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Abstract
Many scientific disciplines provide composition primitives
whereby overall properties of systems are composed from
those of their components. Examples include rules for block
diagram reduction in control theory and laws for comput-
ing equivalent circuit impedance in circuit theory. No gen-
eral composition rules exist for real-time systems whereby
a distributed system is transformed to an equivalent single
stage analyzable using traditional uniprocessor schedulabil-
ity analysis techniques. Towards such a theory, in this paper,
we extend our previous result on pipeline delay composition
for preemptive and non-preemptive scheduling to the general
case of distributed acyclic systems. Acyclic systems are de-
fined as those where the superposition of all task flows gives
rise to a Directed Acyclic Graph (DAG). The new extended
analysis provides a worst-case bound on the end-to-end de-
lay of a job under both preemptive as well as non-preemptive
scheduling, in the distributed system. A simple transfor-
mation is then shown of the distributed task system into an
equivalent uniprocessor task-set analyzable using traditional
uniprocessor schedulability analysis. Hence, using the trans-
formation described in this paper, the wealth of theory avail-
able for uniprocessor schedulability analysis can be easily
applied to a larger class of distributed systems.

1. Introduction
Rigorous theory exists today for schedulability analysis of

uniprocessors and multiprocessors, while mostly heuristics
are used to analyze larger arbitrary-topology distributed sys-
tems. This raises the question of whether a formal transfor-
mation can be found that converts a given distributed system
into an equivalent uniprocessor system analyzable using the
wealth of existing uniprocessor schedulability theory. Such
transformations are not uncommon in other contexts. For ex-
ample, control theory describes transformations that reduce
complex block diagrams into an equivalent single block that
can be analyzed for stability and performance properties. In
circuit theory, Kirchoff Laws, together with other reduction
rules, can reduce a circuit to a single equivalent source and
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impedance.

In an earlier paper [6], the authors derived a delay com-
position rule that provided a bound on the end-to-end delay
of jobs in a pipelined distributed system under preemptive
scheduling. An extended (journal) version of that paper [7]
provided a pipeline bound under non-preemptive scheduling
as well. These rules permit a simple transformation of the
pipelined system into an equivalent uniprocessor system an-
alyzable using traditional uniprocessor schedulability analy-
sis. Motivated by the ultimate goal of a general transforma-
tion theory, this paper extends the aforementioned results to
a larger class of distributed systems; namely, those described
by arbitrary Directed Acyclic Graphs (DAG). While the orig-
inal results apply to priority-based resource scheduling only,
we demonstrate how the framework can trivially accommo-
date resource partitioning (e.g., TDMA) as well.

Observe that reductions of complex systems into simpler
ones (e.g., in control or circuit theory) depend on the choice
of the two system end-points between which the reduction is
made. For example, given two points in a complex circuit,
a reduction can compute the equivalent impedance between
these two specific points. In a similar manner, this paper
addresses distributed system reduction as seen from the per-
spective of a given distributed task. Informally, the question
addressed in this paper is as follows: given a distributed task
A in a distributed task system of workload Wdist, can we
systematically construct a uniprocessor task B and a unipro-
cessor workload Wuni, such that if B is schedulable on the
uniprocessor, A is schedulable on the distributed system? We
show that such a transformation is possible and that it is lin-
ear in the number of tasks on A’s path. A wide range of ex-
isting schedulability analysis techniques can thus be applied
to the uniprocessor task set, to analyze the distributed system
under both preemptive and non-preemptive scheduling.

