
Generalized multiframe tasks

Sanjoy Baruah Deji Chen Sergey Gorinsky Aloysius Mok

Abstract

A new model for sporadic task systems is introduced. This model | the general-

ized multiframe task model | further generalizes both the conventional sporadic-tasks
model, and the more recent multiframe model of Mok and Chen. A framework for
determining feasibility for a wide variety of task systems is established; this framework
is applied to this task model to obtain a feasibility-testing algorithm that runs in time
pseudo-polynomial in the size of the input for all systems of such tasks whose densities

are bounded by a constant less than one.

Keywords: Recurring multiframe tasks, preemptive uniprocessor scheduling, hard dead-
lines, feasibility analysis.

1 Introduction

Multiframe tasks were introduced by Mok & Chen [6], as a generalization to the well-known
periodic task model of Liu & Layland [4]. A multiframe task is represented by a tuple

( ~E; P ), where ~E = [Eo; E1; : : : ; EN�1] is a vector of execution times, and P is the minimum
separation time. The task generates an in�nite succession of frames; the ready times of
consecutive frames are at least P time units apart, the execution requirement of the i'th
frame (i � 0) is Ei modN , and the deadline of each frame is P time units after its ready time.
Feasibility conditions were presented by Mok & Chen for the uniprocessor static-priority
scheduling of systems of such multiframe tasks.

In this paper, we study a natural generalization of the multiframe task model. In our
model { the generalized multiframe (gmf) task model { the multiframe model of Mok
& Chen is further generalized in that (i) the deadlines of frames are allowed to di�er from the
minimum separation; further, all the frames need not have the same deadlines, and (ii) all
the minimum separations need not be identical. Formally, a gmf task T is characterized by
the 3-tuple ( ~E; ~D; ~P ), where ~E; ~D and ~P are N -ary vectors [E0; E1; : : : ; EN�1] of execution
requirements, [D0;D1; : : : ;DN�1] of (relative) deadlines, and [P0; P1; : : : ; PN�1] of minimum
separations respectively. The interpretation is as follows: The i'th frame of task T has an
arrival time ai, a deadline ai + di, and an execution requirement of ei, where

� a0 � 0, and ai+1 � ai + Pi modN ,

� di = Di mod N , and

� ei = Ei mod N .

1

Sanjoy Baruah
Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. Generalized multiframe tasks. Real-Time Systems 17 (1), pp. 5-22. July 1999. 



-

5 10 15 20 25

6

?

1
R0

6

?

2
R1

6
?

5
R2

6
?

1
R3

6

?

1
R4

6

?

2
R5

6
?

5
R6

6
?

1
R7

6

?

1
R8

Figure 1: Example

Example 1 T = ([1; 2; 5; 1]; [2; 2; 8; 5]; [3; 2; 3; 4]) is a gmf task with N = 4. Figure 1 depicts
a legal sequence of frame arrivals, and the corresponding deadlines, for T (Ri denotes the
i'th frame, and the number above Ri denotes the execution requirement of Ri). Observe
that, as R3 and R4 demonstrate, it is not necessary that the i'th frame's deadline precede
the arrival time of the (i+1)'th frame. (We point out that in this sequence of frame arrivals,
each frame arrives at the earliest instant that it is legal for it to do so. We will revisit this
scenario in Section 3.1.)

This research: Our focus in this paper is on determining uniprocessor feasibility condi-
tions for systems of gmf tasks. That is, given a system of gmf tasks, how do we determine if
they can always (i.e., for any legal set of frame arrival times) be scheduled to meet all dead-
lines on a single processor by an optimal uniprocessor scheduling algorithm such as Earliest
Deadline First (EDF) [3] or Least Slack [5]? In order to answer this question, we abstract
away from gmf tasks in Section 2, and study a (very general) category of task systems sat-
isfying what we call the task independence assumptions. For such systems, we provide a
general methodology, based upon the concept of demand bound functions, for determining
feasibility. We apply this methodology to systems of gmf tasks in Section 3, to obtain an
algorithm for feasibility determination for such systems. Perhaps somewhat surprisingly, it
turns out that this problem is no more di�cult, from a run-time complexity point of view,
than determining feasibility in sporadic task systems [1, 2]. As a corollary to our main re-
sults, we also obtain an algorithm for determining feasibility for the multiframe model of
Mok & Chen, that complements the static-priority feasibility algorithm in [6].

Signi�cance of this research. The gmf task model is, in our opinion, the logical \next
step" in the succession of models that have been developed to represent recurring tasks
with minimum separation constraints. As was pointed out by Mok & Chen [6], the simplest
model | each task characterized by an execution requirement e and a minimum separation p
(deadlines are \implicit," i.e., they are assumed to occur p units after the frame's arrival) |
is a trivial extension of the periodic task model of Liu & Layland [4]. Mok's generalization [5]
explicitly added the deadline d, with the interpretation that the deadline of a frame occurs
d time units after its arrival. The multiframe model of Mok & Chen [6] permitted each task
to cycle through a given �nite sequence of frame execution times, but did away with the

2



sporadic, implicit deadlines [4]

sporadic, explicit deadlines [5] multiframe [6]

generalized multiframe

��
��
��
��*

HH
HH

HH
HHY

HH
HH

HH
HY

��
��
��
�*

Figure 2: Relationship between the various sporadic task models

explicit deadline(s). The gmf-task model adds explicit deadlines to the multiframe model,
and, for good measure, permits the minimum separations, too, to cycle through a given
�nite sequence of values. The relationship between the various models for sporadic tasks is
graphically shown in Figure 2, where \A! B" denotes that the model B is a generalization
of model A (the \!" relation is, of course, transitive).

