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Abstract

Non-functional requirements, such as modifiability, performance, reusability, comprehensibility and security,
are often crucial to a software system. As such, these non-functional requirements (or NFRs) should be
addressed as early as possible in a software lifecycle and properly reflected in a software architecture before
committing to a detailed design. The purpose of this paper is to discuss how the treatment of NFRs as goals
(which may be synergistic or conflicting) serves to systematically guide selection among architectural design
alternatives. During the architectural design process, goals are decomposed, design alternatives are analysed
with respect to their tradeoffs, design decisions are made rationalised, and goal achievement is evaluated. This
process can be supported by by a body of organised knowledge. This paper outlines an approach by which such
knowledge can be organized. This approach is illustrated by a preliminary study of architectural design for a

KWIC (Key Word in Context) system.
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1 Introduction

Non-functional requirements, such as modifiability, performance, reusability comprehensibility and security,
are often crucial to a software system. As such, these non-functional requirements (or NFRs) should be addressed
as early as possible in the software lifecycle and properly built into a software architecture before a detailed design
proceeds on an otherwise undesirable path.

As pointed out by Garlan and Perry [18], architectural design has traditionally been largely informal and ad
hoc. The manifested symptoms include difficulties in communication, analysis, and comparison of architectural
designs and principles. A more disciplined approach to architectural design is needed to improve our ability to
understand the interacting high-level system constraints and the rationale behind architectural choices, to reuse
architectural knowledge concerning NFRs, to make the system more evolvable, and to analyse the design with
respect to NFR-related concerns.

Suppose we are developing an architecture for a KWIC (Keyword in Context) system. We want to meet
non-functional requirements for modifiability, performance, etc. But if we optimize performance too early, we
may well hinder future modifiablity. How do we keep track of requirements and their interactions, while selecting
among design alternatives to meet the requirements?

The purpose of this paper is to discuss how the treatment of NFRs as potentially synergistic or conflicting goals
serves to systematically guide selection among architectural design alternatives. This treatment uses a framework,
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the NFR-Framework (Chung [7], Mylopoulos, Chung, and Nixon [30]), in which NFRs are represented as goals
to be achieved during the process of software development.

During the design process, goals are decomposed, design alternatives are analysed with respect to their tradeoffs,
design decisions are rationalised, goal achievement 1s evaluated, and a selection is made. In this approach, NFR-
related knowledge is codified into methods and correlation rules. Methods are used to facilitate decomposition and
achievement of goals, and argumentation of design decisions. Correlation rules are used to help analyse tradeoffs
among design alternatives, to guide selection among alternatives, to help detect goal conflicts, synergy, and
omissions, and to visually aid the representation of goal interactions. This way, a body of codified NFR-related
knowledge offers the needed subject matter and vocabulary, and is made available and reusable throughout the
process.

This process is intended not only as a means for supporting the design of software architecture but also as a
resultant history record for later review, justification and evolution.

Our proposal has emphasis in representing and using NFRs during the design of software architectures. Boehm
[3], Perry and Wolf [38], and Kazman, Bass, Abowd, and Webb [24] have argued convincingly for the importance of
addressing non-functional concerns in software architectures. Our explicit representation of NFRs was motivated
by Boehm'’s [2] insightful observation that when developers are made aware of quality concerns, that by itself
helps improve the overall software quality.

This approach is illustrated by a preliminary study of architectural design for a KWIC system. This study
examines primarily the requirements level, and is intended as a basis for systematic selection among architectural
design alternatives.

Section 2 describes the process-oriented NFR-Framework and its treatment of NFRs as (potentially) conflicting
or synergistic goals in the context of software architectural design. Section 3 illustrates the use of the NFR-
Framework by a study of architectural design for a KWIC system. Section 4 discuss related work. The contribution
of the current paper, along with future directions, is summarised in Section 5.

