
!" #

Dr. Chris Irwin Davis

Email: cid021000@utdallas.edu
Phone: (972) 883-3574

Office: ECSS 4.705

Chapter 3 – Describing Syntax
and Semantics

CS-4337 Organization of Programming Languages

1-2

Chapter 3 Topics

• Introduction

• The General Problem of Describing Syntax

• Formal Methods of Describing Syntax

• Attribute Grammars

• Describing the Meanings of Programs:
Dynamic Semantics

1-3

Introduction

•Syntax: the form or structure of the
expressions, statements, and program units

•Semantics: the meaning of the expressions,
statements, and program units

•Syntax and semantics provide a language’s
definition
– Users of a language definition

•Other language designers
•Implementers
•Programmers (the users of the language)

1-4

The General Problem of Describing Syntax:
Terminology

•A sentence is a string of characters over some
alphabet

•A language is a set of sentences

•A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

•A token is a category of lexemes (e.g.,
identifier)

Example: Lexemes and Tokens

index = 2 * count + 17

Lexemes

index
=
2
*
count
+
17
;

Tokens

identifier
equal_sign
int_literal
mult_op
identifier
plus_op
int_literal
semicolon

1-5

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet of

the language and decides whether the input strings belong
to the language

– Example: syntax analysis part of a compiler

 - Detailed discussion of syntax analysis appears in

 Chapter 4

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence is

syntactically correct by comparing it to the structure of the
generator

Formal Methods of Describing Syntax

•Formal language-generation mechanisms,
usually called grammars, are commonly used
to describe the syntax of programming
languages.

1-6

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s

– Language generators, meant to describe the syntax of
natural languages

– Define a class of languages called context-free languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe the syntax of Algol

58

– BNF is equivalent to context-free grammars

1-7

BNF Fundamentals

• In BNF, abstractions are used to represent classes of
syntactic structures — they act like syntactic
variables (also called non-terminal symbols, or just
non-terminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a

nonterminal, and a right-hand side (RHS), which is a
string of terminals and/or nonterminals

BNF Fundamentals (continued)

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
 <ident_list> → identifier | identifier, <ident_list>

 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the
nonterminals of a grammar

1-8

1-9

BNF Rules

•An abstraction (or nonterminal symbol) can
have more than one RHS
 <stmt> → <single_stmt>

 | begin <stmt_list> end

•The same as…
 <stmt> → <single_stmt>

 <stmt> → begin <stmt_list> end

1-10

Describing Lists

•Syntactic lists are described using recursion

 <ident_list> → ident

 | ident, <ident_list>

•A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

1-11

An Example Grammar

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

1-12

An Example Derivation

<program> => <stmts>

 => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

1-13

Derivations

•Every string of symbols in a derivation is a
sentential form

•A sentence is a sentential form that has only
terminal symbols

•A leftmost derivation is one in which the
leftmost nonterminal in each sentential form is
the one that is expanded

•A derivation may be neither leftmost nor
rightmost

1-14

Parse Tree

•A hierarchical representation of a derivation

 <program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

a = b + const

1-15

Ambiguity in Grammars

•A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

1-16

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Ambiguous Grammars

•“I saw her duck”

Ambiguous Grammars

•“I saw her duck”

Ambiguous Grammars

“The men saw a boy in the park with a telescope”

Logical Languages

•LOGLAN (1955)
– Grammar based on predicate logic

– Developed Dr. James Cooke Brown with the goal
of making a language so different from natural
languages that people learning it would think in a
different way if the hypothesis were true

– Loglan is the first among, and the main
inspiration for, the languages known as logical
languages, which also includes Lojban and Ceqli.

– To invesitigate the Sapir-Whorf Hypothesis

1-17

An Unambiguous Expression Grammar

•If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

Operator Precedence

•If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <expr> + <term> | <term>
<term> → <term> * <factor> | <factor>
<factor> → (<expr>) | <id>

1-18

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

1-19

Extended BNF

•Optional parts are placed in brackets []
 <proc_call> → ident [(<expr_list>)]

•Alternative parts of RHSs are fplaced inside
parentheses and separated via vertical bars

 <term> → <term> (+|-) const

•Repetitions (0 or more) are placed inside braces { }
 <ident_list> → <identifier> {, <identifier>}

1-20

BNF and EBNF

•BNF
 <expr> → <term> |
 <expr> + <term> |
 <expr> - <term>
 <term> → <factor> |
 <term> * <factor> |
 <term> / <factor>

•EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

1-21

Recent Variations in EBNF

•Alternative RHSs are put on separate lines

•Use of a colon instead of =>

•Use of opt for optional parts

•Use of oneof for choices

Attribute Grammars

1-22

Static Semantics

•Nothing to do with meaning

•Context-free grammars (CFGs) cannot describe
all of the syntax of programming languages

•Categories of constructs that are trouble:

 - Context-free, but cumbersome (e.g.,

 types of operands in expressions)

 - Non-context-free (e.g., variables must

 be declared before they are used)

1-23

Attribute Grammars

•Attribute grammars (AGs) have additions to
CFGs to carry some semantic info on parse
tree nodes

•Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)

1-24

Attribute Grammars : Definition

•Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:

– For each grammar symbol x there is a set A(x) of
attribute values

– Each rule has a set of functions that define certain
attributes of the nonterminals in the rule

– Each rule has a (possibly empty) set of predicates
to check for attribute consistency

1-25

Attribute Grammars: Definition

•Let X0 → X1 ... Xn be a rule

•Functions of the form S(X0) = f(A(X1), ... , A(Xn))
define synthesized attributes

