Requirements Analysis, *Modeling* and Specification

- Requirements Analysis, Modeling and Specification
- Problem
- Carving the Solution Space
- Prioritizing Requirements
What is a Model?
Requirements Analysis, Modeling & Specification

A continuous loop

Problem

Problem Elicitation

Text, Notes, Knowledge

Problem Specification

Problem Analysis

Diagrams, Charts, Tables

Problem Analysis

Diagrams, Charts, Tables

Modelling

(often informal models)

(concrete models)

(reqs. spec. models)

mediating representations

How many cycles do you go through in your project?
It is more important to understand the problem than the solution. [Albert Einstein]

“A problem unstated is a problem unsolved”
Douglas Ross, 1977

From Sam Supakkul’s presentation
Is “The sky falling down” a problem to you?

©Lawrence Chung
What is a problem?
Is storm coming a problem?
Yes, if we want to have outdoor fun

Problem

©Lawrence Chung
No, if we’re dying for it

Blessing

©Lawrence Chung
Problem or not depending on the goal we have

Problem

Blessing
What is a problem?

Undesirable situation ⇝ Goal

hurts

causes

A phenomenon or a situation that hurts our goals
Goals Problems Alternatives Selection
Problem = TO-BE – AS-IS?

It is more important to understand the problem than the solution. [Albert Einstein]

A problem can be defined as the difference between things as *they are now* and things as *they are desired*.
A Problem Analysis Roadmap

Enterprise/Business Problem

- Identify stakeholders for problem.
- Root cause analysis.

Actual problem identified and defined

- Understand the problem in the context of the business goals.
- Identify constraints on the system/project

Problem validated/adjusted

- Reassess that the solution idea is the best solution.
- Gain agreement on the problem def. wrt. root causes
- Consider alternatives & choose the best solution(s) to meet the goals.
- Define the solution system boundary

Best solution identified

- Expand stakeholder list for solution.

Elicit Requirements

What are requirements – about problem or solution?
One Man's Ceiling is Another Man's Floor!

One Man's Problem is Another Man's Solution!

One Man's Floor is Another Man's Ceiling!

One Man's Solution is Another Man's Problem!

©Lawrence Chung
Carving the Product Space

Requirements represent a compromise.

User Needs

Wants

Customer Needs

Developer Perspective

(acceptable)

(acceptable)

Laws & Standards

Environmental

Economic

Political

Feasibility

Technology Risks

(acceptable)

(acceptable)

(acceptable)

(acceptable)

(acceptable)

(acceptable)
Carving the Product Space

Requirements represent a compromise.

Example

E.g., Wired/Wireless phone & PCS

Admissible Product Space Solution

User Needs
- Wants: all in one device
- Wants: video phone + pager + teleconferencing
- Needs: cellular + wired service + ID
- Ordinary
- Wants: phone, pager, TV, computer

Customer Needs
- Sprint:
 - Wants: 2yr, $2 billion, across US
 - Needs: 3yr $3B, MANs, CDMA + FDMA

Developer Perspective
- (acceptable)
- (unacceptable)
- Nortel:
 - Unacceptable: hand-over of ownership
 - Acceptable: nice warranty adaptable (10 new features / mo)

Technology Risks
- (acceptable)
- (unacceptable)
- Unacceptable:
 - 95% guarantee w. CDMA only
 - Only 7-layer
- Acceptable:
 - 90% guarantee w. CDMA + FDMA

Laws & Standards
- (acceptable)
- Unacceptable:
 - Towers/cells every 100 meters
 - Zoning law
 - Use any frequency -> hearing aid
- Acceptable:
 - Close to hexagonal, but special BSs in subway, dense areas

Varying degrees of acceptable/unacceptable solutions
What Is the Problem Behind the Problem?

Fishbone Diagram Techniques

Customers are dissatisfied with our service.

List contributing causes to the identified problem. Keep asking “Why?” (expand each rib).
List the reasons why the solution is the right solution. Keep asking “Why?” (expand each rib).

What is the problem of your project? Why is your solution the right solution?
Which is better – Fishbone Diagram or FTD??
Representation of problems
fault tree diagram

- Clear relationships between siblings
 - AND/OR

- No relationship with
 - Goals
 - Alternatives

©Lawrence Chung
Problem Interdependency Graph (PIG)

But what if there are too many problems?

Pareto principle

In economics
The original observation was in connection with income and wealth. Pareto noticed that 80% of Italy's wealth was owned by 20% of the population. He then carried out surveys on a variety of other countries and found to his surprise that a similar distribution applied. [1896, Wikipedia]
Pareto effect Analysis

Contributing Causes:

- Banking at night
- More banking locations
- Banking at airport
- Queues too long
- Privacy while banking
- Other Reasons

% Contribution: 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0
Focus on Largest Contributors - *Pareto’s Law*

Vital-few-trivial-many; 80-20 rule

Priority; criticality

20% of the effort yields 80% of the benefit.

Rank in order. Use the 80-20 Rule to focus on the top contributing causes to address the greatest portion of the problem.

