Url D

Chapter 3 - Describing Syntax
and Semantics

CS-4337 Organization of Programming Languages

Dr. Chris Irwin Davis

Email: cid021000@utdallas.edu
Phone: (972) 883-3574
Office: ECSS 4.705

Chapter 3 Topics

- Introduction

- The General Problem of Describing Syntax
- Formal Methods of Describing Syntax

- Attribute Grammars

-+ Describing the Meanings of Programs:
Dynamic Semantics

1-2

Introduction

- Syntax: the form or structure of the
expressions, statements, and program units

- Semantics: the meaning of the expressions,
statements, and program units

- Syntax and semantics provide a language’s
definition
- Users of a language definition
- Other language designers
- Implementers
- Programmers (the users of the language)

1-3

The General Problem of Describing Syntax:
Terminology

- A sentence is a string of characters over some
alphabet

- A language is a set of sentences

- A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

- A token is a category of lexemes (e.g.,
identifier)

1-4

Example: Lexemes and Tokens

lndex = 2 * count + 17

Lexemes Tokens

index identifier

= equal sign

% int literal

* mult op

count identifier

+ plus op

17 int literal

; semicolon

Formal Definition of Languages

- Recognizers

- A recognition device reads input strings over the alphabet of
the language and decides whether the input strings belong
to the language

- Example: syntax analysis part of a compiler
- Detailed discussion of syntax analysis appears in
Chapter 4

- Generators

- A device that generates sentences of a language

- One can determine if the syntax of a particular sentence is
syntactically correct by comparing it to the structure of the
generator

1-5

Formal Methods of Describing Syntax

- Formal language-generation mechanisms,
usually called grammars, are commonly used
to describe the syntax of programming
languages.

BNF and Context-Free Grammars

- Context-Free Grammars
- Developed by Noam Chomsky in the mid-1950s

- Language generators, meant to describe the syntax of
natural languages

- Define a class of languages called context-free languages

- Backus-Naur Form (1959)

- Invented by John Backus to describe the syntax of Algol
58

- BNF is equivalent to context-free grammars

1-6

BNF Fundamentals

- In BNF, abstractions are used to represent classes of
syntactic structures — they act like syntactic

variables (also called non-terminal symbols, or just
non-terminals)

- Terminals are lexemes or tokens

- A rule has a left-hand side (LHS), which is a
nonterminal, and a right-hand side (RHS), which is a
string of terminals and/or nonterminals

1-7

BNF Fundamentals (continued)

- Nonterminals are often enclosed in angle brackets

- Examples of BNF rules:
<ldent 1list> — identifilier | identifier, <ident list>

<if stmt> — if <logic expr> then <stmt>

- Grammar: a finite non-empty set of rules

- A start symbol is a special element of the
nonterminals of a grammar

1-8

BNF Rules

- An abstraction (or nonterminal symbol) can
have more than one RHS

<stmt> — <single stmt>

| begin <stmt list> end
- The same as...
<stmt> — <single stmt>

<stmt> — begin <stmt list> end

1-9

Describing Lists

- Syntactic lists are described using recursion

<ident_list> — Jdent

| ident, <ident list>

- A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

An Example Grammar

<program> — <stmts>
<stmts> — <stmt> | <stmt>
<stmt> — <var> = <expr>
<var> — a | b | ¢ | d
<expr> — <term> + <term>

<term> — <var> | const

°
4

<stmts>

<term> -

<term>

An Example Derivation

<program> => <stmts>

=> <stmt>

=> <var> = <exXpr>

=> a = <expr>
= <term> + <term>
<var> + <term>
= b + <term>

|
V

@ o 9 W
|

= b 4+ const

Derivations

- Every string of symbols in a derivation is a
sentential form

- A sentence is a sentential form that has only
terminal symbols

- A leftmost derivation is one in which the
leftmost nonterminal in each sentential form is
the one that is expanded

- A derivation may be neither leftmost nor
rightmost

Parse Tree

- A hierarchical representation of a derivation

<program>

<stmts>

<stmt>
<var> = <expr>
| P N
a <term> + <term>

<var> const

a =Db + const |
b

Ambiguity in Grammars

- A grammar is ambiguous if and only if it

generates a sentential form that has two or
more distinct parse trees

An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const

<op> — [/ | -

<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>

\ VA

const - const |/ const const - const / const

Ambiguous Grammars

- “I saw her duck”

Ambiguous Grammars

- “I saw her duck”

Ambiguous Grammars

“The men saw a boy in the park with a telescope”

Logical Languages

- LOGLAN (1955)
- Grammar based on predicate logic

-Developed Dr. James Cooke Brown with the goal
of making a language so different from natural
languages that people learning it would think in a
different way if the hypothesis were true

- Loglan is the first among, and the main
inspiration for, the languages known as logical
languages, which also includes Lojban and Ceqli.