Earlier schedulability analysis, such as holistic analysis
[13], requires global knowledge of task routes and computa-
tion times in order to predict the worst case end-to-end delay
of a task. In contrast, the transformation derived in this paper
depends only on the load that the analyzed task encounters
along its path (i.e., it is linear in the number of tasks sched-
uled on the same resources as task A). We also show that
the schedulability analysis technique developed in this paper
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outperforms existing techniques by a factor that grows larger
with system scale. For small distributed systems, existing
literature is adequate. Hence, the new results nicely comple-
ment existing literature. They are particularly useful for anal-
ysis of large data-driven systems where requests are streamed
in the same direction across a large number of processing
stages possibly tailored to the type of request. Distributed
client-server applications that involve round trips (i.e., cyclic
execution paths) are not the goal of this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes the system model. Section 3, general-
izes previous pipeline delay composition results to the DAG
case, and provides an improved bound for the special case
of periodic tasks. We show how partitioned resources can
be handled in Section 4. In Section 5, we present distributed
system reduction to a single stage and show how well-known
single stage schedulability analysis techniques can be used
to analyze acyclic distributed systems. In Section 6, we de-
scribe how the system model can be extended to include tasks
whose sub-tasks themselves form a DAG. In Section 7, we
compare the performance of schedulability analysis based on
our delay composition theorem with holistic analysis, and
show that under certain conditions non-preemptive schedul-
ing can result in higher system utilization than preemptive
scheduling. Related work is reviewed in Section 8. We dis-
cuss future work in Section 9, especially how the results de-
rived in this paper can be extended to non-acyclic systems.
We conclude in Section 10.

2. System Model

In this paper, we consider a multi-stage distributed sys-
tem that serves real-time tasks. In our system model, we first
assume that each task traverses a path of multiple stages of
execution and must exit the system within specified end-to-
end latency bounds. The combination of all such paths forms
a DAG. We then extend the above results to tasks whose sub-
tasks themselves form a DAG.

We assume that all stages are scheduled in the same prior-
ity order. If some resources are partitioned (e.g., in a TDMA
fashion) with priorities applied within partitions, we consider
each partition to be a slower prioritized resource and add a
delay (the maximum time a task waits for its slot). For ex-
ample, partitioning communication resources among senders
using a TDMA or token-passing protocol is a common ap-
proach for ensuring temporal correctness in distributed real-
time systems.

No assumptions are made on the periodicity of the task
set. For periodic tasks, multiple invocations of the task
can be present concurrently (this can occur when the end-
to-end deadline is larger than the period of invocation of
the task). Different invocations of the same task need not
have the same priority. We henceforth call each task in-
vocation a job. Thus, the delay composition rule and the
corresponding transformation to an equivalent uniprocessor
apply to static-priority scheduling (such as rate-monotonic),
dynamic-priority scheduling (such as EDF), aperiodic task
scheduling, as well as partitioned-resource systems.

3. Delay Composition for DAGs
For the purposes of distributed system transformation, let

us view the system as seen from the perspective of some job
J1 of relative deadline D1 whose schedulability is to be an-
alyzed. Job J1 traverses a multistage path, Path1, in the
system, where each stage is a single resource (such as a pro-
cessor or a network link). While the system may have other
resources, we consider only those that J1 traverses. Let there
be N such resource stages, numbered 1, 2, . . . , N in traver-
sal order, constituting Path1. Let the arrival time of any job
Ji to stage j of Path1 be denoted Ai,j . The computation
time of Ji at stage j, referred to as the stage execution time,
is denoted by Ci,j , for 1 ≤ j ≤ N . If a job Ji does not pass
through stage j, then Ci,j is zero. Let Ci,max, denote Ji’s
largest stage execution time, on stages where both Ji and J1

execute. Observe that a job Ji (i �= 1) may meet with J1’s
path and diverge several times. Let Mi be the number of
times the paths of Ji and J1 meet (for a sequence of one or
more consecutive stages that ends with one job using a stage
not used by the other). In Sections 3.1 and 3.2, we derive
the proofs for the preemptive and non-preemptive versions
of the DAG delay composition theorem, respectively. We
then leverage it to present a transformation to an equivalent
uniprocessor.

3.1 The Preemptive Case

In this section, we bound the maximum delay of J1 as a func-
tion of the execution requirements of higher priority jobs that
interfere with it along its path. The following theorem states
the delay bound.

