁❄▲❈❅❅▼

✁✠✃✄☎✾✆☛✈✉
❁▲❄❆✇✛●❋❊❈
✡✳✤✦✧★✪✫✬✚

✺✸✣✶✢✮✭✜✞
❚❘❃❖❂■❍✌✎

❑◗❅❒▼❙◆❉❏

❞❜☞❀✼✝✍✐✙

OLE/COM

✤❏❃◆❍❅■▼▲

3 4 5 61 2

B

A

C

V W X Y Z

Lawrence Chung

Lotus1-2-3

✳❐❒❅❁❄▲❈❅❅▼

✑✒✓✔✕✖✗✘✙✐✑
❁❂❃❄❅❆❇❈❉❊

✬❏▼◆▲✑✍✒✍✓

❞❜☞❀✼✝✍✐✙

[\] Y ^ _ ` a Y Y b

c d] _ \ Y] e Y X b

f ^ X g] ^ hi j k Y X b `

l Y W b
✴❅❘▼

✈✤✣✯✭✉
✯❂❊❅❃▼▲

✷❏❒❄❐❅❒❆❅❃▼

✭❁❃✤❒❁◗
✤❏❃◆❍❅■▼▲

[b ^ b m ` b m X `

✴❅❘▼ ✴❅❘▼
✈✤✣✯✭✉

✈✤✣✯✭✉

g ^ b ^ j ^ ` Yn m Y Z _ `

Consider desktop publishing
multiple tools

multiple objects
multiple documents

multiple services

l Y W bc d] _

o ^ h] Y p X Y q a r p s

Lawrence Chung

Platforms/Network Transport Mechanisms

OLE/COM

NAS Infrastructure

In-Place Activation/
"Visual Editing" q d t \ d r p _g d X r t Y p b `

Embedding

Drag and Drop Automation

Uniform Data Transfer

Compound Files

Linking

Monikers

Component Object Model

Distributed

☛ OLE2 (Object Linking and Embedding, Version2) is an object-based framework

☛ One of the 2 foundational APIs (WIN32 is the other),
supported by Windows 3.1, NT, 95 & Cairo, Macintosh platforms

(Application) Embedding:✇

a container application displays components objects from multiple applications
(e.g., Word processor, spreadsheet, database, email, web browser, scheduler, multi-media)
the container’s menus change, according to the user’s selection of a component object,
to allow the user to edit the object using the component application’s operations

for seamless application integration at the user interface thru "in-place activation";✬
✬

✬

(COM)

Common
Object
Model

(DCOM)

OLE/DCOMOSF DCEfor desktop appln interoperability, but restricted to a single user&machine

Lawrence Chung

Platforms/Network Transport Mechanisms

OLE/COM

NAS Infrastructure

In-Place Activation/
"Visual Editing" q d t \ d r p _g d X r t Y p b `

Embedding

Drag and Drop Automation

Uniform Data Transfer

Compound Files

Linking

Monikers

Component Object Model

Distributed

(COM)

Common
Object
Model

(DCOM)

✇ Embedding: for editing objects within a container object without creating a separate appl window

✇COM: defines the basic interface mechanisms for invoking OLE2 objects
✇Compound Files:to persistently store multiple objects from multiple applns within a container object
✇ Uniform Data Transfer:a clipboard facility for adding OLE2 data objects to the clipboard
✇Drag and Drop: for dragging & dropping subsets of docs between similarly enabled OLE2 applns
✇ Linking: for the display of common data in multiple documents with updates

✇ Moniker: a naming facility, supporting linking using file pathnames

✇ Automation:similar to Dynamic Invocation Interface, for controlling appln thru a dispatch fn

"Page header"
of tenants
Name of 1st tenant

"Page header"
of tenants
Name of 1st tenant

Lawrence Chung

OLE/COM

Compound Files

Structured Storage (Data Architecture Specification)

✇ created and and managed by OLE2 container objects
✇ enable storage & partitioning of complex data from multiple embedded objects into a common file

Root Storage

of pages
Current page
Name of 1st page

"Page list"

"Device Configuration"

page 0
tenant 0

"Header"
Data format
Size of data

"Data"

"Header"
Data format
Size of data

"Data"

"Header"
Data format
Size of data

"Data"

tenant n
page 1

page n tenant 0

tenant 1

Lawrence Chung

CORBA

☛ Common Object Request Broker Architecture

u v w x y z { | } ~ | }
u v w x y z { | } ~ | }

u v w x y z { | } ~ | }
☛ A specification for a standard OO architecture for applications

not a low-level design/implementation✇
✇

☛ defined by the Object Management Group (OMG) since Nov 1990

platform (OS, HW)-independence, PL-independence

currently >500 members

☛ CORBA clients and servers do not need direct knowledge of each other
the broker knows the locations and capabilities of the servers on the network

☛ A client request can be fulfilled by several (competing) servers
the broker should know who can provide the service fastest and cheapest

☛ An Object Model requires abstraction, encapsulation, inheritance & polymorphism

Few individuals practicing in the software industry have this ability - perhaps as few as
one in five software designers." [Coplien, ’94]

"The ability to create simplifying abstractions is a key innate talent of the software architect.

B
ro

ke
r

Method

promote Emp_promote
Operation

Lawrence Chung

Object Reference to
Dave Smith Object

Operation
Dismiss

(instance of Employee)

Server Application

Employee
Implementation of

Method
Emp_dismiss

q Z m Y p b � \ \ Z m X ^ b m d p
Interface Specification
/* Personnel Application OMG

IDL source file: CORP.IDL

Module CORP
{
// Declarations of variables

used throughout this module

typedef long BadgeNum;
typedef long DeptNum;
typedef enum DismissalCode
{DISMISS_FIRED, DISMISS_QUIT};

// Interface Definitions
interface Employee
{
void promote (in char new_job_class);

in string description);
...
}; // end of interface Employee
...

