
Dealing With Suspending Periodic Tasks

Ragunathan Rajkumar
IBM T. J. Watson Research Center

Yorktown Heights
rajkumr@watson.ibm.com

June 1991

1

Abstract

Periodic tasks in preemptive real-time systems are typically assumed to execute continuously
until preemption or completion. Unfortunately, periodic tasks do not always adhere to this ideal
behavior under several practical conditions. A task may have to suspend pending completion of
an I/O activity, and then later resume execution. A task may have to block and relinquish control
while it waits to access globally accessible resources in multiprocessors and distributed systems.
An output signal or message generated by a task on completion is not always generated on peri-
odic boundaries and is referred to as a signal with jitter. These behavioral patterns can cause
heavy penalties on schedulability and cause deadlines to be missed at low levels of processor
utilization. In this paper, we present a simple algorithm called the Period Enforcer, which forces
tasks to behave like ideal periodic tasks from the scheduling point of view with no associated
scheduling penalties. We finally argue that support of this solution in preemptive real-time sys-
tems can yield large benefits.

1. Introduction
The preemptive scheduling of periodic tasks has been extensively studied in the

literature [2, 3]. In most of these cases, a periodic task is assumed to behave in the following
benign fashion. Once the task arrives, it becomes eligible for execution and runs to completion
without suspending. In other words, the task cannot suspend itself arbitrarily, resume at a later
point in time and ask to be rescheduled again. However, there are several situations where peri-
odic tasks do not strictly adhere to this ideal behavior. The effect of this behavior is that it
imposes a scheduling penalty on lower priority tasks which can be unacceptable in practical sys-
tems. Unfortunately, this non-ideal behavior can be in one of several forms such as jitter,
suspension or can arise in aperiodic task scheduling. The objective of this paper is to develop a
simple algorithm that eliminates the scheduling penalties in these cases under the same
framework.

A periodic signal is said to encounter jitter when even though an instance occurs once every
period, the instances are not separated by equal intervals. For example, suppose that a periodic
task scheduled by the rate-monotonic scheduling algorithm generates an output signal after it
completes its computations. Since the periodic task can be preempted by higher priority tasks
and/or simply because of stochastic execution, it would complete at different times relative to its
arrival. As a result, the output signal would exhibit "jitter", where the intervals between succes-
sive output signals is not the same. This jitter can also occur on the input side, where it may
trigger each instance of a periodic task. If the input signal is jittery, the triggered periodic task
instances would not correspond to an ideal periodic task. The general case is where an output
signal from one subsystem becomes the input signal for another subsystem.

A task may also behave unlike an ideal periodic task if it has to suspend for some task-
dependent reason such as the need to complete an I/O activity or to access a global resource in a
distributed or multiprocessor system. In this case, the task executes for a certain amount of time.
It then initiates an I/O activity, and suspends. Once the I/O activity completes, the task becomes
re-eligible for execution. It executes again for some time, and then may need to access globally
shared data. Since the data is being used by other task(s) on some other processor(s), the task is
forced to suspend. When the task obtains access to the data, it again becomes ready for execu-
tion. During the task’s suspensions, the highest priority ready task on the processor begins ex-

2

ecution to avoid prolonged idleness of the processor. This behavior of alternating durations of
execution eligibility and suspension again does not correspond to the ideal behavior of a periodic
task.

Scheduling algorithms such as the rate-monotonic algorithm were originally defined for peri-
odic tasks alone. However, aperiodic tasks such as operator requests, emergency signals and
exception conditions also exist in a typical real-time system. These aperiodic tasks must be
scheduled such that the aperiodic tasks receive good response times without jeopardizing the
deadlines of the periodic tasks. This need to integrate the scheduling of periodic and aperiodic
tasks has given rise to the class of aperiodic server algorithms such as the Deferred Server
[1, 10] and Sporadic Server [8, 9]. The key idea behind these algorithms is the creation of a
high priority periodic server task with a given capacity, which is used to service incoming
aperiodic tasks. Since the arrival of the aperiodic tasks can be quite random, the times at which
they can be serviced can also be rather random. The net effect is that the server execution profile
also need not correspond to a pure periodic task. The Sporadic Server, in particular, is designed
to avoid the scheduling penalties of this non-ideal behavior.

In this paper, we investigate the problem of scheduling tasks with a tendency to deviate from
the ideal behavior of a periodic task, and suggest a simple but effective solution called the Period
Enforcer. We demonstrate that this solution can be used to address the problems of jitter,
suspension, and service to aperiodic tasks. Given this situation, we argue that an implementation
of this solution can yield rich benefits in preemptive real-time systems.

The rest of the paper is organized as follows. Section 2 describes the problem of deferred
execution and investigates its scheduling penalties. Section 3 defines the period enforcer algo-
rithm and presents a simplification which can be implemented much more efficiently. Section 4
compares the period enforcer with the sporadic server with which it is closely related. Section 5
discusses the implications of the Period Enforcer algorithm to multiprocessor and distributed
synchronization protocols, communication and I/O scheduling, and jitter control. Finally, Sec-
tion 6 presents our concluding remarks.

2. Deferred Execution and Scheduling Penalty
A task is said to defer its execution if it suspends during its execution and resumes at a later

point in time. A task which can defer its execution is referred to as a deferrable task. In a
preemptive scheduling environment or due to the stochastic nature of task execution, both the
times of suspension and resumption relative to the arrival time of a task instance need not be
constant across instances. In this section, we describe the problem caused by deferrable periodic
tasks, and compute an upper bound to the scheduling penalty that they can impose on lower
priority tasks by such tasks. We shall restrict our attention to deferrable tasks in this section, and
discuss issues such as jitter and aperiodic task handling in later sections.

