Computer Science Program, The University of Texas, Dallas

Repositories

To Be Departmentalized Or Not To Be

Simple Repository Database Architecture

Virtual Repository

Blackboard Systems

Case Study: Mobile Robot Architecture

Lawrence Chung

To Be Departmentalized Or Not To Be

- Two distinct kinds of components
 - a central data store (repository), representing the current state
 - a collection of independent components, operating on the central data store
- Not To Be
 - a collection of independent components, each with its own data store, communicate with each other.

2 Main Categories of Repositories

according to the type of interactions between the repository and its external components:

- (traditional) repository database:
 - input transactions activate processes to execute
- blackboard its current state is the main trigger for selecting processes to execute

Lawrence Chung

Batch Sequential Pipeline Systems

≅ Constraints:

processes run in a fixed sequence; but they do not know each other each runs to completion, producing an output,

before the next process begins

Simple Repository Database Architecture

- Two trends away from batch sequential processing
 - ♦ interactive technology for on-line incremental updates and queries
 - growth in the set of transactions and queries
- Architecture

- each transaction (in each component) does an update or a query
- db stores persistent data shared among different transactions
- no fixed ordering among transactions (cf., batch sequential)
- concurrency control handled by "control"

Mfg Sales #robot = 1 [#robot ?>0] -> sell [#robot ?>0] -> sell

Software Repository

Purpose

- to allow the user to define, store, access and manage all the information about any software What's software?
- tools access data thru open representation standard, CDIF (CASE data interchange format)
- Architecture commonly based on the ANSI SPARC 3-level schema:
 - external (logical) schema: individual users' view
 - conceptual model: comprehensive view of entire contents
 - physical model: physical implementation for data storage

Virtual Repository

Multiple databases

- distributed, heterogeneous but (often) transparent
- due to corporate reorganizations, mergers, consolidations, etc.

Heterogeneity

different schemas, names (tables, attributes), data representations

UTD-Library					
Items					
item#	title	author name			
numeric 32					
LC-Nun	n ber c-letter	f-digit			
	c-letter	f-digit			
item#	c-letter	f-digit			

UNC-Library

Blackboard Systems

Basic concepts

- the abstract model for access is "direct visibility"
- many human experts watch each other solve a problem at a real blackboard

- the knowledge sources: separate, independent parcels of application-dependent knowledge; Interaction takes place solely thru the blackboard
- the blackboard: problem-solving state data, organized into an application-dependent hierarchy Knowledge sources make changes to the blackboard that incrementally lead to a solution to the problem
- control:

driven entirely by state of blackboard. Knowledge sources respond opportunistically when changes in the blackboard make them applicable.

Traditional Applications

Al systems

- signal processing (speech and pattern recognition)
- shared data to data with loosely coupled agents

Wreck a nice beach

- signal segmentation for speech understanding
- * phoneme recognition
- word candidate generation
- syntactic-semantic connection

Case Study: Mobile Robot Architecture

["An architecture for Sensor Fusion in a Mobile Robot," Shafer, Stentz & Thorpe, Proc. IEEE Int. Conf. on Robotics and Automation, 86]

Context

- a mobile robotic system controls a manned or partially-manned vehicle (e.g., a car, submarine, space vehicle; but not R2D2, C3PO)
- useful for "driving impaired", underwater exploration, space exploration, hazardous waste disposal, etc.
- external sensors, actuators and software system:
 - external sensors (e.g., rangefinders, TV cameras) work in parallel for detecting stop signs, traffic lights, intersections, etc.
 - multiple sensors have different times -> requires asynchronous sensor fusion (i.e., integration of multiple parallel sensors in a single system)
 - actuators at real-time rates as well (e.g., apply pressure to the break system; activate alarm sound; turn the steering wheel; apply pressure to the accelerator
 - software functions include:
 - **%** acquiring sensor inputs
 - scontrolling the motion of the steering wheel and other (moveable) parts (e.g., break, windshield wiper, defogger, temperature control
 - # planning its future path

Case Study: Mobile Robot Architecture

- complicating factors:
 - obstacles blocking the robot's path:
 - # pedestrians, rocks, birds, animals on the highway
 - **%** road under construction, closed road, detour, merging lanes
 - **%** accident on the road, malfunctioning traffic lights
 - imperfect sensors:
 - slow TV cameras, distance-limited rangefinders
 - x vision impaired by rain, animal debris
 - => can miss speed limits, school district signs, etc.
 - mechanical limitations:

restrict accuracy of movement max 45 degree angle turn, 10 second delay before a full stop

power shortage

Lawrence Chung

Solution 2: Layered Architecture				
Supervisor	UI and overall supervisory functions			
Global Planning	planning & replanning robot's actions dealing w. problems			
Control	schedule actions			
Navigation	manage robot's navigation			
Real-world Modelling	maintain robot's model of the world			
Sensor Integration	combined analysis of different sensor inputs			
Sensor Integration	interpretation of data from one sensor			
Robot Control	 actuators: motors, joints,; sensors: TV cameras, rangefinders, microphones 			
Action	 Feedback			
Environment % continuous changes: rain falling, deer crossing, front car getting closer				
+ decomposition of cooperating components (control vs. navigation vs. sensor integration) + world model can disambiguate conflicting sensor data (sunshine & no cloud -> no rain) + fault tolerance and safety				
- no direct interaction between sensors/actuators and global planning (file -> spray file dehydrant) robots usually do not follow this kind of orderly scheme - mergin two abstraction hierarchies:				
=> complex relationships between layers can be hard to decipher ^{user-level} control (8) => low modifiability Lawrence Chung				

Summary Comparison					
	Control Loop	Layers	Blackboard		
Task coordination	+-	-	+		
Dealing with uncertainty	-	+-	+		
Fault tolerance	+-	+-	+		
Safety	+-	+-	+		
Performance	+-	+-	+		
Flexibility	+-	-	+		
│ ☑ Prioritize					
Ø Other NFRs					
// More Scenario Analysis					
Lawrence Chung					