
On-line Scheduling in the Presence of Overload

S. Baruah t G. Koren t B. Mishrat A. Raghunathan tt L. Rosier t D. Shasha

Dedicated to the memory of OUT fiiend and colleague, DT. Louis Rosier

AESTRACT

We consider a problem from the domain of real-time sys-
tems - the preemptive scheduling of sporadic tasks on a
uniprocessor. A task may arrive at any time, and is charac-
terized by a value that reflects i ts importance, an execution
time that is the amount of processor time needed to com-
pletely execute the task, and a deadline by which the task
is to complete execution. The goal is to maximize the sum
of the values of the completed tasks. The off-line version of
this problem - where the timing constraints of all tasks are
given as input - is NP-hard. With respect to the more re-
alistic on-line setting (common to red-time systems) where
nothing is known about a task until i t arrives (at which in-
stant all relevant parameters are known), we design an on-
line scheduling algorithm that achieves optimal performance
when the system is underloaded, and provides a non-trivial
performance guarantee when the system is Overloaded. To
our knowledge, this is the first algorithm that achieves any
such guarantee. We implement our algorithm using sim-
ple data structures to run at a cost of O(1ogn) time per
task, where n bounds the number of tasks in the system
at any instant. Furthermore, we derive upper bounds on
the best performance guarantee obtainable by any on-line
algorithm in a variety of settings. Our experimental data
indicate that our algorithm is comparable to a widely used
heuristic, Locke’s best effort scheduler, in most cases, while
guaranteeing performance even for the pathological cases
that cripple Locke’s heuristic.

1 Introduction

Suppose you are building software to control processes
within a nuclear power plant. Periodically, your control
system will need to monitor the various parameters of
the power plant, such as temperature and pressure, and

Supported by ONR grants #N00014-89-5-1913, #N00014-
89-5-3042, #N00014-90-J-1110, and NSF pants #CMU-406349-
55586, #CCR9002819, #IRI-89-01699, #IR1-9003986.

t The University of Texas at Austin, Austin, TX 78712.
Courant Institute, New York University, New York, NY

10012.
tt University of California at Davis, CA 95616.

take appropriate control actions, such as increasing or
decreasing the amount of fuel, water, etc. These con-
trol actions or tasks need to be completed by deadlines,
so that the system tracks the physical processes accu-
rately. Typically, each of these tasks can be scheduled
to completion by its deadline. Occasionally, however,
the power plant may be overheating, requiring an over-
whelming number of control actions to be performed.
In such a situation, the system is likely to be overloaded
and as such it will be impossible to schedule every such
task to completion by its deadline. If your system re-
sponds to such an eventuality by simply stopping, or by
executing processes of low importance, it has ceased to
be useful in controlling the emergency; instead, it has
become part of the emergency.

A software system such as the one above is called a
real-time system, since tasks have deadlines by which
they must complete. Real-time systems arise in appli-
cations such as aircraft and spacecraft control, robotics
and factory automation. Real-time systems with
weaker requirements also arise in program trading for
financial markets and telephone networks.

A system is underloaded if there exists a schedule
that will meet the deadline of every task. Scheduling
underloaded systems is a well-studied topic, and sev-
eral on-line algorithms have been proposed for the opti-
mal scheduling of these systems on a uniprocessor. Ex-
amples of such algorithms include earliest-deadline-first
(D) and smallest-slack-time (SL). However, none of the
proposed algorithms make performance guarantees dur-
ing times when the system is overloaded. In fact, it
has been experimentally demonstrated that these algo-
rithms perform quite poorly when the system is over-
loaded [6].

Practical systems are prone to intermittent overload-
ing caused by a cascading of exceptional situations,
often corresponding to emergencies. A good on-line
scheduling algorithm should not only be optimal un-
der normal circumstances, but also respond appropri-
ately to emergency situations. Given the importance
of scheduling overloaded systems, researchers and de-
signers of real-time systems have devised intelligent on-
line heuristics to handle overloaded situations [1,6,8].

CH3062-7/91/0000/010Ol.W Q 1991 IEEE
100

The most successful of these heuristics was proposed
by Locke as part of the CMU Archons project [SI.
Roughly, Locke’s best eflort (BE) heuristic works as
follows. Each task in Locke’s model has a value; the
value of a task measures its importance. If the sys-
tem is underloaded then BE operates like algorithm
D; if an overloaded condition is detected then BE ran-
domly abandons some of the less important tasks in an
attempt to bring the system back to an underloaded
state. The complete algorithm is much more sophisti-
cated, since it provides a policy-mechanism-separation
by letting the user influence how some tasks are aban-
doned. While Locke’s heuristic is widely used and has
been shown to perform well in practice, it offers no per-
formance guarantee. In fact, no performance guarantee
had been provided with respect to any such on-line al-
gorithm when we achieved our results.

Our task model is based on the model defined by
Locke [SI. Tasks may enter the system at any time.
Nothing is known about a task until it arrives. When a
task is released, its computation time, value, and dead-
line are known precisely. The value of a task is obtained
provided it completes by its deadline; once its deadline
passes, there is no value to completing the task. At any
time, a task may be preempted in favor of another task
at no cost.

To facilitate the presentation of our results, we define
the valve density of a task as the ratio of its value to
its computation time. The importance ratio, k , of a set
of tasks is the ratio of the largest value density to the
smallest value density. We will always take the small-
est density to be one. When the importance ratio is 1,
tasks are said to have uniform value density.

