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ABSTRACT 
 
Evolution of a software system is a natural process. In several systems, evolution takes place during the 
maintenance phase of their lifecycles. Those systems that have reached their limit in evolution have usually 
reached their end of useful life and may have to be replaced. However, there are several systems where 
evolution occurs during the working phase of their lifecycles. Such systems were designed to evolve or in 
other words, be adaptable. Semantically adaptable systems are of particular interest to industry as such 
systems adapt themselves to environment change with little or no intervention from their developing 
organization. Research in embedded systems is now becoming popular [1] and developing semantically 
adaptable embedded systems presents challenges of its own. Embedded systems usually have a restricted 
hardware configuration as well and several techniques applicable to “normal” systems cannot be directly 
transferred to embedded systems. This paper considers semantic evolution as applicable to embedded 
systems and develops the concepts and techniques for semantic adaptation in embedded systems. However, 
the field of embedded systems being vast, this paper concentrates on those embedded systems that can be 
remotely controlled (as opposed to remote controlled). In this application domain the embedded system is 
connected to an external controller by a communication link such as ethernet, serial, radio frequency, etc., 
and receives commands from (and sends responses to) the external controller via the communication link. 
Techniques for semantic evolution in this application domain give a glimpse of the complexity involved in 
tackling the problem of semantic evolution in embedded systems. The techniques developed in this paper 
are validated by applying them in a real embedded system – a test instrument used for testing cell phones.  
 
1. INTRODUCTION 
 
Evolution of a software system is a natural process. In several systems, evolution takes place during the 
maintenance phase of their lifecycles. Those systems that have reached their limit in evolution have usually 
reached their end of useful life and may have to be replaced. However, there are several systems where 
evolution occurs during the working phase of their lifecycles. Such systems were designed to evolve or in 
other words, be adaptable. 
 
Embedded systems are usually hardware-constrained systems running dedicated software [2]. Software 
running in the embedded systems is usually optimized for the underlying hardware and the OS used (if 
any). However, the software for the embedded system has properties just like any other software, and in 
particular, it evolves. Due to the constrained characteristics of embedded systems, several techniques for 
dealing with evolution that are applicable to non-embedded systems cannot be directly applied to 
embedded systems as well. For example, libraries of components are usually ruled-out since several 
embedded systems do not have enough memory for storing the libraries. 
 
An example of embedded system is the cell phone. The hardware for the cell phone consists of the circuitry 
for receiving and transmitting radio signals, circuits for working on the electrical signals converted from 
radio signals, and a microprocessor for controlling the working of different pieces of hardware. The 
software is stored in a memory (such as FLASH or DRAM) and runs on the microprocessor. The software 
tells the microprocessor what action to take in different situations. Yet another embedded system is the base 
station used in a cell phone system. The base station sends signals to all the cell phones in its service area. 
An equipment that tests the cell phones in the factory floor emulates the base station and this equipment is 
yet another example of an embedded system.  



 

 
Evolution in adaptable systems can occur at different levels of abstraction. At the lowest level, or Level 0, 
there is no evolution at all. The hardware and software configurations are fixed. The software system runs 
in the prescribed environment efficiently. For a different environment the software system fails. At a higher 
level, or Level 1, the software can tolerate some change in environment. [3] gives a problem at this level. 
At the next level, or Level 2, software can tolerate large changes in environment; in fact, software’s 
behavior can also change. Techniques to develop software for this level (albeit, for non-embedded systems) 
are discussed in [4]. At the highest level, or Level 3, there can be both hardware and software changes in 
systems to adjust to virtually any change in environment. Large scale distributed systems attempt to reach 
Level 3 adaptation.   
 
At higher levels of abstraction the system evolves dynamically. At these levels the behavior (or the 
semantics) of the system changes dynamically. While achieving dynamic evolution is difficult enough in 
normal systems, the difficulty becomes compounded when such dynamic evolution has to be enforced in 
embedded systems. An example of the requirement for such evolution can be found in cell phones – a cell 
phone that is used for one wireless standard (say GSM) may be required to work for two different wireless 
standards (say GSM and CDMA) [13, 14]. In such a case the makers of the cell phone could profit by 
making the software of the cell phone dynamically evolvable. 
 
In this paper, we attempt to develop techniques for embedded systems to satisfy Level 2 adaptation. In 
order to validate the concepts and techniques that we develop, we will concentrate on one important 
problem at this level: semantic evolution in embedded systems. In order to understand this problem, we 
further restrict our attention to an application domain given in Figure 1 – the domain of remotely controlled 
embedded systems (as opposed to remote-controlled embedded systems). The embedded system (ES) 
receives commands from and responds to the commands from an external controller (EC). The 
communication link between the ES and EC could be any physical medium – ethernet, serial, radio 
frequency, etc. Figure 2 gives the functional blocks in a typical embedded system in this application 
domain. In this figure, the Communication ASIC Driver Block handles the hardware signals and the 
protocol associated with the physical interface. Usually such interfaces are connected to an ASIC 
(Application Specific Integrated Circuit). This block receives ASCII strings from the physical interface 
(these strings are the commands sent by the external controller to the embedded system) and sends them to 
the Syntax Analysis Block. The Syntax Analysis Block analyses the strings, and if syntactically correct, 
parses the strings and sends the parsed code to the Semantic Analysis Block, which takes the appropriate 
actions for the input string (the input command).  
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Figure 1. Application Domain for the Problem.  
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The basic advantage of this domain is that commands can be sent from the external controller (which could 
be a PC) and the embedded system receives these commands over the communication link, parses the 
commands and takes actions based on these commands. This lets scripts be executed automatically on the 
external controller and the embedded system will execute all the commands of the scripts. This means of 
control by the remote controller also has other advantages [3, 11, 12]. The semantic adaptation in this 
application domain concerns itself with the adaptation of the Semantic Analysis Block of Figure 2 (though 
the adaptation of this block may require adaptation of the other blocks in that figure). 
 
The different techniques that we develop for tackling this problem of semantic evolution in embedded 
systems will lead to different architectural solutions for this problem. We know [5,6] that software 
architecture consists of among others, components, connections and constraints. Thus architecture can be 
adaptable along any one of the three basic constituents – one, two or all three of components, connections 
and constraints can be adaptable. In this paper we will develop different techniques for semantic adaptation 
and consider the effect of those techniques on the three constituents of software architecture. All the 
architectures developed in this paper will be in the layered style. 
 
Once software architectures have been developed, then comes the problem of finding the most efficient 
technique(s). In order to determine the best architectures(s) we use the NFR Framework [7, 15], where NFR 
stands for non-functional requirements, for comparing the various architectures that we come up with. 
Using this framework we are able to determine the relative effectiveness of the different techniques.  
 
In the discussion of the techniques for semantic evolution in this paper it has been assumed that object-
oriented technology has been used. However, this does not preclude the use of these techniques in non-
object-oriented environments. 
 
In this paper, the terms “semantic evolution” and “semantic adaptation” are used interchangeably. Many of 
the software diagrams in this paper use the notation borrowed from UML [8] although any other notation 
with a similar modeling power can also be used. Also in the architectures the              has been used to 
indicate message passing between the layers of the architecture in the direction of the arrow. 
 
