
 1

Architecture-Based Semantic Evolution:
A Study of Remotely Controlled Embedded Systems

 Lawrence Chung Nary Subramanian
 Department of Computer Science Applied Technology Division
 University of Texas, Dallas Anritsu Company
 Richardson, TX Richardson, TX
 chung@utdallas.edu narayanan.subramanian@anritsu.com

ABSTRACT

Evolution of a software system is a natural process. In several systems, evolution takes place during the
maintenance phase of their lifecycles. Those systems that have reached their limit in evolution have usually
reached their end of useful life and may have to be replaced. However, there are several systems where
evolution occurs during the working phase of their lifecycles. Such systems were designed to evolve or in
other words, be adaptable. Semantically adaptable systems are of particular interest to industry as such
systems adapt themselves to environment change with little or no intervention from their developing
organization. Research in embedded systems is now becoming popular [1] and developing semantically
adaptable embedded systems presents challenges of its own. Embedded systems usually have a restricted
hardware configuration as well and several techniques applicable to “normal” systems cannot be directly
transferred to embedded systems. This paper considers semantic evolution as applicable to embedded
systems and develops the concepts and techniques for semantic adaptation in embedded systems. However,
the field of embedded systems being vast, this paper concentrates on those embedded systems that can be
remotely controlled (as opposed to remote controlled). In this application domain the embedded system is
connected to an external controller by a communication link such as ethernet, serial, radio frequency, etc.,
and receives commands from (and sends responses to) the external controller via the communication link.
Techniques for semantic evolution in this application domain give a glimpse of the complexity involved in
tackling the problem of semantic evolution in embedded systems. The techniques developed in this paper
are validated by applying them in a real embedded system – a test instrument used for testing cell phones.

1. INTRODUCTION

Evolution of a software system is a natural process. In several systems, evolution takes place during the
maintenance phase of their lifecycles. Those systems that have reached their limit in evolution have usually
reached their end of useful life and may have to be replaced. However, there are several systems where
evolution occurs during the working phase of their lifecycles. Such systems were designed to evolve or in
other words, be adaptable.

Embedded systems are usually hardware-constrained systems running dedicated software [2]. Software
running in the embedded systems is usually optimized for the underlying hardware and the OS used (if
any). However, the software for the embedded system has properties just like any other software, and in
particular, it evolves. Due to the constrained characteristics of embedded systems, several techniques for
dealing with evolution that are applicable to non-embedded systems cannot be directly applied to
embedded systems as well. For example, libraries of components are usually ruled-out since several
embedded systems do not have enough memory for storing the libraries.

An example of embedded system is the cell phone. The hardware for the cell phone consists of the circuitry
for receiving and transmitting radio signals, circuits for working on the electrical signals converted from
radio signals, and a microprocessor for controlling the working of different pieces of hardware. The
software is stored in a memory (such as FLASH or DRAM) and runs on the microprocessor. The software
tells the microprocessor what action to take in different situations. Yet another embedded system is the base
station used in a cell phone system. The base station sends signals to all the cell phones in its service area.
An equipment that tests the cell phones in the factory floor emulates the base station and this equipment is
yet another example of an embedded system.

Evolution in adaptable systems can occur at different levels of abstraction. At the lowest level, or Level 0,
there is no evolution at all. The hardware and software configurations are fixed. The software system runs
in the prescribed environment efficiently. For a different environment the software system fails. At a higher
level, or Level 1, the software can tolerate some change in environment. [3] gives a problem at this level.
At the next level, or Level 2, software can tolerate large changes in environment; in fact, software’s
behavior can also change. Techniques to develop software for this level (albeit, for non-embedded systems)
are discussed in [4]. At the highest level, or Level 3, there can be both hardware and software changes in
systems to adjust to virtually any change in environment. Large scale distributed systems attempt to reach
Level 3 adaptation.

At higher levels of abstraction the system evolves dynamically. At these levels the behavior (or the
semantics) of the system changes dynamically. While achieving dynamic evolution is difficult enough in
normal systems, the difficulty becomes compounded when such dynamic evolution has to be enforced in
embedded systems. An example of the requirement for such evolution can be found in cell phones – a cell
phone that is used for one wireless standard (say GSM) may be required to work for two different wireless
standards (say GSM and CDMA) [13, 14]. In such a case the makers of the cell phone could profit by
making the software of the cell phone dynamically evolvable.

In this paper, we attempt to develop techniques for embedded systems to satisfy Level 2 adaptation. In
order to validate the concepts and techniques that we develop, we will concentrate on one important
problem at this level: semantic evolution in embedded systems. In order to understand this problem, we
further restrict our attention to an application domain given in Figure 1 – the domain of remotely controlled
embedded systems (as opposed to remote-controlled embedded systems). The embedded system (ES)
receives commands from and responds to the commands from an external controller (EC). The
communication link between the ES and EC could be any physical medium – ethernet, serial, radio
frequency, etc. Figure 2 gives the functional blocks in a typical embedded system in this application
domain. In this figure, the Communication ASIC Driver Block handles the hardware signals and the
protocol associated with the physical interface. Usually such interfaces are connected to an ASIC
(Application Specific Integrated Circuit). This block receives ASCII strings from the physical interface
(these strings are the commands sent by the external controller to the embedded system) and sends them to
the Syntax Analysis Block. The Syntax Analysis Block analyses the strings, and if syntactically correct,
parses the strings and sends the parsed code to the Semantic Analysis Block, which takes the appropriate
actions for the input string (the input command).

Communication
Link

Figure 1. Application Domain for the Problem.

 Embedded
 System (ES)

 External
Controller (EC)

 Semantic Analysis Block
ES

Parsed Code

 Communication ASIC
 Driver Block

Data From Data To

Received String

Response String

 Syntax Analysis Block
Controller Controller
Figure 2. Functional Blocks in the Embedded
System (ES) with their Interconnections.
2

 3

The basic advantage of this domain is that commands can be sent from the external controller (which could
be a PC) and the embedded system receives these commands over the communication link, parses the
commands and takes actions based on these commands. This lets scripts be executed automatically on the
external controller and the embedded system will execute all the commands of the scripts. This means of
control by the remote controller also has other advantages [3, 11, 12]. The semantic adaptation in this
application domain concerns itself with the adaptation of the Semantic Analysis Block of Figure 2 (though
the adaptation of this block may require adaptation of the other blocks in that figure).

The different techniques that we develop for tackling this problem of semantic evolution in embedded
systems will lead to different architectural solutions for this problem. We know [5,6] that software
architecture consists of among others, components, connections and constraints. Thus architecture can be
adaptable along any one of the three basic constituents – one, two or all three of components, connections
and constraints can be adaptable. In this paper we will develop different techniques for semantic adaptation
and consider the effect of those techniques on the three constituents of software architecture. All the
architectures developed in this paper will be in the layered style.

Once software architectures have been developed, then comes the problem of finding the most efficient
technique(s). In order to determine the best architectures(s) we use the NFR Framework [7, 15], where NFR
stands for non-functional requirements, for comparing the various architectures that we come up with.
Using this framework we are able to determine the relative effectiveness of the different techniques.

In the discussion of the techniques for semantic evolution in this paper it has been assumed that object-
oriented technology has been used. However, this does not preclude the use of these techniques in non-
object-oriented environments.

In this paper, the terms “semantic evolution” and “semantic adaptation” are used interchangeably. Many of
the software diagrams in this paper use the notation borrowed from UML [8] although any other notation
with a similar modeling power can also be used. Also in the architectures the has been used to
indicate message passing between the layers of the architecture in the direction of the arrow.