The main contributions of this paper are listed below.

e We formalize the notion of when a system is over-
loaded and when it is underloaded (Section 2).

e We devise an on-line scheduling algorithm called
D’ , that provides the following performance guar-
antee (Section 3). Informally2 speaking, D’
achieves optimal performance while the system is
underloaded and achieves a value that is at least
1/5 times the length of the overloaded period while
the system is overloaded. To our knowledge, this
is the first time that such a nontrivial performance
guarantee has been obtained. D* is simple, effi-
cient, and easy to implement. It can be imple-
mented using balanced search trees, and thus runs
at a cost of O(1og n) time per task, where n bounds
the number of tasks in the system at any instant.
The analysis of the algorithm’s performance guar-
antee is not straightforward.

2The results are more precisely stated in subsequent sections.

0 A performance guarantee of 20% may not seem
extremely good, but in Section 4, we show that
one cannot do much better. We prove that, dur-
ing an overloaded interval, no on-line scheduling
algorithm can guarantee a value greater than 1/4
times the length of the overloaded interval. The
bounds of Section 4 apply in an even more general
setting. Consider as a comparison vehicle clairvoy-
ant on-line scheduling algorithms that know the
arrival time, value, execution time, and deadline
of all future task requests. One can then quan-
tify the performance of on-line algorithms as com-
pared to their clairvoyant counterparts. As in [4,9],
we say that an on-line algorithm has competitive
factor r, 0 _< r 5 1, if and only if it is guaran-
teed to achieve a cumulative value at least r times
the cumulative value achievable by the cleverest
clairvoyant algorithm on any sequence of task re-
quests. We prove that no on-line scheduling algo-
rithm can have a competitive factor greater than
l/[(l We generalize this result by consid-
ering environments where there is an upper bound
on the “amount” of overloading allowed within an
interval, i.e., a bound on the loading factor4 within
an interval. In particular, given uniform value den-
sity, whenever the loading factor does not exceed
one the competitive factor limitation is 1 - obvi-
ously. As the loading factor exceeds one, we show
that the competitive factor limitation immediately
falls to 0.385, and as the loading factor increases
from one to two, we show that the competitive fac-
tor limitation falls from 0.385 to 0.250. For loading
factors beyond two the competitive factor limita-
tion remains at 0.250.

0 Our experimental data indicates that D’ is com-
parable to Locke’s BE or a wide class of environ-
ments, while guaranteeing the bound even for the
pathological cases that would cripple BE (Section
5 and Appendix C).

0 Note added in proof At the time of the submis-
sion, D* was the only algorithm that could make
any performance guarantee. However, its compet-
itive factor does not match the upper bound pre-
sented in this paper, suggesting room for further
improvement. Two recent developments in this di-
rection are worth mentioning. Wang and Mao at
the University of Massachusetts a t Amherst ex-
plored complexity questions and subsequently in
May 1991, have proposed an algorithm that is 1/4-
competitive, although it is non-optimal in the un-
derloaded case. In June 1991, we obtained an algo-

3When k = 1, the competitive factor is 1/4.
‘This will be formally defined in Section 4.

101

rithm that is 1/4competitive, and optimal in the
underloaded case. Our result will be included in
the full paper.

While most proofs are omitted, some of the more im-
portant proofs are presented in the appendix.

2 Preliminaries

Usually, real-time systems are divided into two classes:
hard real-time systems and sofl real-time systems (see,
for instance, Mok's dissertation [7]). In a hard real-time
system, deadlines must absolutely be met or the system
will be considered to have failed; in a soft real-time sys-
tem deadlines may occasionally be missed with only a
degradation in performance. In this paper, we consider
a special case of a soft real-time system, called a firm
real-time system, in which there is no value gained for
a task that completes after its deadline is missed, but
there is no catastrophe either.

As mentioned in the previous section, tasks may en-
ter the system at any time. Their computation times
and deadlines are known exactly at their time of ar-
rival. Nothing is known about a task before it appears.
The goal is to make on-line scheduling decisions that
will maximize the overall value of the resulting compu-
tation, even in the presence of overload5. We note that
obtaining a scheduler that maximizes the overall value
is a difficult problem, even for a clairvoyant scheduler.
The problem of finding the maximum achievable value
for such a scheduler can be shown to be reducible from
the knapsack problem[3], and hence NP-hard.

2.1 Overload and Underload

We now need to define what we mean by an overloaded
or an underloaded system. For instance, imagine a sys-
tem that has so many tasks entering it at time t that
it cannot possibly schedule all of them to completion.
If this system throws out most of these tasks, it may
be possible for the system to meet the deadline of ev-
ery new task that enters the system after time t . Is
this system really underloaded at t? Intuitively, it is
not. When does the system return to the underloaded
state?

We propose a definition that will not throw out old
tasks whose deadlines are yet to pass. Suppose we
run D (i.e., earliest-deadline-first) without throwing out

5Note that maximizing the value may not minimize the num-
ber of missed deadlines, since many low-valued tasks may be
abandoned in favor of a single high-valued task.

tasks that cannot meet their deadlines until their dead-
lines pass. Intuitively, a transition to overload will oc-
cur when executing one task will cause another one
to miss its deadline. A transition to underload occurs
when this naive D scheduler would cause tasks to meet
their deadlines again. This is formalized below.

During the execution of algorithm D, we take a snap-
shot at time t . At time t , let T, be the currently running
task, if there is one. Let the sequence of tasks Til, Z2,
. . ., Ti,, be yet-to-be scheduled tasks (i.e., tasks with re-
lease times earlier than the current time, with deadlines
after the current time and that have not yet completed)
ordered by their respective deadlines.