2 Goal-driven, Process-Oriented Architectural Design

To remedy the problems inherent in ad hoc architectural design, a more disciplined approach is needed to
improving our ability to understand the high level system constraints and the rationale behind architectural
choices, to reuse architectural design knowledge, to make the system more evolvable, to analyse the design with
respect to design criteria.

For this kind of a more disciplined approach, we adopt the NFR-Framework ([7] [30]), a framework for dealing
with NFRs during the process of software development, to offer:

1. explicit representation of non-functional requirements: NFRs are represented as (potentially) conflicting or
synergistic goals to be addressed during the process of architectural design, and used to rationalise the
overall architectural design and selection process;

2. systematic use of architectural design knowledge: Methods are used to organize NFR-related knowledge and
experience and made available during the process;

3. management of tradeoffs among architectural design alternatives: Correlation rules are used to organise knowl-
edge and experience about design tradeoffs, arising from goal conflict and synergy, and made available during
the process;

4. evaluation of goal achievement with a particular choice of architectural design: Throughout the process, the
evaluation procedure propagates, via labels, the effect of each design decision in order to help select among
architectural design alternatives.

2.1 Treating Non-Functional Requirements as Goals

In our process-oriented approach, non-functional requirements, such as “very modifiable system” and “good
system performance”, are explicitly represented as goals to be addressed and achieved during the process of



architectural design. Each goal (e.g., Modifiability [system; criticall) is associated with a sort or type
(e.g., Modifiability), a parameter list (e.g., system), and importance (e.g., critical).

One fundamental premise of our approach is that NFR goals have the property of potentially interacting with
each other, in conflict or in synergy. This property is used to systematically guide selection among architectural
design alternatives, and to rationalise the overall architectural design process.

In the design process, goals and goal relationships (links) can also represent design alternatives, decisions,
and rationale; they are recorded and structured in a goal graph (See Figure 5). Link types, such as AND and
OR, are similar in spirit to Nilsson’s AND/OR trees [32]. It incorporates Simon’s notion of goal satisficing [40]*
which reflects partial contributions by a design decision towards (or against) a particular goal. Consequently a
particular architectural design is expected to satisfy NFRs within acceptable limits, rather than absolutely.

This process is intended not only as a means for supporting design but also as a resultant history record for
later review, justification and evolution.

2.2 Methods

Architectural design knowledge and experience about specific NFRs can be organized into methods and made
available to the software architect through systematic search. An important first step in using the NFR framework
is to obtain and organise knowledge of a specific NFR, e.g., performance, from both academic research and
industrial experience. This paper illustrates the use of the framework, while presenting just an initial classification
of architectural knowledge.

In our approach, there are three types of methods: decomposition methods for refining or clarifying NFRs,
satisficing methods for achieving NFRs, and argumentation methods for making design rationale in support or
denial of design decisions.

Figure 1 shows both sort- and parameter- decomposition methods.
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Figure 1: Sample decomposition methods.

The first sort decomposition method, which codifies our general knowledge about changes, states:

In order to achieve “modifiability”, one needs to achieve “extensibility”, “updatability”, and “deletabil-

ity”.
Such a method takes a parent goal, and produces offspring goals, shown as top-down decompositions in Figure 1.
The final method is a parameter decomposition on process, including algorithms as used in [17]. The use of
methods will be illustrated in Section 3.

Satisficing methods are used to codify knowledge about achieving NFR goals, and embedded in architectural
designs when selected. For example, an implicit function invocation regime (Figure 4 (based on [17]), architec-
ture 3) can be used to hide implementation details in order to make an architectural design more extensible, thus
contributing to one of the goals in the above decomposition.

Argumentation methods are used to codify principles and guidelines for making design rationale for or against
design decisions. An example of argumentation method is a codification of the wvital few, trivial many prioritisation

ISimon actually uses the term to refer to decision methods that look for satisfactory solutions rather than optimal ones.



principle (the “80-20” rule) from industry [27, 23] and the system performance area [41]: given a set of goals,
focus on meeting the few (20%) of them which are vital, rather than the remaining 80% of them. This method
can be used in determining which goals are most important to satisfice and in selecting among alternatives to
satisfice NFR goals, especially in the presence of time and manpower limitations.