Section 2 develops the concepts for semantic evolution. Section 3 discusses the application of the NFR
Framework to this problem. Section 4 discusses the techniques for semantic evolution in the embedded
systems taken up for case study – the remotely controlled embedded systems. Section 5 validates the
different techniques by implementing the designs in a commercial embedded system, and Section 6 gives
the conclusion. There are also two appendices – Appendix A gives the softgoal interdependency graphs
while Appendix B gives the validation timings.

2. SEMANTIC EVOLUTION

Semantic evolution is a form of adaptation. Before we develop concepts for semantic evolution, we give
the definitions for adaptation.

2.1 Adaptation Definition

Adaptation means change in the system to accommodate change in its environment. More specifically,
adaptation of a software system (S) is caused by change (δE) from an old environment (E) to a new
environment (E’), and results in a new system (S’) that ideally meets the needs of its new environment (E’).
Formally, adaptation can be viewed as a function:

 Adaptation: E x E’ x S → S’, where meet(S’, need(E’)).

A system is adaptable if an adaptation function exists.

Adaptability then refers to the ability of the system to make adaptation.

 4

Adaptation involves three tasks:

 1. ability to recognize δE

 2. ability to determine the change δS to be made to the system S according to δE
 3. ability to effect the change in order to generate the new system S’.

These can be written as functions in the following way:

 EnvChangeRecognition : E’ – E → δE
 SysChangeRecognition : δE x S → δS

 SysChange : δS x S → S’, where meet(S’, need(E’)).

The meet function above involves the two tasks of validation and verification, which confirm that the
changed system (S’) indeed meets the needs of the changed environment (E’). The predicate meet is
intended to take the notion of goal satisficing of the NFR framework, which assumes that development
decisions usually contribute only partially (or against) a particular goal, rarely “accomplishing” or
“satisfying” goals in a clear-cut sense. Consequently generated software is expected to satisfy NFRs within
acceptable limits, rather than absolutely.

Figure 3 explains the relationship between the various symbols described above.

2.2 Semantic Evolution

In order to appreciate the definitions and symbols in this section, we again take the example of a cell phone.
Let us assume that the cell phone can work in the two standards that we mentioned in the Introduction –
GSM and CDMA (so-called dual-mode phones). The inputs that it receives from the user are most likely
the same for the two standards. That is, the input spaces are identical for the two standards. However, the
behavior of the cell phone could be different for the two standards – for one standard the phone connections
could be made faster than for the other standard, for example. Thus intuitively, the behavior could be
related to non-functional aspects of the system, while inputs and outputs are related to the functional
aspects of the system. Other behavior related aspects include security, usability and throughput time. Also
it is not necessary that the input space should be the same after adaptation.

Change in the behavior (δB) is related to the behavior (B) of the system before and after adaptation when
the input space (I) is the same. The change in the output space (δO) of the software system, and the change
in the behavior (δB) are defined below.

 If I x S → O, and
 I x S’ → O’, then

 δO = O’ – O.

 S E

 S’ E’

δE δS

Figure 3. Explanation of Symbols in the Definition of Adaptation.

meets

meets

 5

 Also, if I x S → B, and
 I x S’ → B’, then

 δB = B’ – B.

A software system evolves semantically (or adapts semantically) if

 for δE ≠ 0, δB = 0 and δO = 0.

That is, the system does not change its behavior even though the environment has changed. However, since
this may not be possible to achieve all the time, using the concept of satisficing of the NFR framework, the
following definition of semantic evolution will also be acceptable:

For a semantically adaptable system one or more of the following holds true when δE ≠ 0:

 1. δB = 0 and δO = 0.
 2. δB ≠ 0 but δO = 0.
 3. δB ≠ 0 but δO ~ 0.

Equation 1 above states that the behavior of the system before and after semantic adaptation remains the
same. Equation 2 above states that for a semantically adaptable system, the output space before and after
adaptation remains the same. Equation 3 says that some difference in the output space is acceptable as long
as the outputs are identical for key inputs (what is “key” depends on the particular application).

In this paper techniques for semantically adaptable systems conforming to equation 3 above will be
developed. Before that, we will need definitions for the input and output spaces for the problem domain of
interest to us in this paper (as explained in the Introduction). This is described in the next section.

2.3 Input and Output Spaces

For the problem domain of interest in this paper, the model of the embedded system as given in Figure 4
will be used for illustrating the concept of the input and output spaces.

Input space is the set of legal commands for the embedded system. The output space is the set of responses
expected from the system for legal commands.

3. APPLICATION OF THE NFR FRAMEWORK

As mentioned in the Introduction the various techniques to be developed in Section 4 will be compared
using the NFR Framework [7, 15]. As per the NFR Framework, the following steps are required to
complete the softgoal interdependency graph (hereafter, SIG) and evaluate the architectures:

1. Develop the NFR goals and their decomposition
2. Develop architectural alternatives
3. Develop design tradeoffs and rationale
4. Develop goal criticalities
5. Evaluation and Selection

Each of the above steps will be developed below.

 Embedded
 System (ES)

Input Command Response

Figure 4. Input and Output Spaces for this Application Domain.

 6

3.1 Develop the Softgoal Hierarchy for the NFR Semantic Adaptation

In this step, the NFR semantic adaptation is decomposed into its constituent NFRs. This decomposition will
allow us to understand what semantic adaptation is all about and also to ensure that the designs that we
come up with will be able to meet the requirements of the various sub-NFRs of the NFR semantic
adaptation. Each NFR in the decomposition is a softgoal that is satisficed (defined in Section 2.1) to
different degrees by the designs we develop. The decomposition for semantic adaptation is given in Figure
5.

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

!

!

! ! !

All softgoals in the decomposition given in Figure 5 (depicted as clouds) are named in the following
convention:

 Type[Topic1, Topic2, …],

where Type is an NFR and Topic is a system or another NFR1 to which the Type applies.

1 In [7, 15] it has been mentioned that Topic is a functional item – we deviate from this custom in this paper
where Topic could be another NFR as well.

Figure 5. Softgoal Hierarchy for Semantic Adaptation

 7

The decomposition given in Figure 5 reads from the top. At the top are the three high level softgoals –
Adaptation[RCES], Extensibility[RCES] and Speed[RCES], where RCES stands for Remotely Controlled
Embedded System. Adaptation for RCES can be of different types – Syntactic Adaptation[RCES],
Semantic Adaptation [RCES], Contextual Adaptation [RCES] and Quality Adaptation[RCES]. That we are
concerned with one or more of these decompositions is indicated by the double arc, which stands for the
OR-decomposition. Quality Adaptation of RCES involves adaptation of NFRs for the system. As
mentioned in Section 2, we will be interested in the qualities of behavior and output (which stands for
whether the output changes or not, and not for the actual output from the RCES), while there could be other
qualities (or NFRs as well). This consideration results in the two OR-decompositions of the softgoal
Quality Adaptation[RCES]. In this paper we are only concerned with semantic adaptation and so the
softgoal Semantic Adaptation[RCES] is further OR-refined into the three functions of an RCES –
Communication, Parsing (or Syntax Analysis) and Processing (or Semantic Analysis), which gives us the
three soft-subgoals: Semantic Adaptation[Communication], Semantic Adaptation[Parsing] and Semantic
Adaptation[Processing].