Section 2 develops the concepts for semantic evolution. Section 3 discusses the application of the NFR 
Framework to this problem. Section 4 discusses the techniques for semantic evolution in the embedded 
systems taken up for case study – the remotely controlled embedded systems. Section 5 validates the 
different techniques by implementing the designs in a commercial embedded system, and Section 6 gives 
the conclusion. There are also two appendices – Appendix A gives the softgoal interdependency graphs 
while Appendix B gives the validation timings. 
 
2. SEMANTIC EVOLUTION 
 
Semantic evolution is a form of adaptation. Before we develop concepts for semantic evolution, we give 
the definitions for adaptation. 
 
2.1 Adaptation Definition 
 
Adaptation means change in the system to accommodate change in its environment. More specifically, 
adaptation of a software system (S) is caused by change (δE) from an old environment (E) to a new 
environment (E’), and results in a new system (S’) that ideally meets the needs of its new environment (E’). 
Formally, adaptation can be viewed as a function: 
 
                 Adaptation:  E x E’ x S → S’, where meet(S’, need(E’)). 
 
A system is adaptable if an adaptation function exists. 
 
Adaptability then refers to the ability of the system to make adaptation.  
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Adaptation involves three tasks: 
 
    1.  ability to recognize δE 

    2.  ability to determine the change δS to be made to the system S according to δE 
    3.  ability to effect the change in order to generate the new system S’. 
 
These can be written as functions in the following way: 
  
        EnvChangeRecognition : E’ – E → δE 
         SysChangeRecognition : δE x S  → δS 

                             SysChange :  δS x S → S’, where meet(S’, need(E’)). 
 
The meet function above involves the two tasks of validation and verification, which confirm that the 
changed system (S’) indeed meets the needs of the changed environment (E’). The predicate meet is 
intended to take the notion of goal satisficing of the NFR framework, which assumes that development 
decisions usually contribute only partially (or against) a particular goal, rarely “accomplishing” or 
“satisfying” goals in a clear-cut sense. Consequently generated software is expected to satisfy NFRs within 
acceptable limits, rather than absolutely.  
 
Figure 3 explains the relationship between the various symbols described above.  
 
 
                                                 
 
 
 
 
 
 
 
 
 
 
 
 
2.2  Semantic Evolution 
 
In order to appreciate the definitions and symbols in this section, we again take the example of a cell phone. 
Let us assume that the cell phone can work in the two standards that we mentioned in the Introduction – 
GSM and CDMA (so-called dual-mode phones). The inputs that it receives from the user are most likely 
the same for the two standards. That is, the input spaces are identical for the two standards. However, the 
behavior of the cell phone could be different for the two standards – for one standard the phone connections 
could be made faster than for the other standard, for example. Thus intuitively, the behavior could be 
related to non-functional aspects of the system, while inputs and outputs are related to the functional 
aspects of the system. Other behavior related aspects include security, usability and throughput time. Also 
it is not necessary that the input space should be the same after adaptation. 
   
Change in the behavior (δB) is related to the behavior (B) of the system before and after adaptation when 
the input space (I) is the same. The change in the output space (δO) of the software system, and the change 
in the behavior (δB) are defined below.   
 
                 If        I x S → O, and 
                            I x S’ → O’, then 
 
                            δO = O’ – O. 

       S       E 

       S’      E’ 

δE δS 

Figure 3. Explanation of Symbols in the Definition of Adaptation.  

meets 
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               Also, if  I x S → B, and 
                            I x S’ → B’, then 
 
                            δB = B’ – B. 
 
A software system evolves semantically (or adapts semantically) if  
 
                           for δE ≠ 0, δB = 0 and δO = 0.  
 
That is, the system does not change its behavior even though the environment has changed. However, since 
this may not be possible to achieve all the time, using the concept of satisficing of the NFR framework, the 
following definition of semantic evolution will also be acceptable: 
 
For a semantically adaptable system one or more of the following holds true when δE ≠ 0: 
 
    1. δB = 0 and δO = 0. 
    2. δB ≠ 0 but δO = 0. 
    3. δB ≠ 0 but δO ~ 0. 
 
Equation 1 above states that the behavior of the system before and after semantic adaptation remains the 
same. Equation 2 above states that for a semantically adaptable system, the output space before and after 
adaptation remains the same. Equation 3 says that some difference in the output space is acceptable as long 
as the outputs are identical for key inputs (what is “key” depends on the particular application). 
 
In this paper techniques for semantically adaptable systems conforming to equation 3 above will be 
developed. Before that, we will need definitions for the input and output spaces for the problem domain of 
interest to us in this paper (as explained in the Introduction). This is described in the next section. 
 
2.3 Input and Output Spaces  
 
For the problem domain of interest in this paper, the model of the embedded system as given in Figure 4 
will be used for illustrating the concept of the input and output spaces. 
 
 
                                            
 
 
 
 
Input space is the set of legal commands for the embedded system. The output space is the set of responses 
expected from the system for legal commands. 
 
3. APPLICATION OF THE NFR FRAMEWORK 
 
As mentioned in the Introduction the various techniques to be developed in Section 4 will be compared 
using the NFR Framework [7, 15].  As per the NFR Framework, the following steps are required to 
complete the softgoal interdependency graph (hereafter, SIG) and evaluate the architectures: 
 

1. Develop the NFR goals and their decomposition 
2. Develop architectural alternatives 
3. Develop design tradeoffs and rationale 
4. Develop goal criticalities 
5. Evaluation and Selection 
 

Each of the above steps will be developed below. 

 
   Embedded 
   System (ES) 

Input Command Response 

Figure 4. Input and Output Spaces for this Application Domain. 
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3.1 Develop the Softgoal Hierarchy for the NFR Semantic Adaptation 
 
In this step, the NFR semantic adaptation is decomposed into its constituent NFRs. This decomposition will 
allow us to understand what semantic adaptation is all about and also to ensure that the designs that we 
come up with will be able to meet the requirements of the various sub-NFRs of the NFR semantic 
adaptation. Each NFR in the decomposition is a softgoal that is satisficed (defined in Section 2.1) to 
different degrees by the designs we develop. The decomposition for semantic adaptation is given in Figure 
5. 
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All softgoals in the decomposition given in Figure 5 (depicted as clouds) are named in the following 
convention: 
  
                                                           Type[Topic1, Topic2, …], 
 
where Type is an NFR and Topic is a system or another NFR1 to which the Type applies. 
 

                                                 
1 In [7, 15] it has been mentioned that Topic is a functional item – we deviate from this custom in this paper 
where Topic could be another NFR as well. 

Figure 5. Softgoal Hierarchy for Semantic Adaptation  
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The decomposition given in Figure 5 reads from the top. At the top are the three high level softgoals – 
Adaptation[RCES], Extensibility[RCES] and Speed[RCES], where RCES stands for Remotely Controlled 
Embedded System. Adaptation for RCES can be of different types – Syntactic Adaptation[RCES], 
Semantic Adaptation [RCES], Contextual Adaptation [RCES] and Quality Adaptation[RCES]. That we are 
concerned with one or more of these decompositions is indicated by the double arc, which stands for the 
OR-decomposition. Quality Adaptation of RCES involves adaptation of NFRs for the system. As 
mentioned in Section 2, we will be interested in the qualities of behavior and output (which stands for 
whether the output changes or not, and not for the actual output from the RCES), while there could be other 
qualities (or NFRs as well). This consideration results in the two OR-decompositions of the softgoal 
Quality Adaptation[RCES]. In this paper we are only concerned with semantic adaptation and so the 
softgoal Semantic Adaptation[RCES] is further OR-refined into the three functions of an RCES – 
Communication, Parsing (or Syntax Analysis) and Processing (or Semantic Analysis), which gives us the 
three soft-subgoals: Semantic Adaptation[Communication], Semantic Adaptation[Parsing] and Semantic 
Adaptation[Processing].  
 
