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System-wide properties such as reliability, availability, maintainability, security, responsiveness,
adaptivity, evolvability, survivability, nomadicity, manageability, and scalability (the ”ilities”, ”ities”
and the like), are crucial for the success of large software systems. Although these properties have
been a major concern of software engineering since its inception, most of the effort on software
architecture has focused on achieving functionality. For example, in current visions of component
software architectures (CORBA, WWW, ActiveX, etc.), there is no provision for systematically
achieving system-wide properties. As noted in the objectives statement of this workshop,

”assembling components and also achieving system-wide qualities is still an unsolved
problem. As long as the code that implements ilities has to be tightly interwoven with
code that supports business logic, new applications are destined to rapidly become as
difficult to maintain as legacy code.”

A Design Space Perspective

Given a requirements description as the problem statement, there can be potentially an infinite num-
ber of architectural design alternatives as solutions. For example, an architectural design involves
deciding on the number and types of components in the system, the number and types of interactions,
the way data is distributed among components, the way processing is distributed among compo-
nents, etc. Inevitably decisions have to be made on these choices toward a particular final system
architecture, and the quality of the architecture chosen is only as good as the decisions obviously.
What would be the role of system-wide qualities? In our view, it has to do with the (functional)
design space, more specifically narrowing down the space such that the delivered architecture fits to
use.

One can classify approaches to quality into product-oriented vs. process-oriented, and quantita-
tive vs. qualitative approaches. For example, measurements of quality attributes of the completed
code would be quantitative and product-oriented. Traditionally, approaches to system-wide prop-
erties have often been product-oriented, i.e., “build-and-evaluate” — build a product and evaluate
it against system-wide properties. If not satisfactory, build another and evaluate it, etc. Un-
fortunately, however, this kind of (retrofitting) approaches tend to be quite coarse-grained, make
over-generalizations, and provide little insight as to how to build a better one the next time, either
in the initial development cycle or in the subsequent system evolution cycle. Furthermore, they
barely relate functionality to system-wide properties.



A Process-Oriented Approach

We, starting with Chung’s dissertation [Chung93], have been focusing on a process-oriented approach
to addressing software quality. The approach is requirements-centered, noting that quality issues
originate from requirements, and that high quality can be achieved by properly representing quality
requirements (also called non-functional requirements, NFRs) and analyzing them in the context
of the intended applications during requirements engineering. This is a ”generative” approach,
and 1t can benefit from a tool support for systematically applying such requirements to guide the
exploration of, and selection among, design alternatives during system design. Putting system-
wide quality requirements up-front as goals to be achieved 1s especially important during high-level
component design, i.e., in making architectural decisions [CNY95].
In the context of compositional software architectures, this process-oriented approach aims to

e reason about the quality of the whole (i.e., the overall architecture) in terms of the quality of
its parts (i.e., the components), and the quality of the parts in terms of the quality of their
sub-parts, etc.;

e accommodate the “subjective” nature of system-wide properties by considering the character-
istics of the intended applications, hence avoiding over-generalizations;

e to explore the design space and make a rational choice toward a particular system architecture,
while performing tradeoff analysis;

e make all the design alternatives, decisions and rationale traceable throughout for fast initial
design and subsequent evolutionary redesigns.

The approach is realized in the NFR framework, in which system-wide properties are treated
as goals to be achieved. During the architectural design process, goals are decomposed, design
alternatives are analysed with respect to their tradeoffs, design decisions are made and rationalised,
and goal achievement is evaluated. This way, system-wide properties serve to systematically guide
selection among architectural design alternatives. While the ”ilities” will be manifested in the design,
they are not necessarily inextricably interwoven into the design.

More specifically, in the NFR framework, NFRs are represented as softgoals (conflicting or syn-
ergistic), and relationships between softgoals as contribution types (both partial and full, as well as
both “+” and “-”). Each softgoal is associated with a satisficing status indicating the degree to
which it 1s satisficed or denied or in conflict. In the NFR framework, ilities are explicitly represented
not only textually but diagrammatically in a softgoal interdependency graph (SIG).

This graph helps preventing the designer from putting any lop-sided emphasis on system func-
tionality only. This graph also helps maintain traceability while avoiding ad hoc, accidental design
and unjustifiable efforts. During architectural design, every decision can be traceable backward
to requirements, and conversely every requirement can be traceable forward to architectural deci-
sions and designs. Naturally the intention behind this graph coincides with one of the goals of this
workshop:

“to architect systems so that both functionality and architectural -ilities can be upgraded
over the application’s life cycle.”

From a product viewpoint, our approach emphasizes that a software product is not just the final
code at the end of the development process. Software must continue to evolve so there is no ”final”
code. The requirements and design knowledge and decisions leading up to code is as much a part of
the product as the code itself. They must be represented and encoded in a suitable form to support
the ongoing evolution of the product [MBY96].

The NFR framework supports the “generative” process by a body of knowledge of softgoal
satisficing represented as generic methods, a body of knowledge of design tradeoffs represented as as



correlation rules. and a procedure for propagating satisficing status. The generation of a software
architecture is semi-automatic, controlled by a human architect who selects softgoals to refine, selects
methods apply, extends and tailors the catalogues of methods, and maximizes synergy and minimizes
conflict [CNYMForthcoming].

Status and Open Issues

The NFR-Framework has been tested on several system types with a variety of NFRs: studies of
research expense management, credit card, public health insurance and government administration
(Cabinet Documents and Taxation Appeals) information systems [CN95]. Adaptation of the frame-
work has also been considered in the context of software architecture [CNY95], and applied to an
initial study of dealing with change in a bank loan system, with the combination of performance
and requirements for accuracy, timeliness and informativeness [CNY96]. The NFR-Framework also
has an associated prototype tool, currently at least to deal with security, accuracy [Chung93], per-
formance [Nixon97] and some other NFRs. The NFR-Framework has been one of the subjects in a
comparative study on several goal-oriented approaches [Finkelstein93] who use the meeting sched-
uler example as a basis of comparison. There are other uses of the NFR-Framework, including
organization modelling [Yu94], and project risk management [Parmakson93].

There still are many open questions, as raised in the topics-of-interest statement of this workshop,

”How to insert them into component software architectures? Say you had a system doing
something. How would it look different if ility X was added or removed? Is there some
kind of architectural level where the boundary between the visibility /hiddeness of the
ility changes? What is needed in the architecture in order to add ilities?”

In our experience, the answers to the questions depend on many factors, such as the type of X, the
criticality of X, other ilities important to the system, the type of application(s) the system is intended
for, etc. For example, if ility X is about response time and the main service the system provides
is sorting and the response times of other components in the system are good enough, addition or
removal of X 1s unlikely to induce any change to the architecture but to the data structure and
algorithm below. However, if X 1s about availability, another replica of the sorting component may
be introduced at another server site so that the sorting service can be provided even when the first
component fails, hence change in the architecture.

So far as changes are concenred, the NFR, framework helps easily and quickly understand changing
needs and propagate — through dependencies of system-wide properties, design alternatives, decision
and rationale — from changes in the requirements to changes in the design [CNY95].

However, one big challenge to properly achieving system-wide properties in software architectures,
we believe, lies in our ability to analyze the architecture at as finer level of granularity as needed.
This will involve understanding the “principle of compositionality” in the context of software ar-
chitectures, namely, “How 1s the behavior of the whole related to the behavior of the individual
components?” and “How is the quality of the whole related to the quality of the components?”.
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