A Theory of Rate-Based Execution

Kevin Jeffay Steve Goddard
Department of Computer Science Computer Science & Engineering
University of North Carolina at Chapel Hill University of Nebraska — Lincoln
Chapel Hill, NC 27599-3175 Lincoln, NE 68588-0115
jeffay@cs.unc.edu goddard@cse.unl.edu
Abstract ice events at preciseeriodicintervals. Eventsserviced by

We present a task model for the real-time executiceveht- sporadic tasks have a lower bound on their inter-artinzg,
driventasks in which na priori characterization ofhe ac- but no upper bound on inter-arrival time.

tual arrival rates of events is known; only teepectedarri-

val rates of events iknown. The modelcalled rate-based We have found in practice, especially in distributed real-time

execution(RBE), is a generalization ®flok’s sporadictask systems, that thénter-arrival of events is neithgyeriodic

model[14]. The RBEmodel is motivated naturally bglis- nor sporadic. There is, however, usuallyexpectecbr aver-

tributed multimediaand digital signal processin lica- : o :
tions. Wederive necessargndsuﬁ?cientpcondition%pf%r de-2geevent arrival ratehat can be specifiedzor example, in

termining the feasibility of an RBE task s@iddemonstrate@n Internet video conferencirgystem, media samples are
that earliest deadlinefirst (EDF) scheduling is aoptimal typically generatedprecisely periodically. Howeverafter
scheduling algorithm for both preemptiveand non- they are transmitted over the network, sampks arrive at
preemptive execution environments, as welhgisrid envi- the receiver at nearly arbitrary rates. The transmissite is
ronments wherein RBE tasks access shared resources. preciseandthe averagereception rate is precisbut the in-

Our analysis of RBE taskdemonstrates a fundament$- stantaneous receptioate is potentially unboundeddepend-
tinction between deadline basedscheduling methods an g on the amount of buffering in the network).

static priority basedmethods. We show that fateadline-
based scheduling methods, feasibility is solely a functiorOefr goal here is to understandhe complexity ofdirectly
the distribution of taskleadlines intime. This iscontrasted mogeling the rate-based nature of systems sudlisaibuted

with static priority schedulers where feasibility is a functi - : :
of the actual arrival rates of work foasks. ThUSNhereas?'I?u't'mecj""1 systems. Whave created asimple model of

the feasibility of static priorityschedulers is dunction of real-time tasks thagxecute at well-defined averaggtes but
the periodicity of tasks, the feasibility deadline schedulerdiave no constraints on their instantanecats of invoca-
is independent ofask arrival processeand hencedeadline tion. Our model of rate-basecexecution,called RBE, is a
3c_hedulersl?rmore ?unable for use in distributedyent- generalization of Mok'ssporadictask model in which tasks
fiven, real-ime systems. are expected to executdth anaverageexecution rate ok

1. Introduction times everyy time units. .Ourexperlencejeagnlng .dIStI‘I.b—

) o ) ] uted, event-driven, real-timgystems, such amultimedia
R_eal—t_lme appllcat|0_n$requently mtera_clthh external de- systemsandclasses of military signal processisgstems,
vices in an event-driven manner. Teiglivery of amessage, gemonstrates that this task model more naturally models the

or the generation of &ardwareinterrupt is an event thab 5| implementatiomndrun-time behaviors of these sys-
causes the operating system to schedule a tagspond to 1o 1,o [5, 6, 10].

the event. In real-time environments, oneust provide . o N
occurrence. Hard-real-timesystems guaranteethat every On @ singleprocessor sucthat no task misses igeadline.
evente will be processedvithin d, time units of itsoccur- The analysis holds fogarliestdeadlinefirst (EDF) schedul-

rence. Soft-real-timeand firm-real-time systems provide iNg which is also shown to be an optinsgheduling algo-
weaker guarantees of timeliness. rithm for both preemptiveand non-preemptive execution

environments, as well as hybrid environmentterein tasks

Most real-time models of execution are based on the Liu ss shared memory resources.

Layland periodictask model [12] or Mok’s sporadic task

model[14]. Periodictasksarereal-time programshat serv- 1he analysis of EDF schedulinfgmonstrates a fundamental
distinction betweendeadline basedcheduling methods and

* _ , _ static priority basedmethods. We show that fateadline-
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CCR-9510156, CDA-9624662, & CCR-9732916)d the IBM Corpora- baseq sgheqluling methods,. feasjb!lity is sqlely a function of
tion. the distribution of taskleadlines intime and is independent
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of the rate at which tasks are invoked. In contrast, the opjoms) [8], and tasks may h@eempted byinterrupthandlers
site is true of static prioritgchedulersFor any static prior- (i.e., realisticdeviceinteractionscan bemodeled)[9]. A set
ity schedulerfeasibility is a function of theaate at which of relations on model parameters that are necessarsuffi-
tasksareinvokedand is independent dhe deadlines of thecient for tasks taexecute in real-timare known, and opti-
tasks. Said moresimply, the feasibility of static prioritymal algorithms for scheduling tasksased orEDF schedul-
schedulers isolely a function of theperiodicity of tasks, ing, have been developed.