In this paper we focus on the semantic adaptation of the Processing component of RCES, so Semantic
Adaptation[Processing] is AND-decomposed (indicated by the single arc) into four subgoals - Semantic
Adaptation[Change in Environment, Change in System] (this follows from the definition of the
requirements of adaptation, as defined in Section 2.1), Semantic Adaptation[Change in Behavior, Change
in Output] (which again follows from the definition of semantic adaptation, as defined in Section 2.2),
Extensibility of Semantic Adaptation[Processing] and Speed of Semantic Adaptation[Processing]. The
AND-decomposition means that all the four softgoals have to be satisficed in order for the softgoal
Semantic Adaptation[Processing] to be satisficed. Further it may be noted that three of the decomposed
softgoals have two parents each – Semantic Adaptation[Change in Behavior, Change in Output] has two
parents: Quality[Behavior, Output] and Semantic Adaptation [Processing], Extensibility of Semantic
Adaptation[Processing] has Extensibility[RCES] and Semantic Adaptation[Processing] as parents, while
Speed of Semantic Adaptation[Processing] has Speed[RCES] and Semantic Adaptation[Processing] as
parents. For such multi-parent softgoals, satificing of the softgoal satisfices both its parents.

Semantic Adaptation[Change in Environment, Change in System] is then AND-decomposed into
Detection[Change in Environment], Recognition[Change in System] and Perform[Change in System],
where the last softgoal is means performing the change in the system. These decompositions again follow
from the definitions in Section 2.1. The softgoal Semantic Adaptation[Change in Behavior, Change in
Output] is further AND-decomposed into its constituents: Software System[Change in Behavior] and
Software System[Change in Output].

Detection[Change in Environment] is OR-decomposed into the two ways that such a detection can take
place- automatic and manual (we have used δE for Change in Environment). The same is done for the
softgoals Recognition[Change in System] and Perform[Change in System]. The softgoal Software
System[Change in Behavior] is OR-decomposed into two softgoals- Software System[No Change in
Behavior] and Software System[Change in Behavior] (where we have used δB to indicate Change in
Behavior), and the softgoal Software System[Change in Output] is also OR-decomposed in the same
manner.

The NFRs Software System[Change in Behavior] and Software System[Change in Output] have been
defined in Section 5.1 for the application domain taken for the case study.

3.2 Develop Architectural Alternatives

The architectural alternatives will be developed in section 4.

3.3 Develop Design Tradeoffs and Rationale

As mentioned in Section 2.1, different architectural solutions satisfice various NFRs to different extent. We
use the legend of Figure 6 in describing the different degrees of NFR satisficing.

 8

For each architecture developed in Section 4, we will indicate the design tradeoffs and the rationale for the
degrees to which the architectures satisfice the various softgoals of Figure 5.

3.4 Develop Goal Criticalities

For the particular application, different NFRs will have different criticalities. Criticalities in the NFR
framework are shown in the SIG using ‘!’ marks. In Figure 5, five NFRs are marked as critical:
δB = 0, Speed, Automatic δE detection, Automatic δS recognition, and Automatic δS. The reason why these
NFRs were chosen as critical is because of their relevance in practice. In the company where one of the
authors works, fulfillment of these NFRs would give the greatest advantage for using semantic adaptation.

3.5 Evaluation and Selection

In this step the SIG is constructed and the most suitable architecture for the application is selected from the
SIG. This step will be performed after the implementation phase.

4. TECHNIQUES FOR SEMANTIC EVOLUTION

We have identified the following techniques for semantic adaptation in embedded systems:

1. Rework, Reload and Reboot (or 3Rs Technique)
2. Stored Data Technique
3. Rule Based Approach
4. Run-time Module Generation

4.1 Rework, Reload and Reboot (3Rs) Technique

This is the technique (which we would like to call as the 3Rs technique) that is currently widely used. In
this technique, for any change in environment, a new system that works in the new environment is
developed (either from scratch or as a modification of the existing system – the rework phase) and is
executed in the embedded system’s hardware (reload and reboot phase). This technique is efficient but very
slow in terms of time for adaptation. An architecture that uses this technique is given in Figure 7. This is a
high level architecture and each of the components in this architecture could have further sub-components.
Here the components, connections and constraints may be changed as needed to meet the requirements of
the new environment.

4.1.1 SIG for the 3Rs Technique

In order to develop the softgoal-interdependency graph for this technique we have to know the degree to
which this architecture fulfills the various softgoals of the NFR decomposition given in Figure 5. Table 1
gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure 8 gives the
SIG for this technique. In this SIG the clouds in normal lines represent the softgoal requirements while the
clouds in dark (or bold lines) represent the design elements (the architectural elements). The colored lines
represent the degree of satisficing of the various softgoals and follow the legend of Figure 6. In this SIG

Figure 6. Symbols for Different Degrees of Satisficing.

 or ++ Strongly Positive Satisficing
 or + Positive Satisficing

 or - Negative Satisficing
 or -- Strongly Negative Satisficing

 9

the extent to which the various software components satisfice the different softgoals were determined with
the help of the domain experts.

4.2 Stored Data Technique

In this technique the data for possible adaptations are stored in the embedded system in the beginning. At
run-time, a state machine keeps track of current state of the system. Thus, in a cell phone measuring
instrument that generates output signals for two different cell phone systems, say GSM and CDMA, and if
the instrument generates signals in response to an input command “MAKE CALL” (from the external
controller), then depending on the state the instrument is currently in, the signals corresponding to that cell
phone system will be generated. This is indicated by the statechart given in Figure 9. As can be seen in that
figure, the transition between the two states GSM and CDMA occurs due to another input command
“CHANGE SYSTEM”.

Softgoal

Degree of Satisficing

Rationale

δB = 0 + Can be ensured during modification

δB ≠ 0 - Domain Expert

δO = 0 ++ In this application domain outputs are
strings and repeatability is very high

δO ≠ 0 - Domain characteristics

automatic detection [δE] -- As no such capacity exists

manual detection [δE] ++ By design

automatic recognition[δS] -- As no such capacity exists

manual recognition[δS] ++ By design

automatically perform[δS] -- As no such capacity exists

manually perform[δS] ++ By design

Extensibility ++ Can be modified to any extent

Speed - By validation – Section 5.3

Table 1. Softgoal Satisficing by the 3Rs Technique.

 Communication ASIC
 Driver

 Syntax Analysis

 Semantic Analysis

Figure 7. Architecture for the 3Rs Technique.

 10

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

3Rs
Technique

Semantic
Analysis Syntax

Analysis
Communication

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

!

! ! ! !

Figure 8. SIG for the 3Rs Technique.

Thus in a system using
software system. The so
corresponding states in
can occur – manually o
manually - an external
new state consistent wi
a corresponding system
automatically. In the a
Figure 9) from a phone
its own internal state. H
the system change itsel

In an OO-system, if the
of the leaf nodes in the
Wireless Protocol class
Analog classes are deri
then derived from the D
Japanese Cellular are tw

Digit

IS-136

Figur
MAKE CALL /
make a GSM
call
11

GSM

this technique, all possible states are already
ftware system can adapt to those new enviro

 the system. There are two ways in which this
r automatically. In the manual method, the ch
user sends in a command like “CHANGE SY
th the new environment. Thus the detection o
 change are both detected manually while the
utomatic method, the system receives signals
 connected to it and based on the signals rece
ere the environment change detection, need f

f are all done automatically.

 class hierarchy is as shown in Figure 10 [13,
 hierarchy. In the class diagram of Figure 10,
 from which are derived US Protocol and No
ved from US Protocol class. IS-136 and CDM
igital class. AMPS is an analog standard clas
o standards classes derived from Non-US Pr

US Protocol

Wireless Protoco

Analogal

CDMA AMPS

e 9. Statechart Diagram explaining the Sto

Figure 10. Class Diagram for the Stored D
MAKE CALL /
make a CDMA
call
CDMA

CHANGE SYSTEM /
go to the other system
state
present in the state diagram for the
nments for which there are
 adaptation to the new environment
ange in environment is detected

STEM” and the system changes to the
f the environment change and need for
 system change itself occurs
(continuing using the example of
ived, the system changes (if necessary)
or corresponding system change and

 14], then each state may represent one
at the top of the hierarchy is the
n-US Protocol classes. Digital and
A (two digital standards) classes are
s derived from Analog class. GSM and
otocol class.