At �rst glance, the gmf model may appear to be easily analyzed for feasibility by trans-
forming each gmf task into a set of regular sporadic tasks (in the sense of Mok [5]) with
\o�sets." Thus for example, a gmf task ([1; 2]; [2; 2]; [10; 10]) would be considered equiva-
lent, for feasibility-analysis purposes, to two sporadic tasks T1 and T2 such that both have
deadline 2 and minimum-separation 20, T1 has execution requirement 1, and T2 has exe-
cution requirement 2 and is \o�set" from T1 by 10 units (in the sense that the �rst frame
of T1 arrives at 0 and successive frames arrive exactly 20 units apart, while the �rst frame
of T2 arrives at 10 and successive frames arrive exactly 20 units apart). However, such an
approach to feasibility-analysis is incorrect. (To see why, consider a gmf system consisting
of two tasks { the one above, and the task ([1]; [2]; [20]). Using the same reduction, this
second gmf task would transform to a sporadic task with execution requirement 1, that �rst
arrives at 0 and has successive arrivals exactly 20 units apart. The system would therefore
be considered feasible. However, it is actually of course infeasible { consider the situation
when the �rst frame of the second task arrives at the same instant as the second frame of the
�rst task.) The problem lies in the fact that such a transformation fails to correctly identify
the \worst-case" combination of frame arrivals: indeed, as we will see in the following sec-
tions, identifying such worst-case combinations of events is quite non-trivial, and a general
methodology for doing so is one of the main new ideas developed here.

3



2 General framework

In this section, we consider a very abstract model of task systems. We study the feasibility
problem for this abstract model, and provide a framework for determining feasibility for task
systems in this model. This abstract model is de�ned as follows.

A task is de�ned to be an entity that generates a (possibly in�nite) sequence of jobs or
frames. Each job is characterized by an arrival time, a deadline, and a (worst-case) execution
requirement . Each task is characterized by a workload constraint , which determines the exact
nature of the sequence of jobs that a task may generate. A set of jobs generated by a task
is called legal if it satis�es the workload constraint associated with the task. A task system
consists of several tasks which share a resource. This research is restricted to the study of
task systems having only one copy of the resource. This resource is assumed to be completely
preemptable.

Task independence assumptions. We make the following assumptions regarding the
various tasks in a task system:

1. The runtime behavior of a task does not depend upon the behavior of other tasks in the
system. That is, each task is an independent entity, perhaps driven by separate external
events. It is not permissible for one task to generate a job directly in response to another
task generating a job. Instances of task systems not satisfying this assumption include
systems where, for example, all tasks are required to generate jobs at the same time
instant, or where it is guaranteed that certain tasks will generate jobs before certain
other tasks. (However, such systems can sometimes nevertheless be represented in such
a manner as to satisfy this assumption, by modelling the interacting tasks as a single
task which is assumed to generate the jobs actually generated by the interacting tasks.)

2. The workload constraints can be speci�ed without making any references to \absolute"
time. That is, speci�cations such as \Task T generates a job at time-instant 3" are
forbidden.

There are several scenarios within which this assumption holds. Consider �rst a dis-
tributed system in which each task executes on a separate node (jobs correspond to
requests for time on a shared resource) and which begins execution in response to an
external event. All temporal speci�cations are made relative to the time at which the
task begins execution, which is not a priori known.

As another example, consider a distributed system in which each task (i.e., the as-
sociated process) maintains its own (very accurate) clock, and in which the clocks of
di�erent tasks are not synchronized with each other. The accuracy of the clocks permit
us to assume that there is no clock drift, and that all tasks use exactly the same units
for measuring time. However, the fact that these clocks are not synchronized rules out
the use of a concept of an absolute time scale.

(We observe that periodic task systems | where periodic task T is speci�ed by the
parameters start-time s, computation requirement c, and period p, with the intepreta-
tion that T must be scheduled for c units of time over interval [s+kp; s+kp+p) for all
integer p | violate the task independence assumption since the start-times are de�ned

4



T1 T2
J11 request(1; 5); idle(3;1);
J12 (idle(1; 10); request(1; 2)) J21 request(2; 4);

jj J22 (idle(2; 8); request(3; 7))
J13 (idle(6; 6); request(2; 3))

The \request(x; y)" command issues a non-blocking request for x units of time on the shared
resource with a deadline y time units from the instant the request is made. The \idle(x; y)"
command indicates that the task is idle (actually, doing something that does not involve the
shared resource) for an interval of time that is at least x and no more than y units long. The
\;" indicates sequential composition, and the \jj" indicates parallel composition. Each task
may begin execution at any time.

