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Chapter 3 Topics

• Introduction

• The General Problem of Describing Syntax

• Formal Methods of Describing Syntax

• Attribute Grammars

• Describing the Meanings of Programs:    
Dynamic Semantics
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Introduction

•Syntax: the form or structure of the 
expressions, statements, and program units

•Semantics: the meaning of the expressions,  
statements, and program units

•Syntax and semantics provide a language’s 
definition
–  Users of a language definition

•Other language designers
•Implementers
•Programmers (the users of the language)



1-4

The General Problem of Describing Syntax: 
Terminology

•A sentence is a string of characters over some 
alphabet

•A language is a set of sentences

•A lexeme is the lowest level syntactic unit of a 
language (e.g., *, sum, begin)

•A token is a category of lexemes (e.g., 
identifier)



Example: Lexemes and Tokens

index = 2 * count + 17

Lexemes

index
=
2
*
count
+
17
;

Tokens

identifier
equal_sign
int_literal
mult_op
identifier
plus_op
int_literal
semicolon
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Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet of 

the language and decides whether the input strings belong 
to the language 

– Example: syntax analysis part of a compiler

     - Detailed discussion of syntax analysis appears in 

         Chapter 4

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is 

syntactically correct by comparing it to the structure of the 
generator



Formal Methods of Describing Syntax

•Formal language-generation mechanisms, 
usually called grammars, are commonly used 
to describe the syntax of programming 
languages.
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BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s

– Language generators, meant to describe the syntax of 
natural languages

– Define a class of languages called context-free languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe the syntax of Algol 

58

– BNF is equivalent to context-free grammars
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BNF Fundamentals

• In BNF, abstractions are used to represent classes of 
syntactic structures — they act like  syntactic  
variables (also called non-terminal symbols, or just 
non-terminals)

• Terminals are lexemes or tokens

 
• A rule has a left-hand side (LHS), which is a 

nonterminal, and a right-hand side (RHS), which is a 
string of terminals and/or nonterminals



BNF Fundamentals (continued)

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
 <ident_list> → identifier | identifier, <ident_list>

 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the 
nonterminals of a grammar
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BNF Rules

•An abstraction (or nonterminal symbol) can 
have more than one RHS
    <stmt> → <single_stmt> 

             | begin <stmt_list> end

•The same as…
    <stmt> → <single_stmt> 

    <stmt> → begin <stmt_list> end
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Describing Lists

•Syntactic lists are described using recursion

    <ident_list> → ident

                | ident, <ident_list>

•A derivation is a repeated application of 
rules, starting with the start symbol and 
ending with a sentence (all terminal 
symbols)
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An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const
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An Example Derivation

<program> => <stmts>

          => <stmt> 

          => <var> = <expr> 

          => a = <expr> 

          => a = <term> + <term>

          => a = <var> + <term> 

          => a = b + <term>

          => a = b + const
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Derivations

•Every string of symbols in a derivation is a 
sentential form

•A sentence is a sentential form that has only 
terminal symbols

•A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form is 
the one that is expanded

•A derivation may be neither leftmost nor 
rightmost
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Parse Tree

•A hierarchical representation of a derivation
          
  <program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

a = b + const
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Ambiguity in Grammars

•A grammar is ambiguous if and only if it 
generates a sentential form that has two or 
more distinct parse trees
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An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op>   → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>



Ambiguous Grammars

•“I saw her duck”



Ambiguous Grammars

•“I saw her duck”



Ambiguous Grammars

“The men saw a boy in the park with a telescope”



Logical Languages

•LOGLAN (1955)
– Grammar based on predicate logic 

– Developed Dr. James Cooke Brown with the goal 
of making a language so different from natural 
languages that people learning it would think in a 
different way if the hypothesis were true

– Loglan is the first among, and the main 
inspiration for, the languages known as logical 
languages, which also includes Lojban and Ceqli.