Preemptive DAG Delay Composition Theorem. Assum-
ing a preemptive scheduling policy with the same priorities
across all stages for each job, the end-to-end delay of a job
J1 of N stages can be composed from the execution parame-
ters of jobs that delay it (denoted by set S̄) as follows:

Delay(J1) ≤
∑
Ji∈S̄

2Ci,maxMi +
∑

j∈Path1
j≤N−1

max
Ji∈S̄

(Ci,j) (1)

Proof. The proof of the preemptive DAG delay composition
theorem for job J1 is accomplished by transforming the sys-
tem to a pipelined system in which the worst case delay of
J1 is no lower than that in the original system. The pipeline
delay composition theorem [6] can then be applied to derive
a worst case end-to-end delay bound for job J1.

Consider a job Ji whose path meets with the path of J1

in the distributed system then splits from it multiple times.
Every time the paths of Ji and J1 meet for one or more con-
secutive stages, we consider Ji’s execution on those stages
to be a new job Jik

as shown in Figure 1. In other words,
we split each Ji into Mi independent jobs, each of which has
one or more consecutive common stages of execution with
J1. The transformation effectively relaxes the precedence
relations that chain together the jobs Jik

in the original sys-
tem. The relaxation can only decrease the schedulability of
J1 by making it possible to construct more aggressive worst-
case arrival patterns of the higher-priority jobs Jik

. Hence,
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if J1 is schedulable in the new system, it is schedulable in
the original system. The new system, however, can be an-
alyzed by the pipeline result in [6], which applies when all
tasks traverse a chain of stages in the same direction. We
prove the correctness of such an analysis more formally in
the appendix.

J ’s flow pathi
J ’s flow path

1

J i
1

J i
2

J i
3

Figure 1: Figure illustrating splitting job Ji into Mi indepen-
dent sub-jobs.

Let set Q̄ denote the set of all higher priority jobs Jik
over

all jobs Ji and including J1. We can now apply the pipeline
delay composition theorem [6] to bound the worst case end-
to-end delay of J1. We have:

Delay(J1) ≤
∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j) (2)

Since each job Ji gave rise to Mi sub-jobs Jik
, the sum-

mation over all jobs Jik
in set Q̄ (in the first term of the bound

above) can be rewritten as a double summation over jobs Ji

in S̄ and their Mi sub-jobs. Similarly, the maximization in
the second term can also be broken into two as follows:

Delay(J1) ≤
∑
Ji∈S̄

Mi∑
k=1

2Cik,max +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(max
k≤Mi

(Cik,j))

This is equivalent to:

Delay(J1) ≤
∑
Ji∈S̄

2Ci,maxMi +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(Ci,j) (3)

This proves the preemptive DAG delay composition theorem.

The above theorem presents a delay bound for J1 given
any arbitrary set of higher priority jobs S̄. For the special
case where the higher priority jobs are invocations of peri-
odic tasks, denoted by set R, an improved delay bound can
be derived based on the observation that not all sub-jobs of
each invocation of task Ti ∈ R contribute to the delay of J1.
Let xi denote the number of invocations of task Ti that can
potentially contribute to the delay of J1 (the number of invo-
cations of Ti that belong to set S̄). The following corollary
derives this improved bound for periodic tasks.

Corollary 1. Under preemptive scheduling, the end-to-end
worst-case delay bound for a job J1 of a lowest priority task
T1, in the presence of higher priority periodic tasks (denoted
by set R) is given by:

Delay(J1) ≤
∑

Ti∈R

2Ci,max(xi +Mi)+
∑

j∈Path1
j≤N−1

max
Ti∈R

(Ci,j) (4)

Proof. Each invocation of Ti has Mi sub-jobs, and there are
xi such invocations in set S̄. The key observation is that not
all xi×Mi sub-jobs of Ti can delay J1, and by removing the
sub-jobs that cannot delay J1 from set Q̄, an improved delay
bound can be obtained for periodic tasks. To see that, con-
sider the delay of one invocation J1 of the periodic task un-
der consideration. This invocation makes forward progress
along its path and never revisits a stage. Hence, for exam-
ple, if all Mi sub-jobs of one invocation of Ti delay J1, it
implies that J1 has already progressed past a certain stage
on its path (specifically, past the last stage, say g, where the
paths of Ti and T1 meet). Therefore, sub-jobs of future in-
vocations of Ti that may execute later at those already tra-
versed stages (i.e., stages prior to g) will not interfere with
J1. Extending this argument, if y1 ≤ Mi sub-jobs of the first
invocation of Ti delay J1, then only y2 ≤ Mi − y1 + 1 sub-
jobs of the second invocation can delay J1. Likewise, only
y3 ≤ Mi − (y1 +y2)+2 sub-jobs of the third invocation can
delay J1. Therefore, the total number of sub-jobs of Ti that
delay J1 is bounded by y1+y2+. . .+yxi

