
Fourth International Conference on Software Quality
McLean, VA, U.S.A. October 3–5, 1994

USING QUALITY REQUIREMENTS
TO SYSTEMATICALLY DEVELOP

QUALITY SOFTWARE
�

Lawrence Chung, Brian A. Nixon and Eric Yu
Department of Computer Science, University of Toronto

Toronto, Ontario, Canada M5S 1A4
� � � � � ��� � 	
 � ��� � 	 � � � � 	 � � � � � � � ��� � ���

Facsimile (416) 978–1455

Abstract. Although quality issues such as ac-
curacy, security, and performance are often cru-
cial to the success of a software system, there
has been no systematic way to achieve quality
requirements during system development. We
offer a framework and an implemented tool
which treat quality requirements as goals to be
achieved systematically during the system de-
velopment process. We illustrate the process
that a developer would go through, in build-
ing quality into a system. We have tested the
framework on a number of studies involving a
variety of quality requirements, organisational
settings, and system types.

Keywords: non-functional requirements, ac-
curacy, security, performance, information sys-
tems, process, software quality, defect detec-
tion, conflicts.

1 Problem

Software development is traditionally driven
by functional requirements, i.e., the desired
functionality of the system. For example, a
credit card system should debit and credit ac-
counts, check credit limits, charge interest, is-
sue monthly statements, and so forth. How-
ever, non-functional requirements, such as ac-
curacy, security, and performance, are often
just as crucial to the success of the system as
�
This paper is largely based on a paper [Chung94] presented at

the Workshop on Research Issues in the Intersection Between Soft-
ware Engineering and Artificial Intelligence. Current affiliation of
first author: Computer Science Program, Erik Jonsson School of En-
gineering and Computer Science, The University of Texas at Dallas,
P.O. Box 830688, Richardson, TX 75083–0688, U.S.A.

the functional requirements. Inaccurate credit
account information can lead to monetary loss
and damage to reputation of the associated en-
terprise, while poor response time could lead
to loss of customers.

Although the importance of these
non-functional, quality issues are widely rec-
ognized, there has been no systematic way to
build quality into the software as the software
is being developed. The main difficulty is to
come to grips with the essential concepts of
the particular quality, say security, and then,
to build guidelines for applying the concepts.
Another central difficulty is that each decision
made during the development process typically
affects many quality issues. For instance, each
decision to select a technique to achieve secu-
rity may also affect other security decisions, as
well as performance, accuracy, operating costs,
user-friendliness, and maintainability. In at-
tempting to systematically address one type of
requirements, say, security, it is hard to be sys-
tematic in meeting all the other requirements
at the same time. This problem is exacerbated
by the complexity of the functionality in most
large systems, and by frequent changes to re-
quirements.

What is needed is a systematic framework,
and supporting tools, which can keep track of
all relevant quality requirements for each de-
velopment decision, help search for applicable
techniques for addressing each type of quality
requirements, identify interactions among re-
quirements, assist in evaluating alternatives and
making trade-offs, detect defects, and record
justifications for decisions, so that the entire

development process is rational, traceable, and
easily revisable.

2 Solution

In our approach, we treat Non-Functional
Requirements (NFRs or quality requirements)
as goals to be addressed during the develop-
ment process. Making use of well-established
methods of addressing each class of goals (e.g.,
accuracy, security, performance, etc.), the myr-
iad of decisions comprising the development
process becomes goal-driven, coherent, and
explainable. Incorporation of these concepts
naturally led to our process-oriented NFR-
Framework (See [Mylopoulos92, Chung93a]
for details), which is implemented in the form
of a tool called the NFR-Assistant. The NFR-
Assistant provides support for:

1. Refining initial high-level goals to detailed
concrete goals. The Assistant helps the de-
veloper search and select from a catalogue
of relevant techniques for addressing the
goal under consideration (e.g., authenticate
signature to achieve security of credit card
transaction).

2. Identifying the need for tradeoffs. The As-
sistant detects synergistic and antagonis-
tic interactions among goals, by invoking
pre-defined rules (e.g., authentication by
secondary identification improves security,
but hinders user-friendliness).

3. Evaluating and choosing among alterna-
tives. The Assistant keeps track of the pos-
itive and negative impacts of development
decisions with respect to all relevant goals.