We can now calculate the times at which D would
schedule each of the above tasks, assuming that no new
task enters the system. Each time a new task, T,, enters
the system, the currently running task, is preempted,
and is referred to as T,, , k = 1 or k = 2, depending on
whether the new task has deadline before or after the
deadline of T,. All start times are recalculated by the
equations shown below, reflecting the newly expanded
task set.

S(Til) = t ,
S(Ti j) = F(Tij-l) (i > 11,

where, for j 2 1, F(Ti j) is

min{S(Zj) + Computation- T i m e (Z j) , D e a d l i n e (Z j) } .

Computat ion-Time(Zj) refers to the remaining compu-
tation time of the task that is now referred to as Tij.
We say that' a task has positive lateness. if at the time
of its deadline, its Computation-Time is strictly posi-
tive. In other words, a task that did not complete by
its deadline in the schedule of the algorithm D has pos-
itive lateness6. We emphasize that the start and finish
times of a task, and hence its lateness, are dynamic
quantities that change as new tasks enter the system.
Note that if, for all j , F (Z j) 5 Deadline(Z,) , then all
the deadlines are met and the system is underloaded.
However, if at any point in time, a task has a positive
lateness, D will never allow this task to complete by its
deadline, irrespective of whether or not new tasks enter
the system.

Let us introduce some convenient notation. When
a task T, enters the system, the quantity de de-
notes Deadline(Te) and the quantity c, denotes
Computation-Time(T,). Later, when new tasks enter
the system, Computation-Time(T,) is the remaining

6A related concept is alack time, which roughly means the
amount of time before its deadline that a task will complete, if
the current schedule were to continue. Thus, a task with no slack
time will complete at its deadline.

102

computation time of T,; however, ce continues to de-
note the original length of computation of Te. Let us
also call the interval starting at de - c , and ending at
de the Latest starl interval of T, and denote it by Se.
Also, for reasons that will become clear later, let us
denote the interval starting at d , - 3ce and ending at

A history of the system, H, is a set of tasks, and for
each task, its release t ime, computation time and dead-
line. Given such a history H, many algorithms may
attempt to schedule it. In particular, we focus atten-
tion on the schedule of the algorithm D, as described
above.

de + 2ce by Ae.

The overloaded t ime period OL is defined by:

Tj haa positive lateness.
OL = U{Si}

OL is not necessarily connected. We will call a maxi-
mal connected component of OL an overloaded interval.
The underloaded t ime period is the complement of the
overloaded time period. Furthermore, we say that a
task is in the overloaded t ime period if its deadline is in
an overloaded interval. Otherwise, we say that the task
i s in the underloaded t ime period.

3 D* and its Analysis

The algorithm D* behaves like the algorithm D dur-
ing the underloaded period. However, when the system
is overloaded, the algorithm D* will abandon the cur-
rently running task in favor of another task if and only
if the value to be obtained by running that task is
higher than the cumulative value of all the abandoned
tasks7 since the last time a task successfully completed
its execution. If the new task has “too little” value, D’
will simply abandon the new task, without including its
value in the cumulative total.

The algorithm D* requires two data structures,
called D-Structure (Deadline Structure) and L-Structure
(Latest-start-time Structure). D-Structure maintains
the tasks in their deadline order. L-Structure maintains
the tasks in the order of their latest start t imes, denoted
L S T , where

L S T (T) = Deadline(T) - Computation- T ime(T) .

Recall that Computation- T i m e (T) refers to the remain-
ing computation time of T. Intuitively, L S T (T) is the
latest time when T can be scheduled and still complete
by its deadline.

These data structures are implemented as balanced
search trees, e.g. 2-3 trees. The 0- and L-Structures

‘We refine this notion further below.

support Insert, Delete and Min operations, each taking
O(1ogn) time for a structure with n tasks. The struc-
tures share their leaf nodes which represent tasks. We
will show later that our algorithm ensures that each
task causes the structure to be accessed a constant num-
ber of times. Thus if n bounds the number of unsched-
uled tasks in the system at any instant then each task
incurs only an O(1og n) cost.

In the algorithm described below, there are three
kinds of events (each causing an associated interrupt)
considered: TaskCompletion, TaskRclcase, and Timerln-
terrupt, in order of their priorities”.

0 The system event TaskCompletion occurs when a
task successfully completes (and obtains its full
value). In that case, the task with the earli-
est deadline (i.e., the minimal element in the D-
Structure) is removed from both the structures and
is then executed.

0 The external event TaskRelease occurs when a task
is released into the system.

0 The system event Timerlnterrupt occurs when the
wall-clock time equals the minimal value in the L-
Structure. This interrupt indicates an overloaded
situation, and will not occur in the underloaded
C a S e .

Also, in the algorithm, the variable Current-Task de-
notes the task that is currently executing. The accumu-
lator Preempted-Value represents the sum of the values
of all tasks preempted thus far since the termination of
the last task that completed execution.

For purposes of later comparison, the earliest-
deadline-first algorithm (D) consists of the events
TaskCompletion and TaskRelease with the small (but
significant) change that the last “else if” condition in
TaskRelease is replaced by a simple else. The other dif-
ference is that TimerInterrupt is never needed in D.

8Thus if several interrupts happen simultaneously, then the
TaskCompletion interrupt is handled before the TaskRelease in-
terrupt, which in turn is handled before Timerlnterrupt. It may
happen that a TaskCompletion event will remove the condition for
a lower priority interrupt, e.g., by removing a task from a data
structure.