while the feasibility ofdeadlineschedulers isolely afunc-
tion of the periodicity of the occurrence of a tasit&adlines.
Given that it is often the operating system that assiigad-
lines to tasks, this means that the feasibility of a sfatic
ority scheduler is dunction of the behavior of thexternal
environmenti(e. arrival processes) while the feasibility o
deadline driven scheduler is a functiortioé implementation
of the operating system. Waelievethis is a significant

olbserva;u?n asfotﬂe typ|ca:I_y has :norethconttrrc])l 0\\:;; me esmay not satisfy this property. For example; the
piementation of the operating system than they € simple video conferencing applicatigiescribed inthe intro-

proct:esss__; extfernal the sysltedmm t?zger&?rateévork dfor ;hg guction, whenvideo framesare periodically transmitted
system. therelore, we conciudeat deadline based SChedu . qqq g internetwork, they may Helayedfor arbitrary

ng me_th(_)ds have a significaind fundamentaladvqntagei tervals atintermediate nodeandarrive at a conference re-
over priority based methods when there is uncertainty in rbﬁ/er at ahighly irregular rate. Onsolution to thisprob-
rates at which work is generated for a real-tggstem,such lem

as is the case in virtually all distributed real-time systems, - ¢

One practical complexity that arises in applying the existing
models ofsporadictasks to actuasystems is thdact that
the real worlddoesnot always meet the assumptions of the
model. Consider a task’'minimum inter-invocation time
parameter. The formal model assumes that consecutive invo-
f tions of asporadictask are separated by #astp time
units for some constanp. Tasks thatare invoked in re-
sponse to events generated by devices such as netwerk

is to simplybuffer video frames athe receiver and re-
ethem atregularintervals to the application (although
The rest of thispaper is organized d®llows. Section 2 this begs thauestion of how one implementsd models
provides the motivation for considering the RBE tasddel the real-time tasks that perform this buffering proceBsis
anddescribes relatediork. Section 3 formally presents thapproach isundesirable because it is diffic@hdtedious to
RBE task model. Section 4 presentcessanandsufficient implement correctly and because bufferingnherently in-
conditions for preemptive scheduling, non-preempti@ases the acquisition-to-display latencyeath videdrame
scheduling, and preemptive schedulimgh shared resourcegand latency is the primary measure of conference quality).
anddemonstratethe optimality of EDFscheduling ineach
case. Section Biscusses these resuétad demonstrates th
infeasibility of static priority scheduling. laddition, Sec-
::82 asngog:ﬁzaeuslirzlsiéﬁ :gg;r?ooni?Eh?@e}zziifcgﬁscuhcterization of aask that is similar to that of sporadic
cation[2, 13, 15, 19, 21, 223ndserveralgorithms such as,taSk’ however, we make no assumptions aboutspacing

) in time of invocations of an RBE taskistead, we allow
the_total bandwidth serve[|17_, 18]. Weconcllljdeour.presen- one to specify amverageexecutionrate that is desiredfor a
tation of the RBE model with a summary in Section 6.

task. In the RBE model, if a task ilsvoked attime t, the

2. Motivation and Related Work task is scheduled with a deadline for processirag is suffi-

. . ) . . cient to ensurghat the task actually makes progress at its
The starting pointfor this work is themodel of sporadic %pecified rate.

tasks developed by Mok [14], and later extended by Bagtial
al. [4], and Jeffayet al [9]. A sporadic task is a simpheari- Digital signal processing isnother domain in which the
ant of aperiodictask. Whereas perioditasks recur at con- RBE task model naturally describes the executioappflica-
stant intervalssporadictasks (asdefined byMok) have a tions. Processing graplase a standardesignaid in the de-
lower bound on their inter-invocation time, whicteates anVvelopment of complex  digital S!gnal processiegstems.
upper bound ortheir rate of occurrencelhe fact that spo- We have foundhat, even on asingle-CPU system with
radic tasks mayexecute at a variablébut bounded) rate Periodic input devices, processing grapitesnaturally exe-

makes them well-suited faupportingevent-driven applica-CUte in highly aperiodic“spurts” [5, 6]. Moreoversource
tions. data often arrives in bursts distributedimplementations of

) . . processing graphs. Adiscussed irSection 5, thidact pre-
Baruahet al. developedhe seminal complexity analysis of),qesthe efficient modeling ofnode execution witheither
determining the feq5|b|llty qf aporadictask set [4].Today, periodic or sporadic task models.
the theory ofsporadictasks isgeneralenough toaccommo- _ . _
date amodel of computationwhereintasks may communi-With respect toprevious attempts to explicitly specify a
catevia sharedmemory (.e., tasks mayhave criticalsec- {ask’s progress in terms of an execution rate, the RBE task

Our approach is to alter the formal model to account for the
act that theremay be significant “jitter”(deviation) in the
inter-invocation time of real-tim&asks. Wedevelop achar-



model ismost similar to thdinear bounded arrival process  of a task instancandthe completion of itsexecution
(LBAP) model as defined and usedtime DASH system [1]. (i.e., dis the relative deadline of the task), and

In the LBAP model,processes specify desiredexecution
rate asthe number of messages to ff@cesseger second,
and the size of a buffer pool used to store bursteaedsages
that arrive forthe process. Our taskodel generalizes the
LBAP model to include anore generic specification ofate The pair &, y) is referred to ashe rate specificationof an
and adds anindependentresponsetime (relative deadline) RBE task. A task withate specificationx; y) expects to
parameter to enablmore precise real-timecontrol of task receive and process, on averageyents ineveryinterval of
executions. Moreover, wanalyzethe model in morecom- lengthy. More precisely, jobs of a taske constrained to
plex environments such as those wherein tasks commun@&?@Ute as follows. Lef be therelease ofJ;, thej™ job of
via shared memory arttius have preemptioconstraints. A thei™ task. We assume throughout that tnéer ofjobs of
more detaileccomparison to other models wfte-baseaxe- @ taskcorresponds tdhe order ofeventoccurrencedor the

¢ is the maximum amount of processor time required for
any job of taskT to execute tawompletion on adedi-
cated processor.

cution is deferred until Section 5. task (.e., for alli andj, t; < t;,,). Once releasedob J;
must complete execution before a deadlx(@ given by the

3. RBE Task Model following recurrence relation:

Here weformally definethe concept ofrate-baseaxecution _ t; +d, ifl<j<x

and present the RBE task model. Di(j) = Bﬂax(tu +dD(—x)*y) if]>x @

A task is a sequential program thateisecuted repeatedly in

response to theccurrence ofevents.Each instance of thelhe deadline of a job is tHarger ofthe releasetime of the
execution of the task is calledjab or atask instanceJobs job plus itsdesired deadline ahe deadline ofthe x" previ-
are made readfpr execution, oreleased by the occurrence 0Us job plus theg/ parametethe averaging interval) of the
of an event. An event may be externafjfgneratede.g, a task. Thisdeadlineassignment functiogonferstwo impor-
device interrupt, or internally generatedy, a messagarri- tant properties on RBEasks. First, up tox consecutive
val. In all casespnce released, jab mustexecute to com-jobs of a task magontendfor the processomwith the same
pletion before a well-defined deadline. Vissume instancegleadline and second, for pldeadlines of jobg; and J;j., of
of an event typeare indistinguishableand occur infinitely task T, are separated by asty time units. Without the
often. Thusover the life of a real-timsystem an infinite latter restriction, if a set of jobs of a taslere released si-
number of jobs of each task will be released. multaneously it would be possible to saturate ghecessor.
However, with the restriction, the time at which a taskst
complete its execution is not wholly dependent omdlsase
time. This is done to bound processor demand.