≤ xi+Mi. Thus, to
calculate the worst-case delay for J1, we can discard all but
xi + Mi sub-jobs of Ti from set Q̄. This new system, how-
ever, can be analyzed by the pipeline result in [6] as before.
The corollary follows by grouping all sub-jobs belonging to
the same periodic task together.

Delay(J1) ≤
∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j)

≤
∑

Ti∈R

2Ci,max(xi + Mi) +
∑

j∈Path1
j≤N−1

max
Ti∈R

(Ci,j)

3.2 The Non-Preemptive Case

Next, we bound the maximum delay of J1 under non-
preemptive scheduling. Unlike the previous case, here J1

might also be delayed by lower-priority jobs, collectively de-
noted by set S. In particular, it may be delayed by up to one
such job on each stage. The following theorem states the new
delay bound.

Non-preemptive DAG Delay Composition Theorem. As-
suming a non-preemptive scheduling policy with the same
priorities across all stages for each job, the end-to-end delay
of a job J1 of N stages can be composed from the execution
parameters of other jobs that delay it (denoted by set S) as
follows:

Delay(J1) ≤
∑
Ji∈S̄

Ci,maxMi +
∑

j∈Path1
j≤N−1

max
Ji∈S

(Ci,j)

+
∑

j∈Path1

max
Ji∈S

(Ci,j) (5)

Proof. To bound the worst case delay for a job J1 under
non-preemptive scheduling, we first transform the task set
by removing all lower-priority jobs, and instead adding to
the computation time of J1 on each stage i the maximum
blocking delay due to jobs in S. Let us call the adjusted com-
putation time, C1′,j . Hence, C1′,j = C1,j + maxJi∈S(Ci,j).
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This results in a system of only J1 and higher-priority jobs.
Observe that if the new system is schedulable so is the orig-
inal one because we extended J1’s computation time by the
worst case amount of time it could have been blocked by
lower priority jobs. We then cut each higher-priority job Ji

into Mi sub-jobs as we did in the preemptive case, and let
Q̄ denote the set of all such sub-jobs including J1. The re-
sulting system is a task pipeline to which the non-preemptive
pipeline delay composition theorem [7] applies. According
to this theorem:

Delay(J1) ≤
∑

Ji∈Q̄

Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j)

≤
∑
Ji∈S̄

Mi∑
k=1

Cik,max +
∑

j∈Path1,
j≤N−1

max(max
Ji∈S̄,
k≤Mi

(Cik,j), C1′,j)

≤
∑
Ji∈S̄

Ci,maxMi +
∑

j∈Path1,
j≤N−1

max(max
Ji∈S̄

Ci,j , C1′,j)

≤
∑
Ji∈S̄

Ci,maxMi +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(Ci,j) +
∑

j∈Path1

max
Ji∈S

(Ci,j) (6)

Inequality 6 follows by replacing C1′,j by C1,j +
maxJi∈S(Ci,j) and making the delay due to lower priority
jobs a separate term. This proves the non-preemptive DAG
delay composition theorem.

For the special case of periodic tasks, an improved bound
can be derived as before. Let the set of all periodic tasks be
denoted by R. Let R̄ denote the set of higher priority tasks
including T1 and R denote the set of lower priority tasks.

Corollary 2. Under non-preemptive scheduling, the end-to-
end delay bound for a job J1 of task T1, in the presence of
other periodic tasks (denoted by set R) is given by:

Delay(J1) ≤
∑

Ti∈R̄

Ci,max(xi + Mi) +
∑

j∈Path1,
j≤N−1

max
Ti∈R̄

(Ci,j)

+
∑

j∈Path1

max
Ti∈R

(Ci,j) (7)

Proof. The proof is similar to the preemptive case, and we
do not repeat the proof in the interest of brevity.