In this paper we focus on the semantic adaptation of the Processing component of RCES, so Semantic 
Adaptation[Processing] is AND-decomposed (indicated by the single arc) into four subgoals -  Semantic 
Adaptation[Change in Environment, Change in System] (this follows from the definition of the 
requirements of adaptation, as defined in Section 2.1), Semantic Adaptation[Change in Behavior, Change 
in Output] (which again follows from the definition of semantic adaptation, as defined in Section 2.2), 
Extensibility of Semantic Adaptation[Processing] and Speed of Semantic Adaptation[Processing]. The 
AND-decomposition means that all the four softgoals have to be satisficed in order for the softgoal 
Semantic Adaptation[Processing] to be satisficed. Further it may be noted that three of the decomposed 
softgoals have two parents each – Semantic Adaptation[Change in Behavior, Change in Output] has two 
parents: Quality[Behavior, Output] and Semantic Adaptation [Processing], Extensibility of Semantic 
Adaptation[Processing] has Extensibility[RCES] and Semantic Adaptation[Processing] as parents, while 
Speed of Semantic Adaptation[Processing] has Speed[RCES] and Semantic Adaptation[Processing] as 
parents. For such multi-parent softgoals, satificing of the softgoal satisfices both its parents. 
 
Semantic Adaptation[Change in Environment, Change in System] is then AND-decomposed into 
Detection[Change in Environment], Recognition[Change in System] and Perform[Change in System], 
where the last softgoal is means performing the change in the system. These decompositions again follow 
from the definitions in Section 2.1. The softgoal Semantic Adaptation[Change in Behavior, Change in 
Output] is further AND-decomposed into its constituents: Software System[Change in Behavior] and 
Software System[Change in Output]. 
 
Detection[Change in Environment] is OR-decomposed into the two ways that such a detection can take 
place- automatic and manual (we have used δE  for Change in Environment). The same is done for the 
softgoals Recognition[Change in System] and Perform[Change in System]. The softgoal Software 
System[Change in Behavior] is OR-decomposed into two softgoals- Software System[No Change in 
Behavior] and Software System[Change in Behavior] (where we have used δB to indicate Change in 
Behavior), and the softgoal Software System[Change in Output] is also OR-decomposed in the same 
manner. 
 
The NFRs Software System[Change in Behavior] and Software System[Change in Output] have been 
defined in Section 5.1 for the application domain taken for the case study. 
 
3.2 Develop Architectural Alternatives 
 
The architectural alternatives will be developed in section 4. 
 
3.3 Develop Design Tradeoffs and Rationale 
 
As mentioned in Section 2.1, different architectural solutions satisfice various NFRs to different extent. We 
use the legend of Figure 6 in describing the different degrees of NFR satisficing.  
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For each architecture developed in Section 4, we will indicate the design tradeoffs and the rationale for the 
degrees to which the architectures satisfice the various softgoals of Figure 5. 
 
 
3.4 Develop Goal Criticalities 
 
For the particular application, different NFRs will have different criticalities. Criticalities in the NFR 
framework are shown in the SIG using ‘!’ marks. In Figure 5, five NFRs are marked as critical: 
δB = 0, Speed, Automatic δE  detection, Automatic δS recognition, and Automatic δS. The reason why these 
NFRs were chosen as critical is because of their relevance in practice. In the company where one of the 
authors works, fulfillment of these NFRs would give the greatest advantage for using semantic adaptation. 
 
3.5 Evaluation and Selection 
 
In this step the SIG is constructed and the most suitable architecture for the application is selected from the 
SIG. This step will be performed after the implementation phase. 
 
 
4.  TECHNIQUES FOR SEMANTIC EVOLUTION 
 
We have identified the following techniques for semantic adaptation in embedded systems: 
 
1. Rework, Reload and Reboot (or 3Rs Technique) 
2. Stored Data Technique 
3. Rule Based Approach 
4. Run-time Module Generation 
 
4.1 Rework, Reload and Reboot (3Rs) Technique 
 
This is the technique (which we would like to call as the 3Rs technique) that is currently widely used. In 
this technique, for any change in environment, a new system that works in the new environment is 
developed (either from scratch or as a modification of the existing system – the rework phase) and is 
executed in the embedded system’s hardware (reload and reboot phase). This technique is efficient but very 
slow in terms of time for adaptation. An architecture that uses this technique is given in Figure 7. This is a 
high level architecture and each of the components in this architecture could have further sub-components. 
Here the components, connections and constraints may be changed as needed to meet the requirements of 
the new environment.  
 
4.1.1 SIG for the 3Rs Technique 
 
In order to develop the softgoal-interdependency graph for this technique we have to know the degree to 
which this architecture fulfills the various softgoals of the NFR decomposition given in Figure 5. Table 1 
gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure 8 gives the 
SIG for this technique. In this SIG the clouds in normal lines represent the softgoal requirements while the 
clouds in dark (or bold lines) represent the design elements (the architectural elements). The colored lines 
represent the degree of satisficing of the various softgoals and follow the legend of Figure 6.  In this SIG 

Figure 6. Symbols for Different Degrees of Satisficing.  

                     or ++              Strongly Positive Satisficing 
   or   +              Positive Satisficing 

                     or    -              Negative Satisficing 
                     or   --              Strongly Negative Satisficing 
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the extent to which the various software components satisfice the different softgoals were determined with 
the help of the domain experts. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Stored Data Technique 
 
In this technique the data for possible adaptations are stored in the embedded system in the beginning. At 
run-time, a state machine keeps track of current state of the system. Thus, in a cell phone measuring 
instrument that generates output signals for two different cell phone systems, say GSM and CDMA, and if 
the instrument generates signals in response to an input command “MAKE CALL” (from the external 
controller), then depending on the state the instrument is currently in, the signals corresponding to that cell 
phone system will be generated. This is indicated by the statechart given in Figure 9. As can be seen in that 
figure, the transition between the two states GSM and CDMA occurs due to another input command 
“CHANGE SYSTEM”. 
 
 

 
Softgoal 

 
Degree of Satisficing

 

 
Rationale 

δB = 0 + Can be ensured during modification  

δB ≠ 0 - Domain Expert 

δO = 0 ++ In this application domain outputs are 
strings and repeatability is very high 

δO ≠ 0 - Domain characteristics 

automatic detection [δE ] -- As no such capacity exists 

manual detection [δE] ++ By design 

automatic recognition[δS] -- As no such capacity exists 

manual recognition[δS] ++ By design 

automatically perform[δS] -- As no such capacity exists 

manually perform[δS] ++ By design 

Extensibility ++ Can be modified to any extent 

Speed - By validation – Section 5.3 

Table 1. Softgoal Satisficing by the 3Rs Technique.  