– To invesitigate the Sapir-Whorf Hypothesis
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An Unambiguous Expression Grammar

•If we use the parse tree to indicate precedence 
levels of the operators, we cannot have 
ambiguity

<expr> → <expr> - <term>  |  <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-



Operator Precedence

•If we use the parse tree to indicate precedence 
levels of the operators, we cannot have 
ambiguity

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <expr> + <term> | <term>
<term> → <term> * <factor> | <factor>
<factor> → ( <expr> ) | <id>
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Associativity of Operators

• Operator associativity can also be indicated by a 
grammar

<expr> -> <expr> + <expr> |  const  (ambiguous)
<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+
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Extended BNF

•Optional parts are placed in brackets [ ]
 <proc_call> → ident [(<expr_list>)]

•Alternative parts of RHSs are fplaced inside 
parentheses and separated via vertical bars 

 <term> → <term> (+|-) const

•Repetitions (0 or more) are placed inside braces { }
 <ident_list> → <identifier> {, <identifier>}
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BNF and EBNF

•BNF
   <expr> → <term> |
           <expr> + <term> |
           <expr> - <term>
   <term> → <factor> |
               <term> * <factor> |
           <term> / <factor>

•EBNF
     <expr> → <term> {(+ | -) <term>}
   <term> → <factor> {(* | /) <factor>}
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Recent Variations in EBNF

•Alternative RHSs are put on separate lines

•Use of a colon instead of =>

•Use of opt for optional parts

•Use of oneof for choices



Attribute Grammars
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Static Semantics

•Nothing to do with meaning

•Context-free grammars (CFGs) cannot describe 
all of the syntax of programming languages 

•Categories of constructs that are trouble:

    - Context-free, but cumbersome (e.g.,

        types of operands in expressions)

    - Non-context-free (e.g., variables must

        be declared before they are used)
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Attribute Grammars

•Attribute grammars (AGs) have additions to 
CFGs to carry some semantic info on parse 
tree nodes 

•Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)
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Attribute Grammars : Definition

•Def: An attribute grammar is a context-free 
grammar G = (S, N, T, P) with the following 
additions:

– For each grammar symbol x there is a set A(x) of 
attribute values

– Each rule has a set of functions that define certain 
attributes of the nonterminals in the rule

– Each rule has a (possibly empty) set of predicates 
to check for attribute consistency  
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Attribute Grammars: Definition

•Let   X0 → X1 ... Xn  be a rule

•Functions of the form S(X0) = f(A(X1), ... , A(Xn)) 
define synthesized attributes

•Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), 
for i <= j <= n, define inherited attributes

•Initially, there are intrinsic attributes on the 
leaves
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Attribute Grammars: An Example

•Syntax rule:
<proc_def> → procedure <proc_name>[1] 
<proc_body> end <proc_name>[2];

•Predicate:
<proc_name>[1]string == <proc_name>[2].string



1-26

Attribute Grammars: An Example

•Syntax
<assign> → <var> = <expr>

<expr>   → <var> + <var> | <var>

<var>    →  A | B | C
•actual_type: synthesized for <var> and <expr> 

•expected_type: inherited for <expr>  
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Attribute Grammar (continued)

• Syntax rule:  <expr> → <var>[1] + <var>[2]

 Semantic rules: 
 <expr>.actual_type ← <var>[1].actual_type

    Predicate: 
 <var>[1].actual_type == <var>[2].actual_type

 <expr>.expected_type == <expr>.actual_type

• Syntax rule:  <var> → id

    Semantic rule:
 <var>.actual_type ← lookup (<var>.string)
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Attribute Grammars (continued)

•How are attribute values computed?
– If all attributes were inherited, the tree could be 

decorated in top-down order.

– If all attributes were synthesized, the tree could 
be decorated in bottom-up order.