For a given real-time task, two commonly studpadadigms
of event occurrences aperiodig in which eventsare gener-
ated everyp time units for some constapt andsporadic in
which events are generated no sooner than gvémye units For example, Figure 1 shows the job release tiametead-
for some constanp. We considetwo fundamental exten-lines for a taskT; = (x=1, y=2, d=6, c). The downward ar-
sions to these models. First, we make no assumptions alst¢g in the figurendicate releaséimes for jobs of T,. For
the relationships between the points in time at wieleents €achjob, the intervarepresented byhe open boxndicates
occur for atask. We assume that everse generated at éhe interval of time in which the jOb muskecute to com-
precise average rate.¢, 30 events pesecond)out that the pletion. (The actualtimes at which jobsexecute are not
actual distribution of events in time is arbitrary. Second, $t®wn.) Figure 1 shows that if jobs f are released peri-
allow tasks to specify desiredrate of progress iterms of odically, onceevery 2time units in thiscase, therr, will

the number of events to be processed in an intervapexdi- €xecute as a periodtask with adesired deadlinéhat is dif-
fied length. ferent from its period. In particular, if jolzre released peri-

odically then the rate specification ®f doesnot comeinto

Formally, we consider a real-time system tocbenposed of play in the computation of deadlines.

a set of RBE tasks. An RBE task imiquely characterized
by a four-tupleX, y, d, c) of integer constants where: Figures 2 and 3 show ttedfect of job releaseghat occur at

the sameaveragerate as befordyut wherejobs are not re-

leasedperiodically. In these figureghree jobs are released

¢ X is the maximum number of executiomgpected to besimultaneously at time 0, two jolme releasedimultane-

requested in any interval of length ously at time 3, one job ireleased atime 6, etc Figure 2
shows the job release times and deadlines forTask (x=1,

e y=2,d=6, ¢). For comparison, Figure 3 shows téféect of
the same pattern of joleleases on taskT, = (x=3, y=6,

e yis an interval in time,

e dis a responséme parametethat specifies thenaxi-
mum time that isdesired toelapse betweethe releas



Figure 1. Release times and deadlines for jobs of
T, = (x=1,y=2,d=6, C).

W W v v W

processing of each complete media sample, there is no obvi-
ous deadline for processing individual fragments of the me-
dia sample (other than the deadline for the processing of the
complete media sample).

The fundamental problem here is that the arrival rate of in-

puts at the receiver (3 network packets received every 6 time
units), is not the same as the output rate at the receiver (1
media sample displayed every 6 time units). By giving arate
specification of (x=3, y=6), the receiver can effectively pro-

cess groups of up to three network packets with the same
deadline — the deadline for completion of the processing of
a media sample. Thus by specifying an execution rate, we
avoid the artificial problem of having to assign deadlines to
intermediate processing steps.

Note that this example is overly simplistic as in practice
packet arrivals are discrete events, and hence fundamentally

Figure 2: Bursty release times and deadlines for jobs of cannot occur “at the same time.” Thus in practice, packets

T, = (x=1,y=2,d=6, c).
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arriving as described above will have deadlines that are
separated by at least the minimum inter-arrival time of a pair

of packets on the given network transmission medieum, (

5 microseconds on a 100BaseT Ethernet). However, the fact
that the deadlines for packets arriving in a burst would have
slightly offset deadlines has the positive side-effect of en-

suring that the operating system will process the packets in
arrival order (assuming a deadline-driven scheduler).

A task with a rate specification such®sn Figure 2, might
be used to implement the play-out process in a different
multimedia system wherein media samples (such as audio

Figure 3: Bursty release times and deadlines for jobs of samples) are small enough to fit into a single network packet

T, = (x=3,y=6, d=6, c).
d=6, c) with the same desired deadline but a different rate
specification. Since job releases are not periodic, the actua
deadlines of jobs are a function of the rate specification of
the task. Note that tasks T, and T, will consume the same
fraction of the processor and both will complete, on average,
one job every two time units.

The effect of the different rate specification is two-fold.
First, when bursts of events occur, up to three jobs of task T,
may execute with the same deadline. Thus, for example, task
T, might be used to implement the media play-out processin
a distributed multimedia system wherein (1) media samples
are generated at the precise rate of one sample every six time
units at a sender, and (2) each sample istoo large to fit into a
single network packet and thus is fragmented at the sender
into three network packets, which are transmitted one im-
mediately following the other to the receiver. At the re-
ceiver, media samples arrive, on average, one sample every
two time-units. However, since the sender fragments media
samples and transmits the fragments one after the other, it is
likely that bursts of three simultaneous (or nearly simultane-
ous) packet arrivals at the receiver will be common. Moreo-
ver, at the receiver, while there is a deadline to complete the

and thus the packet arrival rate is the same as the sample
play-out rate. Here all network packets should have the same
relative deadline for completion of processieg( the ex-
pected inter-arrival time of packets). The pattern of dead-
lines in Figure 2 ensures that the play-out application is
guaranteed (assuming the workload is feasible) that in the
worst case a media sample will be ready for play-out eyery
time units starting at time 6.