- To invesitigate the Sapir-Whorf Hypothesis

An Unambiguous Expression Grammar

- If we use the parse tree to indicate precedence

levels of the operators, we cannot have
ambiguity

<expr> — <expr> - <term> | <term>
<term> — <term> / const| const

<expr>

N

<expr> - <term>
| SN T

<term> <term> /| const
| |

const const

Operator Precedence

- If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

<assign> — <id> = <expr>

<id> —- A | B | C

<expr> — <expr> + <term> | <term>
<term> — <term> * <factor> | <factor>
<factor> — (<expr>) | <id>

Associativity of Operators

- Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>:
<expr> + const

/N~

<expr> + const

const

Extended BNF

- Optional parts are placed in brackets []

<proc call> - ident [(<expr list>)]

- Alternative parts of RHSs are fplaced inside
parentheses and separated via vertical bars

<term> —» <term> (+]|-) const

- Repetitions (0 or more) are placed inside braces { }

<ident 1list> - <identifier> {, <identifier>}

BNF and EBNF

- BNF

<expr> — <term> |
<expr> + <term> |
<expr> - <term>
<term> — <factor> |
<term> * <factor> |
<term> / <factor>

- EBNF

<expr> — <term> {(+ | —-) <term>}
<term> — <factor> {(* | /) <factor>}

1-20

Recent Variations in EBNF

- Alternative RHSs are put on separate lines
- Use of a colon instead of -

. Use of __ for optional parts

opt

- Use of oneof for choices

1-21

Attribute Grammars

Static Semantics

- Nothing to do with meaning

- Context-free grammars (CFGs) cannot describe
all of the syntax of programming languages

- Categories of constructs that are trouble:
- Context-free, but cumbersome (e.qg.,
types of operands in expressions)

- Non-context-free (e.g., variables must
be declared before they are used)

1-22

Attribute Grammars

- Attribute grammars (AGs) have additions to

CFGs to carry some semantic info on parse
tree nodes

- Primary value of AGs:
- Static semantics specification
- Compiler design (static semantics checking)

1-23

Attribute Grammars : Definition

- Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:

- For each grammar symbol x there is a set A(x) of
attribute values

- Each rule has a set of functions that define certain
attributes of the nonterminals in the rule

- Each rule has a (possibly empty) set of predicates
to check for attribute consistency

1-24

Attribute Grammars: Definition

-Let X, —= X, ... X, be arule

. Functions of the form S(X,) = f(A(X,), ..., A(X.))
define synthesized attributes

. Functions of the form I(XJ.) = F(AX,y), ... , A(X)),
fori <=j <= n, define inherited attributes

- Initially, there are intrinsic attributes on the
leaves

1-25

Attribute Grammars: An Example

* Syntax rule:

<proc def> - procedure <proc name>[1]
<proc body> end <proc name>[2];

* Predicate:

<proc name>[l]string == <proc name>[2].string

1-26

Attribute Grammars: An Example

- Syntax
<assign> — <var> = <expr>
<eXpr> — <var> + <var> | <var>
<var> — A | B | C

* actual type: synthesized for <var> and <expr>
* expected type: inherited for <expr>

1-26

Attribute Grammar (continued)

-SyntaXIwﬂe: <expr> — <var>[1l] + <var>[2]

Semantic rules:
<expr>.actual type < <var>[l].actual type

Predicate:
<var>[1l].actual type == <var>[2].actual type
<expr>.expected type == <expr>.actual type

- Syntax rule: <var> — id
Semantic rule:

<var>.actual type < lookup (<var>.string)

1-27

Attribute Grammars (continued)

- How are attribute values computed?

- If all attributes were inherited, the tree could be
decorated in top-down order.

- |If all attributes were synthesized, the tree could
pe decorated in bottom-up order.