4. Recording arguments for or against partic-
ular development decisions and tradeoffs.
The Assistant maintains design rationales.

5. Detecting and correcting omissions, am-
biguities, conflicts, and redundancies.
The formal representation and knowledge
structuring mechanisms underlying the
framework allows the Assistant to alert the
developer of defects at each step in the de-
velopment process.

The Assistant interacts with the developer
through a graphical interface. Throughout the
development process, the developer is in con-
trol. The Assistant manages the details of the
process, drawing on a potentially vast base
of generic and case-specific knowledge, but
brings to the developer’s attention only those
aspects pertinent to the developer’s current fo-
cus. This allows the developer to make in-
formed decisions while maintaining perspec-
tive. By following this goal-oriented approach,
the quality of the software product is assured
because quality requirements are brought to
bear on development decisions at each step in
the process.

The framework and tool were developed by
adapting the following artificial intelligence
techniques:

1. a rational design process [Simon81]: us-
ing concepts of goals, means-ends relation-
ships, alternatives, and satisfactory (“good
enough”) solutions;

2. problem solving techniques: in the spirit of
AND/OR goal trees [Nilsson71], but aug-
mented with a richer set of goal types and
relationships;

3. reasoning: from truth maintenance sys-
tems augmented with a dialectical style
of reasoning from work on design ratio-
nale [Lee91], and with qualitative reason-
ing techniques [AI84];

4. knowledge structuring and modelling fea-
tures: from knowledge representation
[Mylopoulos91]; and

5. knowledge base management facilities:
from the ConceptBase facility [Jarke92b]
for the NFR-Assistant.

3 Example

To illustrate the use of the NFR-Framework,
we show a sample process that a developer of
a credit card system would go through. The
developer is aided by the NFR-Assistant.

3.1 Refining Non-Functional Requirements
goals into less-ambiguous sub-goals.

of disambiguating methods.
—> NFR-Assistant displays relevant catalogue

Developer states top security goal

Developer selects method
—> NFR-Assistant creates and links sub-goals.

integrity

Complete
account

account
Accurate

Secure

Max. Max.
availabilityconfidentiality

Max.

accounts

Figure 1(a). Refining Non-Functional
Requirements goals into less-ambiguous

sub-goals.

Developer states the non-functional require-
ment Accounts should be secure, which is rep-
resented by the top goal in Figure 1(a). In the
figure, circles denote goals, and arcs denote
relationships between goals. This initial non-
functional requirement is abstract. On the one
hand, it leads to different interpretations for dif-
ferent groups of people; on the other hand, it
is coarse-grained and does not permit the con-
sideration of design decisions which normally
require more specific details about the require-
ments.

Assistant provides a catalogue of alterna-
tives that are frequently used, helping the de-
veloper focus search and be more specific about
the security aspect of the requirement.

Developer examines the catalogue. The de-
veloper can either select a method from the cat-
alogue or come up with a new one. Here, the
developer selects a method from the catalogue
which takes the security goal and produces
three sub-goals, for Integrity (guarding against
unauthorized update or tampering), Confiden-
tiality (guarding against unauthorized disclo-
sure), and Availability (guarding against inter-
ruption of service) of the account.

Assistant generates subgoals and links them
to the security goal.

This way, the developer successively gen-
erates more specific goals to meet the parent
goal.

3.2 Choosing among alternative techniques to
meet Confidentiality Requirement.

Authenticateuseraccess

eligibility rules
against

Validate access

Max.

Accurate

—> NFR-Assistant displays catalogues of
security assurance techniques and trade-off.

Developer selects technique
—> NFR-Assistant creates and links techniques

—> (see Figure 1(c)).

accounts

confidentiality availability
Max.Max.

Secure

Compare
Require
additional

Signature

account

node
OR

account
Complete

access to
Authorize

account
information

integrity

ID

P.I.N.
Use

Developer focusses on Confidentiality

users
Identify

Figure 1(b). Choosing among alternative
techniques to meet the Confidentiality

Requirement.

Developer decides to focus on the Confiden-
tiality Requirement in moving towards a secure
target design or implementation.