      Communication ASIC 
      Driver  

   Syntax Analysis 

      Semantic Analysis 

Figure 7. Architecture for the 3Rs Technique.  
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Figure 8. SIG for the 3Rs Technique. 



 

 
 
 
 
 

                           
 
 
 
 
Thus in a system using 
software system. The so
corresponding states in
can occur – manually o
manually - an external 
new state consistent wi
a corresponding system
automatically.  In the a
Figure 9) from a phone
its own internal state. H
the system change itsel
 
In an OO-system, if the
of the leaf nodes in the
Wireless Protocol class
Analog classes are deri
then derived from the D
Japanese Cellular are tw
 
               

Digit

IS-136

 
 

Figur
MAKE CALL / 
make a GSM  
call 
11

GSM

this technique, all possible states are already 
ftware system can adapt to those new enviro

 the system. There are two ways in which this
r automatically. In the manual method, the ch
user sends in a command like “CHANGE SY
th the new environment. Thus the detection o
 change are both detected manually while the
utomatic method, the system receives signals 
 connected to it and based on the signals rece
ere the environment change detection, need f

f are all done automatically.  

 class hierarchy is as shown in Figure 10 [13,
 hierarchy. In the class diagram of Figure 10, 
 from which are derived US Protocol and No
ved from US Protocol class. IS-136 and CDM
igital class. AMPS is an analog standard clas
o standards classes derived from Non-US Pr

US Protocol

Wireless Protoco

Analogal

CDMA AMPS

e 9. Statechart Diagram explaining the Sto

Figure 10. Class Diagram for the Stored D
MAKE CALL / 
make a CDMA  
call
CDMA

 
CHANGE SYSTEM / 
go to the other system 
state
present in the state diagram for the 
nments for which there are 
 adaptation to the new environment 
ange in environment is detected 

STEM” and the system changes to the 
f the environment change and need for 
 system change itself occurs 
(continuing using the example of 
ived, the system changes (if necessary) 
or corresponding system change and 

 14], then each state may represent one 
at the top of the hierarchy is the 
n-US Protocol classes. Digital and 
A (two digital standards) classes are 
s derived from Analog class. GSM and 
otocol class.  

Non-US Protocol

l

Japanese CellularGSM

 

red Data Technique.  

ata Technique.  



 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An architecture based on the stored data technique for this class diagram is shown in Figure 11. In this 
architecture there are three systems – IS-136, CDMA and GSM. A state machine keeps track of the current 
system and changes between systems based on an external command (there are such systems commercially 
available [13]). More generally, the architecture for a system using this technique is given in Figure 12. In 
this figure, the State Machine component controls the state that the system is in (the system can be in one of 
the pre-defined states 1,2,…,n). The State Machine component includes the State Checking and State 
Modification functions (or components). The response from the system also takes place via the State 
Machine component.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the architecture of Figure 12, adaptation is achieved through components. Another way of adaptation is 
by having an adaptable connector. This architecture is given in Figure 13. Here the connector connects to 
the one component of interest (indicated by the darkened block arrow between the State Machine 
component and State 1 component) at the particular state.  
 
 
 
 
 
 
 
 
 
 
 
 
 

      Communication ASIC 
      Driver  

   Syntax Analysis 

                 
             State Machine 

 State 1
       

 State 2
       

 State n
       …

Figure 12. Architecture for the Stored Data Technique (Component Adaptation).  

      Communication ASIC 
      Driver  

   Syntax Analysis 

                 
               State Machine 

 State 1
       

 State 2
       

 State n
       …

Figure 13. Architecture for the Stored Data Technique (Connector Adaptation).  
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Figure 11. Architecture for the Class Diagram of Figure 10 using Stored Data Technique. 
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Yet another way to achieve adaptation is by adapting the constraints on the connections between 
components. Thus while Figure 12 and Figure 13 place two different constraints (but fixed constraints) on 
the interconnections between the components, in the constraint adaptation technique, the interconnections 
can be changed as required. This is indicated in Figure 14. 
 
 
 
 
 
 
 
                                                         
 
 
 
 
                       
 
 
 
Each of the different types of adaptation has different advantages with respect to each other. Thus 
component adaptation is very fast; connector adaptation lets new components be added to the system 
easily; constraint adaptation lets the correct component for a particular state be found very fast.  
 
4.2.1 SIG for the Stored Data Technique 
 
Table A1 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure 
A1 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal 
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural 
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the 
legend of Figure 6. In this SIG also the extent to which the various software components satisfice the 
different softgoals were determined with the help of the domain experts. 
 
 
4.3 Rule-Based Approach 
 
Any software system follows a set of rules. The rules could be either embedded in the executable code or 
could be data (or algorithms) that are separate from the code [10]. A system could adapt semantically by 
modification of one or more rules of this set.  For example, when a cell phone is being tested using a test 
equipment, one of the tests [14] that is done is to first make a call from the cell phone (the test equipment 
can emulate a base station), and then decrease the level of the signal being output by the test equipment and 
find the level when the cell phone drops the call. One way in which the software in the cell phone could 
decide call dropping is to check the level of the signal received continuously and then when the level goes 
below a preset value, drop the call. While the level at which to drop the call may be x for the current 
generation of base stations (for the same standard, say GSM), for the next generation of base stations it may 
be y. However, it would be extremely helpful if the cut-off level for the cell phones could be changed  
without any change in its software. In the rule-based approach, the level at which to cut-off is made a rule. 
Whenever, the level changes the cell phone software checks for the rule and detects if the level is below the 
cut-off rule. If yes, then the cell phone drops the call. In order to adapt to the newer generation of base 
stations, the cell phones will have to modify their rules to change the cut-off level to y. Figure 15 shows 
some examples of the rule-based approach. 
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Figure 14. Architecture for the Stored Data Technique (Constraint Adaptation).  
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For the application domain considered in this paper, the use of this rule-based approach is pretty easy, as 
we can tie one or more commands to a rule. Thus, for  Example 1 of Figure 15, if the command 
“CUTOFF_LEVEL X” referred to the current rule, and if by sending the command “CUTOFF_LEVEL Y” 
the current rule changes to the evolved rule, the needed evolution has been achieved. 
 
 

Command Control Rules

Standard
MonitorLevel Monitor

Monitor
1 1

modifies
1 1..*

checks

 
 
 
The class diagram for the rule-based approach is given in Figure 16. In this diagram the class diagram for 
only the Semantic Analysis Block of Figure 2 is given. Here the Command Control class receives 
the codes for the input commands from the Syntax Analysis Block. The code causes the Command Control 
class to set the appropriate rule in the Rules class. Subsequently, whenever the input level to the cell phone 
changes, the Level Monitor class checks the Rules class for the cut-off level and takes appropriate action 
based on the rule. Likewise, the Standard Monitor is another class that monitors the wireless standard of the 
signals received by the cell phone. When the standard changes, the Standard Monitor class checks for any 
rules associated with this change in the Rules class and takes appropriate action based on the rule (if any).  
 
Figure 17 gives the architecture for this approach. In this figure the Command Control component executes 
the inputs and generates responses, if necessary. All the rules are present in the Rules component. A 
command to change the rule will cause the Command Control component to call Rules Modification 
component to change one of the existing rules in the Rules component and thus affect the behavior of the 
system in the future. Likewise, a command to execute a system function will cause the Rules Checking and 
Execution component to check if a rule exists for the system function and if there is then that rule is 

Figure 15. Examples for Rule-Based Approach. 

