Design Patterns as a Path to Conceptual Integrity

24 June, 2001
Stan Feighny

During our discussions about the organization of design patterns there was a comment about the difficulty of identifying the “generative nature” of design patterns. This may be a good property to identify, for if we understood how design patterns are used in the design process, then their organization may not be far behind. Alexander makes a point that the generative nature of design patterns is one of the key benefits. In practice, on the software side, the generative nature seems to have fallen away and the more common approach for using design patterns is characterized as “when faced with problem xyz…the solution is…” One might say in software a more opportunistic application of design patterns is prevalent over a generative use of design patterns.

The source of this difference may be the lack of focus on design patterns in the design process. In fact, we seldom see discussions of the design process associated with design patterns. It is as though design patterns are a tool that is used independent of the process. Let’s investigate this further:

A comment from Carriere and Kazman at SEI is interesting: “What Makes a Good Object Oriented Design?”

· The existence of an architecture, on top of any object/class design

· The internal regularity (….or conceptual integrity) of the architectural design

This is what Brooks wrote 25 years ago. "… Conceptual integrity is the most important consideration in system design."[Brooks 86] He continues: “The dilemma is a cruel one. For efficiency and conceptual integrity, one prefers a few good minds doing design and construction. Yet for large systems one wants a way to bring considerable manpower to bear, so that the product can make a timely appearance. How can these two needs be reconciled?”

One approach would be to identify and elevate a single overriding quality (such as adaptability or isolation of change) and use that quality as a foundation for the design process. If this overriding quality were one of the goals or even a specific design criteria of the process then perhaps the “many” could produce a timely product with the same conceptual integrity as “a few good minds.” How can this be accomplished and the and at least parts of the “cruel dilemma” resolved?

The following summary is from “Design Patterns as a Litmus Paper to Test the Strength of Object-Oriented Methods” and may provide some insight:

http://www.econ.kuleuven.ac.be/tew/academic/infosys/Members/Snoeck/litmus2.ps

1. Some O-O design methodologies provide a systematic process in the form of axiomatic steps for developing architectures or micro-architectures that are optimality partitioned (modularized) according to a specific design criteria.

2. The following methodologies are listed according to their key design criteria for modularization:

a. Booch in OOSE relies heavily on expert designers and experience to provide the system modularization principle.

b. OMT, Coad-Yourdon, Shaer-Mellor are data driven and as such raise data dependency as the system modularization principle.

c. Wirfs-Brock with Responsibility Driven Design (RDD) raises contract minimization as the system modularization principle.

d. Snoeck with Event Driven Design (EDD) raises existence dependency as the system modularization principle.

3. According to the authors only RDD and EDD have axiomatic rules for OO design and therefore are strong OO design methods.

4. Design patterns provide guidance in designing micro-architectures according to a primary modularization principle: “encapsulate the part that changes.”

5. EDD and RDD will generate different design patterns that meet the primary modularization principle “encapsulate the part that changes.” in different ways when applied according to their axiomatic rules. For example RDD generates Mediator, Command, Template Method and Chain of responsibility (mostly behavior) where as EDD generates Observer, Composite, and Chain of responsibility (mostly structure).

Now putting this together with the earlier discussion about conceptual integrity we can propose some questions for discussion:

· Are some O-O design methods better at creating an environment where design patterns are used in a generative sense?

· Will strong O-O design methods produce results for the “many” with the same conceptual integrity as “a few good minds.”

Even closer to our topic:

· Does J2EE have a primary modularization principle?

· How does it meet this objective?

· Does the product have conceptual integrity?

· Along what principle (experience, data, existence dependency, contract minimization, or some unknown principle) is the application partitioned?

· Does this give insight into the organization of design patterns?

The dilemma is a cruel one. For efficiency and conceptual integrity, one prefers a few good minds doing design and construction. Yet for large systems one wants a way to bring considerable manpower to bear, so that the product can make a timely appearance. How can these two needs be reconciled?

Brooks Mythical Man Month 86