We first state our assumptions. We assume a prioritized, preemptive scheduling environment,
and in particular assume that the rate-monotonic scheduling algorithm is being used. We shall
assume, unless stated explicitly, that all tasks are periodic and have a fixed priority. Tasks are
denoted by o1, o2, u u u , on with oi having a higher priority than oi+1. Each periodic task has a
period Ti and a worst-case execution time of Ci. Each instance of a periodic task o must be
completed by the time the next instance of o arrives.

3

The parameters of an n-task set are presented as {(T1, C1), (T2, C2), u u u , (Tn, Cn)}.

The priority of task oi is denoted by Pi, with Pi > Pi+1.

We shall now discuss the deferred execution problem and its schedulability impact. In the
ideal case, the worst-case completion time for a periodic task occurs when the task is initiated
simultaneously with all higher priority tasks, a phasing called the critical instant and the interval
from the critical instant until the task completes is called the critical zone [3]. However, if a task
can defer all or part of its execution during its period, this is no longer true. Consider the follow-
ing example.

}
Figure 2-1: The Task Set and Time-lines for Example 1.

Example 1:

Consider the 2-task set {(10,4), (18,10)}. In the ideal scenario illustrated in Figure
2-1-a, both tasks meet their deadlines. However, suppose that o1 is allowed to defer its
execution as shown in Figure 2-1-b. Task o1 arrives at time 0, but defers its execution
until time 6 when o2 arrives. At time 10, the first instance of o1 has completed execu-
tion but the second instance of o1 arrives. Now, this instance as well as the instance
arriving at time 20 do not defer their execution but execute immediately. As a result,
task o2 with its deadline at time (18+6) 24 obtains only 6 units of execution. Thus, o2
has been preempted an additional 4 units of time, and is the scheduling penalty im-
posed by the deferred execution of o1.

It has been shown in [1, 10] that when the highest priority task o1 can choose to defer its ex-
ecution, the worst-case phasing for a task oi occurs at time t0 under the following conditions:

• The first instance of task o1 defers its execution by T1<C1 units and resumes execu-
tion at t0 such that it just meets its deadline at t0 + C1, and subsequent instances
execute immediately on arrival.

• All other higher priority tasks arrive simultaneously at t0.

We refer to the instant t0 as the modified critical instant of oi. Under this modified worst-case
phasing, the highest priority task, if it can defer its execution, can impose a penalty of an ad-
ditional preemption upon lower priority tasks.

Unfortunately, a simple characterization of the worst-case phasing when all higher priority
tasks can defer their execution does not seem to exist. However, it is possible to determine an
upper bound on the penalty imposed by the deferred execution of higher priority tasks on a task
oj. We do this by determining the worst-case penalty imposed by each higher priority task oi on
oj and adding up the penalties of all the higher priority tasks. This yields a pessimistic result, but
shows that the scheduling penalty can be rather high.

We denote the number of time-units that a task oi executes during the period of a lower priority

4

task oj (i < j) in its critical phasing by1 eti,j. That is, when oj is initiated at time 0 along with all
the higher priority tasks, the number of time-units that task oi executes in the interval 0 through
Tj is denoted by eti,j. The value of eti,j can be determined by laying out the critical zone as in [2].

The maximum time that a deferrable task oi can execute during a period Tj of a lower priority
task oj is denoted by2 etdi,j. We now determine an upper bound to etdi,j denoted by3 etdui,j.

Theorem 1: The upper bound on etdi,j, etdui,j, is given by

Ci + � �Ci +min(Ci, Tj < Ci < � �Ti)
(Tj<Ci)

Ti

(Tj<Ci)
Ti

Proof: An upper bound on the execution time of oi within a period of oj occurs
when all tasks with higher priority than oi have zero execution times. As a result,
when oi is eligible to execute, it can preempt any currently executing task. Since oi is
the highest priority task with a non-zero execution time, the worst-case critical phasing
for oj arises when it arrives at the modified critical instant. The total number of time-
units that oi executes during this period of oj consists of 3 factors. First, the deferred
execution of oi to just meet its first deadline is Ci, and the remaining interval in oj’s

period is Tj<Ci. Secondly, there are � � complete periods of oi in the interval Tj<Ci.
(Tj<Ci)

Ti

Correspondingly, there are � �Ci units of oi’s execution within this interval.
(Tj<Ci)

Ti
Finally, there remains an incomplete period of oi in the interval Tj<Ci, and this leftover

interval is given by Tj < Ci - � �Ti. During this leftover interval, oi may or may
(Tj<Ci)

Ti
not be able to execute for Ci units of time, and the actual execution time is given by

min(Ci, Tj < Ci < � �Ti). The theorem follows by adding these three factors.
(Tj<Ci)

Ti

The net effect of deferred execution is that a task oi can execute longer during a period of oj
than without deferred execution, that is etdui,j * etdi,j * eti,j. The difference etdui,j < eti,j is a
scheduling penalty and must be accounted for in the schedulability analysis of oj. One way to do
this is to add this difference to the execution time of oj and checking whether the task can still
meet its deadline at its critical instant. This analysis is identical to the blocking factor added to
the execution time of a task in the analysis of synchronization protocols [7]. Since schedulability
analysis of oj already takes into account eti,j, the additional execution time of oi within oj’s period
is considered a scheduling penalty for oj.