The second effect of having different rate specifications for
tasksT, andT, is that if jobs are not released periodically,
jobs of T, will have a lower guaranteed response time than
jobs of T..

Note that there are times at which it is possible for both tasks
to have more thar jobs active simultaneouslg.¢., in the
interval [0,16] for taskT, and in the interval [3,16] fof,).

This is because the rate specification for a task only specifies
the rate at which jobs asxpected to be released. The actual
release rate is completely determined by the environment in
which the tasks execute. (In fact, over the entire interval
shown in Figures 2 and 3, jobs are releasedshiveer rate

than expected.) Also note that the times when individual jobs
complete (and hence whether or not there ever are actually



W W v v W 4. Feasibility of RBE Tasks
Jﬁ,l . . .
J&Zl—' Our goal is to determine rglgtlons on RBE task parameters
s that are necessary and sufficient for a set of tasks feabe
s sible. A set of RBE tasks is feasible if and only if for all job
Jss release times,, and for allJ,, it is possible to executé
S S such that:
J3,7
3 1. J, commences execution at or after titpeand
JGB

2. J, completes execution at or before timg).

Figure4: Bursty release times and deadlines for jobs of OUr analysis proceeds by analyzing the demand for the proc-
T, = (x=1,y=2,d=2, c) essor created by a set of RBE tasks in an interval of léngth
3 ) 1 ) .

In general the demand for the processor created by any set of
real-time tasks is a function of the scheduling discipline in
use. Here we limit our considerationdarliest deadline first
(EDF) scheduling. We justify this restriction by showing that
EDF is an optimal scheduling discipline for RBE tasks. Op-
For afinal comparison, Figure 4 shows the effect of the job timality here means that an EDF scheduler can guarantee a
release times illustrated in Figures 2 and 3 on the task T, = correct execution to any feasible RBE task set. In Section 5
(x=1, y=2, d=2, c). Task T, isidentical to T, except with a we discuss alternate scheduling disciplines.

smaller desired deadline. Figures 2 and 4 can be used to il- . .
lustrate one benefit of decoupling a task’s deadline from itgnder EDF scheduling, the demand for the processor in an

. . ) ! : interval is a function of the number of jobs of tasks that have
arrival rate and, in particular, the benefit of having a dead-" . : . . . )
! . . . deadlines in the interval. The deadline assignment function
line that is greater than the expected inter-job release ti

Consider the case where taskis used to implement theB]ﬁ) decouples the processor dema}nd from the arrival rate of

. ) o . . events and bounds the number of jobs that can have a dead-
media play-out process in a distributed multimedia systém . : . L

. . . INe in any given interval. This in turn bounds the processor
wherein media samples are generated at the precise rate o . .
. . enﬁand in any interval.

one sample every two time units at the sender. Assume eac
media sample fits into a network packet and media samplese precisely, the processor demand in an inteeydi][is
are buffered for up to six time units at the receiver priortt@ amount of processor time required to be available,in [

play-out to smooth delay-jitter in the network. b] to ensure that all tasks released prior to thwath dead-

Since samples are expected to be buffered at the recelikvgts, n E’:\ o] c_omplete In g, b]. The maximum processor
there is little utility to the system in processing samples v\ﬁ{ﬁmand in an intervah] b] occurs when

a deadline that is less than the expected buffer residencea marks the end of an interval in which the processor
time. That is, if a job off, completes the processing of a was idle (or O if the processor is never idle),

media sample within two units of the sample’s arrivill
(which is guaranteed to happen if the arrival of media sam-
ples is not bursty), then the media sample will reside id.a as many deadlines as possible occugitb]

buffer for at least four time units after this processing cof}; ensyre that no job misses a deadline, we must bound the
pletes. In contrast, sindg has a larger desired deadline, ORgayimum cumulative processor demand of all tasks in all
would expect that samples processed Toywould spend jnieryals, and verify that the processor has sufficient capac-
more time waiting to be processed and less time being bh&ﬁ’to satisfy this demand. To begin, we bound the maximum

ered prior to play-out. Thus the distinction between jObSp%cessor demand for an RBE task in the interval][o,

T, andT, is that the media samples processed by jobs of the

former task will likely spend more time waiting to be prokmma4.1: For an RBE task = (x, y, d, c),

essed i(e.,, “buffered in the run-queue”) and less time in OL-d+y0

play-out buffers than when processed by job§,oThe time OoL>0, f BTHD@ (2)

between media arrival and play-out will be the same in both . .

cases, however. Thus the desired deadline forTtaskmore IS a least upper bound on the processor demand in the inter-
S . . . val [0, L], where

appealing in practice as its use will improve the response

time for the processing of aperiodic and non-real-time B E:@D ifa=0

events. f@=Hy a<o

multiple jobs of atask eligible for execution simultaneously)
will depend on the scheduling policy employed. Figures 1-3
should be interpreted as describing a realm of possible exe-
cution patterns of tasks.

the processor is never idle in the intenaltf], and



Proof: To derive aleast uppetbound onthe amount of Proof: The necessity of (4) is shown by establishing the
processor time required to be available in the interval [0, contrapositive,i.e., a negative result from evaluating (4)
it suffices to consider a set afleasetimes of T that results implies thatr is not feasible. To show thatis not feasible

in the maximum demand for th@ocessor in0, L]. If t; is it suffices to demonstratite existence of aet of task re-
the time of thg™ release otask T, thenclearly the set of lease times for which at least one job of a taskiimsses a
releasetimest; = 0, 0j > 0, is one such setnder these deadline.

releasetimes, x jobs of T havedeadlines in[0, d]. After d
time units haveelapsedx jobs of T havedeadlinesveryy 4 +y 0
time unitsthereafter.Thus the number of jobs witbead- O>0: I< z fgi'BD(cl

Assume

lines in the intervald, L] is Méj( Therefore, for all
Hy Lett; be the release time of tfji job of taskT,. Consider

L >d, the number of jobs o with deadlines in the intervathe set of release timgs= 0, for alli, 1<i<n, andj > 0.