Figure 3: Example tasks.

in terms of an absolute time scale. However, sporadic task systems [5, 1, 2], speci�ed
in terms of computation requirements, relative deadlines, and minimum separations,
satisfy this assumption, as do systems of gmf-tasks.)

In terms of legal sets of jobs, the �rst condition above implies that a set of jobs generated
by an entire task system is legal in the context of the task system if and only if the jobs
generated by each task are legal with respect to the constraint associated with that task.
Letting an ordered 3-tuple (a; e; d) represent the job generated by some task T with ar-
rival time a, execution requirement e, and deadline d, the second condition implies that if
f(ao; eo; do); (a1; e1; d1); (a2; e2; d2) : : :g is a legal arrival set with respect to the workload con-
straint for task T , then so is the set f(ao�x; eo; do�x); (a1�x; e1; d1�x); (a2�x; e2; d2�x) : : :g,
where x may be any real number.

The task independence assumptions are extremely general and are satis�ed by a wide
variety of the kinds of task systems one may encounter in practice. As described above, spo-
radic task systems satisfy these assumptions, as do \worst-case" periodic task systems [4]
(which are periodic task systems where each task may choose any start-time| it is proved [4]
that the worst-case occurs when all tasks have the same start time), even if each periodic
task may specify a deadline in addition to computation requirment and period, and systems
of multiframe tasks [6]. So do more sophisticated systems, such as, for example a teleconfer-
encing application: \A process generates successive multi-packet video-message at least p1
time units apart, and each video-message is followed by a multi-packet audio-message within
p2 time units (p2 < p1=3)," or the system described below in Example 2.

Example 2 Consider a system � of two tasks T1 and T2 that share a resource (Figure 3).
Task T1 may begin execution at any time, and generates 3 jobs | J11 arrives at the shared
resource immediately when T1 begins execution, J12 arrives between 1 and 10 time units after
T1 begins execution, and J13 arrives exactly 6 time units after T1 begins execution. Task T2,
too, may begin execution at any time, and generates 2 jobs with J21 arriving no earlier than
3 time units after T2 begins execution, and J22 arriving between 2 and 8 time units after J21.

5



We will formally prove later in this section that this task system is in fact infeasible;
meanwhile, we encourage the reader to informally verify that this is indeed so.

It is noteworthy that determining feasibility for many interesting1 tasks systems not
satisfying the task independence assumptions (such as periodic task systems with deadlines
not equal to period) turns out to be computationally di�cult (often NP-hard), and hence of
limited interest from the perspective of e�cient determination of feasibility.

De�nition : Demand Bound Function. Let T be a task, and t a positive real number.
The demand bound function dbf(T; t) denotes the maximum cumulative execution require-
ment by jobs of T that have both arrival times and deadlines within any time interval of
duration t.

Example 3 Consider again the example task system from Example 2. We plot the demand
bound functions for tasks T1 and T2 below:

-

6

t
2 4 6 8 10

dbf(T1; t)

2

4

6

-

6

t
2 4 6 8 10

dbf(T2; t)

2

4

6

These functions have been determined by careful examination of the structures of the
tasks; we illustrate the process by means of a few examples, and invite the reader to validate
that the remainders of the functions are plotted correctly. Let t1 denote the time at which
task T1 begins execution:

dbf(T1; 3) = 3: If J12 and J13 both arrive at time t1 + 6, then they both have their arrival
times and deadlines in the interval [t1 + 6; t1 + 9).

dbf(T1; 9) = 4: If J12 arrives between t1+1 and t1+ 7, then J11, J12 and J13 all have arrival
times and deadlines in the interval [t1; t1 + 9).

Let t2 denote the time at which task T1 begins execution, and let t0 denote the arrival time
of J21 (t

0 � t2 + 3):

1By \interesting" we mean, at the least, that the tasks generate a potentially in�nite sequence of jobs,
and that these jobs not all be too constrained in the allowable deadlines that may be speci�ed.

6



dbf(T2; 4) = 2: This corresponds to the interval between J21's arrival time and deadline.

dbf(T2; 7) = 3: This corresponds to the interval between J22's arrival time and deadline.

dbf(T2; 9) = 5: Suppose J22 arrives at the earliest possible time | i.e., at t0 + 2. Then both
J21 and J22 have their arrival times and deadlines in the interval [t0; t0 + 9).

Theorem 1 Task system � is infeasible if and only if
P

T2� dbf(T; t) > t for some positive
real number t.

Proof: We prove the implicaton in one direction here, and outline how the other direction
may be proved. The proof is similar to ones that appear in [1, 2], the interested reader is
referred there for further details.

If: Suppose that
P

T2� dbf(T; to) > to. Consider any time interval [ts; ts + to).