Non-US Protocol

l

Japanese CellularGSM

red Data Technique.

ata Technique.

 12

An architecture based on the stored data technique for this class diagram is shown in Figure 11. In this
architecture there are three systems – IS-136, CDMA and GSM. A state machine keeps track of the current
system and changes between systems based on an external command (there are such systems commercially
available [13]). More generally, the architecture for a system using this technique is given in Figure 12. In
this figure, the State Machine component controls the state that the system is in (the system can be in one of
the pre-defined states 1,2,…,n). The State Machine component includes the State Checking and State
Modification functions (or components). The response from the system also takes place via the State
Machine component.

In the architecture of Figure 12, adaptation is achieved through components. Another way of adaptation is
by having an adaptable connector. This architecture is given in Figure 13. Here the connector connects to
the one component of interest (indicated by the darkened block arrow between the State Machine
component and State 1 component) at the particular state.

 Communication ASIC
 Driver

 Syntax Analysis

 State Machine

 State 1

 State 2

 State n
 …

Figure 12. Architecture for the Stored Data Technique (Component Adaptation).

 Communication ASIC
 Driver

 Syntax Analysis

 State Machine

 State 1

 State 2

 State n
 …

Figure 13. Architecture for the Stored Data Technique (Connector Adaptation).

 Communication ASIC
 Driver

 State Machine

 IS-136

CDMA

 GSM

 Syntax Analysis

Figure 11. Architecture for the Class Diagram of Figure 10 using Stored Data Technique.

 13

Yet another way to achieve adaptation is by adapting the constraints on the connections between
components. Thus while Figure 12 and Figure 13 place two different constraints (but fixed constraints) on
the interconnections between the components, in the constraint adaptation technique, the interconnections
can be changed as required. This is indicated in Figure 14.

Each of the different types of adaptation has different advantages with respect to each other. Thus
component adaptation is very fast; connector adaptation lets new components be added to the system
easily; constraint adaptation lets the correct component for a particular state be found very fast.

4.2.1 SIG for the Stored Data Technique

Table A1 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure
A1 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the
legend of Figure 6. In this SIG also the extent to which the various software components satisfice the
different softgoals were determined with the help of the domain experts.

4.3 Rule-Based Approach

Any software system follows a set of rules. The rules could be either embedded in the executable code or
could be data (or algorithms) that are separate from the code [10]. A system could adapt semantically by
modification of one or more rules of this set. For example, when a cell phone is being tested using a test
equipment, one of the tests [14] that is done is to first make a call from the cell phone (the test equipment
can emulate a base station), and then decrease the level of the signal being output by the test equipment and
find the level when the cell phone drops the call. One way in which the software in the cell phone could
decide call dropping is to check the level of the signal received continuously and then when the level goes
below a preset value, drop the call. While the level at which to drop the call may be x for the current
generation of base stations (for the same standard, say GSM), for the next generation of base stations it may
be y. However, it would be extremely helpful if the cut-off level for the cell phones could be changed
without any change in its software. In the rule-based approach, the level at which to cut-off is made a rule.
Whenever, the level changes the cell phone software checks for the rule and detects if the level is below the
cut-off rule. If yes, then the cell phone drops the call. In order to adapt to the newer generation of base
stations, the cell phones will have to modify their rules to change the cut-off level to y. Figure 15 shows
some examples of the rule-based approach.

 Communication ASIC
 Driver

 Syntax Analysis

 State Machine

 State 1

 State 2

 State n

…

Figure 14. Architecture for the Stored Data Technique (Constraint Adaptation).

 14

For the application domain considered in this paper, the use of this rule-based approach is pretty easy, as
we can tie one or more commands to a rule. Thus, for Example 1 of Figure 15, if the command
“CUTOFF_LEVEL X” referred to the current rule, and if by sending the command “CUTOFF_LEVEL Y”
the current rule changes to the evolved rule, the needed evolution has been achieved.

Command Control Rules

Standard
MonitorLevel Monitor

Monitor
1 1

modifies
1 1..*

checks

The class diagram for the rule-based approach is given in Figure 16. In this diagram the class diagram for
only the Semantic Analysis Block of Figure 2 is given. Here the Command Control class receives
the codes for the input commands from the Syntax Analysis Block. The code causes the Command Control
class to set the appropriate rule in the Rules class. Subsequently, whenever the input level to the cell phone
changes, the Level Monitor class checks the Rules class for the cut-off level and takes appropriate action
based on the rule. Likewise, the Standard Monitor is another class that monitors the wireless standard of the
signals received by the cell phone. When the standard changes, the Standard Monitor class checks for any
rules associated with this change in the Rules class and takes appropriate action based on the rule (if any).

Figure 17 gives the architecture for this approach. In this figure the Command Control component executes
the inputs and generates responses, if necessary. All the rules are present in the Rules component. A
command to change the rule will cause the Command Control component to call Rules Modification
component to change one of the existing rules in the Rules component and thus affect the behavior of the
system in the future. Likewise, a command to execute a system function will cause the Rules Checking and
Execution component to check if a rule exists for the system function and if there is then that rule is

Figure 15. Examples for Rule-Based Approach.

Example 1:
 Current Rule: cut-off level < x
 Evolved Rule: cut-off level < y

Example 2:
 Current Rule: upper limit 50
 Evolved Rule: upper limit 60

Example 3:
 Current Rule: value of constant is 23.85
 Evolved Rule: value of constant is 24.35

Example 4:
 Current Rule: minimum value -10
 Evolved Rule: mininum value -20

Figure 16. Class Diagram for the Rule-Based Approach.

 15

followed (else the default action takes place). Here adaptation takes place by changing the contents of the
Rules Component. Thus the adaptation given in Figure 17 is component-based adaptation.

For a connector-based adaptation for the rule-based technique, all the rules exist in the Rules class of
Figure 16. What an external command for adaptation informs the system is which of the available rules to
use. Here the connector between the Command Control component and Rules Component points to the
correct rule for the current situation. Each of the rules is capable of modifying, checking and executing
themselves. This is depicted in the architecture of Figure 18.

For a constraint-based adaptation using the rule-based technique, consider an example: before the cell
phone drops the call, it may have to inform the user first. Upon adaptation, the constraints may be to first
inform the user, log the time of call drop to a file and then drop the call. Thus the rules for dropping the call
may inform the actions to be done before the call is dropped. However, the order in which the actions occur
has changed. The architecture of Figure 19 shows the architecture for constraint adaptation.

In this case the environment change detection can only be done manually (as rules reflect physical or
business limitations, usually), while the need for system change can be detected manually or automatically

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

Figure 17. Architecture for the Rule-Based Approach (Component Adaptation).

 Rules
 Modification

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

 Rule 1
Mod.,
Check,
Exec.

 Rule 2
Mod.,
Check,
Exec.

 Rule n
Mod.,
Check,
Exec. …

 Rules
Checking &
Execution

 Rules

Figure 18. Architecture for the Rule-Based Approach (Connector Adaptation).

 16

while the system change itself can be done automatically. One of the major disadvantages of this technique
is the fact that the rules have to be decided in advance. Subsequently, the rules can only be modified. The
extent of adaptation is limited to the extent to which the rules permit adaptation.