An upper bound on the scheduling penalty imposed by a task oi on a lower priority task oj is

1et stands for "execution time".

2etd stands for "execution time w/ deferral".

3etdu stands for "upper-bound to execution time w/ deferral".

5

denoted by4 depi,j and is given by5 etdui,j < eti,j. The value of depi,j yields the scheduling
penalty of a single higher priority task oi on task oj. The following theorem specifies the penalty
imposed by all higher priority tasks on oj.

Theorem 2: An upper bound on the scheduling penalty imposed on task oj by all the
higher priority tasks is given by - dep(i,j) = - (etdui,j < eti,j).i<j i<j

Proof: The Theorem follows from the fact that the worst-case penalty imposed by oi
on oj, depi,j, cannot get worse as all tasks execute together.

The following example illustrates the determination of depi,j.

}
Figure 2-2: The Task Set and Computations of Example 2-2.

Example 2:

Consider the 3-task set {(10, 4), (14, 6), (28, 4)} shown in Figure 2-2. The Liu &
Layland critical zone for this task set is given in Figure 2-2-a which shows that all 3
tasks meet their deadlines. Now, suppose that each task can also defer its execution.
Task o1 can always meet its deadline as long as it does not defer its execution longer
than the time needed to meet its deadline (i.e. 10<4 time-units). The scheduling
penalty of o1 on o2 is determined as follows. From Figure 2-2-a, et1,2=8, and from
Figure 2-2-b, etdu1,2=8. Hence, the penalty dep1,2=8<8=0.6 From Figure 2-2-a, we
have et1,3=12 and et2,3=12. From Figure 2-2-c, we have etdu1,3=16. Finally, from
Figure 2-2-d, we have etdu2,3=18. Thus, dep1,3=16<12=4 and dep2,3=18<12=6 and
the pessimistic upper bound on the scheduling penalty on o3 is (4+6)10. That is, in the
worst-case, o3 would get no execution time. One phasing where o3 does not get any
execution time at all is shown in Figure 2-2-e.

It can also be seen that in Figure 2-2-e, the highest priority task o1 is the only task that defers
execution while o2 and o3 do not. As a result, the scheduling penalty is the reduction of C3 from
4 to 0, an actual penalty of 4 which agrees with the modified critical zone result. This schedul-
ing penalty due to deferred execution corresponds to a utilization loss of 4/28=14% but can be
much higher in other cases. For example, consider a relatively large task set of more than 8 tasks
where each of the higher priority tasks can defer their execution. The least priority task can get

4dep stands for "deferred execution penalty".

5This upper bound is pessimistic and can be greater than Ci (but is less than 2Ci). However, we conjecture that
the maximum penalty that can be imposed by a deferrable task oi on a lower priority task oj has an upper bound of
Ci. The point of this section is that the scheduling penalty of deferred execution can be rather high, and therefore
must be avoided. A proof of this conjecture does not refute this position.

6The {(10,4), (14,6)} task set corresponds to the Liu and Layland worst-case 2-task set. Indeed, the scheduling
penalty due to deferred execution on Liu & Layland worst-case task sets is zero. It must be borne in mind that this
result has no significance in itself because the worst-case task set changes with the introduction of deferred
execution.

6

some execution time only at low levels of processor utilization. In the worst case, if there are no
constraints on the periods, the worst-case schedulable utilization is 50% [1] as opposed to the
Liu and Layland bound of 69%.

3. The Period Enforcer
As seen in the previous section, the complexity of the computation of the scheduling impact of

deferred execution is relatively low but is pessimistic. However, it is clear that the scheduling
impact of deferred execution can cause substantial schedulability degradation. A solution that
eliminates deferred execution penalties without much burden on the application and with little
overhead is therefore very desirable. We propose below the period enforcer algorithm as such a
solution.

With deferred execution, a task can execute its Ci units of execution in discrete amounts C1,1,
C1,2, u u u with suspension inbetween C1,i and C1,i+1. Without any loss of generality, we shall
assume that a task oi can defer its entire execution time but not parts of it. That is, a task oi
executes for Ci units with no suspensions once it begins execution. Any task that does suspend
after it executes for a while can be considered to be two or more tasks each with its own worst-
case execution time. The only difference is that if a task oi is split into two tasks ovi followed by
oivv, then oivv has the same deadlines as ovi. We shall address this deadline issue in Section 3.2.

We shall also use the following notation and terminology in our discussion.

Pp: The priority level at which the processor is currently executing.

si,j: The time at which the jth instance of task oi attempts to execute at the processor. (If this
task is resuming after a deferral, si,j corresponds to the time of resumption.)

The period enforcer algorithm avoids scheduling penalties due to deferred execution by delay-
ing the execution of task instances if a penalty may be caused. In other words, under the period
enforcer algorithm, a task instance may not be eligible to execute at si,j.

ETi,j: (Eligibility Time) The time at which the jth instance of task oi is eligible to be activated
on the processor.

ATi,j: (Activation Time) The time at which the jth instance of task oi is actually activated on the
processor (by addition into the ready queue on the processor). Clearly, we must have ATi,j * si,j
and ATi,j * ETi,j.

A priority level Pi is said to be active if Pp * Pi. That is, the task currently executing on the
processor has an equal or higher priority than Pi.