2.3 Correlation Rules

Knowledge and experience about tradeoffs among architectural design alternatives can be codified into corre-
lation rules and made available to the software architect through systematic search.

Once codified, correlation rules can be browsed by the software architect in selecting among architectural
alternatives. Correlations can then be instantiated to record goal conflict and synergy, omissions and redundancies.

Table 1 shows a synopsis of correlation rules which are based on the presentation by Garlan and Shaw [17]
which compared the extent to which alternative solutions address design considerations. In our adaptation of the
notion of “satisficing”, entries in Table 1 reflect weak or strong contributions by architectural design alternatives
for (+) or against (—) NFRs. An empty entry indicates a lack of significant contribution. (See legend of Figure 2.)
The table can be extended to incorporate more tradeoff knowledge or tailored to the needs of the intended
application domain. An entry with +— means either a positive or negative contribution, and requires the software

Shared | Abstract Implicit Pipe &
Data | Data Type | Invocation | Filter
Modifiability [Process] - - ¥ T
Modifiability [Data Rep] - - + - —
Space Performance 4+ _ — =
Time Performance — —
Reusability — T - T

— —*: if size of data in actual domain is huge

Table 1: Correlation Table, based on Garlan and Shaw.

architect to consider the characteristics of the intended application domain.

A correlation table for the KWIC example then can be constructed to record interactions among NFR goals
and architectural design alternatives, which are present in a goal graph, for a particular application domain under
consideration.

2.4 Evaluation Procedure

X

++

Legend Link Types Evaluation Labels
o strong positive satisficing ) satisficed
- weak positive satisficing <i AND @ undetermined
weak negative satisficing —5y O neutral
strong negative satisficing T=. =X X denied

Figure 2: Some rules of the evaluation procedure.



Throughout the goal graph expansion process, the evaluation procedure propagates upwards, via labels of
nodes in the graph, the effect of each design decision from offspring to parents, hence providing assessment of the
degree of goal achievement.

The labels include satisficed (/), denied (X), and undetermined (7). In our approach, goal assessment is
carried out by interaction between the evaluation procedure and the software architect who, by considering the
characteristics of the intended application domain, makes the final decision on the label value to be propagated.

Figure 2 shows some of the rules used by the evaluation procedure. Notice that the propagation of a satisficed
label along a strong negative satisficing link results in a denied label.

3 Architectural Design Process: Illustration

Our approach to supporting the process of architectural design is illustrated by the use of a KWIC system
which was formulated by Parnas [37]:

The KWIC (Key Word in Context) index system accepts an ordered set of lines, each line is an ordered
set of words, and each word is an ordered set of characters. Any line may be “circularly shifted” by
repeatedly removing the first word and appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical order.

The example is chosen since it is relatively well known, and used in several studies (by Parnas [37], Garlan,
Kaiser, and Notkin [16], and Garlan and Shaw [17]) which provide a good illustration of tradeoffs among NFRs
and design alternatives for the KWIC domain. However, it is used primarily as a “pedagogical” example in this
paper, so that we can illustrate the use of the NFR Framework for selecting among alternatives for architectural
design.

NFR Goals and Decomposition. For the purposes of illustration, assume that there is an initial set of NFR
goals: “the system should be modifiable, with good performance, and reusable”. The software architect might
represent these by Modifiability [System], Performance [System], and Reusability [System]. They are
shown at the top of Figure 3 which depicts the situation but with more progress (Some parameters are omitted
from the figure). Details will be explained as we move along. This is an initial set of NFR goals that the software
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Figure 3: Initial stage of goal graph for KWIC architectural design (based on Garlan and Shaw).

architect starts with; if needs arise, she can add more NFRs during the process.