4.3.1 SIG for Rule-Based Approach

Table A2 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure
A2 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the
legend of Figure 6. Again the extent to which the various software components satisfice the different
softgoals were determined with the help of the domain experts.

4.4 Run-time Module Generation

This is a very powerful technique that allows system behavior to be changed in many different ways. Here
new modules are generated at run-time to enable the system to adapt to the change in environment. Thus
for example, if a software system currently displays all text in English and if the text language had to be
changed to Japanese, then a new display module could be generated that displays all text in Japanese. This
new module may be a peer of the existing English module. Again in this application domain, module
generation may be done with the help of commands from outside. Figure 20 shows the class diagram before
and after adaptation in this technique. In this figure,

Command
Control Display

Language

Display

English Display

<<bind>> (English)

Language

English Display

<<bind>> (English)

Japanese
Display

<<bind>> (Japanese)

Command
Control

1

1..* 1..*

1

Sets Sets

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

Figure 19. Architecture for the Rule-Based Approach (Constraint Adaptation).

Figure 20. Class Diagram for Module Generation (diagram on left is before module
 generation and the diagram on the right is after module generation).

 Rule 1
Mod.,
Check,
Exec.

 Rule 2
 Mod.,
 Check,
 Exec.

 Rule n
 Mod.,
 Check,
 Exec. …

 17

Display is a template class and its parameterized element is Language. In the original system, only one
language display class called English Display was instantiated from the template class. Due to adaptation
requirements, at run-time the Japanese Display class was instantiated to handle displays in Japanese.

Figure 21 shows an example of this evolution with two architectures for the above example. In Figure 21a,
the system has only the English display module. The Command Control module sends items to be
displayed directly to the English Display module. However, upon receiving the command “JAPANESE
DISPLAY” the Command Control module will instruct the Module Generator module to create a peer of
the English Display module. Figure 21b shows the resulting system with the Japanese Display module and
subsequent texts are displayed in Japanese by this module.

The generic architecture for this technique is given in Figure 22. This architecture shows component-based
adaptation technique. Here the Module Generator is called to create the Generated Module in response to
an external command. The pre-determined external commands also give the limit to which new modules
can be generated. If due to memory limitation no further new modules can be generated, the system informs
the user of this problem and the new module will not be generated.

For connector-based adaptation of this technique, new connections are developed between components at
run-time. This will be required if in the above example the matter displayed on the LCD should also be sent
to a speaker. Then there will be new connection required between the Display class and the Speaker class.
In this case the Module Generator class is capable of creating additional connections as well. This would
mean making classes on either side of this new connection aware of each other.

Adaptation based on constraints is achieved similarly, with new constraints added whenever necessary.

Here the change in environment is detected manually, the need for a system change is detected manually or
automatically and the system change itself is done automatically. One of the major disadvantages with this
system is the additional memory required to add components. In memory-constrained embedded systems
this technique could lead to problems. Also the implementation of this technique is not easy. There are very
few methods of implementation for this technique – more on implementation of this technique is discussed
in Section 5. However, the advantages are, at least theoretically, this technique gives the broadest range of
adaptation to environment changes. This lets systems grow at run-time.

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

Figure 21. Example for Run-time Module Generation Technique.

 Module
 Generator

 English
 Display

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

 Module
 Generator

 English
 Display

 Japanese
 Display

(a) (b)

 18

4.4.1 SIG for Run-Time Module Generation Technique

Table A3 gives the rationale behind deciding the degree of satisficing of the various softgoals and Figure
A3 gives the SIG for this technique. In this SIG the clouds in normal lines represent the softgoal
requirements while the clouds in dark (or bold lines) represent the design elements (the architectural
elements). The colored lines represent the degree of satisficing of the various softgoals and follow the
legend of Figure 6. Again the extent to which the various software components satisfice the different
softgoals were determined with the help of the domain experts.

5. VALIDATION OF THE TECHNIQUES FOR SEMANTIC EVOLUTION

5.1 Validation Approach

In order to validate the techniques we observed the following steps:

1. Implemented the architectures in an embedded system for a particular problem
2. Tested the implementation with the specific environment change for the problem chosen
3. Ensured that the implementations adapted themselves for the environment change
4. Checked to see how the various implementations fulfilled the requirements of the critical NFRs
 (marked by ‘!’ in the SIGs)
5. Timed the speed of adaptation (which is one of the critical NFRs)

The various techniques for semantic evolution mentioned in Section 4 were implemented in a test
instrument that runs on a Motorola 68K processor, and has for external communication a IEEE488 port (the
advantage with this interface is that accurate timing measurements are possible with the aid of a PC-based
tool). In order to make the differences between the techniques clear, all the techniques are implemented for
a pre-defined environment change. This will also let the timing measurements for adaptation indicate the
relative speeds of adaptation for the different techniques. Also only the component- based adaptation was
implemented for the different techniques.

In order to have a common understanding on the critical NFR (δB = 0), we mean that the behavior is not
changed if

1. the commands suited to the adapted environment are accepted
2. the time taken to execute the commands fall within satisficing limits before and after adaptation. In the

 Communication ASIC
 Driver

 Syntax Analysis

 Command Control

 Module
 Generator

 Current
 Module

 Generated
 Module

Figure 22. Architecture for Run-time Module Generation Technique (Component Adaptation).

 19

 domain of interest in this paper, response times within 20ms is usually acceptable (this is based on the
 experience of one of the authors with various test instruments that execute commands sent from an
 external controller, usually a PC).

Likewise, the NFR (δO = 0) means the following: if a command that produces an output, produces the
expected outputs before and after adaptation, then there was no change in the outputs. Thus if a command
“LEVEL?” produces an output in dBm before adaptation, and produces an output in different units or does
not produce an output at all (assuming that this command was valid in the systems before and after
adaptation) then there was a change in the output. It should be noted that if the command “LEVEL?”
produced an output but in a different unit, then command has been accepted (i.e., δB = 0, assuming
condition 2 above is also satisfied) but δO ≠ 0. If, however, the command “LEVEL?” does not produce any
output at all after adaptation, then this command has not been accepted, and δB ≠0 and δO ≠ 0.

The time taken to execute in this application domain is the time taken to execute an input string. This time
includes two components – the time to parse the string (the time taken by the lower two blocks of Figure 2)
and the time to actually execute the parsed code (the time taken by the Semantic Analysis block of Figure
2).

5.2 Problem for Implementing Adaptation

The environment change example is taken from the user-interface domain. This permits an easy
appreciation of the problem and the solutions. However, the techniques are applicable to any other
environment change as well. Let a test equipment for a cell phone be connected to a cell phone under test.
The test equipment can generate signals that the cell phone receives and the test equipment can receive the
signals from the cell phone as well. One of the tests [14] that the cell phone manufacturer would like to be
perform on the cell phone is to find out the level at which the cell phone drops a call. In such a test the cell
phone connected to the test equipment is brought into a conversation state (that is the cell phone makes a
call with the test equipment) and then the test equipment drops its level step-by-step until the cell phone
drops the call. This step-by-step reduction could be in steps of 1dB (the levels are usually expressed in dBm
and dB which are log values of the corresponding power values). Thus the software in the test equipment
would accept level settings of integer values (in dBm units). However, let us suppose that for a future
generation of cell phones a finer step size is required – say 0.5dB steps. Then the test equipment should
adapt to this change in level settings – from integer level settings to floating point level settings. This
environment change will be used to illustrate the techniques discussed in Section 4.