For each T 2 � , let w(T )
def

= dbf(T; to). By the de�nition of demand bound functions,
there is an interval of duration to during which T can generate jobs with a total execution
requirement equal to w(T ), such that both their arrival times and deadlines lie within the
interval. As a consequence of the task independence assumption, it follows that T can
generate a similar set of jobs with arrival time and deadlines within the interval [ts; ts + to),
such that the total execution requirement of these jobs is also w(T ). Let R(T ) denote this
set of jobs. It is straightforward to see that no scheduling algorithm can schedule the set of
jobs

S
T2� R(T ), since each job has arrival time and deadline within the interval [ts; ts + to),

and the total execution requirement of all the jobs exceeds the length of the interval.

Only if: Let � be an infeasible task system. Consider an infeasible set of jobs of � , with
the earliest job arriving at ts, on which EDF misses its �rst deadline at tf . There it can be
shown, using techniques very similar to the ones in [1, 2], that there is an infeasible set of
jobs of � such that

� every task has its earliest job arrive at time ts, and subsequent jobs arrive at the earliest
possible times, and

� EDF never idles the processor on this set of jobs prior to missing a deadline at some
time t0f � tf .

The total execution requirement of this set of jobs over [ts; t0f ) therefore exceeds t0f � ts;
furthermore, this total execution requirement is exactly equal to

P
T2� dbf(T; t

0
f � ts). The

theorem follows.

The statement of Theorem 1 immediately suggests a procedure for checking whether a
system � of tasks is feasible:

1. Determine the demand bound function for every task T in � .

2. Determine if there exists a t 2 R such that

(
X
T2�

dbf(T; t)) > t

7



Example 4 To verify whether task system � from Example 2 is feasible, it su�ces to com-
pute dbf(T1; t) + dbf(T2; t) at all points t such that dbf(T1; t�) < dbf(T1; t) or dbf(T2; t�) <
dbf(T2; t):

t 2 3 4 7 9

dbf(T1; t) + dbf(T2; t) 1 + 0 = 1 3 + 0 = 3 3 + 2 = 5 3 + 3 = 6 4 + 5 = 9

Since dbf(T1; 4) + dbf(T2; 4) > 4, we conclude that � is infeasible. An example of an un-
schedulable scenario is the following: Consider an interval [ts; ts+4). Suppose that T1 begins
execution at ts � 6, and jobs J11; J12; and J13 arrive at times ts � 6; ts; and ts respectively.
Suppose further that T2 begins execution at ts � 3, and has job J21 arrive at time ts . Then
jobs J12; J13 and J22 , with a total execution requirement of 5, all arrive and have deadlines
within the interval [ts; ts + 4), and are therefore unschedulable:

-

6

6

?
6

?

6

?

T1

J11

J12

J13

�6 �4 �2 ts +2 +4 +6 +8

-

6

6

?

T2

J21

�6 �4 �2 ts +2 +4 +6 +8

Comment: Since the demand bound function for each task T has an in�nite domain (the
real numbers), it is not possible to explicitly compute the demand bound functions in (1)
above. Instead, an attempt must be made to implicitly determine dbf(T; t) for given T and
t, as and when required. In order to be able to do so, we must know more about the exact
nature of the tasks, and the manner in which they generate jobs.

3 Feasibility determination in gmf task systems

We now return to the problem of determining feasibility for a system of gmf tasks. Ob-
serve that gmf task systems satisfy the task independence assumptions of Section 2; hence
the feasibility-determination methodology described above | determine the demand-bound
function dbf(T; t) for every task T and every time-instant t, and then determine if there is a
t such that (

P
T2� dbf(T; t)) > t | is applicable.

8



The l-MAD property. A gmf-task T satisfying the localized Monotonic Absolute Dead-
lines (l-MAD) property satis�es the additional constraint that its i'th frame has a deadline
no later than that of its (i+ 1)'th frame; i.e., that Di � Pi +D(i+1) mod N for all i. (Observe
that the example task system depicted in Figure 1 satis�es the l-MAD property.)

The l-MAD property accurately captures the characteristics of a wide variety of real-
time applications. Consider, for example, an application in which a remote multipurpose
sensor samples several di�erent kinds of signals in a round-robin fashion, with each kind
characterized by a size (e.g., number of packets) and a latency requirement, that need to be
transported over a packet-based circuit-switched network to a processing center. The sensor
can be represented as a task T = ( ~E; ~D; ~P ), with N { the dimension of the vectors { equal
to the number of di�erent kinds of data sampled, Ei and Di representing the size and the
latency requirement of the i'th kind of data, and Pi representing the time lapse between
the instants a sample from the i'th and (i + 1) mod N 'th kind of data is obtained. With
the network modelled as the shared resource, and the l-MAD property re
ecting the fact
that data from the sensor is sent into the network in a �rst-in �rst-out fashion, this model
very accurately represents the tra�c generated by the sensor and injected into the network.
Several other applications (including the ones described in [6]) particularly from the domain
of real-time networking, are naturally described as gmf tasks satisfying the l-MAD property.