What are in the 20% of the problem of your project?
Requirements Prioritization

Given n requirements,

- Create n x n matrix
- Compare each pair
 - entry (i, j)=
 - 1 if i and j are of equal value
 - 3 if i is slightly more preferred than j
 - 5 if i is strongly more preferred than j
 - 7 if i is very strongly more preferred than j
 - 9 if i is extremely more preferred than j
 - entry (j, i) = 1/entry (i, j)

- Estimate the eigenvalues
 - Calculate the sum of each column
 - Divide each entry by the sum of its column
 - Calculate the sum of each row
 - Divide each row sum by n

This gives a value for each requirement based on estimated percentage of total value of the project.
Requirements Prioritization

An Analytic Hierarchy Process (AHP) Approach

Example

<table>
<thead>
<tr>
<th></th>
<th>r1</th>
<th>r2</th>
<th>r3</th>
<th>r4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1</td>
<td>1/3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>r2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>r3</td>
<td>1/2</td>
<td>1/5</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>r4</td>
<td>1/4</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

normalize columns

<table>
<thead>
<tr>
<th></th>
<th>r1</th>
<th>r2</th>
<th>r3</th>
<th>r4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.48</td>
</tr>
<tr>
<td>r2</td>
<td>0.63</td>
<td>0.54</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>r3</td>
<td>0.11</td>
<td>0.11</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>r4</td>
<td>0.05</td>
<td>0.18</td>
<td>0.27</td>
<td>0.12</td>
</tr>
</tbody>
</table>

sum the rows

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>Sum/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1.05</td>
<td>0.26</td>
</tr>
<tr>
<td>r2</td>
<td>1.98</td>
<td>0.50</td>
</tr>
<tr>
<td>r3</td>
<td>0.34</td>
<td>0.09</td>
</tr>
<tr>
<td>r4</td>
<td>0.62</td>
<td>0.16</td>
</tr>
</tbody>
</table>

*Also should compute the consistency index, since the pairwise comparisons may be inconsistent

Is the matrix consistent?
Using "Shall" and Related Words

- "shall" indicates a binding provision, i.e., one that must be implemented by the specification users.
- To state non-binding provisions, use "should" or "may."
- Use "will" to express a declaration of purpose (e.g., "The government will furnish ") or to express future tense
• Appendix
D, S achieves R to solve P in D

Domain/World/Enterprise/Business

D, Problem => Requirements => Specification

What next?
Define Boundaries for the Enterprise/Business and the Solution

More on this in Enterprise Modeling

Consider Application Processing
Exercise

An Application Processing System

- **D**: include a functional model, a workflow model, an informational model, a BM
- **P**: include complaints (both external and internal), weaknesses, etc.
- **G**: include wants and needs countering **P** – both hard and soft
- **R**: include an interaction model between **D** and **S**
- **S**: include a functional model, an informational model, a behavioral model

Requirements should contain nothing but information about the environment.
Modeling is Everywhere

- **Problem Elicitation**
 - exploratory, brain-storming, open-ended thinking
 - elaboration of unclear goals and needs
 - identification of sources, views, needs & wants

- **Problem Analysis**
 - determination of "real" users (<= identification of sources)
 - (e.g., stratification during sampling, questionnaires & interviewing)
 - customers, tellers, other employees
 - clarification of goals (e.g. Goal-directed approach)
 - detecting differences in views and integrating them, & recording rationale
 - resolving a mishmash of wants and needs
 - prioritization of defects
 - understanding (all constraints on the) solutions and evaluating them
 - risk analysis (e.g., scenarios)

- **Problem Specification**
 - choose formal notations
 - create a formal model of the requirements

Wicked Problem

process of understanding real-world problems, how they relate to stakeholder needs, and proposing solutions to meet those needs.

Modeling is NOT Perfect

[adapted from Jackson, 1995, p124-5]

- There will always be phenomena in the model that are not present in the application domain
- There will always be phenomena in the application domain that are not in the model
- Perfecting the model is not always a good use of your time

One Man's Ceiling is Another Man's Floor!
Stakeholders in the Vision Document

Stakeholder - An individual who is materially affected by the outcome of the system or the project(s) producing the system.

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Registrar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative</td>
<td>Kelly Hansen</td>
</tr>
<tr>
<td>Description</td>
<td>User</td>
</tr>
<tr>
<td>Type</td>
<td>The Registrar is typically a college-educated professional with full computer skills. The Registrar is trained and experienced with the use of the current batch-oriented registration.</td>
</tr>
<tr>
<td>Responsibilities</td>
<td>The Registrar is responsible for administering course registration for each school term. This includes supervising administrative and data entry personnel.</td>
</tr>
<tr>
<td>Success Criteria</td>
<td>The registrar’s primary responsibility will be maintaining student and professor databases, and opening/closing courses to registration. The registrar’s office will also be required to perform …..</td>
</tr>
<tr>
<td>Involvement</td>
<td>The registrar’s primary responsibility will be maintaining student and professor databases, and opening/closing courses to registration. The registrar’s office will also be required to perform…..</td>
</tr>
<tr>
<td>Deliverables</td>
<td>Management reviewer – especially related to functionality and usability of features required by the Registrar staff.</td>
</tr>
<tr>
<td>Comments/Concerns</td>
<td>None</td>
</tr>
</tbody>
</table>

©Lawrence Chung
An externally observable service by which the system directly fulfills one or more stakeholder requests.

specifies, from a black-box perspective, how the solution interacts with the outside world.

The system to be built

Problem Space

Solution Space

Traceability

Carving the Product Space
Carving the Product Space

Requirements exist at many levels of abstraction, possibly with different terminology.

Why?

Stakeholder Needs

Product or System Features

Software Requirements

Design Spec

Test Procedures

Documentation Plans

One Man’s Ceiling is Another Man’s Floor!