Let there be a parameter that takes different integer values. Let the value of the parameter be set by the
input command “PARA_VALUE n”, where n is the integer value that the parameter takes. The effect of
this command on the Syntax Analysis Block of Figure 2 is to generate a code corresponding to the
command “PARA_VALUE”, say c, and send c and n to the Semantic Analysis Block. The Semantic
Analysis Block, in response to code c, sets the corresponding parameter, parameter_c (where parameter_c
could be the output level as described above). Let the parameter_c be an object (that is, the implementation
uses object-oriented technology). Then the Semantic Analysis Block may use a function such as
parameter_c.Set(n) to set the value of parameter_c. Another function that may be required of the object
parameter_c is the Get() function which lets the external world get the value of the parameter using a
command like “PARA_VALUE?”. This situation is depicted in Figure 23, where the sequence diagram for
the above interactions is given. The environment change occurs by suddenly switching over to floating
point values. That is, the command, “PARA_VALUE f” is sent, where f is a floating point value that the
parameter should take. In response to this command the Syntax Analysis Block will send the parameters c
and f to the Semantic Analysis Block. The requirement is that the embedded system (or the Semantic
Analysis Block) should accept this floating point value. The different techniques for semantic adaptation
react to this environment change differently and the differences will be discussed in the implementation.

 20

EC Syntax Analysis Code Analyzer parameter_c

Semantic Analysis

ES

 PARA_VALUE n
c,n Set(n)

PARA_VALUE?
c'

Get()

nn

5.3 Implementation Using the 3Rs Technique

In the 3Rs technique, before the environment change occurs the code is changed to adapt the system to the
new environment. Thus a new object called parameter_f would be created that stores floating point values.
Then the Semantic Analysis Block, in response to code c from the Syntax Analysis Block will call the
Set() function of parameter_f.

As can be expected, for each change in environment, the code has to be changed, the new executable
loaded into the embedded system’s memory and the embedded system has to be re-started. This is a slow
process of adaptation, with adaptation time in the order of minutes. However, this is sure method in that the
system can be made to suit any change of environment.

This technique does not meet the requirements of four critical NFRs, viz., Automatic δE detection,
Automatic δS recognition, Automatic δS and the Speed of Semantic Adaptation. However, it does meet the
fifth NFR, viz., Software System [δB = 0], as it fulfils both the conditions for satisfying the NFR
(mentioned in Section 5.1). Table 2 shows this fact:

State Command Performance
Before Modification (accepts
integer values)

PARA_VALUE 100 Command Accepted

Before Modification (accepts
integer values)

PARA_VALUE? 300 microseconds (execution
time), 9 ms (response time)

Before Modification (accepts
floating point values)

PARA_VALUE 10.5 Command Accepted

Before Modification (accepts
floating point values)

PARA_VALUE? 1.926ms (execution time), 11ms
(response time)

5.4 Implementation Using the Stored Data Technique

In the implementation of this technique, both the objects parameter_c and parameter_f, corresponding to
the integer parameter and floating parameter, respectively, are already present in the system. If the
parameter sent is a floating point parameter (detected by the ‘.’) then the value of parameter_f is set, else
the value of parameter_c is set. A flag is maintained to keep track of the last parameter value type, so that
in response to PARA_VALUE? the correct object’s Get() function is called.

Table 2. Behavior Change in the 3Rs Technique Implementation.

Figure 23 . Sequence Diagram for the Interactions in the Example Problem .

 21

Figure 24 shows the statechart diagram for this implementation. As can be expected, the adaptation using
this technique is very fast (discussed below); however, all the different states will have to be present in the
code, which means that the environment changes will have to be foreseen; this also means more memory
requirement.

As mentioned earlier, this technique can detect environment change automatically or manually. Also this
technique recognizes the need for the system change automatically and performs the system change
automatically. This technique also fulfills the NFR of no change in behavior and its results with respect to
this NFR are similar to Table 2. Adaptation times for this technique are given in Table B1. Here the times
are given for automatic environment change detection. Had environment change detection been manual, we
would have to send commands like “NEXT_PARA INT” before changing over to integer system and the
command “NEXT_PARA FLOAT” before changing over to floating point system. As can be seen from
Table B1, the adaptation is very fast.

5.5 Implementation Using the Rule-Based Approach

In this technique, a rule is set to indicate that the next parameter is a floating-point parameter. This may be
set by a command such as “NEXT_PARA FLOAT”. This command sets a rule (a variable) to indicate that
the next parameter is a floating point parameter. When the Syntax Analysis Block sends the code c, the
Semantic Analysis Block first checks the rule corresponding to this code and then calls the Set() function
of the correct object. However, we implemented this technique with several rules as given in Table 3.
In the implementation we controlled the different rules included and measured the time taken to execute
each of the rules. As can be expected, the time taken to check the rules makes this technique slightly slower
than the Stored Data technique. Regarding change in behavior, this technique also meets the conditions like
the 3Rs Technique does. Thus this technique meets all the critical NFRs except that of Automatic δE
detection. The adaptation times for this technique are given in Table B2. In order to understand some of the
entries in this table refer to Figure 25. Figure 25 shows the script that the external controller will execute
for the environment change using this technique. For each command the corresponding effect in the
embedded system is also indicated in that figure. The time taken to execute this script is about 120ms. This
technique is also a fast adaptation technique. However, the rules cannot be developed during run-time; all
the possible rules will have to be implemented beforehand.

Int
accept int
parameters

Float
accept float
parameters

received
float
parameter

received
int
parameter

received
int
parameter

received
float
parameter

Figure 24. Statechart Diagram for the Stored Data Technique Implementation .

Rule Description Command to Set
Controlled Values

Command to
Set Rule

(include this
rule into

consideration)

Command to
Unset Rule

(exclude this rule
from

consideration)
Rule 1 Controls if parameter

type has to be checked
NEXT_PARA INT
and
NEXT_PARA
FLOAT

INCLUDE
RULE1

EXCLUDE
RULE1

Rule 2 Controls if upper limit
value for the parameter
has to be checked

UPPER_LIMIT n INCLUDE
RULE2

EXCLUDE
RULE2

Rule 3 Controls if the constant
value as mentioned in
Figure 15 has to be
checked and if so whether
the constant value has to
be added or subtracted

CONSTANT_VALUE
f

CONSTANT ADD
CONSTANT MINUS

INCLUDE
RULE3

EXCLUDE
RULE3

Rule 4 Controls if the minimum
values have to be checked

MIN_VALUE n INCLUDE
RULE4

EXCLUDE
RULE4

Table 3. Rules Used to Implement Rule-Based Approach.

 EC ES
Send(NEXT_PARA INT) Sets para = int
Send(INCLUDE RULE1) Sets rule 1 or R1
Send(PARA_VALUE 10) parameter_c.Set(10) called
Send(PARA_VALUE?) Based on R1, parameter_c.Get() called
Read() - receives 10
Send(NEXT_PARA FLOAT) Sets para = float
Send(UPPER_LIMIT 200) Sets u_limit = 200
Send(INCLUDE RULE2) Sets rule 2 or R2
Send(PARA_VALUE 20.0) Based on R1 & R2, parameter_f.Set(20.0) called
Send(PARA_VALUE?) Based on R1, parameter_f.Get() called
Read() – receives 20.0
 22

5.6 Implementation of the Run-time Module Generation Technique

Ideally speaking, implementation of this technique should work like this: a template class is created as
shown in Figure 26. Based on the need, new classes of the type required are created dynamically from this
template.

 template <class C> class parameter
 {
 public:
 void Set(C value) {val = value;};
 C Get(void) {return val; };

 private:
 C val;
 };

Figure 25. Script Running on External Controller (EC) and the Corresponding
 Actions taken by the Embedded System (ES) for the Rule-Based Approach

Figure 26. A C++ Class Template for the Ideal Implementation of the Run-time
 Module Generation Technique .