Our goal in this section is to design an e�cient feasibility-analysis test for systems of gmf-
tasks, with or without the l-MAD property. For ease of exposition, we �rst focus on systems
satisfying the l-MAD property | in Sections 3.1 and 3.2 below, we present a feasibility test
for a system of gmf-tasks all of which satisfy the l-MAD property. Later (Section 3.3) we
outline how to extend this feasibility test to handle systems of tasks that may not be l-MAD
| it will be seen here that all the major ideas are exactly those used in the l-MAD case.

3.1 Determining the demand bound functions

Recall that a gmf task T is characterized by the 3-tuple ( ~E; ~D; ~P ), where ~E; ~D and ~P
are N -ary vectors [E0; E1; : : : ; EN�1], [D0;D1; : : : ;DN�1], and [P0; P1; : : : ; PN�1], with Di �
Pi +D(i+1) mod N for all i.

It is not di�cult to see that the worst-case workload, as quanti�ed by dbf(T; t), occurs
(for each value of t) when task T generates a job at some time instant to, and then generates
subsequent jobs at the earliest possible times in order to have as many jobs as possible with
deadlines at or before to+ t. Unfortunately, it is not immediately obvious what this �rst job
is, and indeed the choice of the �rst job for the interval which determines dbf(T; t) depends
upon the choice of t, and is di�erent for di�erent t. (For example, in Figure 1 dbf(T; 2) is
de�ned by job R1 while dbf(T; 5) is de�ned by the job R0 followed as soon as legally possible
by the job R1.)

Consider the set of jobs �(T ) = fRo; R1; R2; : : :g such that (letting a(Ri), e(Ri) and d(Ri)
denote the arrival time, execution requirement, and deadline respectively of job Ri):

� a(Ro) = 0 and a(Ri+1) = a(Ri) + Pi mod N ,

� d(Ri) = a(Ri) +Di mod N , and

� e(Ri) = Ei mod N .

9



Algorithm build-list

1. Generate ordered pairs (\workload", \interval size") as follows:
For i 0 to N � 1, do

For j  0 to N � 1 do
generate the ordered pair (e(Ri) + e(Ri+1) + � � �+ e(Ri+j); d(Ri+j)� a(Ri)).

2. Sort the ordered pairs into an array in increasing order of interval size (within interval
size, in decreasing order of workload).

3. Delete all those ordered pairs whose workloads are not strictly larger than the workloads
of all ordered pairs occurring prior to them in the sorted array.

Figure 4: Constructing a lookup list of dbf(T; t) for small t.

That is, Ro; R1; R2; : : : denote the jobs that are generated by T if T generates its �rst job |
Ro | at time 0, and generates each subsequent job at the earliest possible time. (Figure 1
denotes the �rst few jobs in �(T ) for the examplemultiframe task T considered in Example 1.)

The crucial observation is that, if job Ri is to be the �rst job of an interval that determines
dbf(T; t) for some t, then the jobs which contribute to this worst-case workload are exactly
those jobs in the ordered sequence [Ri; Ri+1; Ri+2; : : : ; ] which have deadlines � a(Ri) + t.
One could therefore in principle identify all candidate intervals that determine the value
of the demand-bound function for di�erent values of t by simply enumerating, for each
pair of positive integers i; j; the cumulative execution requirement and interval-size if job
Ri were to be the �rst job of a dbf-determining interval and job Ri+j were to be the last
job in the interval. The demand bound function can be determined from this enumerated
list: for each t, dbf(T; t) is equal to the largest execution requirement from among all the
enumerated pairs which have interval-size no greater than t. Of course, such a procedure
will never terminate, since the variables i and j grow without bound. (Observe, however,
that we only need consider Ri 2 fRo; R1; R2; : : : ; RN�1g; this is because every sequence of
jobs [RN+i; RN+i+1; : : : ; RN+i+j ] generates exactly the same ordered pair as the sequence
[Ri; Ri+1; : : : ; Ri+j ].)

Figure 4 presents a procedure that constructs a list of execution-requirments generated
by every possible sequence of at most N jobs, and the size of the interval within which
this execution requirement must be met. It is relatively straightforward to observe that
Algorithm build-list runs in time O(N2 logN) and produces a list sorted by interval size such
that, for a given t, dbf(T; t) can be determined from this list in O(logN) time, using binary
search (provided, of course, that t is small enough to be present in this list).

Example 5 Consider once again the gmf task T of Example 1. Algorithm build-list generates
one ordered pair for each combination of i and j, as i and j each range over 0; 1; 2; and 3:

10



j = 0 j = 1 j = 2 j = 3
i = 0 (1; 2) (3; 5) (8; 13) (9; 13)
i = 1 (2; 2) (7; 10) (8; 10) (9; 11)
i = 2 (5; 8) (6; 8) (7; 9) (9; 12)
i = 3 (1; 5) (2; 6) (4; 9) (9; 17)

After sorting, the list looks as follows:
h(2; 2); (1; 2); (3; 5); (1; 5); (2; 6); (6; 8); (5; 8); (7; 9); (4; 9); (8; 10); (7; 10); (9; 11); (9; 12); (9; 13);
(8; 13); (9; 17)i :

Upon deleting redundant pairs, the remaining ordered pairs are:

h(2; 2; )(3; 5); (6; 8); (7; 9); (8; 10); (9; 11)i

Consider now an interval [ts; tf ] encompassing more than N jobs. Let Rs be the �rst,
and Rf the last, job contained entirely within this interval:

s
def

= min i 3 a(Ri) � ts; f
def

= max i 3 d(Ri) � ts :

Observe that the total execution requirement of all the tasks in �(T ) over the interval [ts; tf ]
is
P

s�i�f e(Ri).