Assistant displays alternative techniques
relevant to assuring Confidentiality, along with
their relative trade-offs (shown in Figure 2).

Developer examines a catalogue of confi-
dentiality assurance techniques displayed by
the system, and decides to select an Authoriza-
tion Technique.

Assistant creates and links techniques.

Repeating this process, the Authorization
Technique is further refined to goals for Identi-
fication, Authentication, and Access Rule Val-
idation.

3.3 Dealing with trade-offs.

-
access

Authenticate
user

users
Identify

node
OR

confidentiality are vital;

space
Min.

User-friendliness based on correlation rules.

—> Assistant automatically detected

—> Assistant detects Confidentiality-Time conflict (-).

—> Assistant displays relevant arguments.

integrity

account

Authorize
access to

Complete
account

Use

-
P.I.N.

Developer deals with Performance

Accuracy-Confidentiality synergy (+),
and warned against possible omission of

response

account
Accurate

+

access
User-friendly

Min.

time

Optimized authentication will
not hurt response time much.

Signature
Compare

Secure

Max. Max.
availabilityconfidentiality

Max.

accountsfor accounts
performance

Good

Accuracy &

Use
secondary
indexing

against

information

Validate access

eligibility rules

—> Assistant evaluates goal satisfaction.
Developer makes and justifies decisions

Developer examines trade-offs

ID
additional

Require

Figure 1(c). Dealing with trade-offs.

Assistant automatically detected earlier a
synergy (+) between Accuracy and Confiden-
tiality and created a link from “validate ac-
cess against eligibility rules” to the Accu-
rate account goal (Validation has a positive
impact on the accuracy of accounts, as ill-
intentioned users can be denied access and pre-
vented from committing forgery.), when the
developer decomposed the authorization tech-
nique into three sub-goals. This link is omitted
from Figure 1(b) for the purposes of presenta-
tion.

Assistant detected the conflict (–) between
“Require additional ID” and User-friendly ac-
cess, when the developer selected alternative
techniques for further refining “Authenticate
use access.” Shown here, and omitted from
Figure 1(b), is the warning given by the Assis-
tant that the developer has not considered the
requirement on User-Friendly Access.

Developer deals with Performance Require-
ments, introducing the Minimum Response

Time Requirement.
Assistant detects the conflict between the

Minimum Response Time and Confidentiality
Requirements. Validation induces extra over-
head. It then records this relationship between
“validate access against eligibility rules” and
the Minimum Response Time goal.

Developer examines the goal synergy and
conflict induced by the “validate access
against eligibility rules”, and wants to find
ways to resolve this situation.

Assistant displays relevant ways to make ar-
guments in dealing with trade-off decisions.

Developer selects the vital-few-trivial-many
method to support the decision to validate ac-
cess against eligibility rules, and justifies the
decision with argument. In effect, the devel-
oper invalidates the negative impact of the val-
idation towards the response time.

Assistant evaluates goal satisfaction.

biometrics
requireAdditionalID

compareSignature

authentication

PIN

auditing
validateAccess

valueRemoval
noiseAddition

password

cardKey

Confidentiality Assurance Techniques

virusFilter
encryption

perturbation

manual
subsystem

identification

Response Time

UserFriendliness

Confidentiality

NFRGoal
Technique

+
-

+

-

+
Validate-
Access rules

Authentication-
requiringAdditionalID

Accuracy

Figure 2. A Portion of the Technique
Hierarchy and Examples of Trade-offs.

The catalogue of alternative refinement
methods and techniques, along with their trade-
offs, are based on work done by researchers
and practitioners in the particular areas such
as security [ITSEC91, Parker91, Clark87,
Martin73], and performance [Smith90, Hys-
lop91] of implementation of information sys-
tems [Nixon89].

Throughout the development process, both
selected and discarded alternatives form part
of the development history, and the Assistant

keeps track of the impact of decisions upon the
top-level goals.

4 Status

The NFR-Framework has been developed
and described in a number of publications. The
power of the framework has been illustrated
using the following types of non-functional re-
quirements, and applied to:

� accuracy [Chung91a,93a],

� security [Chung93a,b],

� performance [Nixon91,93,94],

� user-friendliness and cost [Chung93a].