Conversely, a priority level Pi is said to be idle if Pp < Pi. That is, the task currently executing
on the processor has a lower priority than Pi.

ai
t: If priority level Pi is active at time t, the earliest time before t since which Pi has been

active continuously, else this is equal to t. That is, ai
t) t.

The value of ai
t is used as follows. Whenever the jth instance of a task oi attempts to execute at

7

t=si,j, ai
si,j

is determined and represents if and how long the processor has been at priority level
Pi.

3.1. Definition of The Period Enforcer Algorithm
When the jth instance of a task oi (j = 1, 2, u u u) attempts to execute at time si,j, the values ETi,j

and ATi,j are computed as follows.
• ETi,0 = <Ti.

• ETi,j = max(ETi,j<1 + Ti, ai
si,j

).

• ATi,j = max(ETi,j, si,j).
The instance is activated and added to the processor ready queue only at time ATi,j.

Note that the value of ATi,j under the period enforcer algorithm implies that ATi,j * si,j and
ATi,j * ETi,j, conditions required by the semantics of ATi,j.

The period enforcer algorithm is illustrated by the following example.

}
Figure 3-1: The Task Set of Figure 2-2 under the Period Enforcer.

Example 3:

Consider the 3-task set of example 2 and the same phasing of incoming tasks as in
Figure 2-2-e where o3 does not get any execution time. Let the tasks be scheduled now
under the period enforcer algorithm. Since o1 is the highest priority task, priority level
P1 can be active only if o1 executes. As a result, when o1 tries to execute, the period
enforcer always finds that a1

t = t. The sequence of events illustrated in Figure 3-1 is as
follows:

• At time t=0, o1 arrives but defers its execution by 6 units.

• At time t=6, o1 tries to resume execution. Hence, s1,1=6, and we have ET1,1=6,
and AT1,1=max(6,6)=6. Hence, o1 is activated immediately, and begins execu-
tion. Task o2 also arrives and finds that s2,1=6, ET2,1=6, and
AT2,1=max(6,6)=6. Hence, o2 is activated immediately but has to wait for o1 to
complete.

• At time t=10, the first instance of o1 completes execution, and the next instance
of o1 arrives and again defers execution for 6 units. Task o2 begins execution.

• At time t=16, task o2 completes execution and the second instance of o1 tries to
resume execution. We now have s1,2= 16, ET1,2=max(16, 16)=16, and
AT1,2=max(16,16)=16. Hence, o1 begins execution immediately. Also, task o3
arrives and finds that ET3,1 = a3

16 = 6, and AT3,1 = max(6,16) = 16. It is there-
fore activated but has to wait for o1 to complete.

• At time t=20, the second instance of o1 completes. Its next instance also arrives

8

and tries to execute immediately. However, we now have s1,3= 20,
ET1,3=max(16+10, 20)=26, and AT1,3=max(26,20)=26. As a result, o1 is
scheduled by the enforcer to become eligible for execution at t=26. The next
instance of task o2 arrives and finds that a2

20=6 since the processor has been at
priority level 2 from t=6. The period enforcer determines that s2,2=20,
ET2,2=max(6+14,6)=20, AT2,2=max(20,20)=20. Hence, o2 is activated im-
mediately and begins execution since o1 is not eligible to execute and o3 has
lower priority.

• At time t=26, o2 completes execution, and the third instance of o1 is activated
and begins execution.

• At time t=30, the third instance of o1 completes execution. Its next instance
arrives and tries to execute immediately. Again, we have s1,4=30,
ET1,4=max(26+10, 30)=36 , AT1,4=max(36,30)=36. Hence, o1 is scheduled to
become eligible for execution at t=36. Since task o3 is the only task eligible to
execute, it begins execution.

• At time t=34, o3 completes execution thereby meeting its deadline which is at
t=16+28=44. The next instance of o2 arrives and finds a2

34=34. Also, s2,3= 34,
ET2,3=max(34,34)=34, and AT2,3=max(34,34)=34. As a result, o2 is eligible
for execution and begins execution.

The sequence proceeds with instances of o1 always executing at least 6 time-units
since their respective arrival.

The above example illustrates some key features of the period enforcer algorithm.
• Deferred execution imposes a scheduling penalty because it is possible for one in-

stance of a deferrable task to defer its execution by some amount of time and for the
next instance to defer execution by a shorter amount of time. The period enforcer
algorithm disallows this condition and delays the second intruding instance if neces-
sary to avoid the scheduling penalty. Such an enforcement on instances of o1 occurs
at t20 and t30.

• Tasks which do not defer any part of their execution may or may not need to use the
period enforcer algorithm and the choice can be made to suit convenience of im-
plementation. As we shall prove shortly, the execution behavior of periodic tasks is
identical whether they use the period enforcer algorithm or not. For example, in the
sequence of events in Figure 3-1, o2 and o3 would perform exactly the same if they
did not use the period enforcer algorithm.

3.2. Properties of the Period Enforcer Algorithm
The execution profile of a periodic task does not change when it uses the period enforcer algo-

rithm. In addition, deferrable tasks do not impose any scheduling penalty on lower priority tasks
when they use the period enforcer algorithm. We prove these properties of the period enforcer
algorithm below.

Theorem 3: The execution behavior of a non-deferrable periodic task oi using the
period enforcer algorithm is identical to that when it is scheduled normally.