Suppose that there are qN + r jobs in �(T ) in the interval [ts; tf ], where r < N . That is,
r and q are de�ned thus:

r
def

= (f � s+ 1) mod N ; q
def

= (f � s+ 1 � r)=N :

These qN + r jobs in �(T ) that contribute to the workload over [ts; tf ] can be grouped
in the following manner:

Rs Rs+1 � � � � � � � � � Rs+N�1

RN+s RN+s+1 � � � � � � � � � Rs+2N�1

� � � � � � � � � � � � � � � � � �
R(q�1)N+s R(q�1)N+s+1 � � � � � � � � � Rs+qN�1

RqN+s RqN+s+1 � � � Rf

The jobs in each row in the above grouping together have a total execution requirement of
E

def

=
PN�1

i=o Ei; the total execution requirement of all the tasks together is therefore

qE +
X

s+qN�i�f

e(Ri) : (1)

Since a(Rs+qN ) = ts+qP , it follows that the total execution requirement over [ts; tf ] is equal
to qE plus the total execution requirement over [ts + qP; tf ]; furthermore, since the interval
[ts + qP; tf ] contains r < N jobs, the cumulative execution-requirement over this interval
can be obtained from the list generated by Procedure build-list. Algorithm compute-dbf

(Figure 5) is based upon this observation. Dmin denotes the smallest relative deadline. The
function-call get-from-list(t) uses the sorted list constructed by Algorithm build-list to return
dbf(T; t) | as discussed above, this can be accomplished in O(logN) time.

11



compute-dbf(t)

/*E
def

=
N�1X
i=o

Ei; P
def

=
N�1X
i=o

Pi; Dmin
def

= min
o�i�N�1

fDig */

if t < Dmin �! return 0

�! return

��
t�Dmin

P

�
E + get-from-list(Dmin + (t�Dmin) mod P )

�

Figure 5: Algorithm compute-dbf

Example 6 Consider once again the task T from Example 1, upon which we had simulated
the behavior of Algorithm build-list in Example 5. Suppose now that we wish to determine
dbf(T; 15) by Algorithm compute-dbf. Noting that P = 12, Dmin = 2, and E = 9, we have

dbf(T; 15) =
��

15 � 2

12

�
� 9 + get-from-list(2 + (13 mod 12))

�
= 9 + 2 = 11 :

dbf(T; 100) =
��

100 � 2

12

�
� 9 + get-from-list(2 + (98 mod 12))

�
= 72 + 2 = 74 :

dbf(T; 11) =
��

11 � 2

12

�
� 9 + get-from-list(2 + (9 mod 12))

�
= 0 + 9 = 9 :

3.2 Feasibility determination

In Section 3.1 we have seen how Algorithm build-list preprocesses a given gmf task T in
O(N2 logN) time (where N is the dimension of the vectors representing T ) to generate
data-structures that allow dbf(T; t) to be computed in O(logN) time for any t.

Let T = ( ~E; ~D; ~P ) be any gmf task; ~E = [Eo; : : : ; EN�1]; ~D = [Do; : : : ;DN�1]; and
~P = [Po; : : : ; PN�1]. We now de�ne a reduction from T to a set 
(T ) of \regular" sporadic
tasks with deadlines in the sense of [5]2.

Let h(w1; t1); (w2; t2); : : : ; (wm; tm)i denote the sorted list of (workload, interval-size) or-
dered pairs generated by Algorithm build-list on task T . (Observe that wi < wi+1, and
ti < ti+1, for all i, 1 � i < m; and that wm � E, where E is as de�ned in Figure 5.) We
de�ne the set 
(T ) as follows:


(T )
def

= f (wo; to; P ); (w1 � wo; t1; P ); (w2 �w1; t2; P ); : : : ;

: : : ; (wm�1 �wm�2; tm�1; P ); (wm � wm�1; tm; P ) g (2)

where P
def

= Po + P1 + P2 + � � �+ PN�1.

2Recall that such tasks are represented by a 3-tuple (e; d; p), where e represents the execution requirement
of each frame (job) generated by the task, d the time interval between the arrival-time and the deadline of
each frame, and p the minimum time interval between the arrival instants of successive frames.