 23

Thus if an integer parameter has to be stored a class parameter_int is created from this template and the
parameter_c object will be an instance of the parameter_int class. Likewise, if upon an external command
like “CREATE_PARA FLOAT” a class parameter_float could be created from the template of Figure 26,
then the parameter_f object could be instantiated from the class parameter_float. However, the currently
available techniques do not allow this ideal situation to be realized easily. Firstly, the run-time generation
of such objects will require a compiler to be present in the embedded system that will dynamically compile
the code – called the just-in-time compilation ([9] discusses this concept for the Java language). However,
such compilers are not available for all embedded operating systems. Also, these compilers will occupy
memory. Also, dynamic compilation loses the advantages of performance optimizations available with
static compilation. However, if these disadvantages could be overcome, then this technique is a powerful
technique.

In order to implement this technique we used a different approach – we modified the binary executable
code at run-time. The size of the object instantiated from the above template is about 25 bytes. We also
knew the addresses of the different functions from the map file. What we did is to change the binary code
of the class at run-time. Thus if the Set() function for parameter_c object started at memory location
0x123456, we overwrote the bytes of this function with the Set() function for the parameter_f object. This
required overwriting 16 bytes of memory. We also had to overwrite some bytes prior to setting the value
(such as replacing atoi by atof) and this required 46 bytes of memory to be overwritten. Thus when the
floating point value was received, it was set correctly. Likewise, for reading the set value, we had to change
additional bytes of memory (30 bytes) and we were able to retrieve the set values correctly. In order to
change memory we used a special command “MEMWRITE addr, new_value” where addr is the address to
be overwritten and the new_value is the new byte that should be written to addr. The external controller
used a script like in Figure 25 to overwrite memory and change the system. This will take a longer time
(2.073 s to execute MEMWRITE for 92 bytes of memory) than the rule-based approach, but is fast and
versatile. However, a deep knowledge of the software addresses will be required. Also overwriting wrong
addresses could have disastrous results. Moreover, there is one major difference between what we did and
what is required: when we overwrote the integer function, then we could no longer use the integer
functionality until we restored the original data again – while in a true module generation technique both
types of data will be available for access at the same time.

This technique meets all the critical NFRs except automatic δE detection. When we tested the
implementation the behavior did not change. Also the adaptation time for this technique (in our
implementation, the adaptation time was 2.073 seconds) is much faster than the 3Rs Technique.

5.7 SIG Based Comparison of the Techniques

In this section we perform the last phase of the NFR Framework – that of evaluation and selection of
architectures (Section 3.5). We now have all the necessary information to do this step. Figure A4 gives the
combined SIG for all the techniques put together (in the interests of clarity the lines from the techniques

 have not been extended all the way to the softgoals they connect). The lines emanating from the different
 techniques connect to the corresponding leaf softgoals in the upper part of the SIG, from left to right. An

architecture having the maximum green lines emanating from it is the better one – however, there is a rider
to this rule – the green lines should also connect to the most number of the softgoals determined to be
critical. Thus while the Stored Data Technique and the Run-time Module Generation Technique both have
six green lines emanating from it, three of the green lines of the Stored Data Technique fulfill critical NFRs
while only two of the green lines from the Run-time Module Generation Technique fulfill critical NFRs.
Thus by the NFR Framework it should be concluded that the Stored Data Technique is more appropriate
with respect to the softgoal decomposition used.

6. CONCLUSION

In this paper we have attempted to address the important problem of semantic adaptation (or evolution) in
embedded systems. Semantic Adaptation is a very important NFR for embedded systems and techniques to

 24

satisfy this NFR will be very useful to the industry. This paper is among the first investigations into
adaptability in embedded systems on an architectural basis.

We first defined adaptation and then extended the definition to semantic adaptation. We then show how to
rationalize the development of adaptable software architecture using the NFR Framework [7, 15] and we
provide not only the methodology to perform this rationalization but also a decomposition of the adaptation
NFR that is required by the Framework. We then developed the different techniques for semantic evolution
in embedded systems in the domain of remotely controlled embedded systems, which we took upon as a
case study. The techniques that we came up with included

 1. 3Rs Technique
 2. Stored Data Technique
 3. Rule Based Approach
 4. Run-time Module Generation Technique.

In this application domain, the embedded system receives commands (and sends responses) to an external
controller over a communication link such as ethernet, serial, etc. Each of the techniques produced different
architectures for semantic adaptation for this application. The codes that ensued from the different
architectures were implemented in a real embedded system in this domain (a test equipment connected to a
PC by an IEEE488 cable) and the techniques were validated. The time for adaptation for the different
techniques was also measured. Then the various architectures were compared using the NFR Framework.
As can be expected different architectures scored differently for the given decomposition of the semantic
adaptation NFR. It is our opinion that by using this application domain as a sub-domain in other
applications, these techniques can easily be extended to these other applications [11,12].

There are several areas of further research still open. The techniques discussed here are by no means
exhaustive – more work needs to be done to find better techniques suited for embedded systems. Also
extensible techniques such as the run-time module generation techniques have to be studied further.
Extension of concepts like the just-in-time compilation to embedded systems will have to be considered.
Also of interest will be the development of a better mathematical model for semantic adaptation. We
understand that the techniques discussed in this paper are only a beginning to achieving the goal of fully
automatic semantic adaptation in embedded systems.

ACKNOWLEDGEMENTS

The authors would like to thank the colleagues of one of the authors in Anritsu Company, particularly
Mr. Pete Johnson, for their valuable suggestions and comments.

REFERENCES

1. E. A. Lee, “What’s Ahead for Embedded Software?”, Computer, September 2000, pp. 18 – 26.

2. P. A. Laplante, Real-Time Systems Design and Analysis, IEEE Press, Piscataway, New Jersey, 1992.

3. N. Subramanian and L.Chung, “Architecture-Driven Embedded Systems Adaptation for Supporting
 Vocabulary Evolution”, ISPSE 2000, November, 2000, Kanazawa, Japan.

4. P. Oreizy, M. M. Gorlick, R. N. Taylor, D.Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S.
 Rosenblum and A. L. Wolf, “An Architecture-Based Approach to Self-Adaptive Software”, IEEE
 Intelligent Systems, May/June 1999, pp. 54 – 62.

5. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall,
 1996.

6. L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, SEI Series in Software

 25

 Engineering, Addison-Wesley, 1998.

7. L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, "Non-Functional Requirements in Software
 Engineering”, Kluwer Academic Publishers, Boston, 2000.

8. G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide, Addison-
 Wesley, 1999.

9. J. Hoskin, “Robust Embedded Java Devices Must Meet Special Requirements”, Embedded Systems
 Development, Volume 3, Number 10, October 2000, pp. 44 – 48.

10. P. Johnson, “Rule-Based ELINT for Realtime Systems”, Texas Instruments Technical Journal, Vol. 9,
 No. 4, July-August 1992, pp. 58 – 71.

11. N. Subramanian, “A Novel Approach To System Design: Out-In Methodology”, Wireless Symposium/
 Portable by Design Conference, San Jose, Feb. 2000.

12. N. Subramanian and L. Chung, “Testable Embedded System Firmware Development: The Out-In
 Methodology”, Computer Standards and Interfaces Journal, Vol. 22, Issue 5, December 2000, pp. 337

- 352 .

13. K. Nakatsugawa, “Trends in Digital Mobile Communications and Related Measuring Instruments”,
 Anritsu Technical Review, No. 17, February 1996, pp. 48 – 55.