After posting NFRs as goals to satisfice, the software architect attempts to clarify them, as they firstly can
mean many different things to different people, and secondly are too coarse to be put under analysis concerning
their interactions. For example, security has different shades of meaning in industrial and military contexts; and
performance can be decomposed into time and space considerations. For the purpose of clarification, the architect
can decompose each goal either on its sort or on its parameter (Figure 1). The architect focuses on decomposing
Modifiability [System] on its parameter. After browsing methods in consultation with domain experts, the
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architect might decompose the goal into three other offspring goals: Modifiability [Process], Modifiability
[Data Rep]l, and Modifiability [Function]. This parameter decomposition method draws on the work by
Garlan and Shaw [17], who consider changes in processing algorithm and changes in data representation, and by
Garlan, Kaiser, and Notkin [16], who extend the consideration with enhancement to system function.

The software architect further decomposes Modifiability [Function], thistime on itssort, into Extensibility
[Function], Updatability [Function], and Deletability [Function]. This sort decomposition method
draws on work by Kazman, Bass, Abowd, and Webb [24], who consider extension of capabilities in terms of
adding new functionality, enhancing existing functionality, and deleting unwanted capabilities.

Similarly, the software architect refines Performance [System] on its sort into goals for Space Performance
and Time Performance, using a method which draws on work from Nixon [34] [35]; further refinements can
address system responsiveness using Smith’s principles [41].

Architectural Alternatives. The software architect considers four architectural design alternatives (Figure 4)
that Garlan and Shaw [17] discuss (the first two were considered by Parnas [37], and the third is a variant which
was considered by Garlan, Kaiser, and Notkin [16]):

1. Shared Data: In this design, a main program (Master Control) sequences through the four basic modules:
input, shift, alphabetize, and output. Data communication between the modules is carried out by means of
shared storage, which is accessed with an unconstrained sequential read-write protocol.

2. Abstract Data Type: Instead of direct sharing of data, each module accesses data only by invoking procedures
in the interface that each module provides.

3. Implicit Invocation: Like the Shared Data design, modules share data, but through an interface. Unlike the
Shared Data design, module interaction is triggered by an event. For example, adding a new line to the
line storage triggers the Circular Shift module to do the shifting (in a separate abstract shared data store),
which in turn causes the Alphabetizer to alphabetize the lines.

4. Pipes and Filters: Using a pipeline, each of the four filters processes data and sends it to the next filter.
With distributed control, each filter can run (only) when it has data transmitted on pipes.

Design Tradeoffs and Rationale. Architectural design alternatives make partial contributions for or against
NFR goals which are (potentially) conflicting or synergistic with one another. Correlation rules can be used
to generate new links between existing goals, as well as to suggest the generation of new goals, hence making
tradeoffs explicit.

Shared | Abstract Implicit Pipe &
Data | Data Type | Invocation | Filter
Modifiability [Process] - -

Modifiability [Data Rep] - - + - —
Space Performance ++ _ —
Time Performance - -

Reusability - + + I

Table 2: Resultant Correlation Table for the KWC Example

During instantiation of correlation rules, uncertainties in the correlation table (e.g., +—, — —*) should be
resolved. For example, the software architect could consult domain expert who knows about the characteristics
of the intended application domain in order to determine if the Pipe and Filter would significantly hinder the
Space Performance goal. Once obtained, domain characteristics can be used as an argument (e.g., supporté4:
expected size of data is huge (from domain expert), as shown in Figure 5).



Design rationale can come also from literature. For example, an argument may simply be a citation, such
as support2: [Parnas72] which supports that the Shared Data scheme strongly hurts both Modifiability
[Process] and Modifiability [Data Rep].

