Math 402/571 Topology

Midterm 1
October 26, 2015

1a) (5 pts) Define compactness.

1b) (5 pts) Define connectedness.

1c¢) (5 pts) Define limit point.

1d) (5 pts) Define the topology of a metric space.

2) (5 pts each) TRUE - FALSE:

2a) Let (X, 7) be a topological space. If A is compact in X, then it is closed.
2b) Let Y be a closed setin X. If 7 is closed in Y, then Z is closed in X.
2¢) Any indiscrete space is path connected.

2d) Let (X, 7) be a topological space. Then, any path component of X is
closed.

3) Prove the following statements:

3a) (7 pts) Every metric space is Hausdorff.

3b) (13 pts) Let (X, d) be a metric space, and A C X. Then,
d(x, A) = 0 if and only if 7 € A.

4) Prove or give a counterexample for the following statements:

4a) (10pts) If X XY ~ X x ZthenY ~ 7.

4b) (10 pts) If every function f : X — R is continuous, then X has discrete
topology.

5) Prove or give a counterexample for the following statements:

Sa) (10 pts) A component in a topological space X is both open and closed
subset of X.

5b) (10 pts) Let (X, d) be a metric space, and A C X. A is compact if and
only if A is closed and bounded.

Bonus) (20 pts) Prove or give a counterexample for the following statement:
Let (X, 7) be a topological space, and A C X.
If A is compact in X, then A is compact in X.



2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write
TRUE. If the proposition is false, write FALSE. No explanations are re-

quired for this problem.

2a) Let (X, 7) be a topological space. If A is compact in X, then it is closed.
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2b) Let Y be a closed set in X. If 7 is closed in Y, then 7 is closed in X.
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2¢) Any indiscrete space is path connected.
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2d) Let (X, 7) be a topological space. Then, any path component of X is
closed.
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3) Prove or give a counterexample for the following statements:

3a) (7 pts) Every metric space is Hausdorff.
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3b) (13 pts) Let (X, d) be a metric space, and A < X. Then,

d(x, A) = 0if and only if z € A.
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4) Prove or give a counterexample for the following statements:

4a) (10pts) fF X x Y~ X x ZthenY ~ Z.

4b) (10 pts) If every function f : X — R is continuous, then X has discrete
topology.
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5) Prove or give a counterexample for the following statements:

5a) (10 pts) A component in a topological space X is both open and closed
subset of X.
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5b) (10 pts) Let (X, d) be a metric space, and A C X. A is compact if and
only if A is closed and bounded.
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Bonus) (20 pts) Prove or give a counterexample for the following statement:
Let (X, 7) be a topological space, and A C X

If A is compact in X, then A is compact in X.
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