-In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

1-28

Attribute Grammars (continued)

<expr>.expected type < 1nherited from parent

<var>[1l].actual type < lookup (A)
<var>[2] .actual type < lookup (B)

<var>[1l].actual type =7 <var>[2].actual type

<expr>.actual type < <var>[l].actual type
<expr>.actual type =7? <expr>.expected type

1-29

Parse Tree UT D

<assign>

<var>[3]

39

Computing Attribute Values UT D

l. <var>.actual type « look-up(A) (Rule 4)

2. <expr>.expected type « <var>.actual type
(Rule 1)

3. <var>[2].actual type « look-up(A) (Rule 4)
<var>[3].actual type « look-up(B) (Rule 4)

4. <expr>.actual type « either int or real
(Rule 2)

5. <expr>.expected type == <expr>.actual type
1s eilther

TRUE or FALSE (Rule 2)

40

Flow of Attributes In the Tree UT D

<assign>

R
expected_type <expr>

actual_type
A S
actual_type
actual_type -yP
<var> <var>[3] A
// /’ //
/ / /
/ / /
/ / /
A = A + B

41

A Fully Attributed Parse Tree UT D

<assign>

<expr> expected_type = real_type
actual_type = real_type

<var>[3] actual_type =
int_type

<var>[2] actual_type =
real_type

actual_type = <var>
real_type

42

Semantics

Semantics

- There is no single widely acceptable notation or
formalism for describing semantics

- Several needs for a methodology and notation
for semantics:
- Programmers need to know what statements mean

- Compiler writers must know exactly what language constructs
do

- Correctness proofs would be possible
- Compiler generators would be possible
- Designers could detect ambiguities and inconsistencies

1-30

Semantics UT D

- Operational Semantics
- Denotational Semantics

« Axiomatic Semantics

45

Operational Semantics

- Operational Semantics

- Describe the meaning of a program by executing
its statements on a machine, either simulated or
actual. The change in the state of the machine
(memory, registers, etc.) defines the meaning of
the statement

- To use operational semantics for a high-level
language, a virtual machine is needed

1-31

Operational Semantics

- A hardware pure interpreter would be too
expensive

- A software pure interpreter also has problems

-The detailed characteristics of the particular
computer would make actions difficult to
understand

-Such a semantic definition would be machine-
dependent

1-32

Operational Semantics (continued)

- A better alternative: A complete computer
simulation

- The process:

- Build a translator (translates source code to the machine
code of an idealized computer)

- Build a simulator for the idealized computer
- Evaluation of operational semantics:

- Good if used informally (language manuals, etc.)

- Extremely complex if used formally (e.g., VDL), it was
used for describing semantics of PL/I.

1-33

Operational Semantics (continued)

- Uses of operational semantics:
- Language manuals and textbooks
- Teaching programming languages
- Two different levels of uses of operational semantics:
- Natural operational semantics
- Structural operational semantics
- Evaluation
- Good if used informally (language
manuals, etc.)
- Extremely complex if used formally (e.g.,VDL)

1-34

Denotational Semantics

- Based on recursive function theory

- The most abstract semantics description
method

- Originally developed by Scott and Strachey
(1970)

1-35

Denotational Semantics - continued

- The process of building a denotational
specification for a language:
- Define a mathematical object for each language
entity

- Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

- The meaning of language constructs are defined
by only the values of the program's variables

1-36

Denotational Semantics: program state

- The state of a program is the values of all its
current variables

- Let VARMAP be a function that, when given a
variable name and a state, returns the current
value of the variable

VARMAP (i, s) = v,

1-37

Evaluation of Denotational Semantics

- Can be used to prove the correctness of
orograms

- Provides a rigorous way to think about
orograms

- Can be an aid to language design

- Has been used in compiler generation systems

- Because of its complexity, it is of little use to
language users

1-44

Axiomatic Semantics

- Based on formal logic (predicate calculus)
- Original purpose: formal program verification

- AXioms or inference rules are defined for each

statement type in the language (to allow
transformations of logic expressions into more

formal logic expressions)
- The logic expressions are called assertions

1-45

Axiomatic Semantics (continued)

- An assertion before a statement (a
precondition) states the relationships and

constraints among variables that are true at
that point in execution

- An assertion following a statement is a
postcondition

- A weakest precondition is the least restrictive

precondition that will guarantee the
postcondition

1-46

Evaluation of Axiomatic Semantics

- Developing axioms or inference rules for all of
the statements in a language is difficult

- It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs, but it is not as useful for language
users and compiler writers

- Its usefulness in describing the meaning of a
programming language is limited for language
users or compiler writers

1-55

Denotation Semantics vs Operational
Semantics

- In operational semantics, the state changes
are defined by coded algorithms

- In denotational semantics, the state changes
are defined by rigorous mathematical
functions

1-56

Summary

- BNF and context-free grammars are equivalent
meta-languages

- Well-suited for describing the syntax of programming
languages

- An attribute grammar is a descriptive formalism
that can describe both the syntax and the
semantics of a language

- Three primary methods of semantics description
- Operation, Axiomatic, Denotational

1-57

