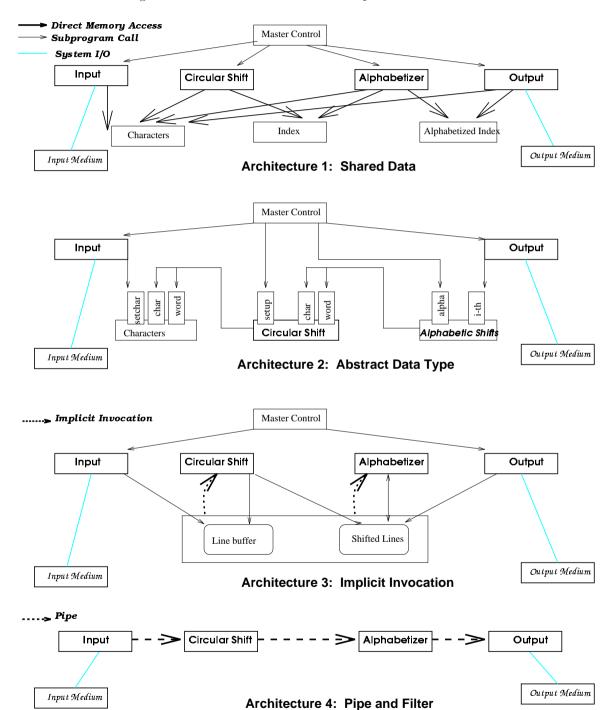
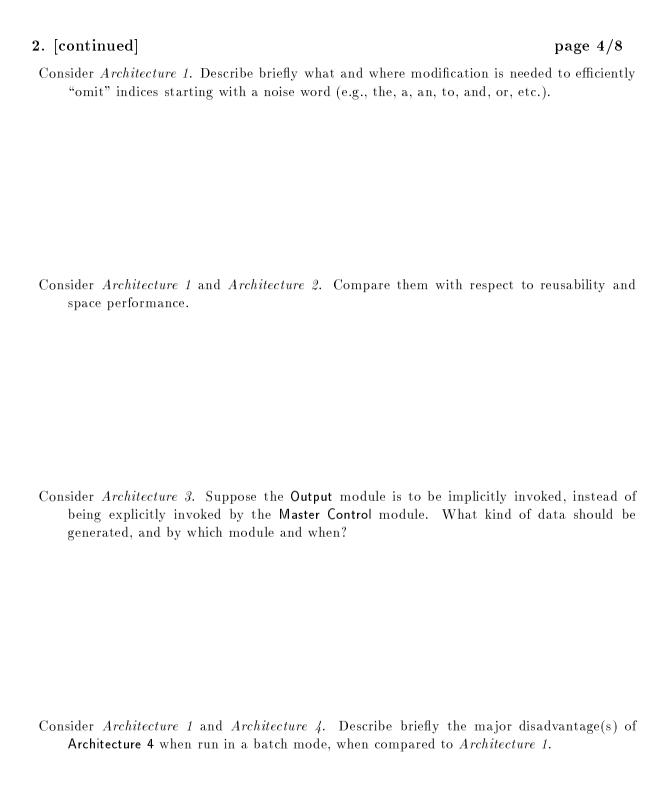
CS6362 Software Architecture and Design page 1/8

The University of Texas at Dallas Computer Science Program

		COIL	ipatei	Scien	cc 1 10g1	am			
Midterm T	est							March 6	, 1997
		Conditions:	Closed	book	Duration	: 70 m	inutes		
	Na	me:							
				{Plea	se under	line la	st nam	ie}	
	Stu	ident Numbei	. •						
		1	·		/20				
		2	•		/20	-			
		3	•		/20				
		4	•		/20				


Total____


/20

1. [20 marks]	${\rm page} 2/8$
For each of the following ten statements, indicate whether it is true (mark (No penalty for a wrong answer)	T) or false (mark F).
This is the mid-term test for CS6362.	
1. All compilers run in a batch mode as this mode is good for conce adaptability.	ptual simplicity and
2. The correctness of a filter is independent of the correctness of its p	redecessor filters.
3. A software architecture serves as an (abstract) skeleton which can be ability of a system to meet its gross system requirements.	e used to expose the
4. Programming-in-the-small focuses on building evolvable software system in-the-large focuses on building efficient data structures and algorithms.	
5. Classical module interconnection languages (MILs) are powerful evariety of architectural styles, such as pipe-and-filter and inplicit involutions.	
6. The single primary role of non-functional requirements during so design should be in selecting among software architectural alternative been produced by software architects.	
7. In the style of implicit invocation, modules communicate indirectly directly accessing shared data.	with each other by
8. In a batch sequential architecture, data flows through a sequence of steps where update modules can run concurrently with each other.	f discrete processing
9. An essential part of any software architectural design should be design rationale explains why the particular architecture is chosen infinitely) large design space	
10. A semi-formal approach to designing a software architecture is concerning defects but good concerning understandability.	often considered bad