103

On-Line Scheduling Algorithm, Do:
D-Structure := 0; L-Structure := 0; Preempted-Value := 0;

loop
(* In the algorithm, the statement "Execute Current-Task" schedules the task to run; however,
this task may be interrupted before it finishes. *)

Taskcompletion:
Preempted-Value := 0;
if D-Structure is non-empty then
(* Task T has minimum deadline in D-Structure. *)

Remove T from the D- and L-Structures;
Current-Task := T; Execute Current-Task;

end { if }
end { Taskcompletion}

TaskRelease:
(* Task T is released into the system. *)
if there is no Current-Task then

else if Deadline(Current-Task) < Deadline (T) then

else if Preempted-Value = 0 then

Current-Task := T; Execute Current-Task;

Insert T into the D- and L-Structures;

(* Note that in the other case, i f T has an earlier deadline than that of the current-
task and the preempted-value is positive, i.e., the current-task was scheduled b y
TimerInterrupt, the new task is discarded(note that T has less value than current-
task. *)
Preempt Current-Task;
Insert Current-Task into the D- and L-Structures by its Deadline and

Current-Task := T; Execute Current-Task;
LST (= Deadline - remaining Computation-Time), respectively;

end{if }
end {TaskRelease}

Timerlnterrupt:
(* Task T has minimum LST in L-Structure. There must be a Current-Task, when this
interrupt arrives, since, otherwise, task T must have been already scheduled. *)
Remove T from the D- and L-Structures;
if Current-Task has slack time then

Preempt Current-Task;
Insert Current-Task into the D- and L-Structures by its Deadline and

Current-Task := T; Execute Current-Task;

(* The Current-Task i s overthrown *)
Preempted-Value := Preempted-Value + value(Current-Task);
Preempt Current-Task;
Current-Task := T; Execute Current-Task;

LST (= Deadline - remaining Computation-Time), respectively;

else if value(T) > Preempted-Value + value(Current-Task) then

end{if }
(* If task T has too little value then T is rejected. In this case, Preempted-Value is not
changed. *)

end{Timerlnterrupt}
end{loop }
end{D'}.

Algorithm 1: D' : ON-LINE SCHEDULING ALGORITHM.

I04

3.1 The Correctness and Bounds

Let T, be a task that did not complete its execu-
tion by its deadline. Hence a decision to abandon
Ti was made at some point in time, henceforth called
Abandoned (Ti). The algorithm abandons a task only
in the Timerlnterrupt and the TaskRelease routines. If
Ti was abandoned in the Timerlnterrupt routine, then
either Ti was the Current-Task with no slack time or
a task whose LST had just occurred but whose value
was not big enough to preempt the Current-Task. In
the first case, we say that Ti was overthrown, and
in the second case, we say that it was rejected. If
Ti was abandoned in TaskRelease we say that Ti was
discarded. Exactly one of the above must apply to 57.
If was discarded or rejected and the current task at
Abandoned (Ti) was or if Ti was overthrown by a
Timerlnterrupt generated by Ti we will say that T, was
abandoned due to Ti.

In what follows assume that a history, H, is given,
and that at least one task has positive lateness. Let
OL be the overloaded period and let [s , t] be the first
overloaded interval. We know that

[s , t] = U si,
icV

where V corresponds to the set of tasks, each of which
has positive lateness and deadline in [s , t] .

Lemma 3.1 There is no idle t ime between s and t
when algorithm D schedules H .

Lemma 3.2 All tasks scheduled by D between s and t
have deadlines at or before t .

Now, let D* schedule the same history H. D* oper-
ates exactly like D till the first Timerlnterrupt . (Recall
that the TaskRelease of D* is different from that of D
only if the preempted value is not zero, indicating that
a Timerlnterrupt event had previously occurred). We
now assert that the first Timerlnterrupt must occur in
[s , t] . If it occurs before s, then the task that caused
the Timerlnterrupt event must have positive lateness.
By the definition of the first overloaded interval, the
Latest start interval of this task would be in the over-
loaded interval, meaning that the first overloaded inter-
val started before s, a contradiction. It cannot occur
after t , for otherwise all tasks in V will be executed to
completion in D. This indicated that none of them has
positive lateness, also a contradiction.

Lemma 3.3 All tasks with deadlines before s complete
their execution (in P).

Let us look at the schedule of D* in [s , t] . D’ might
have abandoned some tasks but we assert that all such
tasks have deadlines prior to t . We will need the fol-
lowing definition.

Definition 3.1 Suppose that both D and D* sched-
ule the same history H and let T be a task in H. We
will say that at time t , T’s position in D* is no worse
than its position in D if and only if the following holds.
The remaining computation time at time t, under D*,
is no larger than the remaining computation time of T
at time t under D.’ under D

Let T be a task with deadline after t . Since D and
D* behave identically up to s, we know that T has the
same share of processor time in D and in D’ up to s.
By Lemma 3.2, we also know that in D’s schedule, T
does not have any execution time during [s,t]. It is,
of course, possible that T might have some execution
time in the schedule of D*. We conclude that if T is
not abandoned by D* in [s,t] then its position in D*
is no worse. Is it possible that T is abandoned? The
following lemma shows that the answer is no.

Lemma 3.4 In the schedule of P, if at some point x
in [s,t] a task T has no slack t ime then its deadline is
in [s,t].