Example 1: 
    Current Rule:  cut-off level  < x 
    Evolved Rule:  cut-off level  < y 
 
Example 2: 
    Current Rule: upper limit 50 
    Evolved  Rule: upper limit 60 
 
Example 3: 
    Current Rule:  value of constant is 23.85 
    Evolved Rule: value of constant is 24.35 
 
Example 4: 
    Current Rule: minimum value -10 
    Evolved Rule: mininum value -20 

Figure 16. Class Diagram for the Rule-Based Approach. 
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followed (else the default action takes place). Here adaptation takes place by changing the contents of the 
Rules Component. Thus the adaptation given in Figure 17 is component-based adaptation. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
For a connector-based adaptation for the rule-based technique, all the rules exist in the Rules class of 
Figure 16. What an external command for adaptation informs the system is which of the available rules to 
use. Here the connector between the Command Control component and Rules Component points to the 
correct rule for the current situation. Each of the rules is capable of modifying, checking and executing 
themselves. This is depicted in the architecture of Figure 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a constraint-based adaptation using the rule-based technique, consider an example: before the cell 
phone drops the call, it may have to inform the user first. Upon adaptation, the constraints may be to first 
inform the user, log the time of call drop to a file and then drop the call. Thus the rules for dropping the call 
may inform the actions to be done before the call is dropped. However, the order in which the actions occur 
has changed. The architecture of Figure 19 shows the architecture for constraint adaptation.  
 
In this case the environment change detection can only be done manually (as rules reflect physical or 
business limitations, usually), while the need for system change can be detected manually or automatically  
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Figure 17. Architecture for the Rule-Based Approach (Component Adaptation).  
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while the system change itself can be done automatically. One of the major disadvantages of this technique 
is the fact that the rules have to be decided in advance. Subsequently, the rules can only be modified. The 
extent of adaptation is limited to the extent to which the rules permit adaptation. 
 
4.3.1 SIG for Rule-Based Approach 
 
Table A2 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure 
A2 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal 
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural 
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the 
legend of Figure 6. Again the extent to which the various software components satisfice the different 
softgoals were determined with the help of the domain experts.  
 
4.4 Run-time Module Generation 
 
This is a very powerful technique that allows system behavior to be changed in many different ways. Here 
new modules are generated at run-time to enable the system to adapt to the change in environment. Thus 
for example, if a software system currently displays all text in English and if the text language had to be 
changed to Japanese, then a new display module could be generated that displays all text in Japanese. This 
new module may be a peer of the existing English module. Again in this application domain, module 
generation may be done with the help of commands from outside. Figure 20 shows the class diagram before 
and after adaptation in this technique. In this figure,  
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Figure 19. Architecture for the Rule-Based Approach (Constraint Adaptation).  

Figure 20. Class Diagram for Module Generation (diagram on left is before  module  
                   generation and the diagram on the right is after module generation).  
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Display is a template class and its parameterized element is Language. In the original system, only one 
language display class called English Display was instantiated from the template class. Due to adaptation 
requirements, at run-time the Japanese Display class was instantiated to handle displays in Japanese. 
 
Figure 21 shows an example of this evolution with two architectures for the above example. In Figure 21a, 
the system has only the English display module. The Command Control module sends items to be 
displayed directly to the English Display module. However, upon receiving the command “JAPANESE 
DISPLAY” the Command Control module will instruct the Module Generator module to create a peer of 
the English Display module. Figure 21b shows the resulting system with the Japanese Display module and 
subsequent texts are displayed in Japanese by this module.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The generic architecture for this technique is given in Figure 22. This architecture shows component-based 
adaptation technique. Here the Module Generator is called to create the Generated Module in response to 
an external command. The pre-determined external commands also give the limit to which new modules 
can be generated. If due to memory limitation no further new modules can be generated, the system informs 
the user of this problem and the new module will not be generated.  
 
For connector-based adaptation of this technique, new connections are developed between components at 
run-time. This will be required if in the above example the matter displayed on the LCD should also be sent 
to a speaker. Then there will be new connection required between the Display class and the Speaker class. 
In this case the Module Generator class is capable of creating additional connections as well. This would 
mean making classes on either side of this new connection aware of each other.  
 
Adaptation based on constraints is achieved similarly, with new constraints added whenever necessary. 
 
Here the change in environment is detected manually, the need for a system change is detected manually or 
automatically and the system change itself is done automatically. One of the major disadvantages with this 
system is the additional memory required to add components. In memory-constrained embedded systems 
this technique could lead to problems. Also the implementation of this technique is not easy. There are very 
few methods of implementation for this technique – more on implementation of this technique is discussed 
in Section 5. However, the advantages are, at least theoretically, this technique gives the broadest range of 
adaptation to environment changes. This lets systems grow at run-time. 
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Figure 21. Example for Run-time Module Generation Technique.  
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4.4.1 SIG for Run-Time Module Generation Technique 
 
Table A3 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure 
A3 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal 
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural 
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the 
legend of Figure 6. Again the extent to which the various software components satisfice the different 
softgoals were determined with the help of the domain experts. 
 
5. VALIDATION OF THE TECHNIQUES FOR SEMANTIC EVOLUTION 
 
5.1 Validation Approach 
 
In order to validate the techniques we observed the following steps: 
 
1. Implemented the architectures in an embedded system for a particular problem 
2. Tested the implementation with the specific environment change for the problem chosen 
3. Ensured that the implementations adapted themselves for the environment change 
4. Checked to see how the various implementations fulfilled the requirements of the critical NFRs 
    (marked by ‘!’ in the SIGs) 
5. Timed the speed of adaptation (which is one of the critical NFRs) 
 
The various techniques for semantic evolution mentioned in Section 4 were implemented in a test 
instrument that runs on a Motorola 68K processor, and has for external communication a IEEE488 port (the 
advantage with this interface is that accurate timing measurements are possible with the aid of a PC-based 
tool). In order to make the differences between the techniques clear, all the techniques are implemented for 
a pre-defined environment change. This will also let the timing measurements for adaptation indicate the 
relative speeds of adaptation for the different techniques. Also only the component- based adaptation was 
implemented for the different techniques. 
 
In order to have a common understanding on the critical NFR (δB = 0), we mean that the behavior is not 
changed if  
 
1. the commands suited to the adapted environment are accepted 
2. the time taken to execute the commands fall within satisficing limits before and after adaptation. In the  
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Figure 22. Architecture for Run-time Module Generation Technique (Component Adaptation). 
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    domain of interest in this paper, response times within 20ms is usually acceptable (this is based on the  
    experience of one of the authors with various test instruments that execute commands sent from an  
    external controller, usually a PC). 
 
Likewise, the NFR (δO = 0) means the following:  if a command that produces an output, produces the 
expected outputs before and after adaptation, then there was no change in the outputs. Thus if a command 
“LEVEL?” produces an output in dBm before adaptation, and produces an output in different units or does 
not produce an output at all (assuming that this command was valid in the systems before and after 
adaptation) then there was a change in the output. It should be noted that if the command “LEVEL?” 
produced an output but in a different unit, then command has been accepted (i.e., δB = 0, assuming 
condition 2 above is also satisfied) but δO ≠ 0. If, however, the command “LEVEL?” does not produce any 
output at all after adaptation, then this command has not been accepted, and δB ≠0 and δO ≠ 0. 
 