4. Handling Partitioned Resources
The delay composition theorem as described so far, is

only applicable to systems where resources are scheduled in
priority order. However, resources such as network band-
width are often partitioned among jobs, for example, using
a TDMA protocol. In such a partitioned resource, a job may
access the resource only during its reserved time-slot or to-
ken. Multiple jobs can share a time-slot and be scheduled in
priority order within it.

Consider a stage j that is a partitioned resource. Let job Ji

be allocated a slice that is served for Bslice time units every
Btotal time units. As shown in Figure 2, this is no worse
than having a dedicated resource that is slower by a factor

8

6 363026201610

12

4

Partitioned Resource

Prioritized Resource

Time (ms)

Service Received (ms)

0

Figure 2: Illustration of conversion of a partitioned resource
into a prioritized resource.

Bslice/Btotal and that introduces an access delay of at most
Btotal − Bslice.

Figure 2 illustrates the service received by a set of tasks
over time for the original partitioned resource and for its cor-
responding dedicated prioritized resource, when Bslice =
4ms and Btotal = 10ms. Note that the service received
under the prioritized resource will always be less than in
the partitioned resource, causing tasks to be delayed longer.
Hence, this transformation is safe in that if the tasks in the
transformed system are schedulable, so are the tasks in the
original system.

When analyzing the end-to-end delay of J1, the computa-
tion time of J1 on the new prioritized resource j can be taken
as C1,j × Btotal

Bslice
+ (Btotal − Bslice) (the additional delay is

subsumed in the computation time). The computation time
of all other jobs in the same slice would be Ci,j × Btotal

Bslice
.

Once this transformation is conducted for all partitioned
resources that J1 encounters in the system, the delay compo-
sition theorem can be directly applied to compute the worst
case end-to-end delay of J1.

5. Transforming Distributed Systems
The preemptive and non-preemptive DAG delay compo-

sition theorems derived in Section 3, can be used to reduce a
given distributed acyclic system to an equivalent single stage
system. Let Swc denote the worst-case set of jobs that can
potentially delay J1. A simple, and somewhat conservative
definition of Swc, similar to the definition in [6] is given by:

Definition: The worst-case set Swc of all jobs that delay job
J1 (hence, include execution intervals between the arrival
and finish time of J1) includes all jobs Ji which have at least
one common execution stage with J1, and whose intervals
[Ai, Ai + Di] overlap the interval where J1 was present in
the system, [A1, A1 + Delay(J1)].

Note that the above definition is recursive, in the sense
that it defines the set of jobs that delay J1 in terms of the de-
lay experienced by J1. This can be resolved by starting with
a small estimate for the delay of J1 and iteratively adding
jobs and recomputing the delay, until all jobs Ji whose in-
tervals [Ai, Ai + Di] overlap [A1, A1 + Delay(J1)] have
been included. Alternatively, a quick, but more pessimistic
definition of Swc could include all jobs Ji whose intervals
[Ai, Ai + Di] overlap [A1, A1 + D1].

In Sections 5.1 and 5.2, we show how an equivalent
uniprocessor system can be created to analyze schedulability
of the original system under preemptive and non-preemptive
scheduling, respectively. When the system consists of par-
titioned resources, we assume that the transformation de-
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scribed in Section 4 has already been performed. In Sec-
tion 5.3, we present DAG schedulability expressions for
deadline monotonic scheduling based on the above task set
reduction.