The previous lemma implies that a task T with dead-
line after t cannot be rejected or overthrown in [s,t] since
both imply that T has no slack time when abandoned.
Is it possible that T is discarded? When a task is
discarded , the preempted value is greater than 0, hence
the Current-Task reached its LST in [s,t] and T had an
earlier deadline than Current-Task. Hence (again by
lemma 3.4) T’s deadline is before t . We conclude that
no task with deadline after t is abandoned by D* in

Imagine that D* schedules the system up to time t
and at time t the control is handed over to algorithm
D. Call this history H‘. The history H’ for D is differ-
ent from history H; t is the start time with every task
currently in the system having computation time equal
to the “remaining” computation time in the schedule
of D*.

Let OL’ be the overloaded period of the schedule of D
for H’. We assert that OL’ OL (i.e. the overloaded
period resulting from using D* until time t is contained
in the overloaded period resulting from using D until
time t) . This holds because at time t the task set for

[%tI.

91n particular, the above holds, if T already completed at time
t under D’.

I os

D' is a subset lo of the task set for D and for each
task the remaining computation time in D* is less than
or equal to the remaining computation time in D. Let
[S I , t'] be the first overloaded interval in D's schedule of
HI. All previous claims will hold with [s',t'] playing
the role of [s,t]. The process can now go on inductively,
thus yielding the following lemma.

Lemma 3.5 All tasks in the underloaded period are ex-
ecuted to completion in P.

In all that follows let C be an overloaded interval,
and let T1,Tz.. .Tq be the tasks with deadlines in C.
The definition of the overloaded period implies that
C C u:==,6i. Also, let S c {1 ,2 , . . . q } be the set of
indices of those tasks that successfully complete execu-
tion.

We now state the following two lemmas without
proofs. In Lemma 3.6, a task executes nontrivially if
it executes for some strictly positive amount of time".

Lemma 3.6 Suppose T, was abandoned. Let T be the
the first task t o complete after Abandoned (Ti). All
tasks that execute nontrivially from Abandoned (Ti) t o
the completion of T have no slack tame at the time that
they are scheduled for execution.

Lemma 3.7 Suppose Ti was abandoned. Let T
be the the first task that completed execution after
Abandoned (Ti). Then T has its deadline in C hence
there is an element k E S for which T = T k .

We now come to the following crucial technical
lemma, whose proof is in Appendix A.

Lemma 3.8 Suppose Ti was abandoned in C. Let
T k be the the first task that completed execution after
Abandoned (T,) then l2 6i E At .

Please see Appendix A. 0
PROOF.

We are now ready to state our performance guarantee
for D'.

l0We just proved that no task with deadline after t is aban-
doned in [s,t]. It is possible, however, that some tasks with dead-
line after t already executed to completion under D*.

"A task can execute trivially for 0 time units if a
Timerlnterrupt event preempts the task as soon as it is scheduled.

'*Recall that for a task Ti, di denotes Deadline(Ti) and ci
denotes the initial Compa~ation-Time(Ti). Also, 6i denotes the
interval starting at di - ci and ending at di , Ai is the interval
between di - 3ci and di + 2ci.

Theorem 3.9 The algorithm P schedules to comple-
tion every task whose deadline is in the underloaded
time period. In addition, P obtains a value that is at
least one-fifth the length of the overloaded period from
all tasks in the overloaded period.

The first part of the theorem deals with the underloaded
case, and is covered by Lemma 3.5.

Let C be an overloaded interval, and let TI , T2 . . . Tq
be the tasks with deadlines in C. Let S { 1,2 , . . . q }
be the set of indices of those tasks that successfully
complete execution.

We know that C E Ui::6i. Lemma 3.7 assert that
for every j E {1 ,2 , . . . q } there is a k E S such that
bj Ak.

The value V obtained by D* then satisfied3 the fol-
lowing:

PROOF.

This is the desired result. 0

3.2 The Complexity

Theorem 3.10 If n bounds the number of unscheduled
tasks in the system at any instant then each task incurs
only an O(1ogn) cost.

4 Upper Bounds on the Com-
petitive Factor

In this section, we examine the limitations to the power
of any on-line algorithm under a variety of settings. The
proofs of some lemmas in this section are contained in
Appendix B.

Lemma 4.1 There does not exist an on-line schedul-
ing algorithm that obtains, for tasks in the overloaded
period, a value greater than 114 times the length of the
overloaded period. Furthermore, given uniform value
density, there does not exist an on-line scheduling algo-
rithm with a competitive factor greater than 1/4.

In deriving the bound above, an adversary argument
was used wherein the malevolent adversary was allowed
to introduce new tasks at will; thus the amount of over-
loading is unbounded. A natural question to ask at this

13) . I means the length of the interval.

106

stage would be: is the amount of overloading permitted
by the environment related to the best competitive fac-
tor that may be guaranteed by an on-line algorithm?
To answer this question, let us quantify the notion of
overloading.

We say a sporadic real-time environment has a load-
ing factor b iff it is guaranteed that there will be
no interval of time [t t , t y) such that the sums of the
execution-times of all task-requests making requests
- and having deadlines within this interval is greater than
b . (tv - t o) . It is easily observable that a system can
never become overloaded if it has a loading factor no
greater than 1.

The on-line algorithm knows a priori what the load-
ing factor for the environment is, and may use this in-
formation in making on-line scheduling decisions. Con-
sider, as an example, on-line scheduling in an envi-
ronment which is known to have a loading factor no
larger than 1 (i.e., a non-overloaded environment). Der-
touzos [2] has shown that the algorithm D is optimal in
such an environment. D is, therefore, an on-line sched-
uler with a competitive factor of 1 in sporadic real-time
environments with a loading factor no larger than 1.
At the other extreme, Lemma 4.1 proves that no on-
line scheduler can offer a competitive factor larger than
0.250 in environments where the loading factor may be
arbitrarily largeI4.