The time taken to execute in this application domain is the time taken to execute an input string. This time 
includes two components – the time to parse the string (the time taken by the lower two blocks of Figure 2) 
and the time to actually execute the parsed code (the time taken by the Semantic Analysis block of Figure 
2).  
 
5.2 Problem for Implementing Adaptation 
 
The environment change example is taken from the user-interface domain. This permits an easy 
appreciation of the problem and the solutions. However, the techniques are applicable to any other 
environment change as well. Let a test equipment for a cell phone be connected to a cell phone under test. 
The test equipment can generate signals that the cell phone receives and the test equipment can receive the 
signals from the cell phone as well. One of the tests [14] that the cell phone manufacturer would like to be 
perform on the cell phone is to find out the level at which the cell phone drops a call. In such a test the cell 
phone connected to the test equipment is brought into a conversation state (that is the cell phone makes a 
call with the test equipment) and then the test equipment drops its level step-by-step until the cell phone 
drops the call. This step-by-step reduction could be in steps of 1dB (the levels are usually expressed in dBm 
and dB which are log values of the corresponding power values). Thus the software in the test equipment 
would accept level settings of integer values (in dBm units). However, let us suppose that for a future 
generation of cell phones a finer step size is required – say 0.5dB steps. Then the test equipment should 
adapt to this change in level settings – from integer level settings to floating point level settings. This 
environment change will be used to illustrate the techniques discussed in Section 4. 
 
Let there be a parameter that takes different integer values. Let the value of the parameter be set by the 
input command “PARA_VALUE n”, where n is the integer value that the parameter takes. The effect of 
this command on the Syntax Analysis Block of Figure 2 is to generate a code corresponding to the 
command “PARA_VALUE”, say c, and send c and n to the Semantic Analysis Block. The Semantic 
Analysis Block, in response to code c, sets the corresponding parameter, parameter_c (where parameter_c 
could be the output level as described above). Let the parameter_c be an object (that is, the implementation 
uses object-oriented technology). Then the Semantic Analysis Block may use a function such as 
parameter_c.Set(n) to set the value of parameter_c. Another function that may be required of the object 
parameter_c is the Get( ) function which lets the external world get the value of the parameter using a 
command like “PARA_VALUE?”. This situation is depicted in Figure 23, where the sequence diagram for 
the above interactions is given. The environment change occurs by suddenly switching over to floating 
point values. That is, the command, “PARA_VALUE f” is sent, where f is a floating point value that the 
parameter should take. In response to this command the Syntax Analysis Block will send the parameters c 
and f to the Semantic Analysis Block. The requirement is that the embedded system (or the Semantic 
Analysis Block) should accept this floating point value. The different techniques for semantic adaptation 
react to this environment change differently and the differences will be discussed in the implementation. 
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5.3 Implementation Using the 3Rs Technique  
 
In the 3Rs technique, before the environment change occurs the code is changed to adapt the system to the 
new environment. Thus a new object called parameter_f would be created that stores floating point values. 
Then the Semantic Analysis Block, in response to code c from the Syntax Analysis Block will call the  
Set( ) function of parameter_f.  
 
As can be expected, for each change in environment, the code has to be changed, the new executable 
loaded into the embedded system’s memory and the embedded system has to be re-started. This is a slow 
process of adaptation, with adaptation time in the order of minutes. However, this is sure method in that the 
system can be made to suit any change of environment. 
 
This technique does not meet the requirements of four critical NFRs, viz., Automatic δE detection, 
Automatic δS recognition, Automatic δS and the Speed of Semantic Adaptation. However, it does meet the 
fifth NFR, viz., Software System [δB = 0], as it fulfils both the conditions for satisfying the NFR 
(mentioned in Section 5.1). Table 2 shows this fact: 
                               
      

State Command Performance 
Before Modification (accepts 
integer values) 

PARA_VALUE 100 Command Accepted 

Before Modification (accepts 
integer values) 

PARA_VALUE?  300 microseconds (execution 
time), 9 ms (response time) 

Before Modification (accepts 
floating point values) 

PARA_VALUE 10.5 Command Accepted 

Before Modification (accepts 
floating point values) 

PARA_VALUE?  1.926ms (execution time), 11ms 
(response time) 

                  
 
5.4 Implementation Using the Stored Data Technique 
 
In the implementation of this technique, both the objects parameter_c and parameter_f, corresponding to  
the integer parameter and floating parameter, respectively, are already present in the system. If the 
parameter sent is a floating point parameter (detected by the ‘.’) then the value of parameter_f is set, else  
the value of parameter_c is set. A flag is maintained to keep track of the last parameter value type, so that 
in response to PARA_VALUE? the correct object’s Get( ) function is called. 
 

Table 2. Behavior Change in the 3Rs Technique Implementation. 

Figure 23 . Sequence Diagram for the Interactions in the Example Problem .  
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Figure 24 shows the statechart diagram for this implementation. As can be expected, the adaptation using 
this technique is very fast (discussed below); however, all the different states will have to be present in the 
code, which means that the environment changes will have to be foreseen; this also means more memory 
requirement. 
 
As mentioned earlier, this technique can detect environment change automatically or manually. Also this 
technique recognizes the need for the system change automatically and performs the system change 
automatically. This technique also fulfills the NFR of no change in behavior and its results with respect to 
this NFR are similar to Table 2. Adaptation times for this technique are given in Table B1. Here the times 
are given for automatic environment change detection. Had environment change detection been manual, we 
would have to send commands like “NEXT_PARA INT” before changing over to integer system and the 
command “NEXT_PARA FLOAT” before changing over to floating point system. As can be seen from 
Table B1, the adaptation is very fast.  
 
5.5 Implementation Using the Rule-Based Approach 
 
In this technique, a rule is set to indicate that the next parameter is a floating-point parameter. This may be 
set by a command such as “NEXT_PARA FLOAT”. This command sets a rule (a variable) to indicate that 
the next parameter is a floating point parameter. When the Syntax Analysis Block sends the code c, the 
Semantic Analysis Block first checks the rule corresponding to this code and then calls the Set( ) function  
of the correct object. However, we implemented this technique with several rules as given in Table 3. 
In the implementation we controlled the different rules included and measured the time taken to execute 
each of the rules. As can be expected, the time taken to check the rules makes this technique slightly slower 
than the Stored Data technique. Regarding change in behavior, this technique also meets the conditions like 
the 3Rs Technique does. Thus this technique meets all the critical NFRs except that of Automatic δE 
detection. The adaptation times for this technique are given in Table B2. In order to understand some of the 
entries in this table refer to Figure 25. Figure 25 shows the script that the external controller will execute 
for the environment change using this technique. For each command the corresponding effect in the 
embedded system is also indicated in that figure. The time taken to execute this script is about 120ms. This 
technique is also a fast adaptation technique. However, the rules cannot be developed during run-time; all 
the possible rules will have to be implemented beforehand. 
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Figure 24. Statechart Diagram for the Stored Data Technique Implementation .  



