
Math 301 - Problem Set # 4 - Fall 2010

Homework Problems: 1, 6, 14, 15, 23, 24, 27, 30, 34, 35.

In the following exercises all sequences are assumed to be in R, (an) denote a sequence of real
numbers, A denotes a subset of R. As usual, you should justify your answers.

1. Prove that neither (x, y] nor [x, y) is closed in R for x, y ∈ R with x < y. Are they open?

2. Prove that the infimum of a nonempty, closed and bounded subset A of R belongs to A.

3. Give an example of a subset A of R which is not closed even though both sup(A) and inf(A)
belong to A.

4. Let x, y ∈ R with x < y. Find the closure, interior, accumulation and isolated points of
(x, y), [x, y], (x, y], [x, y), (−∞, x), (x,∞), ∅, R, Z, Q, R \Q and { 1

n+1
: n ∈ N}. Which

one of these sets are open? Which of them are closed? Which ones are discrete? Which ones
are perfect?

5. Suppose that A is open and bounded. Prove that neither the supremum nor the infimum of A
belongs to A.

6. Are there any subsets of R which are both open and closed? If yes, find all of them.

7. Prove that the union of finite number of closed subsets of R is closed in R.

8. Prove that the intersection of any family of closed subsets of R is closed in R.

9. Prove that the union of any family of open subsets of R is open in R.

10. Prove that the intersection of finite number of open sets in R is open in R.

11. Prove that A = Ā iff A is closed.

12. Prove that Ā = A ∪ A′.

13. Prove that A is open iff it is the union of a family of open intervals.

14. Find the closure, interior, derived set and the isolated points of A = {0} ∪ (1, 2] ∪ {4}. Is
this set open? Is it closed? Is it perfect? Is it discrete?

15. Prove that A′ is closed.

16. Prove that A ⊆ Ā.

17. Prove that the following two definitions of an accumulation point are equivalent.
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(a) x ∈ R is an accumulation point of A if for every ε > 0, (x− ε, x+ ε)∩ (A \ {x}) 6= ∅.

(b) x ∈ R is an accumulation point of A if for every ε > 0, (x − ε, x + ε) ∩ A contains
infinitely many elements.

18. Prove that if x is an isolated point of A, then x is an accumulation point of R \ A.

19. Suppose that x ∈ Ā. Prove that x ∈ A′ iff there is a sequence (an) in A with an 6= am for
n 6= m that converges to x.

20. Let A = {an : n ∈ N} and C be the set of cluster points of (an). Prove that Ā = A ∪ C.
Prove that A′ ⊆ C.

21. Give an example of a sequence (an) which has a cluster point that is not an accumulation
point of {an : n ∈ N}.

22. Let an 6= am for n 6= m, A = {an : n ∈ N} and (an) converges to L. Prove that A′ = {L}
and each element of A is an isolated point.

23. Let (an) be a strictly increasing sequence and A = {an : n ∈ N}. Prove that A is discrete.
Also prove that A is closed iff (an) is unbounded.

24. Prove the following.

(a) Ao is open.

(b) Ao ⊆ A.

(c) Ao is the largest open set contained in A.

(d) Ao = A iff A is open.

25. Let d be a real-valued function on X ×X for a nonempty set X . Prove that d is a metric on
X iff d satisfies the following conditions

(a) d(x, y) = 0 iff x = y

(b) d(x, z) ≤ d(y, x) + d(y, z) for every x, y and z ∈ X

26. Let X be a nonempty set. Prove that the function d on X ×X defined by

d(x, y) =

{
0, if x = y
1, if x 6= y

is a metric on X .

27. Let (X, d) be a metric space and Y be a nonempty subset of X . Prove that the restriction of
d to Y × Y is a metric on Y .
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28. Let (X, d) be a metric space and ρ be defined by

ρ(x, y) =
d(x, y)

1 + d(x, y)
for every x, y ∈ X .

Prove that ρ is a metric on X .

29. Let (X, d) be a metric space and ρ be defined by

ρ(x, y) = min{1, d(x, y)} for every x, y ∈ X .

Prove that ρ is a metric on X .

30. Let f : X → R be a one-to-one function on a nonempty set X . Prove that d defined by
d(x, y) = |f(x)− f(y)| for every x, y ∈ X is a metric on X .

31. Prove that the function d : R× R→ R defined by

d(x, y) = | arctanx− arctan y|

is a metric on R.

32. Let (X, d) be a metric space and x, y, z, w ∈ X . Prove the following.

(a) |d(x, z)− d(y, w)| ≤ d(x, y) + d(z, w)

(b) |d(x, z)− d(y, z)| ≤ d(x, y)

33. Let X be a nonempty set and ∼ be the relation on the set of all metrics on X defined by
d ∼ ρ iff d and ρ are equivalent metrics on X . Prove that ∼ is an equivalence relation.

34. Let m be a positive integer and the functions d1, d2 and d∞ on Rm × Rm be defined by

d1(x, y) =
m∑

i=1

|xi − yi|

d2(x, y) =

√√√√ m∑
i=1

|xi − yi|2

d∞(x, y) = max{|xi − yi| : 1 ≤ i ≤ m}

for all vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Rm. Prove that d1, d2 and
d∞ are metrics on Rm.
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35. Let S be any nonempty set. A function f : S → R is called bounded if f(S) is a bounded
subset of R. Let B(S) be the set of all bounded real-valued functions on S. Prove that the
function ρ : B(S)×B(S)→ R defined by

ρ(f, g) = sup{|f(s)− g(s)| : s ∈ S}

is a metric on B(S) (ρ is called the uniform convergence metric or the sup metric).

36. Let C1[0, 1] be the set of all differentiable functions f : [0, 1] → R which have continuous
derivatives. Prove that the function d defined by

d(f, g) = |f(0)− g(0)|+ sup{|f ′(t)− g′(t)| : 0 ≤ t ≤ 1}

is a metric on C1[0, 1]. Also prove that ρ(f, g) ≤ d(f, g) for every f, g ∈ C1[0, 1], where ρ
is the uniform convergence metric on the set of all bounded functions on [0, 1].

37. Let C[0, 1] be the set of all continuous functions f : [0, 1] → R. Prove that the function d
defined by

d(f, g) =

∫ 1

0

|f(t)− g(t)| dt

is a metric on C[0, 1].
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