The software architect has instantiated correlation rules to establish both positive and negative links, examined
them, rejected or tailored some of them, and provided justifications. Based on Table 1 described earlier in Section
2, Table 2 illustrates a resultant correlation table, as an alternative representation to what is shown in Figure 5,
which might aid visual understanding when the number of correlation links is high.
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Figure 5: Goal graph selecting among architectural alternatives for a KWIC system.

The software architect also establishes new goals, such as Comprehensibility [System], which add to the
number of goals.



Goal Criticality. The software architect, on the one hand, has limited time; she has a number of goal conflict
and synergy to deal with, on the other. In order to handle the situation, the architect prioritises goals, here into
three categories: non-critical, critical, and very critical. This decision can be justified by way of design rationale.
For example, treating modifiability, performance, and reusability as critical goals can be supported, via the wvital
few argumentation method, possibly with a market survey.

With the prioritisation, the software architect can put emphasis on (very) critical goals, and readily resolve
goal conflict. For example, as Modifiability [Data Rep] is considered very important, architectural design
alternatives which strongly hurt the goal might be eliminated from further consideration, here Shared Data and

Pipe & Filter.

Evaluation and Selection. A particular architectural design can make a positive, negative, or no contribution
to a goal. For example, the use of an abstract data type may help updatability, but at the cost of poorer time
performance (Figure 5). Hence, selecting an architectural design requires careful examination of the degree of
goal achievement, particularly for critical ones.

Throughout the goal graph expansion process, the evaluation procedure propagates, via labels, the effect of each
design decision from offspring to parents. In assessing the degree of goal achievement, the evaluation procedure
considers the type of link, and interacts with the software architect when uncertainties arise. Figure 5 shows a
stage during software architectural design process, where one alternative is marked acceptable while the others
are either denied or neutral.

This kind of approach is made possible by earler goal reduction as application of “divide-and-conquer”
paradigm. Disambiguation and refinement, via decomposition, have facilitated systematic codification of and
search for NFR-related reusable knowledge, clearer understanding of tradeoffs, and conflict resolution with design
rationale which reflects the needs and characteristics of the intended application domain. Here, for example, the
impact of using an abstract data type upon system modifiability is initially unclear, but refinement shows that
ADTs support modifiability of data representation, which is critical, but hinder process modifiability.

Throughout the process of architectural design, the software architect has been in control, posting NFR goals,
browsing and choosing decomposition methods, design alternatives, and correlations, supporting or denying design
decisions by way of design rationale, and observing goal assessment and selecting a particular architectural design.

This process promotes communication, analysis, and comparison of architectural designs and principles. This
process is used to support architectural design and results in a history record (with design rationale for both
accepted and discarded alternatives considered), for later review, justification and evolution.

4 Related Work

Our proposal draws on concepts, such as elements, components, and connectors, that have been identified as
essential to portray architectural infrastructure, as advocated by Perry and Wolf [38], Garlan and Shaw [17],
Abowd, Allen, and Garlan [1], Callahan [5], Mettala and Graham [28], and on earlier notions on information
system architecture by Zachman [45]. In our view, our emphasis on NFRs is complementary to efforts directed
towards identification and formalization of concepts for functional design.

Concerning the role of NFRs, design rationale, and goal assessment, the proposal by Perry and Wolf [38] is of
close relevance to our work. Perry and Wolf propose to use architectural style for constraining the architecture
and coordinating cooperating software architects. They also propose that rationale, together with elements and
form, constitute the model of software architecture. In our approach, weighted properties of the architectural
form are justified with respect to their positive and negative contributions to the stated NFRs, and weighted
relationships of the architectural form are abstracted into link types and labels, which can be interactively and
semi-automatically determined. In our framework, we focus on the problem of systematically capturing and
reusing knowledge about NFRs, design alternatives, tradeoffs and rationale.