9

Proof: Task oi executes at the same priority level under both cases, and has the
same period and execution time. In order to prove the Theorem, we just need to show
that any instance of oi is eligible to execute on arrival under the period enforcer algo-
rithm. In other words, we need to show that � j, j = 1, 2, u u u , ATi,j = si,j. By the
period enforcer algorithm, ATi,j = max(ETi,j, si,j). Hence, to show that � j, j = 1, 2,
u u u , ATi,j = si,j, we only need to show that � j, j = 1, 2, u u u , ETi,j) si,j. We prove
this by mathematical induction on j.

When j=1, ETi,1 = ai
si,1

. Since ai
si,1

) si,1, we have ETi,1) si,1.

Now, suppose that ETi,j) si,j. That is, max(ETi,j) = si,j. We want to show that
ETi,j+1) si,j+1. By the period enforcer algorithm, we have

ETi,j+1 = max(ETi,j + Ti, ai
si,j+1

)
Therefore,

max(ETi,j+1) = max(max(ETi,j) + Ti, max(ai
si,j+1

))
max(ETi,j+1) = max(si,j + Ti, si,j+1)))

Since si,j + Ti = si,j+1,
max(ETi,j+1) = si,j+1

The Theorem follows.

Theorem 4: A schedulable task oi that uses the period enforcer algorithm does not
impose any scheduling penalty on lower priority tasks when it becomes a deferrable
task.

Proof: We prove this by showing that in the worst case, a deferrable task acts like a
non-deferrable periodic task with the same period and execution time but with a dif-
ferent phasing. Hence, lower priority tasks do not incur any scheduling penalty.

Let the first instance of the deferrable task oi be ready for execution at time t0 after
deferral if applicable. Let ETi,1=ai

t0
=ta which is less than or equal to si,1 = t0. By the

period enforcer algorithm, the instance is immediately activated at t0. We also have
ETi,j = max(ETi,j-1 + Ti, ai

si,j
), i.e. ETi,j * ETi,j-1+Ti.

Therefore, the second instance of oi cannot become eligible to execute before ETi,1 +
Ti = ta+ Ti. Again, if the second instance of oi does become eligible to execute at ETi,1
+ Ti =ta + Ti, the third instance cannot become eligible to execute before ETi,1 + 2Ti =
ta + 2Ti. That is, in the interval between ta and ta + 2Ti, oi behaves identical to a
periodic task with period Ti and Ci that arrives at ta. As a result, the first two instances
impose no additional scheduling penalty on lower priority tasks. The argument is
repeatable for all subsequent instances of oi and the Theorem follows.

We shall now address the issue of the ability of the deferrable tasks to meet their deadlines.
Consider an instance of a deferrable task oi under its worst-case conditions. Let its worst-case
execution deferral relative to its arrival be td. That is, if an instance arrives at t0 it defers its

10

execution to resume at tr = t0+td in the worst case. The deadline for the instance, nevertheless, is
t0+Ti and needs to be met. The instance meets its worst-case conditions when tr is its critical
instant, i.e. instances of all higher priority tasks are also initiated at the same time.

A deferrable task may be prevented from imposing any scheduling penalty on lower priority
tasks by delaying its execution in a very pessimistic fashion (such as a delay of more than a
period). However, this would jeopardize the deadlines of the deferrable task. The period enfor-
cer algorithm eliminates the scheduling penalty on lower priority tasks without endangering the
deadlines of the deferrable task. We now prove that the period enforcer algorithm does not af-
fect the deadlines of deferrable tasks.

Theorem 5: A deferrable task that is schedulable under its worst-case conditions is
also schedulable under the period enforcer algorithm.

Proof: Let an instance of oi which arrives at ta defer its execution to resume at tr =
ta+td in the worst case. Given that this instance is schedulable without the period en-
forcer algorithm. Under the algorithm, higher priority tasks, deferrable or not, cannot
impose any scheduling penalty on oi. Hence, to show that oi is also schedulable under
the algorithm, we just need to show that any instance of oi is activated within td time
units of its arrival. If the first instance of oi arrives at time t0, since td is the longest
deferral, � j, j = 1, 2, u u u , si,j) t0 + (j<1)Ti + td. We need to show that � j, j = 1, 2,
u u u , ATi,j) t0 + (j<1)Ti + td. We prove this again using mathematical induction on j.

When j=1, ATi,1 = max(ai
si,1

, si,1) = si,1. Hence, the condition is met.

Suppose that ATi,j) t0 + (j<1)Ti + td. We want to show that ATi,j+1) t0 + jTi + td.
By the period enforcer algorithm,

ETi,j) ATi,j
si,j) ATi,j
ETi,j+1 = max(ETi,j + Ti, ai

si,j+1
)

Therefore,
max(ETi,j+1) = max((max(ETi,j) + Ti, max(ai

si,j+1
))

max(ETi,j+1) = max(ATi,j + Ti, si,j+1)
We therefore have,

max(ATi,j+1) = max(ATi,j + Ti, si,j+1, ai
si,j+1

) = max(ATi,j + Ti, si,j+1)
Hence, by the assumed bound for ATi,j and the given value of si,j+1,

ATi,j+1) t0 + jTi + td
The Theorem follows.

3.3. Simplification of The Period Enforcer
The period enforcer algorithm defines the earliest time that a deferrable task can be activated

without imposing a scheduling penalty on lower priority tasks. However, it requires the deter-
mination of ai

t when a task attempts to execute at time t. The determination of ai
t means that the

times at which every priority level becomes active or idle must be monitored by the system con-

11

tinually. Since the current priority level of the processor Pp changes whenever a task completes
execution or is preempted, the priority level data structures must be updated on every context
switch. This update may be a costly operation particularly if the system supports a large number
of priorities. Ways of speeding this update are possible. However, not all systems may prefer to
implement such schemes. A simpler algorithm which still has the advantages of the period en-
forcer algorithm may be more desirable in these systems.