The following lemma quantifies the relationship be-
tween the loading factor and the upper bound on the
competitive factor of an on-line algorithm in environ-
ments where the loading factor is between 1 and 2.

Lemma 4.2 Given uniform value density, no on-line
scheduling algorithm operating in an environment with
a loading factor b, 1 < b 5 2, can have a competitive
factor greater than p, where p satisfies

4(1- (b - 1) ~) ~ = 27p2

The next question to address is: how does the impor-
tance ratio k affect the best possible guarantee? Un-
fortunately, the guarantees that can be made by an
on-line algorithm in such an environment is even less
than 0.250, as the following lemma states:

Lemma 4.3 Let imax (imin) be the largest (smallest)
value density a task may have in an environment. No
on-line scheduling algorithm operating in this environ-
ment can have a competitive factor greater than

1
(1 + &)2

"Actually, the proof of Lemma 4.1 requires a loading factor of
2 + c, where L is an arbitrary small positive number.

where k = (imax/imin) i s the importance ratio of the
environment.

A couple of points worth noting:

The quantity 1/(1 + fi)2 decreases rather rapidly
as the importance ratio k increases. For k = 1, this
value is .250; for k = 2, it falls to .172; for k = 3,
it is .134; for k = 5, it is .095; and for k = 10, it is
as low as .028.

From Lemma 4.3 it follows that, in an environ-
ment where the importance ratio is not a priori
bounded from above (i.e., imin and i m , are not a
priori bounded from below and above respectively)
no on-line algorithm can have a competitive factor
greater than 0.

The proof of Lemma 4.3 above made no assumptions
regarding the loading factor of the environment. An
analysis similar to the one made for Lemma 4.1 would
reveal that the loading factor in this case would need
to be greater than 2. The following lemma relates the
loading factor and the importance ratio of an environ-
ment to an upper bound on the competitive factor of
any on-line scheduler operating in this environment.

Lemma 4.4 Consider an environment with a loading
factor b, 1 < b 5 2, and an importance ratio k . Let
q = k - (b - 1). If q 2 1, then no on-line scheduling
algorithm can have a competitive factor greater than
1/(1 + a2, whereas if q < 1, no on-line scheduling
algorithm can have a competitive factor greater than p,
where p satisfies 4(1 - ~ p) ~ = 27p2.

For environments with 1 < b 5 2, Lemma 4.4 provides
an upper bound for the competitive factor of on-line
algorithms, while Lemma 4.3 provides an upper bound
for the competitive factor of on-line algorithms in en-
vironments where b > 2. These results are summarized
in the following theorem:

Theorem 4.5 Let k be the importance ratio of an en-
vironment, and b its loading factor. Let q = k - (b - 1).
For b 5 1, there exist on-line schedulers which have a
competitive factor of 1.0. For 1 < b 5 2, Lemma 4.4
defines an upper bound on the competitive factor of any
on-line scheduler, and for b > 2, no on-line scheduler
can have a competitive factor greater than p, where p
satisfies 4(1- k ~) ~ = 27p2.

5 Performance Results
We have implemented our algorithm and Locke's Best
Effort algorithm and have run simulations to accumu-
late empirical data. These results are further described

107

in Appendix C. We would like to thank Mr. Robert
Kagel for implementing the two algorithms and running
the simulation studies tha t produced these experimen-
tal results.

References
[I] T.P. BAKER AND ALAN SHAW. The Cyclic Executive

Model and Ada. The Journal of Real-Time Systems
1 pages 7-25, 1989.

[2] M. DERTOUZOS. Control Robotics: the procedural
control of physical processes. In Proc. IFIP congress,
pages 807-813, 1974.

[3] M.R. GAREY AND D.S. JOHNSON. Computers
and Intractability: a guide to the theory of NP-
Completeness. W. H. Freeman and Company, New
York, 1979

[4] A. KARLIN, M. MANASSE, L. RUDOLPH, AND D.
SLEATOR, Competitive Snoopy Caching, Algorith-
mica 3, (1988), pages 79-119.

[5] C.L. LW AND J. LAYLAND. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment. Journal of the ACM 20, pages 46-61, 1973.

Best-Effort Decision Mak-
ing for Real-Time Scheduling. Doctoral Dissertation,
Computer Science Department, Carnegie- Mellon Uni-
versity, 1986.

[7] A. MOK. Fundamental Design Problems of Dis-
tributed Systems for the Hard Real-time environment.
Doctoral Dissertation, M.I. T. , 1983.

[8] L. SHA, J.P. LEHOCZKY AND R. RAJKUMAR. Solu-
tions for some Practical Problems in prioritized pre-
emptive scheduling. Proceedings, Real- Time Systems
Symposium, 1986.

[9] D. SLEATOR AND R. TARJAN, Amortized Efficiency
of List Update and Paging Rules, CACM 28, Febru-
ary 1985, pages 202-208.

[6] C. DOUGLASS LOCKE.

Appendix

A. Proof of Lemma 3.8

First let US show that di - C i 2 dk - 3ck.
Let r be the Preempted-Value when Tk completes its ex-

ecution (this must be at dk since Tk starts execution at its
LST, by Lemma 3.6). Let TO be the preempted value im-
mediately before Abandoned (Ti) .