[0,L]is By Lemma4.1, the leastpper bound fothe processor de-
- -d El u.—d% is fH— 4R, uni :
+ =M+ X mand created by tadkis f [X.c; units of proces
HyY E} HYy Y
1 —d sor time in the interval of [0]. Moreover, from theproof
gy +1§3< of Lemma 4.1, the set of release timies 0, 1< i < n and
j > 0, createshe maximumprocessordemandpossible in
_ [I-—dﬂ/a3< ®) the interval [0,I]. Therefore, fortr to be feasible, it is re-
5y quired thatz_leI 4y, ngici units of work beavailable
For allL < d, no jobs ofT havedeadlines in[0, L], hence ;. [0, I]. However, S|rl10e
the right-hand side of (3pives the maximum number of
jobs of T with deadlines in the interval [@], for all L > 0. | < z (O-d+yi0s .
Finally, aseachinstance ofT requiresc units of processor S0 oy ot

time to execute to completion, (2) is a least ugpmmd on
the number of units ogbrocessotime required to beavail-
able in the interval [0,] to ensurehat no job ofT misses
a deadline in [OL].

Note that therare aninfinite number of sets of jolelease
times that maximize thprocessodemand of arRBE task
in the interval [O,L]. For example, it isstraightforward to .
show that the less pathological set of jodeasetimes

a job of a task ir must miss adeadline in[0, I]. Thus
there exists a set ofeleasetimes such that @eadline is
missed when (4)loesnot hold. This proves theontraposi-
tive. Thus, if the task satis feasible, (4) must hold.

To show the sufficiency of (4), it is shown that theemp-
tive EDF scheduling algorithm can schedule all jobs of tasks
in T without any missing aeadline ifthe tasks satisfy (4).
This is shown by contradiction.

_ -1 . .
5= QT@E/ 0j > 0, also maximizes the processemand pgq\,me thatr satisfies (4andyet there exists a job of a

of taskT in the interval [OL]. task int that misses a deadline at some point in tianen
o ] ) T is scheduled byhe EDF algorithm. Let, be theearliest
4.1 Feasibility under preemptive scheduling point in time at which aleadline ismissedandlet t, be the

A task set is feasible &indonly if there exists aschedule |ater of:
such that no task instance misstssdeadline.Thus, if Ly |
represents the total processor demand in an interval of length
L, a task set is feasible if and onlylif> L, for all L > 0.

The following gives anecessanand sufficient condition for
scheduling aset of RBE tasks when preemptionadowed * the latest time prior tdy at which a job withdeadline

the end of the last interval prior tpin which theproc-
essor has been idle (or O if theocessor haseverbeen
idle), or

at arbitrary points. aftert, stops executing prior tt (or time 0 if nosuch
Theorem 4.2 Let T = {(xy, 1 Gy C)s +or (X Yo c, c)p 10D EXECULES prior tg).
be a set of RBE taskswill be feasible if and only if: By the choice ot,, (i) only jobs withdeadlines earliethan
. time t, execute inthe interval {,, tj], (ii) all jobs released
OL>0, L= Z tb-di+y D .G (4) prior to timet, will have completed executing tty and {ii)

the processor is fully used in,,[t,]. It is straightforward to

show that at most
wheref() is as defined in Lemma 4.1. W



Oy —to—d +V, a} Corollary 4.3: EDF is an optimapreemptive scheduling
i

n
iZl H Y; algorithm for sets of RBE tasks.

job of tasks int can havedeadlines inthe interval {,, ty
[3], and hence

Proof: Theorem 4.2 hasstablishedhat independent of the

schedulingpolicy in use, condition (4) isecessary fofea-

sibility. Moreover, Theorem4.2 also establishes th@t) is

cOg—t-d+yi0 . sufficient for ensuring that no job witlvermiss adeadline
= Yi E}'C' whenscheduled bythe EDF algorithm. Sincé4) is neces-

] ] ) sary for feasibilityand sufficient for acorrectexecution un-

is the least uppevound onthe units ofprocessortime re- 4o the EDF algorithm, the EDF algorithm EDF is an opti-

_quireq to be availaple i_n the intervaaq, td to ensurethat no . scheduling algorithm for sets of RBE tasks -

job misses a deadline ify,[t)] whenTt is scheduled under the o .

EDF algorithm. 4.2 Feasibility under non-preemptive sched-
ulin

I
Let € be the amount of processor time consumed by task&v
T in the interval {;, t;] when scheduled bythe EDF algo-
rithm. It follows that

in - "
e now presentnecessaryand sufficient conditions for
evaluating the feasibility of RBE task setsider non-
preemptive, work-conserving schedulirdgorithms {.e.,
Ly -to—d +y o se the class of schedulinglgorithms that schedule non-
i:zl Y, a}' e preemptively without insertingdle time in the schedule).
We leave open the problem of deciding feasibility under non-

Since theprocessor ifully used inthe interval f,, t,] and \york-conserving, non-preemptive scheduling.
since adeadline ismissed at timet,, it follows that the
Theorem 4.4 Let T = {(Xy, Y1, di, C), -y Koy Ynr Gnw GO}

amount ofprocessotime consumed byt in [t,, t] when ! '
scheduled by the EDF algorithm is greater tharptioeessor P& & Set of RBE tasksorted in non-decreasingder by d
parameteri(e., for any pair of task$; andT,, if i > j, then

time available in tf, t;]. Since theprocessotime available ; . , .
in [t, t] is t, —t,, we have d; = d). 1 will be feasibleundernon-preemptive scheduling

. g if and only if
Og —to — G +Y, E} n
G 2>ty —t, OL-d +y 0

|Z:LE Y i Gi d—lo 0L >0, LZZlfD Y DI](iq 6)
However this contradictsour assumption that satisfies and
equation (4). Hence if satisfies equation (4) then melease Oi, 1<i<sn 0OL d <L<d:
of a task inT misses aleadlinewhen 1 is scheduled by the 1 fL-1-d +y; O

. . . . . L>c + f J J [X:C;
EDF algorithm. It follows that satisfying (4) is safficient 2G z V. HXiCi ()
condition for feasibility.Thus, (4) is a necessargnd suffi- j=1 !

cient condition for the feasibility of an RBE task set. m wheref() is as defined in Lemma 4.1.