The NFR-Assistant, a research prototype
implementation, has been developed, including
treatments for:

� accuracy [Chung93a],

� security [Chung93a,b], and

� (in progress) performance [Nixon94].

Studies have been conducted on a vari-
ety of information systems, including credit
card health insurance, and government
administration systems [Chung93a,b,c,
Nixon93,94]. As our aim is to apply A.I. tech-
nology to real problems, our studies have used
documents obtained from the organisations, in-
cluding system descriptions, policy and proce-
dure manuals, and workload statistics [Visa In-
ternational91, Ontario80, Revenue Canada92].
In this way, our studies have addressed a variety
of NFRs, a number of application areas (rang-
ing from commercial to governmental), and
systems with a variety of characteristics (rang-
ing from a high volume of short-term transac-
tions on a large information base, to a smaller
volume of long-term processes). However, we
have not yet worked closely with development
teams from the organisations.

Evaluation and Limitations. We found that
the NFR-Framework enabled us to represent
the relevant concepts and methods for dealing
with NFRs during the software development
process. This was successful because methods

offer a body of NFR-related vocabulary and
subject matter, allowing us to succinctly cap-
ture a large number of NFR-specific concepts,
such as security and performance, and their as-
sociated techniques, in an organised manner.
We also found that the NFR-Framework en-
abled us to successfully use the above repre-
sentations to relate NFRs to design decisions.
While the coverage (hit ratio) of our methods
was high for the studies already undertaken, the
definition and use of more specialised methods
would require additional expertise.

We were also able to use the framework to
successfully detect defects. In some cases, this
was made more straightforward, by using syn-
tactic checking. In addition, the structuring
and definitions of goals were used to detect
omissions. In the studies, the system also pro-
vided support for detecting and dealing with
conflicts and redundancies, while ambiguities
were detected and reduced by clarifying the
specification of individual goals.

Concerning current limitations, larger case
studies will help determine if this framework
can reduce rework and scrap, inducing shorter
production time and lower cost. Scalability is
one outstanding issue for the tool. We need to
see if larger bodies of goals, methods and trade-
offs can be accommodated and graphically rep-
resented.

5 Related Work

Quality characteristics of software has been
an important theme in software engineering
for a long time [Boehm78]. Quite appropri-
ately, various problems have been noted in the
past by practitioners and researchers alike. The
difficulty in dealing with requirements is con-
vincingly reported in [Lindstrom93]. Software
developers encounter significant instances of
missing, incorrect, or inconsistent require-
ments details. These defects can lead to project
failure, as can improper management of re-
quirements, and the inability to trace require-
ments into components of design and testing.
The importance of detecting these defects early
has been emphasized in [Boehm87], since cor-
rection of design or implementation errors can

be 100 times more costly than correction at the
requirements phase.

The need for a systematic framework is fur-
ther motivated in [Benzel89]. In practice, non-
functional requirements are often retrofitted
late in the development process or pursued in
parallel but separately from functional design.
These practices tend to result in systems which
cannot be accredited, are more costly and less
trustworthy.

Quantitative- and product-oriented ap-
proaches for addressing NFRs have been pro-
posed (e.g., [Keller90]). These approaches
have been evaluated with an emphasis on de-
fect defection and reduction. For instance,
[Linger93] provides an elegant evaluation of
the cleanroom approach, whose emphasis is
on carrying out different inspection tasks by
independent teams. Similarly, [Schneider92]
gives some evaluation of the N-fold inspection
technique whose emphasis is on replicating the
same requirements inspection task by indepen-
dent teams. This technique is noted for detect-
ing defects ex post facto by way of inspecting
general requirements. Also supporting a quan-
titative approach to software quality, Basili and
Musa [Basili91] advocate models and metrics
of the software engineering process from a
management perspective. Unlike these, our
qualitative, process-oriented approach focuses
on NFRs using a semi-formal and systematic
approach to using NFRs to drive the process of
generating quality software.

Quality Function Deployment (QFD) (or
The House of Quality) [Hauser88], one of
the most advanced quality-related works in
industrial engineering, has been applied to
Software Quality Assurance and Improvement
(e.g., [Zultner92, Yoshizawa90]). Both QFD
and the NFR-Framework can be used as me-
dia for communication and planning and to
provide a conceptual map from customers’ re-
quirements to designs and implementations.
However, the NFR-Framework focusses on a
semi-formal representation and systematic de-
velopment process, with the additional benefits
of design rationale.