A vanilla period enforcer algorithm can be defined as follows. If ai
t is always defined to be t,

priority levels no longer need to be tracked and the period enforcer algorithm becomes simply
ATi,0 = <Ti.

ATi,j = ETi,j = max(ATi,j<1 + Ti, si,j).

The vanilla period enforcer algorithm is intuitive once the problems of deferred execution are
understood. If an instance of task oi defers execution until time tr, the scheduling penalty of
deferred execution is prevented if the next instance of the task is not allowed to execute until tr+
Ti.7 The si,j term is a sanity factor which ensures that an instance is activated only when it has
actually arrived.

Under this vanilla algorithm, a task that defers execution by a certain amount of time during
any instance would be forced to resume subsequent execution at least that far from its arrival
time for all future arrivals. This property of the algorithm will be referred to as the minimum
separation property and ensures that lower priority tasks do not encounter any additional penalty
due to deferred execution. This also means that if the longest deferral for a task is td units from
its arrival (as in the proof of Theorem 5), then all its subsequent instances would also be delayed
from their arrival times from exactly td units8. Hence, if the task is schedulable during its
longest deferral, it still remains schedulable under the vanilla algorithm. Thus, both the desirable
properties of the period enforcer algorithm are still maintained by this simpler version at possibly
a much smaller cost.

Also note that the minimum separation property of the vanilla version can be used to enforce
the requirement of a sporadic task [4] that there be a minimum interarrival time between succes-
sive instance of the task.

4. Period Enforcer vs Sporadic Server
The sporadic server [8] is used to provide excellent response times to aperiodic tasks. In this

section, we investigate what the period enforcer algorithm means to the sporadic server and vice-
versa. The period enforcer algorithm determines when the next instance of a deferrable task may
execute based upon the current instance. The sporadic server determines when the server
capacity must be replenished and by how much.

7It may be possible to execute earlier and the Period Enforcer is more sophisticated because it takes care of this
possibility.

8This behavior is true for only the highest priority task in the period enforcer algorithm

12

4.1. Implementing the Sporadic Server with the Period Enforcer
We shall now show how the sporadic server can be defined in terms of the period enforcer.

A straightforward implementation of the Sporadic Server using the Period Enforcer is as fol-
lows.

• The Sporadic Server maintains a pool of available service units.

• Each service unit comprising the Sporadic Server capacity uses its own Period En-
forcer.

• When an aperiodic task requests one unit of service from the Sporadic Server at time
t, the server pool is checked. If a service unit is available, si,j of this unit is t. Else,
the task waits until a service unit is available9 at tr, and si,j=tr. The values ETi,j and
ATi,j for this service unit are then computed for this unit. The aperiodic task begins
execution at the sporadic server priority at ATi,j.

• The service unit is replenished in the server pool at ETi,j+TSS, where TSS is the
period of the Sporadic Server.

When two or more service units are required by the aperiodic task and are available in the
server pool, the period enforcer parameters of these service units can be updated simultaneously.

When a unit is replenished and reused, ETi,j+1 is recomputed as max(ETi,j+TSS, ai
si,j

).
However, since a unit becomes replenished only at ETi,j+TSS, it is guaranteed that when it is to
be used for service again by an aperiodic task at si,j=tr, tr * ETi,j<TSS. With this observation, an
efficient approximation is also possible if, similar to the vanilla period enforcer, we assume that
ai

si,j
) = si,j.

Hence, the period enforcer expressions become
ATi,j = ETi,j = si,j

As can be seen, ETi,j and ATi,j are independent of the values for the (j-1)th instance and the
suffixes i,j can be ignored. Hence the algorithm can be redefined as follows.

• Let an aperiodic task request service of C units from the Sporadic Server at time t.
If the server has this capacity, s = t. Else, the task waits until the server capacity is
replenished at tr, and s=tr.

• We have AT = s and the aperiodic task is activated.

• The capacity assigned to this aperiodic task (or the capacity actually consumed, if
smaller) is replenished in the server at ET + TSS, where TSS is the period of the
Sporadic Server.

The original sporadic server defined in [8] needs to compute replenishment times whenever the
priority level of the server becomes active or idle. In the definition above, these computations
occur only when an aperiodic task arrives and finds sufficient server capacity to execute. Hence,
an implementation based on this definition would incur less overhead.

9The task may instead choose to execute in background mode just as in the original Sporadic Server.

13

4.2. Implementing the Period Enforcer with the Sporadic Server
It is also possible to implement the period enforcer in terms of the sporadic server. The period

enforcer corresponds to a special case of the sporadic server in that the period enforcer for a
deferrable task is equivalent to the deferrable task being serviced by a dedicated sporadic server
task with the same period as the deferrable task and a capacity equal to the execution time of the
deferrable task.

The differences between this approach and using the period enforcer directly is as follows.
With the period enforcer, an additional separate sporadic server need not be created, and the
execution time consumed by the deferrable task need not be monitored. In fact, the period enfor-
cer allows the algorithm parameters ETi,j, ETi,j-1 and ATi,j to be defined as part of the task con-
trol block in operating systems for greatest implementation efficiency.

