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Problem 1 a) (7 pts) A group of 100 peoplevvinCIudés 35 who play only tennis, 45
who play only golf and 7 who play neither sport. How many people in the group
play both tennis and golf?
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b) (8 pts) From a committee of 10 people, in how many ways can we choose a

chairperson (baskan), a vice-chairperson (baskan yardimecisi) and 3 members?
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Problem 2 a) (10 pts) A family wants to buy a house whose price is $100,000.
How much downpayment (pesinat) should they pay to buy the house with $600
monthly payment for 20 year mortgage at 6% compounded monthly.
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b) (8 pts) In the above quesﬁion, calculate how much interest is paid at the end of
10 years.
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120 % 60O = 3L 000 = money paid
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Problem 3 (15 pts) Solve the following system by using Gauss-Jordan elimination.
3r -2y + 2= -7
2+ y—4z= 0
r+ y—3z2=1

1 1) ek NS
] ) ..L\ @) — 2 I..L] O Q;_-ZQ,
Lo IR R ) P

l af\ l' <9 ‘ 0,-2
l]az )Ql [O \ ‘1— )
e O -5 1o -0 |p

3+S£l




List of formulas

(") = n.an1 (%) =€ (Inz) = %

( f(@)\s ) = fl(z).9(x ) f(z).d (z)

(f(z).9(z)) = f(x).9(z) + f(z).d(z) 9z 72(z)

Problem 4 (10 pts) Find two negative numbers whose product is 30 and their

7(0-. 30 Moximite: X*J
s 30 (" : XKt Q——/—O-
D —;; f X

YA - ") 0 (=) XL)Ot
fiz1-22 9 f 2

X X"
| xl—,» No

A -GV0N (o 7




Problem 5 a) (8 pts) If f is continuous everywhefe, find a and b.
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b) (7 pts) In the question above, is f differentiable everywhere?
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Problem 6 (15 pts) Let f(z) =%§2

a) Find all local extrema and intervals on which f is increasing & decreasing.
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b) Find inflection points, and mtervals on which f is concave up & concave down.
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c) Find the asymptotes, if exist.
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e) Sketch the graph of f.
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Problem 7 a) (10 pts) Find the area of the region between y=x22—1and y = 3.
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