Besides our own studies, in using the NFR-
Framework for several software systems, there

are other research experiences. The NFR-
Framework has been adapted to modelling or-
ganizations during the development of infor-
mation systems by one of the authors [Yu
93a,b,94, forthcoming]. It has also been
adapted to address project risk management
[Parmakson93]. The framework has been
adapted for use in a large requirements engi-
neering project [Jarke93], and is also a sub-
ject of a comparative study of goal-oriented
approaches [Finkelstein93].

However, it awaits to be seen if the NFR-
Framework is as effective in software quality
engineering as QFD in industrial quality en-
gineering [Sullivan86] [Kogure83], to reduce
rework and scrap, hence inducing shorter pro-
duction time and lower cost.

6 Conclusions: Application of the Frame-
work

We view our work as a good start on the prob-
lem of addressing quality requirements system-
atically during the software development pro-
cess. We would like to see the NFR-Framework
and NFR-Assistant used by practising software
engineers, and obtain their feedback.

We anticipate fruitful use of the framework
by a variety of users. They may be dealing
with a variety of non-functional requirements
(not limited to accuracy, security, performance,
etc.), a variety of domains (not limited to com-
mercial, governmental and multi-sectoral), and
a variety of system characteristics (including
systems with large and small workload vol-
umes, and short- and long-term processes).

Acknowledgements. Many thanks to Prof. John Mylopoulos
for ongoing direction for this work. Our gratitude to Tracy
Keeter for suggestions to improve the quality of the visuals.

Bibliography

[AI84] Artificial Intelligence, An International Journal, Spe-
cial Volume on Qualitative Reasoning about Physical
Systems, vol. 24, Nos. 1–3, Dec. 1984.

[Basili91] V. R. Basili and J. D. Musa, “The Future Engi-
neering of Software: A Management Perspective,” IEEE
Computer, vol 24, no. 9, Sept. 1991, pp. 90–96.

[Benzel89] T. C. Vickers Benzel, “Developing Trusted Sys-
tems Using DOD–STD–2167A,” 5th Annual Computer
Security Applications Conf., Tucson, Arizona, Dec. 4–8,
1989, pp. 166–176.

[Boehm78] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow,
G. J. MacLeod and M. J. Merritt, Characteristics of Soft-
ware Quality. Amsterdam: North-Holland, 1978.

[Boehm87] B. Boehm, “Industrial Software Metrics Top Ten
List”, IEEE Software, Sept. 1987.

[Brataas92] Gunnar Brataas, Andreas L. Opdahl, Vidar Vet-
land and Arne Sølvberg, Information Systems: Final
Evaluation of the IMSE. Technical Report, IMSE Project
Deliverable D6.6–2, SINTEF (Univ. of Trondheim),Nor-
way, Feb. 27, 1992.

[Chung91a] Lawrence Chung, “Representation and Utiliza-
tion of Non-Functional Requirements for Information
System Design.” In R. Anderson, J. A. Bubenko, Jr., A.
Sølvberg (Editors), Advanced Information Systems En-
gineering, Proc., 3rd Int. Conf. CAiSE ’91, Trondheim,
Norway, May 13–15, 1991. Berlin: Springer-Verlag,
1991, pp. 5–30.

[Chung91b] K. Lawrence Chung, Panagiotis Katalagarianos,
Manolis Marakakis, Michalis Mertikas, John Mylopou-
los and Yannis Vassiliou, “From Information System Re-
quirements to Designs: A Mapping Framework.” Infor-
mation Systems, Vol. 16, No. 4, 1991, pp. 429–461.

[Chung93a] Kyungwha Lawrence Chung, Representing and
Using Non-Functional Requirements: A Process-
Oriented Approach. Ph.D. Thesis, Dept. of Computer
Science, Univ. of Toronto, June 1993. Also Technical
Report DKBS–TR–93–1.