}; /* end module CORP */

☛ An OMG IDE file describes the data types, operations, and objects

✇ that the client can use to make a request and

✇ that a server must provide for an implementation of a given object

☛ OMG IDL and C code are very similar in appearance

☛

OMG Interface Specification

The internal representation of of an object reference might differ,
but all object references have the same exterrnal representation for a given PL

void dismiss (in DismissalCode reason,

Lawrence Chung

OMG Interface Specification

Interface Specification
/* Personnel Application OMG

IDL source file: CORP.IDL

Module CORP
{
// Declarations of variables

used throughout this module

typedef long BadgeNum;
typedef long DeptNum;
typedef enum DismissalCode
{DISMISS_FIRED, DISMISS_QUIT};

// Declarations of data types
struct DeptInfo

{
DeptNum id;
string name;
};

// Interface Definitions

interface Employee;
// forward referencing

{
interface Department

 attribute DeptInfo DeptId;
readonly attribute Employee manager_obj;

}; // end of interface Department

✇ complex data structure, forward referencing, readonly object attributes

☛ single inheritance, multiple inheritance within & across modules

interface Employee
{ attribute EmpData personal_data;
readonly attribute Department department_obj;

void promote (in char new_job_class);

in string description);

}; // end of interface Employee

void dismiss (in DismissalCode reason,

void transfer (in Department new_dept_obj);

interface Manager: Employee
{ void approve_transfer (in Employee employee_obj,

in Department current_department,
in Department new_department);

}; // end of interface Manager

interface Personnel: Employee
{ Employee hire (in Empdata employee_data,

in Department department_obj,
out BadgeNum new_employee_id);

}; // end of interface Personnel

}; /* end module CORP */

interface PersonnelManager: Personnel, Manager
{

...

Module Engineering
{ interface EmployeeLocator

void FindEngineer (in CORP::BadgeNum id,
out CORP::PersonalData info);};

void arbitrate ();
}; //end of PersonnelManager

interface PersonnelManager: CORP::PersonnelManager
{ ... };}; //end module Engineering

Lawrence Chung

OMG Interface Specification

CORP.IDL

OMG.IDL File

CORP_cstub.c
Client Stub

CORP_sskel.c

Server Skeleton

CORP.h

Header File

� � � � � � � � � � � � � � � � � Server Application

generates PL-specific filesOMG IDL Compiler

Repository
Interfacefor dynamic invocation

(get signature/interface spec)

☛ Client Stub

☛ Header File

one PL-specific routine for each operation (e.g., "hire") in cource code format;
compiled & linked into the client application

define data types (structures and constants)
to be included into the client/server appln source code

☛Server skeleton
for mapping client operations to methods in the implementation;
generated in source code format; compiled and linked into the server application

Lawrence Chung

CORBA Interfaces

u v w x y z � � � x � z � � � v x � x y z � z w � y

Static
Stubs

Dynamic
Invocation
Interface

ORB
Interface

Static
Skeletons

(Basic)
Object
Adapters

Dynamic
Skeletons
Interfaces

Interface Repository Implementation Repository

ORB

☛Dynamic Skeleton Interfaces
communicate with remote ORBs

☛Dynamic Invocation Interface
Unlike Static Invocation Interface (Static Client Stub),

☛ Client Stub

one PL-specific routine for each operation (e.g., "hire") in cource code format;
compiled & linked into the client application

☛ Header File

define data types (structures and constants)
to be included into the client/server appln source code

☛Server skeleton

generated in source code format; compiled and linked into the server application
for mapping client operations to methods in the implementation;

☛ Object Adapters

DII lets you postpone selection of object type and operation until run time + asynchrous modes

(Object) Lifecycle
(Object) Relationship Location

Naming

(Lang) Translation

(Object) Transaction

Security
Concurrency

Persistent Object

Trader

Licensing
Event

activating and invoking a server (object implementation)

ORB

BOA

Activate
Object

Pass
Invocation
Skeletons

Methods
send
response deactivate_impldeactivate_obj

1. ORB
receives
call

Activate
Server

or
active (object))

2. check repository:
not (active (server)

-> pass info

BOA routines

Server
routines

Impl_ready

3

4. pass the obj. ref
to the target obj
If previously active
retrieve the prev state
from repository

5.

6. receive the response,
to be routed back
to the client

7. save the object state
before shutting down

8. the server shutting
down entirely

� � � x � z � � � v x � x y z � z w � y

Lawrence Chung

Basic Object Adapters

✜ Unshared server policy: only 1 object of a given impl at a time can be active on a server
appropriate when exclusive resource (e.g., a printer)

Shared server policy: a single server running a number of objects, one per interface
+ reduced process-initiation overhead
- hard to enforce memory and security isolation of one object from another

✜ Server-per-method policy: a separate server for each method invocation
good for load balancing or isolation of servers from each other (security/administration)

Computer Science Program, The University of Texas, Dallas

- The art of systems architecting
� � � � � � � � � � � � � � � � � ¡ � � ¡ ¢ � � � � � � � � £ ¢ ¤ � ¥ � � � ¦ � § � � � ¥ � � ¨

All systems have subsystems and
all systems are parts of larger systems.

The value added by a system must come from
the relationships between the parts,
not from the parts per se.

© ª «

Lawrence Chung