2. [20 marks] page 3/8

Consider the following four architectures for the KWIC problem.

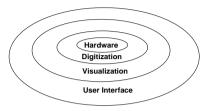
3. [20 marks] page 5/8

Consider the following module declaration:

```
module M
       provides: a, b, c, d, e;
       requires: v, w, x, y, z;
       consist-of: module M1, module M2, module M3
       module M1
              provides: a;
              requires: v;
              string a, real v
       end M1
       module M2
              provides: b, c, d;
              requires: w, x, y;
              has-access-to: module M1
              consist-of: module M21, module M22, module M23
              module M21
                     provides: b;
                     requires: w;
                     boolean b, integer w
              end M21
              module M22
                     provides: c;
                     requires: x;
                     has-access-to: module M21
                     integer c, real x
              end M22
              module M23
                     provides: d;
                     requires: y;
                     has-access-to: module M22
                     boolean d, string y
              end M23
       end M2
       module M3
              provides: e;
              requires: z;
              has-access-to: module M2
              integer e, z
      end M3
end M
```

3.	. [continued]													pag	ge (6/8		
1.	List	the	set (of (be	oth	inter	nal	and	exter	rnal)	variables	that	module	M1	has ac	ccess to	ο.	
2.	List	the	set o	of (b	oth	inter	nal	and	exter	rnal)	variables	that	module	M21	has a	access	to.	
3.	List	the	set (of (bo	oth	inter	nal	and	exter	rnal)	variables	that	module	M22	has a	access 1	to.	
4.	List	the	set o	of (b	oth	inter	nal	and	exter	rnal)	variables	that	module	M23	has a	access :	to.	
5.	List	the	set (of (b	oth	inter	nal	and	exter	rnal)	${ m variables}$	that	module	M3]	has ac	ccess to	ο,	

4. [20 marks] page 7/8


Consider the following declaration of stack:

```
Stack (E, C): trait /* E(e.g., integer, string) is an element of C, a stack */
        introduces
                new: -> C
                push: C, E \rightarrow C
                top: C -> E
                                  exempting top(new)
                                  exempting pop(new)
                pop: C -> C
                isEmpty: C -> Bool
        asserts
                C generated by new, push
                forall stk: C, e: E
                         top (push(stk, e)) == e
                         pop (push(stk, e)) == stk
                         isEmpty(new)
                         " isEmpty(push(stk, e))
        implies
                LinearContainer (push for insert, top for first, pop for rest)
```

- 1. What is the value of pop (top (stk)) for any stk: C?
- 2. What is the value of top (push (new, e)) for any e: E?
- 3. What is the value of pop (push (new, e)) for any e: E?
- 4. What is the value of is Empty (pop (push (new, e))) for any e: E?
- 5. What is the value of pop (push (push (new, e), e'))) for any e, e': E?
- 6. What is the value of is Empty (pop (push (push (new, e), e'))) for any e, e': E?
- 7. What is the value of top (pop (push (push (new, e), e'))) for any e, e': E?
- 8. What is the value of top (pop (pop (push (push (new, e), e')))) for any e, e': E?
- 9. What is the value of rest (rest (insert (new, e))) for any e: E, assuming that LinearContainer has access to Stack?
- 10. What is the value of first (insert (rest (insert (new, e)), e')) for any e, e': E, assuming that LinearContainer has access to Stack?

5. [20 marks] page 8/8

Consider the following two architectures for an oscilloscope, as discussed in class:

Architecture 1

Architecture 2

1. [8 marks] Describe in relation to Architecture 2 one major problem with Architecture 1.

2. [8 marks] What kind of mechanism would be needed to display Measurement on the screen?

3. [4 marks] Pictorially depict a 2-layer architecture which can be obtained from Architecture 2.