[Chung93b] Lawrence Chung, “Dealing With Security Re-
quirements During the Development of Information Sys-
tems.” In Colette Rolland, François Bodat and Corine
Cauvet (Editors), Advanced Information Systems Engi-
neering, Proc., 5th Int. Conf. CAiSE ’93, Paris, France,
June 8–11, 1993. Berlin: Springer-Verlag, 1993, pp.
234–251.

[Chung93c] Lawrence Chung and Brian A. Nixon, Dealing
with Non-Functional Requirements: Three Case Studies.
Working paper, September 1993.

[Chung94] Lawrence Chung, Brian A. Nixon and Eric Yu,
Using Quality Requirements to Drive Software Devel-
opment. Presented at the Workshop on Research Issues
in the Intersection Between Software Engineering and
Artificial Intelligence, Sorrento, Italy, May 16–17, 1994.

[Clark87] D. D. Clark and D. R. Wilson, “A Comparison of
Commercial and Military Computer Security Policies,”
Proc. IEEE Symposium on Security and Privacy, 1987,
pp. 184–194.

[Dardenne93] A. Dardenne, A. van Lamsweerde, S. Fickas,
Goal-directed Requirements Acquisition. Science of
Computer Programming Vol. 20, 1993, pp. 3–50.

[Fickas91] Stephen Fickas, Rob Helm, Martin Feather, When
Things Go Wrong: Predicting Failure in Multi-Agent
Systems. In Robert Balzer, John Mylopoulos (Workshop
Co-Chairs), International Workshop on the Development
of Intelligent Information Systems, Niagara-on-the-Lake,
Ontario, April 21–23, 1991, pp. 47–53.

[Finkelstein93] Anthony C. W. Finkelstein and Stewart J.
M. Green, Goal-oriented Requirements Engineering.
Technical Report TR–93–42, Imperial College (London
Univ.), forthcoming, 1993.

[Greenspan84] S. J. Greenspan, J. Mylopoulos and A.
Borgida, “Capturing More World Knowledge in the Re-
quirements Specification.” Proc., Sixth International
Conference on Software Engineering,1982, pp. 225–234.

[Hauser88] J. R. Hauser and D. Clausing, “The House of
Quality,” Harvard Business Review, May–June 1988, pp.
63–73.

[Hyslop91] WilliamF. Hyslop, Performance Prediction of Re-
lational Database Management Systems. Ph.D. Thesis,
Dept. of Computer Science, Univ. of Toronto, 1991.

[ITSEC91] Office for Official Publications of the European
Communities, Information Technology Security Evalua-
tion Criteria, Provisional Harmonised Criteria, Version
1.2, June 1991, Luxembourg.

[Jarke92a] M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassil-
iou, “DAIDA: An Environment for Evolving Information
Systems,” ACM Trans. Information Systems, vol. 10, no.
1, Jan. 1992, pp. 1–50.

[Jarke92b] Matthias Jarke (Editor), ConceptBase V3.1 User
Manual. Univ. of Passau, 1992.

[Jarke93] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe and
Y. Vassiliou, “Theories Underlying Requirements Engi-
neering: An Overview of NATURE at Genesis,” Proc. of
the IEEE Int. Symp. on Requirements Eng., San Diego,
CA, January 4–6, 1993. Los Alamitos, CA: IEEE Com-
puter Society Press, pp. 19–31.

[Juran79] J. M. Juran, Frank M. Gryna Jr., and R. S. Bingham
Jr. (Eds.), Quality Control Handbook,, 3rd Ed., New
York: McGraw-Hill Book, 1979.

[Kogure83] Massao Kogure and Yoji Akao, Quality Function
Deployment and CWQC in Japan. Quality Progress,
October 1983, pp. 25–29.

[Laudon86] Kenneth C. Laudon, “Data Quality and Due Pro-
cess in Large Interorganizational Record Systems,” Com-
munications of the ACM, vol. 29, no. 1, Jan. 1986, pp.
4–11.

[Lee91] Jintae Lee, Extending the Potts and Bruns Model
for Recording Design Rationale. Proc., 13th Int. Conf.
on Software Eng., Austin, Texas, May 13–17, 1991, pp.
114–125.

[Linger93] Richard C. Linger, “Cleanroom Software Engi-
neering for Zero-Defect Software.” In Proc., 15th Int.
Conf. on Software Eng., Baltimore, MD, May 1993, pp.
2–13.