We begin with the case where Ti is overthrown. In this
case, c, is added to so. Furthermore, all the tasks that exe-
cute until Tk must also be overthrown and hence their values
will be added to Preempted-Value. The sum of these values
is exactly (r - (r o + c i)) . The total amount of processor time
these tasks used cannot be greater than this value. Hence
the length of the time interval between Abandoned (Ti) and

the point where Tk starts its execution is at most (r - (TO +
c i)) . We also know that Abandoned (Ti) - (d , - c ,) 5 c;
(a task can be overthrown only in its Lotest start interval)
and that C k 2 r (otherwise Tk could not be scheduled by
Timerlnterrupt). Hence,

d, - ci 2 Abandoned (Ti) - ci

2
2

(dk - ck - (r - (TO + C i))) - C i

dk - C k - r 2 dk - 2Ck.

The second case is when Ti is rejected by Tj. In this case,
Ti’s value is not added to Preempted-Value. However we
know that c, 5 cj + TO. We also know that c; 5 Ck since
Tk was scheduled by Timerlnterrupt after Tj (or Ti = TJ) .
Hence we have that c, 5 cj +TO <_ C k + 70. As before the
length of the time interval between Abandoned (T,) and the
point where Tk starts its execution is at most (7 - 70) and
Abandoned (Ti) - (di - c ,)) <_ ci and that Ck 2 r. Hence,

d, - c, 2 Abandoned (Ti) - ci

2
2
2

(dk - C k - (r - To)) - C i

(dk - Ck - r + To) - (ck + To)

dk - 2Ck - T 2 dk - 3Ck.

Lastly, we have to consider the case in which T, is
discarded by Tj. Tj can have no slack time since Preempted-
Value is greater than 0, hence 6i E 61. If j = t , the
proof is complete. If j # k , then Tj is overthrown. Re-
placing i by j in the above arguments, we conclude that

Next, we now show that d, 5 dk + 2Ck. It always
holds that dk 2 Abandoned (Ti) 2 di - ci. Assume that
di - dk > 2Ck then ci 2 d, - dk > 2Ck 2 Ck + r. Under these
conditions the value of Ti is too big for it to be abandoned
in the first place 15.

In conclusion 6,

B. Proofs for Section 4 Lemmas
In proving bounds such as those in Section 4, one usually
refers to the on-line algorithm under consideration as the
player. The bounds are best described as a game between
a player and an adversary who makes up part of the task
set, observes the player’s response to it, and then extends
the history by creating a new task. This process is repeated
until the entire task set is complete. At the end of this
process, the adversary indicates its schedule, the optimal
off-line schedule.

The tasks created by the adversary are of two kinds:

di - C i >_ d; - C j >_ dk - 3Ck.

Ak holds in every case.

0 major tasks, which have no slack time. In other
words, the time between a major task’s release time
and its deadline corresponds exactly to its computa-
tion time. It is easily observed that if the release time
of a major task is between the release time and dead-
line of another, a t most one of the two can complete.

15Suppose Ti was Abandoned by T j . c, 2 C k + r 2 c, +TO
implies that Ti could not be rejected or overthrown . If Ti was
discarded then Tj can have no slack time since Preempted-Value
is greater than 0, hence c, < cJ , a contradiction.

I08

0 associated tasks, which may or may not have slack
time.

The adversary uses the following device to force the hand
of the player. For a major task S i of length L i , with re-
lease time T i and deadline d i , the adversary may also create
a sequence of associated tasks of length E , each one being
released at the deadline of the previous one of the sequence.
Clearly any algorithm that schedules any one task of this
associated task sequence cannot schedule S i . This sequence
of associated tasks stops the moment the player chooses to
abandon S i in favor of a task of the sequence. Otherwise,
the sequence continues until d i is reached. If the player
chose to abandon S i in favor of a task of the sequence, the
value obtained by the player is E rather than L i . The ad-
versary chooses E to be arbitrarily small compared to L i . A
major task S i that has associated tasks as above is called a
bait. Otherwise it is simply called normal.

Time is divided into epochs. In each epoch, the adversary
starts off by first creating a major task TO of length t o = 1.
In general, after releasing major task T i of length t i , the
adversary releases a major task T i t 1 of length at time
E before the deadline of T i . If the player ever chooses to
schedule an associated task the epoch ends with the release
of T i + l . If the player chooses to abandon T i in favor of
T i + l , this process continues, otherwise the epoch ends with
the release of T i + l . In the above description, all tasks except
T i t 1 are baits; T i t 1 is normal. At any rate, no epoch con-
tinues beyond the release of T,, where m is a finite positive
integer .

We note that the player never abandons a bait for one of
its associated tasks, since in doing so the value obtained by
the player during the epoch is negligible - i.e., E. Thus,
during an epoch the player either schedules only T i , i < m
to completion, or the player only schedules T, to comple-
tion.
Lemma 4.1 PROOF.
For this proof, the associated tasks have no slack time, and
the length of task T i t 1 is computed according to

j=O

(where c is a constant whose exact value will be specified
later in this proof). If the player scheduled only T i , i < m
to completion, the player’s value is t i , whereas the adver-
sary obtains value t j (by performing the associated
tasks for TO,. . . ,Ti and then performing & I) . In this case
the player’s value is l / c times the adversary’s value. If the
player scheduled only T’ to completion, the player’s value
is t,, while the adversary’s value is t j . If c and m can
be chosen such that the ratio tm/ t j is no larger than
I/c, then in either case the player obtains no more than
1/c times the adversary’s value. In attempting to provide
the tightest bound on the competitive factor of an on-line
algorithm, therefore, our attempt is to find the smallest 1/c
(equivalently, the largest c) such that the series defined by
the recurrence relation