If the cumulative processor utilization for an RBE task setrjg, proofs of thigheoremandthe following corollary are
n  XGCj

strictly less than one.¢., 3.,~" < 1) then condition (4)contained in the full version of thisaper[11]. However, it

can be evaluategfficiently (in pseudo-polynomial time)should benotedthat theyare straightforwardextensions of
using techniquegdeveloped by Baruakt al [3]. Moreover, the proofs of Theorems 3.2, 3.4 and Corollary 3.48infor
for the special case df = y;, for all T, in 7, the evaluation hon-preemptive scheduling of sporadic tasks. In addition, the

of (4) reduces tothe polynomial-time feasibilitycondition Optimality of non-preemptivéEDF schedulingdemonstrated
[9] in [8] also holds for RBE tasks.

N [ Corollary 4.5: With respect tothe class of non-
Z Vi <1l ©) preemptive work-conserving schedulers, non-preemptive
=1 EDF is an optimal scheduling algorithm for RBE tasks [11].

Equation (5) computes processdilization for the task sety 3 Feasibility under preemptive Scheduling
T and is a generalization of the EDF feasibility condition {9li1, shared resources

penodmtasks withdeadlines equal teneir period given by We now consider the case when tapksform operations on

Liu and Layland [12]. :
shared memory resources. Shamgeimoryresources are seri-

Finally, note that the proof of the necessity of (4)Timeo- ally reusablebut must beaccessed in anutually exclusive

rem 4.2 is independent of the scheduling policy in use. Thimner. Our model ofomputation isbased onthat pre-

allows us toconcludethat EDF is an optimascheduling sented in [8].

algorithm for RBE tasks.




Access to aset of m sharedresources R, R,, ..., R}, is 1 OL-1-d +y O
modeled byspecifying the computatiorequirement oftask L=GCy + Z f Y| — ED(J [E; ©)
T, as a set of, phases {§;, C;, r;) | 1<j < n} where: )=t
. - . - where:
* ¢; is the minimum computational cost: tingnimum

amount ofprocessortime required to executethe j ¢  f() is as defined in Lemma 4.1,

phase off; to completion on a dedicated processor. . 5 = min (dj|0, 1< 1<y, i =),
1<j<n

* C,; is the maximum computational cost: the maximum
amount ofprocessortime required to executethe j" « E; =31 Cj, and
phase off; to completion on a dedicated processor. 0o ifk=1

* r; is theresource requiremerthe resourcg(if any) that * Sk = %gzlq ifl<k<n
is required during thg" phase ofT,. If r; =k, 1< k < =
m, then thej" phase ofT; requiresexclusiveaccess to The feasibility conditions are similar {and in fact agener-
resourceR,. If r; = 0 then thg"" phase ofT, requires no alization of) those for non-preemptive scheduling. The pa-
shared resources. rameterE; represents thenaximum cost of a job of task

and replaces thg term in conditions (6and (7) of Theorem

The execution otachjob of taskT, is partitionedinto a 4 Condition (9 i | :
sequence of; disjoint phases. A phase is a contiguous éﬁ- ondition (9) now applies to onlyresource requesting

quence ofstatements that together eithexquire exclusive phase of a job of task, ratherthan to the job as a whole.

access to aingle sharedresource, orequire no shared re:B ecause of this, the rangeloin (9) is morerestricted than

sources. In the latter case, tfie phase ofT; imposes no' the 'single phasgase ofnon-preemptive scheduling. The
mutual exclusion constraints on the execution otfier 'o9€ IS MOre rgstncted since kfephase of aj(.)b of tas'ki'
tasks. If a phase of a taséquires a resourdéen thecom- cannot start until all previous phases of the lalve termi-

putational cost of the phase represents only the cost of %ﬁd and thus the earliest time phiasean bescheduled is
k

. . o
the required resource and not the cost (if anyaafuiring or b rtr;]e unltsaft]?r:he sltartftfl1e ]?ﬁ_':qr thil.( hphase of ta
releasing theresource. Notdhat sincedifferent tasks mayJO » therange ofintervais ot leng N which onemus

perform different operations on a resource, it is reasonabl%?trgpme theachievable processalemandwill be shorter

assume that phases of tasks thetessthe sameresource ar; mfth(;,; smglel E[)Easfase blythl\j sum of th;ﬂlnlmgmf
have varying computational costs. A minimum cosrzerb costs of phases rough- 1. Moreover, ncdemand o

indicates that a phase of a task is optional. phases off; other thark appear in (9). Finally, note that for
the special case where each task inonsists of only a sin-

We assume that in principal taskse preemptable agrbi- gle phase, the scheduling problesduces tosimple non-

trary points. Therequirement ofexclusive access to re-preemptive schedulingndconditions (8)and (9) reduce to
sources places two restrictions on the preemaiwhexecu- the feasibility conditions of Theorem 4.4.

tion of tasks. For all task andk, if r; =r, andry, ry # 0, .
then () thej™ phase of a job of, may neither preempt thél'he proofs of Theorem.6 andthe following corollary are

" phase of a job dF,, nor (i) execute while thé" phase of contained inthe full version of thispaper[11]. It is again
T, is preempted ' the casethat theyare straightforwardextensions of the
P .

proofs in the originalpaper ([8]) for schedulingsporadic

Consider a set of RBE tasks= {Ty, Ty, ..., T}, where T; = tasks that share a set of shared memory resources.

oV d, {(ci, Ci, 1) | 1< j < n}), that share aset of re- . . . . .
Sél)u)r/ces é( i? ! ‘)le} LeJt 5 r}e)presemthe deadline pa—A generalizedEDF schedulingalgorithm wasintroduced in
rameter ofl’thezz‘sho,rtest“ task {hat usesourceR,. That is, [8].t0 schgdule sporaditasks thatshar_e aset of resources.
5 = min(d | r; = i). The following theorem establishey"s algorithm was shown to be optinfak sporadictasks.