 

Rule Description Command to Set 
Controlled Values 

Command to 
Set Rule 

(include this 
rule into 

consideration) 

Command to 
Unset Rule 

(exclude this rule 
from 

consideration) 
Rule 1 Controls if parameter 

type has to be checked  
NEXT_PARA INT 
and 
NEXT_PARA 
FLOAT 

INCLUDE 
RULE1 

EXCLUDE 
RULE1 

Rule 2 Controls if upper limit 
value for the parameter 
has to be checked 

UPPER_LIMIT n INCLUDE 
RULE2 

EXCLUDE 
RULE2 

Rule 3 Controls if the constant 
value as mentioned in 
Figure 15 has to be 
checked and if so whether 
the constant value has to 
be added or subtracted 

CONSTANT_VALUE 
f 
 
CONSTANT ADD 
CONSTANT MINUS 

INCLUDE 
RULE3 

EXCLUDE 
RULE3 

Rule 4 Controls if the minimum 
values have to be checked 

MIN_VALUE n INCLUDE 
RULE4 

EXCLUDE 
RULE4 

Table 3. Rules Used to Implement Rule-Based Approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    EC                                                                                 ES 
Send(NEXT_PARA INT)                                              Sets para = int 
Send(INCLUDE RULE1)                                              Sets rule 1 or R1 
Send(PARA_VALUE 10)                                              parameter_c.Set(10) called      
Send(PARA_VALUE?)                                                 Based on R1, parameter_c.Get( ) called                      
Read( )  - receives 10 
Send(NEXT_PARA FLOAT)                                        Sets para = float 
Send(UPPER_LIMIT 200)                                             Sets u_limit = 200 
Send(INCLUDE RULE2)                                               Sets rule 2 or R2 
Send(PARA_VALUE 20.0)                                            Based on R1 & R2, parameter_f.Set(20.0) called 
Send(PARA_VALUE?)                                                  Based on R1, parameter_f.Get( ) called 
Read( ) – receives 20.0 
 22

 
 
 
 
5.6 Implementation of the Run-time Module Generation Technique 
 
Ideally speaking, implementation of this technique should work like this: a template class is created as 
shown in Figure 26. Based on the need, new classes of the type required are created dynamically from this 
template. 
                
                                           template <class C> class parameter 
                                           { 
                                                  public: 
                                                        void Set(C value) {val = value;}; 
                                                         C     Get(void)     {return val; }; 
 
                                                  private: 
                                                         C   val; 
                                            }; 
 
 

Figure 25. Script Running on External Controller (EC) and the Corresponding  
                  Actions taken by the Embedded System (ES) for the Rule-Based Approach 

Figure 26. A C++ Class Template for the Ideal Implementation of the Run-time  
                   Module Generation Technique .  
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Thus if an integer parameter has to be stored a class parameter_int is created from this template and the 
parameter_c object will be an instance of the parameter_int class. Likewise, if upon an external command 
like “CREATE_PARA FLOAT” a class parameter_float could be created from the template of Figure 26, 
then the parameter_f object could be instantiated from the class parameter_float. However, the currently 
available techniques do not allow this ideal situation to be realized easily. Firstly, the run-time generation 
of such objects will require a compiler to be present in the embedded system that will dynamically compile 
the code – called the just-in-time compilation ([9] discusses this concept for the Java language). However, 
such compilers are not available for all embedded operating systems. Also, these compilers will occupy 
memory. Also, dynamic compilation loses the advantages of performance optimizations available with 
static compilation. However, if these disadvantages could be overcome, then this technique is a powerful 
technique. 
 
In order to implement this technique we used a different approach – we modified the binary executable 
code at run-time. The size of the object instantiated from the above template is about 25 bytes. We also 
knew the addresses of the different functions from the map file. What we did is to change the binary code 
of the class at run-time. Thus if the Set( ) function for parameter_c object started at memory location 
0x123456, we overwrote the bytes of this function with the Set( ) function for the parameter_f object. This 
required overwriting 16 bytes of memory. We also had to overwrite some bytes prior to setting the value 
(such as replacing atoi by atof) and this required 46 bytes of memory to be overwritten. Thus when the 
floating point value was received, it was set correctly. Likewise, for reading the set value, we had to change 
additional bytes of memory (30 bytes) and we were able to retrieve the set values correctly. In order to 
change memory we used a special command  “MEMWRITE addr, new_value” where addr is the address to 
be overwritten and the new_value is the new byte that should be written to addr. The external controller 
used a script like in Figure 25 to overwrite memory and change the system. This will take a longer time 
(2.073 s to execute MEMWRITE  for 92 bytes of memory) than the rule-based approach, but is fast and 
versatile. However, a deep knowledge of the software addresses will be required. Also overwriting wrong 
addresses could have disastrous results. Moreover, there is one major difference between what we did and 
what is required: when we overwrote the integer function, then we could no longer use the integer 
functionality until we restored the original data again – while in a true module generation technique both 
types of data will be available for access at the same time. 
 
This technique meets all the critical NFRs except automatic δE detection. When we tested the  
implementation the behavior did not change. Also the adaptation time for this technique (in our 
implementation, the adaptation time was 2.073 seconds) is much faster than the 3Rs Technique. 
 
 
5.7 SIG Based Comparison of the Techniques 
 
In this section we perform the last phase of the NFR Framework – that of evaluation and selection of 
architectures (Section 3.5). We now have all the necessary information to do this step. Figure A4 gives the 
combined SIG for all the techniques put together (in the interests of clarity the lines from the techniques       

               have not been extended all the way to the softgoals they connect). The lines emanating from the different                    
               techniques connect to the corresponding leaf softgoals in the upper part of the SIG, from left to right. An                  

architecture having the maximum green lines emanating from it is the better one – however, there is a rider 
to this rule – the green lines should also connect to the most number of the softgoals determined to be 
critical. Thus while the Stored Data Technique and the Run-time Module Generation Technique both have 
six green lines emanating from it, three of the green lines of the Stored Data Technique fulfill critical NFRs 
while only two of the green lines from the Run-time Module Generation Technique fulfill critical NFRs. 
Thus by the NFR Framework it should be concluded that the Stored Data Technique is more appropriate 
with respect to the softgoal decomposition used.  
 
6. CONCLUSION 
 
In this paper we have attempted to address the important problem of semantic adaptation (or evolution) in 
embedded systems. Semantic Adaptation is a very important NFR for embedded systems and techniques to 
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satisfy this NFR will be very useful to the industry. This paper is among the first investigations into 
adaptability in embedded systems on an architectural basis.  
  
We first defined adaptation and then extended the definition to semantic adaptation. We then show how to 
rationalize the development of adaptable software architecture using the NFR Framework [7, 15] and we 
provide not only the methodology to perform this rationalization but also a decomposition of the adaptation 
NFR that is required by the Framework. We then developed the different techniques for semantic evolution 
in embedded systems in the domain of remotely controlled embedded systems, which we took upon as a 
case study. The techniques that we came up with included 
 

 1. 3Rs Technique 
 2. Stored Data Technique 
 3. Rule Based Approach 
 4. Run-time Module Generation Technique. 