[Lindstrom93] David R. Lindstrom, “Five Ways to Destroy a
Development Project.” IEEE Software, September 1993,
pp. 55–58.

[Martin73] James Martin, Security, Accuracy, and Privacy
in Computer Systems. Englewood Cliffs, New Jersey:
Prentice-Hall, 1973.

[McCabe87] Thomas J. McCabe and G. Gordon Schulmeyer,
“The Pareto Principle Applied to Software Quality Assur-
ance,” In G. Gordon Schulmeyer and James I. McManus
(Eds.) Handbook of Software Quality Assurance, New
York: Van Nostrand Reinhold, 1987, pp. 178–210.

[Mylopoulos91] John Mylopoulos, Alex Borgida, Matthias
Jarke, and Manolis Koubarakis, Telos: Representing
Knowledge about Information Systems, ACM Transac-
tions on Information Systems, vol. 8, Oct. 1990, pp. 325–
362.

[Mylopoulos92] John Mylopoulos, Lawrence Chung and
Brian Nixon, “Representing and Using Non-Functional
Requirements: A Process-Oriented Approach.” IEEE
Trans. on Software Eng., Special Issue on Knowledge
Representation and Reasoning in Software Development,
Vol. 18, No. 6, June 1992, pp. 483–497.

[Mylopoulos93] John Mylopoulos, Lawrence Chung, Eric Yu
and Brian Nixon, Requirements Engineering 1993: Se-
lected Papers. Technical Report DKBS–TR–93–2, Dept.
of Computer Science, Univ. of Toronto, July 1993.

[Nilsson71] Nils Nilsson, Problem-Solving Methods in Artifi-
cial Intelligence. New York, McGraw-Hill, 1971.

[Nixon89] Brian A. Nixon, K. Lawrence Chung, David Lau-
zon, Alex Borgida, John Mylopoulos and Martin Stanley,
Design of a Compiler for a Semantic Data Model. In
Joachim W. Schmidt and Costantino Thanos (Editors),
Foundations of Knowledge Base Management. Berlin:
Springer-Verlag, 1989, pp. 293–343.

[Nixon91] Brian Nixon, “Implementation of Information Sys-
tem Design Specifications: A Performance Perspective.”
In Paris Kanellakis and Joachim W. Schmidt (Eds.),
Database Programming Languages: Bulk Types & Per-
sistent Data — The 3rd International Workshop. Aug.
27–30, 1991, Nafplion, Greece. San Mateo, CA: Mor-
gan Kaufmann, pp. 149–168.

[Nixon93] Brian A. Nixon, “Dealing with Performance Re-
quirements During the Development of Information Sys-
tems.” Proc. of the IEEE Int. Symp. on Requirements
Eng., San Diego, CA, January 4–6, 1993. Los Alamitos,
CA: IEEE Computer Society Press, pp. 42–49.

[Nixon94] Brian A. Nixon, “Representing and Using Perfor-
mance Requirements During the Development of Infor-
mation Systems.” In Matthias Jarke, Janis Bubenko,
Keith Jeffery (Eds.), Advances in Database Technology
- EDBT ’94, 4th International Conference on Extend-
ing Database Technology, Cambridge, United Kingdom,
March 1994, Proceedings. Berlin: Springer-Verlag,
1994, pp. 187-200.

[Ontario80] Ontario, “Chapter 17: The Ontario Health Insur-
ance Plan Computer System,” In Report of the Commis-
sion of Inquiry into the Confidentiality of Health Infor-
mation, Volume II, 1980.

[Parker91] Donn B. Parker, “Restating the Foundation of In-
formation Security,” 2nd Annual North American Infor-
mation System Security Symposium, Oct. 21–23, Toronto,
1991.

[Parmakson93] Priit Parmakson, Representation of Project
Risk Management Knowledge. M.Sc. Thesis, Institute
of Informatics, Tallinn Technical Univ., Tallinn, Estonia,
1993.

[Ramesh92] Balasubramaniam Ramesh and Vasant Dhar,
Supporting Systems Development by Capturing Deliber-
ations During Requirements Engineering. IEEE Trans-
actions on Software Engineering, Vol. 18, No. 6, June
1992, pp. 498–510.