" acjen ! it is also optimalfor RBE tasks thashare aset of shared

necessary and sufficient conditions for feasibility. memory resources.

Theorem 4.8 Let 1 be a set of RBE tasksprted in non- Corollary 4.7: With respect to the class of work-
decreasing order bgt parameterthat share aset of serially conserving schedulers, generalized EDF ioptimal sched-
reusable resourceR{, R,, ..., R,}. T will be feasibleunder uling algorithm for RBE task sets that share a set of serially

work-conserving scheduling if and only if reusable resources [11].
= (L-d+y[O ; :
L >0, LEZfDTyDD(i[E‘ @© 5. Discussion

=1 5.1 On modeling RBE tasks as sporadic tasks

_ _ The RBE taskmodel specifiegshe real-time execution of
Oi, 1<isn Ok 1sksn Or #20; OL, 5, <L<d -Sy: tasks such that no more thadeadlines expire in aripter-

and



val of lengthy. Given the similarity of this model to Mok’sTherefore, starting at time O, at ledst; > d units of proc-
sporadictask model it is natural taconsidermodeling RBE essor time will be spent executing jobs with higher priority
tasks as a collection sfporadictasks. For example, @m- than taskT;'s first job and hence the first job ®f will miss
mon question is whether or not an RBE tdsks equivalent its deadline. Thereforgheredoesnot exist afeasible static

to a sporadidask with a minimumperiod of y/x. The an- priority assignment scheme for RBE tasks. [ ]
swer isthat an RBE task cannot be swdeledbecause in
order for a sporadic task to be feasible it is requiredthieae

exist a minimumseparatiortime between releases abn- never be feasibleThis is because processdemandunder a

iecut;r\]/ etJObS SL’ a:cta(sjﬁ_ih?r:e IS n.omlnlml:mt;]r;tgr—tarn;/a(; static priority scheduler is dunction of the times aivhich
Ime that can LEETINed Ithe environments ovated ;,ns are released. Ithe releaseprocess isnot constrained

the development othe RBE model. Returning to the mu{

timedi les f Secti d 2 th i | hen, as illustrated in the proof dteorem 5.1, high-
Imedia examples from Sectionsa (e mediasamples priority taskscan fully consume theprocessorand starve
processed by aRBE task will arrive at an averageate of

. . . ) ) lower priority tasks. (Note thatheorem5.1 places nocon-
one sample every/x time units but infact multiple instan-

i . . ; straints on the execution of RBE tasks. Thus the result
taneous arrivals are possible (and indeed often likely). holds independent ofwhether preemption isallowed or

The possibility of instantaneous arrivals (or mgemerally, whether resource sharing exists.)
the lack of aguaranteedninimum, non-zero, inter-arrival
time) implies that an RBE task cannot éguivalent to any
single sporadic task. Omaight therefore consider modelin
an RBE task as a collection »fsporadictasks,eachwith a
minimum period ofy time units. This attempt alsfails
because again, there is goaranteegminimum inter-arrival
time thatcan bedefinedfor any of thex sporadictasks.
While a collection ofx sporadictaskscan respond to si-

The essence of TheoreBl is that unless onkounds the
actual arrival rates ofvork, a static priorityschedulerwill

In contrast,processodemandunder anEDF scheduler is a
function of the times at whicteadlinesoccur and is inde-
%endent of the rates at which jobee actually releasedThis
can be observed hyoting that ineachexecution environ-
ment considered in Section 4, RBE tasks had the $sase
bility conditions assporadictasks. Therefore the feasibility
of the sporadictasks did not depend onthe fact that there

X existed aminimum separatiortime between successive job
multaneous events, thexan not can respond ta+k simul- releases of a task. The RBE analysis shows thatetssbil-

taneom:s et\r/]entstgor arty > 1rd If X+|é e\;;ahntsoccur(sj!nlultal;\- ity of the sporadic tasks dependealy on thefact that there
heously, then throcessordemand ofthe Sporadiclasks qyisrag aminimum separationtime between deadlines of
would exceecdthe capacity ofthe processor. The only solu:

. . >~ Vsuccessive jobs of a task.

tion would be todeferthe processing of work bgxtending

the deadlines of some tasks and this is exactly what the RBE demonstrates a fundamentiibtinction betweendead-
task model does. line-based scheduling methodsd static priority based
methods. Static prioritgcheduling methodsequire periodic

(or periodic inthe worstcase)job releasetimes. Deadline-

] ~ based scheduling methods require perig¢dicperiodic in the
Throughout we haveonsidereconly EDF taskscheduling. yorst case) job deadlines. Given that it is often the operating
This hasbeen for goodeason. As the followingheorem system or the application that assigieadiines totasks,
demonstrates, it isiot possible toscheduleany RBE task this means that the feasibility of a static priority scheduler is
set usingany static priority schedulinglgorithm. We show g function of the behavior of processedie external envi-
this by proving thatthere doesnot exist afeasible static ;onment, while the feasibility of deadlinedriven scheduler

priority assignment for RBEasks. That isfor any static js a function of the implementation of the computer system.
priority assignment to a set of RBE tasks, @a@ never

guarantee that all deadlines of all RBE task jobs wilirigt, MOreover, as one typically has more control over the im-
It will always be possible for a job to miss a deadline. ~ Plémentation of the systesoftwarethan they do over the
operation of the environment external, fromtheeoretical

signment scheme for RBE tasks. methods have a significaahd fundamental advantagever
Proof: Let T = {(X,, V1, 0y, ), ..., (. Y O G} be a set priority based methods when there is uncertainty inrates

of RBE tasks sorted in non-decreasing ordemphiprity (i.e., atwhich work is generated for a real-time system.