•Functions of the form I(Xj) = f(A(X0), ... , A(Xn)),
for i <= j <= n, define inherited attributes

•Initially, there are intrinsic attributes on the
leaves

1-26

Attribute Grammars: An Example

•Syntax rule:
<proc_def> → procedure <proc_name>[1]
<proc_body> end <proc_name>[2];

•Predicate:
<proc_name>[1]string == <proc_name>[2].string

1-26

Attribute Grammars: An Example

•Syntax
<assign> → <var> = <expr>

<expr> → <var> + <var> | <var>

<var> → A | B | C
•actual_type: synthesized for <var> and <expr>

•expected_type: inherited for <expr>

1-27

Attribute Grammar (continued)

• Syntax rule: <expr> → <var>[1] + <var>[2]

 Semantic rules:
 <expr>.actual_type ← <var>[1].actual_type

 Predicate:
 <var>[1].actual_type == <var>[2].actual_type

 <expr>.expected_type == <expr>.actual_type

• Syntax rule: <var> → id

 Semantic rule:
 <var>.actual_type ← lookup (<var>.string)

1-28

Attribute Grammars (continued)

•How are attribute values computed?
– If all attributes were inherited, the tree could be

decorated in top-down order.

– If all attributes were synthesized, the tree could
be decorated in bottom-up order.

– In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

1-29

Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A)

<var>[2].actual_type ← lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

!" #Parse Tree

39

!" #Computing Attribute Values

40

1. <var>.actual_type ← look-up(A) (Rule 4)

2. <expr>.expected_type ← <var>.actual_type
(Rule 1)

3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)

4. <expr>.actual_type ← either int or real
(Rule 2)

5. <expr>.expected_type == <expr>.actual_type
is either

TRUE or FALSE (Rule 2)

!" #Flow of Attributes in the Tree

41

!" #A Fully Attributed Parse Tree

42

Semantics

1-30

Semantics

•There is no single widely acceptable notation or
formalism for describing semantics

•Several needs for a methodology and notation
for semantics:
– Programmers need to know what statements mean

– Compiler writers must know exactly what language constructs
do

– Correctness proofs would be possible

– Compiler generators would be possible

– Designers could detect ambiguities and inconsistencies

!" #Semantics

• Operational Semantics
• Denotational Semantics
• Axiomatic Semantics

45

Operational Semantics

•Operational Semantics
– Describe the meaning of a program by executing

its statements on a machine, either simulated or
actual. The change in the state of the machine
(memory, registers, etc.) defines the meaning of
the statement

•To use operational semantics for a high-level
language, a virtual machine is needed

1-31

1-32

Operational Semantics

•A hardware pure interpreter would be too
expensive

•A software pure interpreter also has problems

– The detailed characteristics of the particular
computer would make actions difficult to
understand

– Such a semantic definition would be machine-
dependent

1-33

Operational Semantics (continued)

• A better alternative: A complete computer
simulation

• The process:
– Build a translator (translates source code to the machine

code of an idealized computer)

– Build a simulator for the idealized computer

• Evaluation of operational semantics:
– Good if used informally (language manuals, etc.)

– Extremely complex if used formally (e.g., VDL), it was
used for describing semantics of PL/I.

1-34

Operational Semantics (continued)

• Uses of operational semantics:

 - Language manuals and textbooks

 - Teaching programming languages
• Two different levels of uses of operational semantics:

 - Natural operational semantics

 - Structural operational semantics
• Evaluation

 - Good if used informally (language

 manuals, etc.)

 - Extremely complex if used formally (e.g.,VDL)

Denotational Semantics

•Based on recursive function theory

•The most abstract semantics description
method

•Originally developed by Scott and Strachey
(1970)

1-35

Denotational Semantics - continued

•The process of building a denotational
specification for a language:

 - Define a mathematical object for each language

 entity

– Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

•The meaning of language constructs are defined
by only the values of the program's variables

1-36

Denotational Semantics: program state

•The state of a program is the values of all its
current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

•Let VARMAP be a function that, when given a
variable name and a state, returns the current
value of the variable

 VARMAP(ij, s) = vj

1-37

Evaluation of Denotational Semantics

•Can be used to prove the correctness of
programs

•Provides a rigorous way to think about
programs

•Can be an aid to language design

•Has been used in compiler generation systems

•Because of its complexity, it is of little use to
language users

1-44

1-45

Axiomatic Semantics

•Based on formal logic (predicate calculus)

•Original purpose: formal program verification

•Axioms or inference rules are defined for each
statement type in the language (to allow
transformations of logic expressions into more
formal logic expressions)

•The logic expressions are called assertions

1-46

Axiomatic Semantics (continued)

•An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

•An assertion following a statement is a
postcondition

•A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

1-55

Evaluation of Axiomatic Semantics

•Developing axioms or inference rules for all of
the statements in a language is difficult

•It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs, but it is not as useful for language
users and compiler writers

•Its usefulness in describing the meaning of a
programming language is limited for language
users or compiler writers

1-56

Denotation Semantics vs Operational
Semantics

•In operational semantics, the state changes
are defined by coded algorithms

•In denotational semantics, the state changes
are defined by rigorous mathematical
functions

1-57

Summary

•BNF and context-free grammars are equivalent
meta-languages
– Well-suited for describing the syntax of programming

languages

•An attribute grammar is a descriptive formalism
that can describe both the syntax and the
semantics of a language

•Three primary methods of semantics description
– Operation, Axiomatic, Denotational