[Revenue Canada92] Dept. of National Revenue, Taxation,
Appeals Branch, Quarterly Statistical Report for the Pe-
riod Ended March 31, 1992. Ottawa, 1992. Also reports
for the (quarterly) periods ended: June 2, 1991; Septem-
ber 27, 1991; and Jan. 3, 1992.

[Schneider92] G. Michael Schneider, Johnny Martin, and W.
T. Tsai, “An Experimental Study of Fault Detection in
User Requirements Documents”, ACM Trans. on Soft-
ware Eng. and Methodlogoy, vol. 1, no. 2, Apr. 1992,
pp. 188–204.

[Simon81] Herbert A. Simon, The Sciences of the Artificial,
Second Edition. Cambridge, MA: The MIT Press, 1981.

[Smith90] Connie U. Smith, Performance Engineering of
Software Systems. Reading, MA: Addison-Wesley,1990.

[Sullivan86] L.P. Sullivan, Quality Function Deployment.
Quality Progress, June 1986, pp. 39–50.

[Visa International91] Visa International, 1990 Annual Re-
port, Canada Region, 1991

[Yoshizawa90] T. Yoshizawa, “Quality Function Deployment
for Software Development.” Second International Work-
shop on Software Quality Improvement, Kyoto, Japan,
January, 1990.

[Yu93a] Eric S. K. Yu, Modelling Organizations for Informa-
tion Systems Requirements Engineering. Proc. of the
IEEE Int. Symp. on Requirements Eng., San Diego, CA,
January 4–6, 1993. Los Alamitos, CA: IEEE Computer
Society Press, pp. 34–41.

[Yu93b] Eric S. K. Yu and John Mylopoulos, An Actor De-
pendency Model of Organizational Work — With Ap-
plication to Business Process Reengineering. Proceed-
ings, Conference on Organizational Computing Systems,
1993.

[Yu94] Eric S.K. Yu and John Mylopoulos, ‘Understanding
“Why” in Software Process Modelling, Analysis, and
Design.’ Proceedings, 16th International Conference on
Software Engineering, Sorrento, Italy, May 1994, pp.
159–168.

[YuForthcoming] Eric Yu, “An Organization Modelling
Framework for Information Systems Requirements En-
gineering”, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Toronto, forthcoming.

[Zultner92] Richard E. Zultner, “Quality Function Deploy-
ment (QFD) for Software: Structured Requirements Ex-
ploration,” In G. Gordon Schulmeyer and James I. Mc-
Manus (Eds.) Total Quality Management for Software,
New York: Van Nostrand Reinhold, 1992, pp. 297–317.

Author Biographies

Lawrence Chung received the B.Sc., M.Sc. and Ph.D. degrees
in Computer Science from the University of Toronto in 1981,
1984 and 1993, respectively. He is currently an Assistant
Professor of Computer Science at the University of Texas at
Dallas. Previously he was a lecturer of several Computer Sci-
ence courses at the University of Toronto. He has participated
in the implementation of Taxis, an early object-oriented design
language. His interests are in applications of artificial intelli-
gence to software engineering, databases and languages. With
experience in semantic data model implementation and infor-
mation systems engineering, his current interests are in the
representation and use of quality requirements in the software
process.

Brian A. Nixon received the B.Sc. degree in Computer Science
with a minor in Commerce in 1980, and the M.Sc. in Computer
Science in 1983, both from the University of Toronto. He
is now completing his Ph.D. studies in Computer Science at
the University of Toronto. He has participated in the Taxis
implementation project. His interests are in applications of
artificial intelligence to databases, languages, and software
engineering. His focus is on information system development,
including implementation of semantic data models, and their
performance.

Eric Yu received the B.A.Sc. degree in electrical engineering
from the University of Toronto in 1974, and the M.Math. de-
gree in Computer Science from the University of Waterloo in
1982. He was a Member of Scientific Staff at BNR and is
now completing his Ph.D. studies in Computer Science at the
University of Toronto. In his Ph.D. research, he is developing
a framework for modelling organizations, and has applied it to
information systems requirements engineering, organizational
impact analysis, business process reengineering, and software
process modelling. One component of the framework is based
on the NFR framework described in this paper.