 
In this application domain, the embedded system receives commands (and sends responses) to an external 
controller over a communication link such as ethernet, serial, etc. Each of the techniques produced different 
architectures for semantic adaptation for this application. The codes that ensued from the different 
architectures were implemented in a real embedded system in this domain (a test equipment connected to a 
PC by an IEEE488 cable) and the techniques were validated. The time for adaptation for the different 
techniques was also measured. Then the various architectures were compared using the NFR Framework. 
As can be expected different architectures scored differently for the given decomposition of the semantic 
adaptation NFR. It is our opinion that by using this application domain as a sub-domain in other 
applications, these techniques can easily be extended to these other applications [11,12].  
 
There are several areas of further research still open. The techniques discussed here are by no means 
exhaustive – more work needs to be done to find better techniques suited for embedded systems. Also 
extensible techniques such as the run-time module generation techniques have to be studied further. 
Extension of concepts like the just-in-time compilation to embedded systems will have to be considered. 
Also of interest will be the development of a better mathematical model for semantic adaptation. We 
understand that the techniques discussed in this paper are only a beginning to achieving the goal of fully 
automatic semantic adaptation in embedded systems. 
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APPENDIX - A 

 
SOFTGOAL INTERDEPENDENCY GRAPHS 

 
This appendix gives the following data: 
 
1. Softgoal satisficing tables (also called correlation tables) 
2. Softgoal interdependency graphs 
 
for the following techniques: 
 
1. Stored Data Technique 
2. Rule-Based Approach 
3. Run-time Module Generation Technique. 
 
 
 
 
 
  

Softgoal 
 

Degree of Satisficing
 

 
Rationale 

δB = 0 + Some change in behavior may exist 
in some states 

δB ≠ 0 - Only for a few states this is true 

δO = 0 ++ In this application domain outputs are 
strings and repeatability is very high 

δO ≠ 0 -- Domain characteristics 

automatic detection [δE ] + Is possible in some states 

manual detection [δE] ++ Is possible in all states 

automatic recognition[δS] ++ Can recognize new state to be in for the 
environment change 

manual recognition[δS] ++ Is possible in all states 

automatically perform[δS] ++ Can change state by itself 

manually perform[δS] -- By design 

Extensibility + Can be modified to some extent 

Speed ++ By validation – Section 5.4 

Table A1. Softgoal Satisficing by the Stored Data Technique.  
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 Figure A1. SIG for the Stored Data Technique.  
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Softgoal 

 
Degree of Satisficing

 

 
Rationale 

δB = 0 + Change of rules could affect behavior 

δB ≠ 0 - Some changes in rules could cause 
behavior change 

δO = 0 ++ In this application domain outputs are 
strings and repeatability is very high 

δO ≠ 0 -- Domain characteristics 

automatic detection [δE ] -- Change in rules can only done by user 

manual detection [δE] ++ Domain characteristics 

automatic recognition[δS] ++ Need to change a rule can be recognized  
automatically 

manual recognition[δS] ++ Domain characteristics 

automatically perform[δS] ++ Can automatically  change the rules 

manually perform[δS] -- By design 

Extensibility + Can be modified to some extent 

Speed + By validation – Section 5.5 

Table A2. Softgoal Satisficing by the Rule-Based Approach.  
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Figure A2. SIG for  the Rule-Based Approach.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Softgoal 

δB = 0 

δB ≠ 0 

δO = 0 

δO ≠ 0 

automatic detection [

manual detection [δE

automatic recognitio

manual recognition[δ

automatically perform

manually perform[δS

Extensibility 

Speed 
Table A3. Softgoal Satisficing by the Run-Time Module 
                 Generation Technique. 
30

 
Degree of Satisficing

 

 
Rationale 

+ Addition of new modules could affect behavior 

- Addition of new modules could cause behavior 
change 

++ In this application domain outputs are strings and 
repeatability is very high 

-- Domain characteristics 

δE ] -- Need for new modules can only be detected by 
user 

] ++ Domain characteristics 

n[δS] ++ Need to create new modules can be recognized 
automatically 

S] ++ Domain characteristics 

[δS] ++ Can automatically generate new modules 

] -- By design 

++ Can be modified to a large extent 

- By validation – Section 5.6 
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Figure A3. SIG for the Run-time Module Generation Technique.  
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Figure A4.  Combined SIG (partial) for All Techniques.  
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APPENDIX - B 

 
VALIDATION TIMINGS 

 
This appendix gives the timings for adaptation for the following techniques: 
 
1. Stored Data Technique 
2. Rule-Based Approach. 
 
 
 
 
 
 
 
 
 
 
 

Command Parameter 
Type 

δδδδE ≠≠≠≠ 0? Time for δδδδE 
detection 

Time for δδδδS  
recognition 

Time for 
δδδδS and/or  
setting 
value 

PARA_VALUE 
100 

Integer Yes 140µs 124µs 167µs 

PARA_VALUE 
2000 

Integer No 142µs Not Applicable 175µs 

PARA_VALUE 
30000 

Integer No 144µs Not Applicable 180µs 

PARA_VALUE 
400000 

Integer No 147µs Not Applicable 185µs 

PARA_VALUE 
10.05 

Float Yes 136µs 124µs 1.610ms 

PARA_VALUE 
396.89 

Float No 137µs Not Applicable 2.033ms 

PARA_VALUE 
108476.998 

Float No 145µs Not Applicable 3.542ms 

PARA_VALUE 
7849432.8897 

Float No 147µs Not Applicable 3.870ms 

PARA_VALUE 
100 

Integer Yes 140µs 124µs 167µs 

 
 
 
 
 
 
 
 
 
 
 
 

Table B1. Adaptation Times for Stored Data Technique Implementation. 



 

 
 
 
 
 

Command Sent 

NEXT_PARA IN
INCLUDE RULE
UPPER_LIMIT 5
INCLUDE RULE
PARA_VALUE 1
PARA_VALUE 4
PARA_VALUE? 
Read: 45 
CONSTANT_VA
23.85 
CONSTANT ADD
INCLUDE RULE
NEXT_PARA 
FLOAT 
PARA_VALUE 3
PARA_VALUE? 
Read: 57.84 
MIN_VALUE -10
INCLUDE RULE
NEXT_PARA IN
PARA_VALUE  -
PARA_VALUE? 
Read: 18 
CONSTANT_VA
24.35 
CONSTANT MIN
PARA_VALUE 3
PARA_VALUE? 
Read: 11 
Table B2. Adaptation Times for Rule-Based Approach Implementation (the 
                  Initial State is INT)
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Parameter 
Type 

δδδδE ≠≠≠≠ 
0? 

Time for 
δδδδE 
detection 
(Rule 1 
detect 
time) 

Time 
for δδδδS  
recog- 
nition 

Rule 
2 
detect 
time 

Rule  
3 
detect 
time 

Rule 
4 
detect 
time 

Time 
for δδδδS 
or  
setting 
value 

T         
1         
0         
 2         
00 INT NO 140µs  160µs   Not set 
5 INT NO 140µs  154µs   132µs 

        

LUE         

         
3         

        

3.99 FLOAT YES 136µs 124µs 1.893ms 168µs  134µs 
        

         
4         
T         
5 INT YES 140µs 124µs 147µs 169µs 122µs 128µs 

        

LUE         

US         
5 INT YES 140µs 124µs 151µs 168µs 122µs 134µs 
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