12



Example 7 In Example 5, we had traced the behavior of Algorithm build-list on the task T
of Example 1. Using the sorted list of ordered pairs generated by Algorithm build-list, 
(T )
is seen to equal

f(2; 2; 12); (1; 5; 12); (3; 8; 12); (1; 9; 12); (1; 10; 12); (1; 11; 12)g :

It is not hard to see that the workload generated by 
(T ) when each task in 
(T ) generates
its �rst job at time 0, and each subsequent job as soon as legal (i.e., exactly at times k � P ,
for all k 2 N) is exactly the same as that generated by �(T ):

Lemma 1 For all gmf tasks T and all time intervals t

dbf(T; t) =
X

T 02
(T )

dbf(T 0; t) :

Theorem 2 follows.

Theorem 2 A system of gmf tasks � is feasible on a single processor if and only if the
system of sporadic tasks [

T2�


(T )

is feasible on a single processor3.

Thus, we have reduced the problem of determining feasibility of a set of gmf tasks to
the problem of determining feasibility of a set of \regular" sporadic tasks. This reduction
consists of calls to Algorithm build-list, followed by a simple multiset union operation, and
is easily seen to take O(n2 log n) time, where n is the length of the representation of the gmf
task system.

The problem of determining feasibility of a system of sporadic tasks has been previously
studied [1, 2]. The major result is that the sporadic task system f(e1; d1; p1); : : : ; (en; dn; pn)g
can be tested for feasibility in time O(log n � �

1�� �max1�i�nfpi� dig), where �
def

=
Pn

i=1
ei
pi
. As

a consequence, we conclude that a gmf task system � consisting of n gmf tasks4 be tested
for feasibility in time

O(log n �
�

1� �
�max
T2�
f(Po + P1 + � � �+ PN�1)�Dog) ;

where �
def

=
P

T2�(Eo + E1 + � � � + EN�1)=(Po + P1 + � � � + PN�1) is the density of the task
system. No feasible task system can have a density greater than one; for task systems
with density a priori bounded from above by some constant c < 1, Theorem 2 suggests a
pseudopolynomial-time algorithm for determining feasibility for a system of gmf tasks.

3Here the \union" operator {
S

{ de�nes a \multiset" union; i.e., duplicate tasks are not removed from
the resulting system.

4Recall that each task T 2 � is represented by three vectors of length N each; T
def

=
([Eo; : : : ; EN�1]; [Do; : : : ; EN�1]; [Po; : : : ; PN�1]).

13



3.3 GMF-task systems without the l-MAD property

In the preceding, we have assumed that the gmf-task system satis�ed the l-MAD property
|- that each task T satis�ed Di � Pi + D(i+1) modN for all i. We had argued that such
task systems are likely to be the ones that arise most frequently in practice, and had hence
developed an e�cient feasibility test for these systems. For the sake of completeness, we
brie
y outline how the preceding results may be extended to handle systems of tasks that
do not satisfy the l-MAD property.

For each gmf task T , Algorithm build-list will once again build a table containing dbf(T; t)
for small enough t, and an analog of Equation 1 will form the basis of using this table to
compute dbf(T; t) for larger t. When T satis�ed the l-MAD property, we saw that it was
su�cient to have Algorithm build-list only consider intervals whose workload was comprised
of at most N jobs. For the general case, however, this is not su�cient: Consider a gmf
task T = ([91; 1]; [100; 1]; [5; 5]). This task is clearly infeasible in itself (consider its density);
however, the smallest value of t for which dbf(T; t) > t is t = 100, and there will be a
total of 11 jobs with both arrival times and deadlines within this interval with a cumulative
execution requirement of 101.

Recall that Equation 1 permitted us to compute dbf(T; t) for arbitrarily large t, given
the base values explicitly computed by Algorithm build-list. Let Dmax be de�ned as follows:

Dmax
def

= max
0�i<N

fDig:

The following theorem provides the analog of Equation 1 for tasks that do not necessarily
satisfy the l-MAD property.

Theorem 3 dbf(t+mP ) = dbf(t) +mE, where Dmax � t < Dmax + P and m 2 N.

Proof: Similar to the derivation of Equation 1; details are omitted here.

As a consequence of this theorem, we know what Algorithm build-list must compute |-
a lookup table of values of dbf(T; t) for all t < Dmax + P .

To summarize:

� Algorithm build-list, using a strategy very similar to the one depicted in Figure 4,
generates all non-redundent ordered pairs (\workload", \interval size") for all intervals
of size < Dmax+P . This can be done in timeO((1+Dmax=P )N2 �log((1+Dmax=P )N)).
And, each lookup of this table would take time O(log((1+Dmax=P )N)). Observe that,
when Dmax � P | as is the case with l-MAD tasks | these reduce to the complexities
of the corresponding operations in Section 3.1.