4.3. The Sporadic Server-Period Enforcer Relationship
As we have shown above, the period enforcer is in a sense virtually identical to the sporadic

server. The sporadic server is itself a deferrable task, and the algorithm determines how much
server capacity must be replenished at what times without affecting the schedulability of lower
priority tasks. Similarly, the period enforcer algorithm determines at what times a deferrable
task becomes eligible to execute without affecting the schedulability of lower priority tasks.
Since execution times are no longer monitored in the period enforcer, it is actually a simplifica-
tion of the sporadic server. However, this simplification permits the distillation of the key con-
cept behind the sporadic server into a basic mechanism which can then be used as a primitive to
solve all problems related to deferred execution in an efficient fashion. The end result is that the
objectives of the period enforcer form a superset of the sporadic server’s goals.

Due to the difference in objectives between the sporadic server and the period enforcer, the
deadline satisfaction properties of the sporadic server have not been studied even though
Theorem 5 applies to the sporadic server as well. In addition, this difference also means that not
all simplifications possible on the sporadic server can always be made to the period enforcer.
For example, the sporadic server capacity can be replenished at any time after ET + TSS as
defined in Section 4.1. For instance, instead of replenishing used capacity at the earliest possible
time as defined by ET + TSS, the replenishment time may be set only after some pre-defined
portion of its total capacity (say 0.25 or 0.5) is used up at tu. The replenishment time can also be
computed to be tu+Ts, where Ts is the period of the sporadic server. In contrast, under the period
enforcer, the replenishment time will be at most tu<Cu+Ti where Cu is the capacity used up. A
later replenishment time for the sporadic server means only that the response time to aperiodics
would degrade but not considerably [9]. However, deferrable periodic tasks suspending for
reasons like I/O and data access can use a simpler algorithm only at the risk of missing their
deadlines. The vanilla algorithm defined in section 3.3 is the simplest period enforcer policy
which can still guarantee that the deadlines of deferrable periodic tasks will be met.

5. Implications of the Period Enforcer
In this section, we consider what the period enforcer brings to the domain of synchronization

protocols in multiple processor systems, I/O scheduling, communication media scheduling and
jitter problems.

14

5.1. Implications to Multiple Processor Systems
In multiple processor real-time systems such as shared memory systems and distributed sys-

tems, the need to share resources across processors or communicate between processors is
unavoidable10.

In the common presence of resource sharing in such systems, the need for synchronization to
access global resources leads to schedulability problems. The primary problem is the need to
avoid an unbounded duration of waiting to access a global resource. Synchronization protocols
which avoid such unbounded waiting durations have been defined for use in shared memory
systems [6] that use test-and-set type of primitives on shared memory, and in distributed systems
that use remote procedure calls [5]. In these cases, the deferrable task problem is unavoidable in
that a task may be forced to suspend waiting to access a global ressource and will resume at a
later point in time. The scheduling penalty of deferred execution in these environments can be
enormous to the extent that it can make such protocols almost useless in several cases. The
development of the period enforcer algorithm was primarily motivated by the need to reduce or
eliminate this penalty with a small, if not negligible, overhead. If tasks using these synchroniza-
tion protocols use the period enforcer, their worst-case blocking durations would be considerably
smaller and the schedulable utilization correspondingly higher.

5.2. Communication Scheduiling
Communication between processors also pose a deferred execution problem. The interproces-

sor communication has to be initiated on a processor, transmitted on a shared communication
medium (such as a bus or a token ring), and finally delivered to and processed by another proces-
sor. There can be jitter caused by each of these 3 phases. Due to preemption and/or stochastic
execution, the instants at which the communication is initiated will not be strictly at periodic
intervals. Additionally due to non-instantaneous preemption on the communication medium, the
instants at which delivery is made to the destination will also not be strictly periodic. Finally, the
instants at which the receiving process processes the delivered communication will not be ex-
actly periodic. The period enforcer can be used to eliminate the resulting scheduling penalties on
the communication medium and the destination processor. This is done by using two period
enforcers. One period enforcer on the source processor regulates the instants at which com-
munication is initiated and could be done by the (hardware or software) interface module to the
communication medium. Another software period enforcer at the destination processor controls
the instants at which the receiving process processes the message.

5.3. I/O Device Scheduling
I/O scheduling is a special case of global synchronization where an I/O device must typically

be used exclusively by a single task until the service completes. Deferred execution penalty can
arise in the analysis of the I/O device schedulability due to "jittery" service requests as well as in
the processor scheduling model where tasks resume at irregular intervals after I/O completion.
Again, one period enforcer is required to regulate the requests to the I/O device and another to
control the resumption of tasks completing I/O.

10If this were not true, one would have several independent uniprocessors rather than a single cohesive system.

15

In each of the above cases, by Theorem 5, a task or subtask will always be able to meet its
deadlines as long as it is known to meet its deadline when it defers its execution by the longest
duration of time.

5.4. Output Jitter Control
We have so far dealt with jittery signals whose output forms an input to a different resource

where it can be controlled to avoid scheduling penalties. However, there are situations where the
output signals must be strictly periodic and just controlling the jitter sequence to avoid schedul-
ing penalty is not sufficient. For example, consider an output signal that is generated by a task
that is used to trigger a sampling/tracking device. The handling of the device results may be
much easier if the sampling triggers occur exactly at periodic intervals. One inexact but ap-
proximate way of doing this using the period enforcer is as follows. Let the task that computes
the values of the output signal be oi. Create a highest priority task oH that merely transmits the
output signal values, and let it use a vanilla period enforcer with the desired signal period. The
highest priority of oH ensures that whenever it is activated, it will execute immediately and
generate the signal. The first instance of oi arriving at t0 must trigger the first instance of oH at
t0+tD, where tD* the longest time that any instance of oi will take to complete its computations
relative to its arrival. The minimum separation property of the vanilla period enforcer combined
with the fact that the deferrals cannot be longer ensure that all instances of oH will always be
activated at tD units of oi’s arrival.