14. A. Miceli, Wireless Technician’s Handbook, Artech House, Boston, 2000.

15. J. Mylopoulos, L. Chung, S. S. Y. Liao, H. Wang, E. Yu, “Exploring Alternatives During
 Requirements Analysis”, IEEE Software, January/February 2001, pp. 2 – 6.

 26

APPENDIX - A

SOFTGOAL INTERDEPENDENCY GRAPHS

This appendix gives the following data:

1. Softgoal satisficing tables (also called correlation tables)
2. Softgoal interdependency graphs

for the following techniques:

1. Stored Data Technique
2. Rule-Based Approach
3. Run-time Module Generation Technique.

Softgoal

Degree of Satisficing

Rationale

δB = 0 + Some change in behavior may exist
in some states

δB ≠ 0 - Only for a few states this is true

δO = 0 ++ In this application domain outputs are
strings and repeatability is very high

δO ≠ 0 -- Domain characteristics

automatic detection [δE] + Is possible in some states

manual detection [δE] ++ Is possible in all states

automatic recognition[δS] ++ Can recognize new state to be in for the
environment change

manual recognition[δS] ++ Is possible in all states

automatically perform[δS] ++ Can change state by itself

manually perform[δS] -- By design

Extensibility + Can be modified to some extent

Speed ++ By validation – Section 5.4

Table A1. Softgoal Satisficing by the Stored Data Technique.

 27

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

Stored Data
Technique

State
Machine Syntax

Analysis

Communication

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

!

! ! ! !

States

State
Modification State

Checking

 Figure A1. SIG for the Stored Data Technique.

 28

Softgoal

Degree of Satisficing

Rationale

δB = 0 + Change of rules could affect behavior

δB ≠ 0 - Some changes in rules could cause
behavior change

δO = 0 ++ In this application domain outputs are
strings and repeatability is very high

δO ≠ 0 -- Domain characteristics

automatic detection [δE] -- Change in rules can only done by user

manual detection [δE] ++ Domain characteristics

automatic recognition[δS] ++ Need to change a rule can be recognized
automatically

manual recognition[δS] ++ Domain characteristics

automatically perform[δS] ++ Can automatically change the rules

manually perform[δS] -- By design

Extensibility + Can be modified to some extent

Speed + By validation – Section 5.5

Table A2. Softgoal Satisficing by the Rule-Based Approach.

 29

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

Rule-Based
Approach

Rule
Lookup and
Execution Syntax

Analysis

Communication

Rules Rule
Modification

Rule
Checking

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

Figure A2. SIG for the Rule-Based Approach.

Softgoal

δB = 0

δB ≠ 0

δO = 0

δO ≠ 0

automatic detection [

manual detection [δE

automatic recognitio

manual recognition[δ

automatically perform

manually perform[δS

Extensibility

Speed
Table A3. Softgoal Satisficing by the Run-Time Module
 Generation Technique.
30

Degree of Satisficing

Rationale

+ Addition of new modules could affect behavior

- Addition of new modules could cause behavior
change

++ In this application domain outputs are strings and
repeatability is very high

-- Domain characteristics

δE] -- Need for new modules can only be detected by
user

] ++ Domain characteristics

n[δS] ++ Need to create new modules can be recognized
automatically

S] ++ Domain characteristics

[δS] ++ Can automatically generate new modules

] -- By design

++ Can be modified to a large extent

- By validation – Section 5.6

 31

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

Run-Time
Module

Generation
Technique

Run-Time
Module

Generation &
Execution

Syntax
Analysis

Communication

Modules Module
Generation

Module
Checking

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

Figure A3. SIG for the Run-time Module Generation Technique.

 32

3Rs Technique
(Section 4.1)

Stored Data
Technique

(Section 4.2)

Rule-Based
Technique

(Section 4.3)

Run-time MG
Technique

(Section 4.4)

Semantic
Adaptation
[Communication]

Semantic
Adaptation
 [Parsing]

Semantic
Adaptation
[Processing]

Adaptation[RCES]

Syntactic
Adaptation
[RCES]

Semantic
Adaptation
[RCES]

Contextual
Adaptation
[RCES]

Quality
Adaptation
[RCES]

Extensibility[RCES] Speed[RCES]

Quality[Behavior, Output]
Quality
[Others]

Auto
Detect
[δE]

Extensibility of
Semantic
Adaptation
[Processing]

Speed of
Semantic
Adaptation
[Processing]

Semantic
Adaptation
[Change in Behavior,
 Change in Output]

Semantic
Adaptation
[Change in Environment,
 Change in System]

Detection
[Change in
 Environment]

Recognition
[Change in
 System]

Perform
[Change in
 System]

Software
System
[Change in
 Behavior]

Software
System
[Change in
 Output]

Manual
Detect
[δE]

Auto
Recog.
[δS]

Manual
Recog.
[δS]

Auto
Perform
[δS]

Manual
Perform
[δS]

Software
System
[δΒ = 0]

Software
System
[δΒ ≠ 0]

Software
System
[δΟ = 0]

Software
System
[δΟ ≠ 0]

!

!

! ! !

Figure A4. Combined SIG (partial) for All Techniques.

 33

APPENDIX - B

VALIDATION TIMINGS

This appendix gives the timings for adaptation for the following techniques:

1. Stored Data Technique
2. Rule-Based Approach.

Command Parameter
Type

δδδδE ≠≠≠≠ 0? Time for δδδδE
detection

Time for δδδδS
recognition

Time for
δδδδS and/or
setting
value

PARA_VALUE
100

Integer Yes 140µs 124µs 167µs

PARA_VALUE
2000

Integer No 142µs Not Applicable 175µs

PARA_VALUE
30000

Integer No 144µs Not Applicable 180µs

PARA_VALUE
400000

Integer No 147µs Not Applicable 185µs

PARA_VALUE
10.05

Float Yes 136µs 124µs 1.610ms

PARA_VALUE
396.89

Float No 137µs Not Applicable 2.033ms

PARA_VALUE
108476.998

Float No 145µs Not Applicable 3.542ms

PARA_VALUE
7849432.8897

Float No 147µs Not Applicable 3.870ms

PARA_VALUE
100

Integer Yes 140µs 124µs 167µs

Table B1. Adaptation Times for Stored Data Technique Implementation.

Command Sent

NEXT_PARA IN
INCLUDE RULE
UPPER_LIMIT 5
INCLUDE RULE
PARA_VALUE 1
PARA_VALUE 4
PARA_VALUE?
Read: 45
CONSTANT_VA
23.85
CONSTANT ADD
INCLUDE RULE
NEXT_PARA
FLOAT
PARA_VALUE 3
PARA_VALUE?
Read: 57.84
MIN_VALUE -10
INCLUDE RULE
NEXT_PARA IN
PARA_VALUE -
PARA_VALUE?
Read: 18
CONSTANT_VA
24.35
CONSTANT MIN
PARA_VALUE 3
PARA_VALUE?
Read: 11
Table B2. Adaptation Times for Rule-Based Approach Implementation (the
 Initial State is INT)
34

Parameter
Type

δδδδE ≠≠≠≠
0?

Time for
δδδδE
detection
(Rule 1
detect
time)

Time
for δδδδS
recog-
nition

Rule
2
detect
time

Rule
3
detect
time

Rule
4
detect
time

Time
for δδδδS
or
setting
value

T
1
0
 2
00 INT NO 140µs 160µs Not set
5 INT NO 140µs 154µs 132µs

LUE

3

3.99 FLOAT YES 136µs 124µs 1.893ms 168µs 134µs

4
T
5 INT YES 140µs 124µs 147µs 169µs 122µs 128µs

LUE

US
5 INT YES 140µs 124µs 151µs 168µs 122µs 134µs

	ABSTRACT