– In many cases, both kinds of attributes are used, 
and it is some combination of top-down and 
bottom-up that must be used.
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Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type



!" #Parse Tree
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!" #Computing Attribute Values

40

1. <var>.actual_type ← look-up(A) (Rule 4)

2. <expr>.expected_type ← <var>.actual_type 
(Rule 1)

3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)

4. <expr>.actual_type ← either int or real 
(Rule 2)

5. <expr>.expected_type == <expr>.actual_type 
is either

TRUE or FALSE (Rule 2)



!" #Flow of Attributes in the Tree
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!" #A Fully Attributed Parse Tree
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Semantics
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Semantics

•There is no single widely acceptable notation or 
formalism for describing semantics

•Several needs for a methodology and notation 
for semantics:
– Programmers need to know what statements mean

– Compiler writers must know exactly what language constructs 
do

– Correctness proofs would be possible

– Compiler generators would be possible

– Designers could detect ambiguities and inconsistencies



!" #Semantics

• Operational Semantics
• Denotational Semantics
• Axiomatic Semantics

45



Operational Semantics

•Operational Semantics
– Describe the meaning of a program by executing 

its statements on a machine, either simulated or 
actual.  The change in the state of the machine 
(memory, registers, etc.) defines the meaning of 
the statement

•To use operational semantics for a high-level 
language,  a virtual machine is needed

1-31
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Operational Semantics

•A hardware pure interpreter would be too 
expensive

•A software pure interpreter also has problems

– The detailed characteristics of the particular 
computer would make actions difficult to 
understand

– Such a semantic definition would be machine- 
dependent
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Operational Semantics (continued)

• A better alternative: A complete computer 
simulation

• The process:
– Build a translator (translates source code to the machine 

code of an idealized computer)

– Build a simulator for the idealized computer

• Evaluation of operational semantics:
– Good if used informally (language manuals, etc.)

– Extremely complex if used formally (e.g., VDL), it was 
used for describing semantics of PL/I.
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Operational Semantics (continued)

• Uses of operational semantics:

   - Language manuals and textbooks

   - Teaching programming languages
• Two different levels of uses of operational semantics:

   - Natural operational semantics

   - Structural operational semantics
• Evaluation

   - Good if used informally (language 

      manuals, etc.)

   - Extremely complex if used formally  (e.g.,VDL) 



Denotational Semantics

•Based on recursive function theory

•The most abstract semantics description 
method

•Originally developed by Scott and Strachey 
(1970)
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Denotational Semantics - continued

•The process of building a denotational 
specification for a language:

    - Define a mathematical object for each language

        entity

– Define a function that maps instances of the 
language entities onto instances of the 
corresponding mathematical objects

•The meaning of language constructs are defined 
by only the values of the program's variables
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Denotational Semantics: program state

•The state of a program is the values of all its 
current variables

      s = {<i1, v1>, <i2, v2>, …, <in, vn>}

•Let VARMAP be a function that, when given a 
variable name and a state, returns the current 
value of the variable

         VARMAP(ij, s) = vj
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Evaluation of Denotational Semantics

•Can be used to prove the correctness of 
programs

•Provides a rigorous way to think about 
programs

•Can be an aid to language design

•Has been used in compiler generation systems 

•Because of its complexity, it is of little use to 
language users

1-44
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Axiomatic Semantics

•Based on formal logic (predicate calculus)

•Original purpose: formal program verification

•Axioms or inference rules are defined for each 
statement type in the language (to allow 
transformations of logic expressions into more 
formal logic expressions)

•The logic expressions are called assertions
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Axiomatic Semantics (continued)

•An assertion before a statement (a 
precondition) states the relationships and 
constraints among variables that are true at 
that point in execution

•An assertion following a statement is a  
postcondition

•A weakest precondition is the least restrictive 
precondition that will guarantee the 
postcondition
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Evaluation of Axiomatic Semantics

•Developing axioms or inference rules for all of 
the statements in a language is difficult

•It is a good tool for correctness proofs, and an 
excellent framework for reasoning about  
programs, but it is not as useful for language 
users and compiler writers

•Its usefulness in describing the meaning of a 
programming language is limited for language 
users or compiler writers
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Denotation Semantics vs Operational 
Semantics

•In operational semantics, the state changes 
are defined by coded algorithms

•In denotational semantics, the state changes 
are defined by rigorous mathematical 
functions
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Summary

•BNF and context-free grammars are equivalent 
meta-languages
– Well-suited for describing the syntax of programming 

languages

•An attribute grammar is a descriptive formalism 
that can describe both the syntax and the 
semantics of a language

•Three primary methods of semantics description
– Operation, Axiomatic, Denotational