Kazman, Bass, Abowd, and Webb [24] proposes a basis (called SAAM) for understanding and evaluating
software architectures, and gives an illustration using modifiability. This proposal is similar to ours, in spirit, as
both take a qualitative approach, instead of a metrics approach. In a similar vein but towards software reuse,
Ning, Miriyala, and Kozaczynski [33] proposes an approach (called ABC), in which they suggest the use of NFRs



to evaluate the architectural design, chosen from a reuse repository of domain-specific software architectures,
which closely meets very high-level requirements. Both SAAM and ABC are product-oriented, i.e., they use
NFRs to understand and/or evaluate architectural products; ours, however, is process-oriented, i.e., it provides
support for systematically dealing with NFRs during the process of architectural design.

The NFR-Framework [7] [30] aims to improve software quality [9] [10] and has been tested on system types
with a variety of NFRs, including accuracy, security and performance. Systems studied [13] include credit card
[34, 8], public health insurance [7], government administration (Cabinet Documents [7] and Taxation Appeals
[35]) and bank loan [12] information systems. The last study considered dealing with changes in requirements,
including informativeness. The NFR-Framework also has an associated prototype tool: the NFR-Assistant [11]
has been designed and implemented to deal with a variety of NFRs, primarily security, accuracy [7] [8], and (in
progress) performance [35]. The NFR-Framework has been one of the subjects in a comparative study on several
goal-oriented approaches by Finkelstein and Green [15] who use the meeting scheduler example as a basis of
comparison. There are other uses of the NFR-Framework, including organization modelling by Yu [43, 44], and
project risk management by Parmakson [36]. In our view, there are parallels to NFR-related work on information
systems, and the current paper is one of the first which considers adaptation of the NFR-Framework specifically
in the context of software architecture.

5 Conclusion

This paper has proposed an approach to systematically guiding selection among architectural design alterna-
tives, thus providing an alternative to an ad hoc approach. Qur approach is intended to improve the software
architect’s ability to understand the high level system constraints and the rationale behind architectural choices,
to reuse architectural knowledge concerning NFRs, to make the system more evolvable, and to analyse the design
with respect to NFR-related concerns.

More specifically, our approach facilitates explicit representation of NFRs as (potentially) conflicting or syn-
ergistic goals to be addressed during the process of architectural design, and use of such goals to rationalise the
overall architectural design and selection process. Our approach also facilitates codification of knowledge about
NFR-related architectural design and tradeoffs, and systematic management and use of such knowledge. In order
to help the software architect analyse design tradeoffs, assess goal achievement, and select a particular architec-
tural design, our approach offers an interactive evaluation scheme in which design decisions are rationalised in
terms of design rationale which reflects the needs and characteristics of the intended application domain.

The underlying framework has already been applied to information systems. We have studied a number of
such systems, considered NFRs which are relevant to them, and provided tool support.

In the context of architectural design, however, our proposal is only preliminary, with its use illustrated only
on a pedagogical example. Broader case studies are needed to gain experience and feedback, both benefits and
weaknesses, and to see whether our approach can be effectively applied to industrial-strength domain-specific
software architectures, application-frameworks, and reference architectures. Our studies of NFRs in the context
of information system development have helped us and domain experts evaluate the effectiveness of the framework
for such systems. Once a more codified catalogue of architectural methods is developed, it could be used in studies
of using the framework to deal with architectural design. Along with feedback from industrial and academic
experts, such studies would enhance the framework’s coverage and evaluate its usefulness.

A tool which embeds our approach is also needed to assist the software architect to systematically select
among architectural design alternatives. Such a tool would incorporate knowledge about a variety of methods
and correlations for a wide range of non-functional requirements. Our NFR-Assistant tool could serve as a starting
point for such an architecture assistant tool.

We have only illustrated the application of the NFR Framework to selecting among architectural design alter-
natives at a very abstract level. An important aspect of future work is to deal with more complex architectural
problems, and to show the scalability of the framework. This of course requires codification of current and future
knowledge about architectural alternatives and design criteria. The results, we trust, would be the provision of
more satisfactory goal assessment and guidance for selection.
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