This approach is inexact because if there are two or more highest priority tasks generating their
respective jitter-free output signals, it is possible that two or more of these signals need to be
transmitted at the same time. As a result, one or more would be forced to be delayed by a small
amount of time. Processing time of other high priority interrupts can also cause additional minor
jitter. A perfect solution may need hardware support (such as one which implements a vanilla
period enforcer in hardware dedicated to each output signal).

6. Concluding Remarks
Periodic tasks in preemptive real-time systems may suspend during execution to perform I/O

activity or to access shared resources with synchronization constraints, and then resume later.
These practical requirements cause part or all of a task’s execution time to be deferred, causing
deviation from the ideal behavior of periodic tasks. Unfortunately, these deferrals can impose a
scheduling penalty on lower priority tasks which can quickly become unacceptable. Non-ideal
behavior of periodic tasks can also arise in communication media and in I/O scheduling ac-
tivities. In this paper, we have proposed the Period Enforcer algorithm which eliminates the
scheduling penalty caused by such behavior. The close relationship between this algorithm and
the sporadic server is also investigated in depth.

The pervasive nature of the deferred execution problem and its potential serious effects on
schedulability argue for the inclusion of the period enforcer algorithm or the simpler vanilla ver-
sion in all preemptive real-time systems. One major reason for resistance to more popular accep-
tance of the sporadic server is its perceived implementation complexity. However, the ability of
the period enforcer to simulate the sporadic server while addressing the impact of the often un-
avoidable causes for deferred execution can make it a desirable solution. The definition of the
vanilla period enforcer, if not the period enforcer itself, is very simple and can be implemented

16

with relative ease.

There remain some outstanding issues with respect to the period enforcer. The required inter-
action between the period enforcer algorithm and jitter-free output signals needs to be better
understood. Also, while the period enforcer can be applied to dynamic priority scheduling al-
gorithms such as the earliest deadline scheduling algorithm, the corresponding schedulability im-
pact has not been studied.

Acknowledgements
The author would like to thank Dr. Lui Sha and Prof. John Lehoczky for their comments

during the early stages of this work.

17

References

[1] Lehoczky, J. P., Sha, L. and Strosnider, J.
Enhancing Aperiodic Responsiveness in A Hard Real-Time Environment.
IEEE Real-Time System Symposium , 1987.

[2] Lehoczky, J. P., Sha, L. and Ding, Y.
The Rate Monotonic Scheduling Algorithm --- Exact Characterization and Average-Case

Behavior.
IEEE Real-Time Systems Symposium , Dec, 1989.

[3] Liu, C. L. and Layland J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment.
JACM 20 (1):46 - 61, 1973.

[4] Mok, A. K.
Fundamental Design Problems of Distributed Systems For The Hard Real Time

Environment.
PhD thesis, M.I.T., 1983.

[5] Rajkumar, R., Sha, L., and Lehoczky J.P.
Real-Time Synchronization Protocols for Multiprocessors.
Proceedings of the IEEE Real-Time Systems Symposium :259-269, 1988.

[6] Rajkumar, R.
Real-Time Synchronization Protocols for Shared Memory Multiprocessors.
The Tenth International Conference on Distributed Computing Systems , 1990.

[7] Sha, L., Rajkumar, R. and Lehoczky, J. P.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
IEEE Transactions on Computers :1175-1185, September, 1990.

[8] Sprunt, H.M.B., Sha, L., and Lehoczky, J.P.
Aperiodic Task Scheduling on Hard Real-Time Systems.
The Real-Time Systems Journal , June, 1989.

[9] Sprunt, H. M. B.
Aperiodic Task Scheduling for Real-Time Systems.
PhD thesis, Carnegie Mellon University, August, 1990.

[10] Strosnider, J.K.
Highly Responsive Real-Time Token Rings.
PhD thesis, Carnegie Mellon University, August, 1988.

i

Table of Contents
1. Introduction 1
2. Deferred Execution and Scheduling Penalty 2
3. The Period Enforcer 6

3.1. Definition of The Period Enforcer Algorithm 7
3.2. Properties of the Period Enforcer Algorithm 8
3.3. Simplification of The Period Enforcer 10

4. Period Enforcer vs Sporadic Server 11
4.1. Implementing the Sporadic Server with the Period Enforcer 12
4.2. Implementing the Period Enforcer with the Sporadic Server 13
4.3. The Sporadic Server-Period Enforcer Relationship 13

5. Implications of the Period Enforcer 13
5.1. Implications to Multiple Processor Systems 14
5.2. Communication Scheduiling 14
5.3. I/O Device Scheduling 14
5.4. Output Jitter Control 15

6. Concluding Remarks 15
Acknowledgements 16

ii

List of Figures
Figure 2-1: The Task Set and Time-lines for Example 1. 3
Figure 2-2: The Task Set and Computations of Example 2-2. 5
Figure 3-1: The Task Set of Figure 2-2 under the Period Enforcer. 7