� Algorithm compute-dbf is modi�ed as follows:

compute-dbf(t)

/*E
def

=
N�1X
i=o

Ei; P
def

=
N�1X
i=o

Pi; Dmin
def

= min
o�i�N�1

fDig ; Dmax
def

= max
o�i�N�1

fDig */

if t < Dmax + P �! return 0

�! return

��
t�Dmax

P

�
E + get-from-list(Dmax + (t�Dmax) mod P )

�

14



� De�ning 
(T ) from the table generated by Algorithm build-list as in Equation 2, we
conclude that Theorem 2 holds for general gmf tasks as well, and can once again reduce
the problem of feasibility determination to one of feasibility determination for a set
of \regular" sporadic tasks. And, this system of sporadic tasks can be analyzed in
pseudo-polynomial time, provided the density of the task system is a priori bounded
from above by some constant c < 1,

4 Conclusions

Tasks that generate a potentially in�nite sequence of frames, with consecutive frame ar-
rivals separated by a speci�ed minimum time interval, arise frequently in real-time systems.
Starting with the seminal work of Liu and Layland [4], several increasingly more sophisti-
cated models have been proposed for such task systems. These include the model devised
by Mok [5], and the more recent multiframe model of Mok and Chen [6]. We have described
here what we believe is the next logical generalization, presenting a model which uni�es
the incompatible models in [5] and [6]. Somewhat surprisingly, while this new model buys
us considerably more expressive prower, it turns out that feasibility determination in this
generalized model is no more di�cult (from a run-time complexity point of view) than the
earlier, simpler models | this we show by actually designing a feasibility testing algorithm
for systems of gmf tasks.

References

[1] S. Baruah, A. Mok, and L. Rosier. The preemptive scheduling of sporadic, real-time
tasks on one processor. In Proceedings of the 11th Real-Time Systems Symposium, pages
182{190, Orlando, Florida, 1990. IEEE Computer Society Press.

[2] Sanjoy Baruah. The Uniprocessor Scheduling of Sporadic Real-Time Tasks. PhD thesis,
Department of Computer Science, The University of Texas at Austin, 1993.

[3] M. Dertouzos. Control robotics : the procedural control of physical processors. In
Proceedings of the IFIP Congress, pages 807{813, 1974.

[4] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20:46{61, 1973.

[5] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment. PhD thesis, MIT Laboratory for Computer Science, May 1983.
Technical Report MIT/LCS/TR-297.

[6] Aloysius K. Mok and Deji Chen. A multiframe model for real-time tasks. In Proceedings
of the 17th Real-Time Systems Symposium, Washington, DC, 1996. IEEE Computer
Society Press.

15



Procedure feasibility(� )

� Call Algorithm build-list on each Ti 2 � .

� Construct a priority queue Q of 3-tuples (time, task-id, demand), with the 3-tuple
with the smallest value of time having greatest priority.

� For each task Ti, let ti be the smallest t such that dbf(Ti; t) > 0 | ti is easily
determined from the list constructed by Algorithm build-list. Insert (ti; Ti; dbf(Ti; ti))
into Q

�
S  0
repeat f

(to; To; d) deletemin(Q)
S  S + d; if (S > to) return \infeasible"

determine the smallest t0 > to such that dbf(To; t0) > dbf(To; to)
insert (t0; To; dbf(To; t0)� dbf(To; to)) into Q
g

Figure 6: Feasibility determination for a system of gmf tasks

Appendix

In Section 3.2, we described how a gmf task system could be tested for feasibility by
reducing each gmf task T to a set 
(T ) of \regular" sporadic tasks. We now brie
y outline
how feasibility determination of a system of gmf tasks may actually be perfromed starting
from �rst principles, without �rst reducing to regular sporadic tasks. Given a system � of
gmf tasks to be scheduled on a single processor, Procedure feasibility (Figure 6) determines
if � is feasible.

Each task is initially preprocessed by Algorithm build-list, and a priority queue is con-
structed that will contain future time-instants at which the sum of the demand bound
functions {

P
Ti2�

dbf(Ti; t) { is to be incremented, and by how much. (Note that it is
straightforward to determine, for any given to, the smallest t0 > to at which dbf(T; t) in-
creases again | from Algorithm compute-dbf (Figure 5), it follows that this occurs at
the earliest t0 > to at which either(i) get-from-list(t0 mod P ) > get-from-list(to mod P ), or
(ii) b(t0 �Dmin)=P c > b(to �Dmin)=P c.) The variable S contains this sum of the demand
bound functions at the \current time," which is intitally zero. Upon each iteration of the
loop, the current time is updated to the value of time returned by the priority queue, which
is when the next increment in S is to occur. S is updated to re
ect this increase in dbf(To; t)
at this new current time to, and a new 3-tuple representing the next increment to dbf(To; t)
| at time t0 | is inserted into the priority queue.

16



This loop iterates until a t is found for which
P

Ti2�
dbf(Ti; t) > t; if � is feasible, it will

never terminate. However, using techniques very similar to those used in [1, Lemma 6] (see
also [2]), it can be shown that if � is infeasible, then there is a t for which Procedure feasibility

reports \infeasible" which is no greater than5

�

1 � �
�max
T2�
f(Po + P1 + � � �+ PN�1)�Dog ;

where �
def

=
P

T2�(Eo + E1 + � � � + EN�1)=(Po + P1 + � � � + PN�1) is the density of the task
system.

5Recall that each task T 2 � is represented by three vectors of length N each; T
def

=
([Eo; : : : ; EN�1]; [Do; : : : ; EN�1]; [Po; : : : ; PN�1]).

17