for any pair of task§; andT;, if i <], then jobs ofT; exe- Ajthough static priorityscheduling methods cannot bsed
cutes with higher priority than those ). Assume at timetg jmplement event-driven systems when the arrival rates of
0, N = [d; /c[]jobs of taskT;, i < n, are releasedimulta- eventsare unboundedone can, of course, emplgyolling
neously along with a single job release of tagk < j < n. methods and therelsmooth anyarrival process to conform
Sincei < j, jobs of taskT, have priority over jobs of T,. to any rate specification. This can be a higétffective tech-

5.2 On static priority scheduling of RBE
tasks
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nigue and indeed, as we discuss next, has theesubject of The TBSserveralgorithm was firstproposed bySpuri and
much researchzrom apracticalstandpoint, the issuthere- Buttazzo in[17], andlater extended bySpuri, Buttazzo and
fore comesdown to whether onot it is considered a moreSensini in [18]. The original TB&llocated goortion of the
efficient or parsimonious solution to pofbr eventarrivals processor’'s capacityjdenotedUg, to processaperiodic re-
anduse static priorityscheduling or todefer deadlines andquests. The remaining processor capatlty,is allocated to
use adeadline-basedcheduler. There clearly can be no operiodic tasks with hard deadlines. Aperiodic requests are
correct answer to this question. scheduledwvith periodictasks using the EDBcheduling al-
gorithm. When th&" aperiodicrequest arrives atme r,, it

is assigned a deadlige= max¢,, d._,) + CJ/Us whereC, is
the worst case execution time of #feaperiodic request and
Ug is the processor capacity allocated the TBS server.
Thus, deadlines ar@ssigned to aperiodic requestased on
the rate at which the TBServer can servihem, not at the

. rate which they are expected to arrive and not oragplica-
(PS)re_source allocationi2, 13, 15, 19, 21, 224ndthe total tion-specified requirements. Moreovehe aperiodic dead-
bandwidth serve{TBS) [17, 18]. lines areassignedsuch that the&k™ requestcompletesbefore
Proportional share resource allocatioruged toensurefair- the k+1° requeswill begin executing when thegre sched-
ness in resource sharing. It can also be usesthedulereal- uled with the EDF algorithm. That igperiodic requests are
time tasks [19]. In PS resource allocationygightis asso- processed in &CFS manner (relative to otheperiodic re-
ciatedwith eachtask that specifies the relatiwhare of a quests) at the rate at which the TBS server is abj@doess
CPU (or any otherresource)that the task shouldeceive them.

with respect toother tasks. Ashare represents a fraction
the resource’s capacity thataflocated to aask. Theactual
fraction of the resourcallocated tothe task isdependent on
the number of tasks competing for thesourceand their
relative weights. Ifw is the weightassociatedvith task T
andW is the sum of all weights associated with tasks in }
task setr, then the fraction of th€PU allocated totask T same way it wagombinedwith a periodic task set and

. W .. .
isf = . Thus, as competitiofor the CPU increases, thegchedulecpreemptively using a variation of EDF. It is not
fraction of the CPU allocated to any one tagkreaseslhis immediately clear that the semantics of a T&®ver can be

is in contrast to the RBE taskodel in whicheachtask is preserved if it iscombinedwith an RBE task set that is

guaranteed a fixed sharetble CPUequal to X ' no matter scheduled non-preemptively or that shares resources.

how much competitiorthere is forthe CPU (assuming theg Summary & Conclusions

task set is feasible). One can, of course, fixghare of the h ted lizati f th dic task
CPU allocated to a task in PS resource allocation by var)Wn avepresented ggeneralization of thesporadic tas

the task’s weight relative to the other task weights as t48 el developed by Mok [14] fahe real-time execution of

are created and destroyed [20]. However, note thedftedule event-driventasks in which noa priori characterization of
an RBE taskT with d < y usiﬁg PSI‘ESOliII’CGi"OCB.'[iOI’], a theactualarrival rates of events is known; only thepected

h £ X ¢ beallocated tothe task. which arrival rates of events i&known. We call thisnew task
share of-g~ must beallocated fothe task, WNICIWESEIVES 1,4 jelrate-based executiofRBE). In the RBE model, tasks

more resource capacity than is actually needed by the taskre expected to executdth an averageexecution rate ok

Thus, while RBEand PSresourceallocation both supportlimes everyy time units. When deadlines ofconsecutive
task execution rates, the systemiffer markedly in the RBE jobs of the same tasie given by thedeadline as-
flexibility allowed in task scheduling. PS resource allocatiplgnment functiorD;(j) defined inSection 3, EDFschedul-
allows variable execution rates while RBEnply defines a INg has been shown to be an optimal discipfarepreemp-
maximum execution rate. Theelative deadline of atask fivé scheduling, non-preemptive scheduliagd scheduling
executed under PS resouratiocation is dependent on the the presence of shared resources. Moreover, oneeciie
resource share allocated tioe task, which isdependent onfeasibility efficiently in all cases.
the task’s relativeweight. Therelative deadline of an RBEWe believe the RBE taskodel more natura”y models the
task isindependent othe task’s execution rate; it may bgctual implementation ofvent-driven, real-timesystems.
larger or smaller than itsparameter. RBE has beemsed tomodelthe execution of applications
ranging from multimedia computing to digital signaioc-
essing [5, 6, 10].

5.3 Comparison with other models of rate-
based execution

Beyondthe LBAP model discussed irsection 2,there are
additional models ofrate-basedexecution thatdeserve a
closer examinatiorand comparison with our RBEmodel.
Here we comparéhe RBE taskmodel to proportional share

qfhe TBSserveronly servesaperiodic requestand deadlines

are derived rathethan specified byapplications. In contrast,
the RBE task model assumes tasks execute atemge rate
with arbitrary deadlinegmodulo feasibility). The RBE task
odel does not directly suppaperiodic requests. However,

& TBS server can be combined with an RBE task set in the
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