8

t o = 1 and t i t l = c . t i - Etj
j=O

satisfies the property

standard techniques from the theory of difference equations
can be used to show that the property is satisfied when
c < 4, and that the property is not satisfied when c 2 4.
it therefore follows that 1/4 = 0.250 is an upper bound
on the competitive factor that can be made by any on-line
scheduling algorithm in an overloaded environment.
lemma 4.2 PROOF.
in this proof, it follows from the restriction on the load-
ing factor that the associated tasks have to have some slack
time - specifically, for loading factor b, each associated task
has deadline E and computation time (b - 1) ~ . executing all
the associated tasks corresponding to task t i (of length t i)

therefore yields a value (a - 1)ti. the length of task ti+] is
computed according to the following rule

3=1 j=O

(where c is a constant whose exact value will be specified
later in this proof). as before, note that the player either
scheduled only t i , i < m to completion, or the player only
scheduled t, to completion. in the first case, the player’s
value is t i , whereas the adversary obtains value

w z i LiDJ

t i t 1 + t i+1-2j + (b - 1) t i - z j

j = 1 j=O

(by performing tasks t i + l , t , - l , t i - 3 , . . ., and the associated
tasks for t i , t i - z , t i - 4 , . . .). in this case the player’s value
is 1/c times the adversary’s value. in the second case, the
player’s value is t,, while the adversary’s value is

j = O j = I

(by performing tasks t m , t m - 2 , t m - 4 ,..., and the associ-
ated tasks for t m - - l , t m - 3 , t m - 5 ,...). if c and m can be
chosen such that the ratio t,/(xjcrJ t m - z j + (b - 1)

t m t l - z j) is no larger than l /c, then in either case
the player obtains no more than l / c times the adversary’s
value. in attempting to provide the tightest bound on the
competitive factor of an on-line algorithm, therefore, our
attempt is to find the smallest l / c (equivalently, the largest
c) such that the series defined by the recurrence relation

t l = 1
r i /2 l

j=1 j=O

109

satisfies the property that there is an m 1 0 with Consider a situation in which tasks enter in bursts. Each
burst consists of several short tasks arriving simultaneously
with a relatively long task that completes before the next
burst arrives. Long tasks have zero slack time and short

tm 1 < -.
(Cj::’ h - 2 j + (b - 1) El::’ tm+1-2j) -

We have implemented our algorithm and Locke’s Best
Effort algorithm and have run simulations to accumulate
empirical data. Thus far, we have run many separate ex-
periments, while varying several parameters: e.g., the com-

Short Tasks’ Duration VI of D’ VI of BE
5 time units 68.7 3.3
10 time units 53.5 5.0
25 time units 33.2 7.0

, 50 time units 22.5 8.3

Since computing the maximum value obtainable by a
clairvoyant algorithm is a hard problem, we have instead
used a rather simplistic upper bound on this maximum
value, which is obtained by summing up the value of all
tasks; this quantity will be referred to as UB (Upper
Bound). (Note that even a clairvoyant algorithm may not
achieve such a high value.) We compare the value obtained
by our algorithm, D’, with the value obtained by Locke’s
best effort scheduler, BE, using the following parameter:

VI = Percentage of UB value obtained

We classify our environment into three categories based
on how much overloading is expected: eztreme (small inter-
arrival time, large execution time, and small slack time),

The effect of varying slack-times is significant. In the fol-
lowing table we summarize the cases where the maximum
slack time for short tasks (each of duration 5 units) varies in
a range between 0 and 10 units. As in the earlier simulation,
the long tasks last for 100 units; the simulation executes for
approximately 50 bursts and executed for 5000 time units.

Short Tasks’ # Short VI of D’ VI of BE
SlackTime Tasks

3 time units
5 time units 68.7
10 time units 67.4 8.5

normal (average inter-arrival time, large execution time,

average execution time, and average slack time).

suming a uniform arrival rate:

Table 3: PERFORMANCE COMPARISON-BURSTY MODE
and small slack time) and mild (average inter-arrival time, WITH SLACK.

(# Short Tasks = 10, # Long Tasks = 1, Short Tasks’ Dura-
tion = 5-50 units, hng Tasks7 ~~~~i~~ = units, Short
Tasks’ Slack Time = 3 units, Long Tasks’ Slack Time = 0

The following table summarizes our empirical data as-

0 Environment 1 VI of D’ I VI of BE fl
Extreme
Normal
Mild 91.5 89.7

0 Environment 1 VI of D’ I VI of BE fl
Extreme 17.5 17.6
Normal 32.6 35.6
Mild 91.5 89.7

U

unit, # Bursts = 50, Simulation Time = 5000 units.)

An explanation of the phenomena observed in the last
two experiments can be given in terms of the following sim-
ple example. Assume that a long task arrives 6 (0 < < 10)
time units after a short task and that the lone task has no

Y

Table 1: PERFORMANCE COMPARISON-UNJFORM MODE.
(# Tasks = 1O00, # Runs = 3M)-loOO.)

slack time. The BE heuristic then observes that the short
task has a value density of > 1, whereas the long task
has a value density of 1 and decides to continue with the
short task. However, D’ abandons the short task in fa-
vor Of the long task, since the long task has a value much

higher than the cumulative preempted value so far (which
is < 10). In the Process, the algorithm D’ obtains a n ~ c h
higher value during each burst period, in comparison to the

’

This shows that the algorithms are comparable. Since
the Best Effort algorithm is a heuristic that cannot guaran-
tee any performance bound, it is not hard to come up with
cases where Locke’s heuristic exhibits pathological behavior.
While it is not surprising that our algorithm would behave
better in these situations, the magnitude of the difference is
instructive. BE heuristics.

110