5.1 Preemptive Scheduling Transformation
The form of the DAG delay composition theorem suggests
a reduction to a uniprocessor system in which the lowest-
priority uniprocessor job suffers the delay stated by the the-
orem. This reduction to a single stage system is conducted
by (i) replacing each higher priority job Ji in S̄wc by a sin-
gle stage job J∗

i of execution time equal to 2Ci,maxMi, and
(ii) replacing J1 with a lowest-priority job, J∗

1 of execution
time equal to 2C1,max +

∑
j∈Path1,j≤N−1 maxi(Ci,j) (the

second term is the stage-additive component), and deadline
same as that of J1. The delay of J∗

1 on the hypothetical
uniprocessor adds up to the delay bound as expressed in the
right hand side of Inequality 1. By the delay composition the-
orem, the total delay incurred by J1 in the acyclic distributed
system is no larger than the delay of J∗

1 on the uniprocessor.
Thus, if J∗

1 completes prior to its deadline in the uniproces-
sor, so will J1 in the acyclic distributed system.

For the case of periodic tasks, we can use Corollary 1 to
reduce the system to a uniprocessor system. In a uniproces-
sor system, the delay of the lowest priority task invocation in
the presence of higher priority tasks Ti (collectively denoted
by Ru) with computation times Ci is given by:

Delayuniprocessor(T1) =
∑

Ti∈Ru

xiCi (8)

where xi is the number of invocations of Ti that delay T1.
The terms xi are typically determined by a uniprocessor
schedulability analysis technique. The delay of J1 in the
DAG, as per Corollary 1, can be written in the same form
as Equation 8, leading to a natural reduction of the DAG sys-
tem to a uniprocessor system.

Delay(J1) ≤
∑

Ti∈R

xi × 2Ci,max +

1 ×
( ∑

Ti∈R

2Ci,maxMi +
∑

j∈Path1
j≤N−1

max
Ti∈R

(Ci,j)
)

The reduction to a single stage system for periodic tasks
can then be conducted by (i) replacing each higher pri-
ority periodic task Ti by an equivalent single stage task
with execution time C∗

i = 2Ci,max and having the same
period and deadline as Ti (the number of invocations xi

will be determined by the uniprocessor schedulability anal-
ysis), and (ii) replacing T1 with lowest priority task, T ∗

1

with computation time C∗
1 = 2C1,max +

∑
i 2Ci,maxMi +∑

j∈Path1,j≤N−1 maxi(Ci,j) (similar to the reduction of the
pipelined system as in [6]) with same period and deadline as
T1. If task T ∗

1 is schedulable on a uniprocessor, so is T1 on
the original acyclic distributed system.

5.2 Non-Preemptive Scheduling Transformation

Under non-preemptive scheduling, we reduce the DAG
into an equivalent single stage system that runs preemp-

tive scheduling as before. This is achieved by (i) re-
placing each job Ji in S̄wc by a single stage job J∗

i

of execution time equal to Ci,maxMi, and (ii) replac-
ing J1 by a lowest-priority job, J∗

1 of execution time
equal to C1,max +

∑
j∈Path1,j≤N−1 maxJi∈S̄wc

(Ci,j) +∑
j∈Path1

maxJi∈S(Ci,j) (which are the last two terms in
Inequality (5)), and deadline same as that of J1. Note that the
execution time of J∗

1 includes the delay due to all lower pri-
ority tasks. Further, in the above reduction, the hypothetical
single stage system constructed is scheduled using preemp-
tive scheduling, while the original DAG was scheduled using
non-preemptive scheduling. This is because we only care to
match the sum of the delay experiences by J1 and J∗

1 in their
respective systems. By the delay composition theorem, the
total delay incurred by J1 in the acyclic distributed system
under non-preemptive scheduling is no larger than the de-
lay of J∗

1 on the uniprocessor under preemptive scheduling,
since the latter adds up to the delay bound expressed on the
right hand of Inequality (5).

For the case of periodic tasks, the delay bound in Corol-
lary 2 can be used. The reduction to a single stage system for
periodic tasks can then be conducted by (i) replacing each pe-
riodic task Ti by an equivalent single stage task T ∗

i of com-
putation time C∗

i = Ci,max and same period and deadline
as Ti, and (ii) replacing T1 with a lowest priority task, T ∗

1

with computation time C∗
1 = C1,max +

∑
Ti∈R̄ Ci,maxMi +∑

j∈Path1,j≤N−1 maxi(Ci,j) +
∑

j∈Path1
maxTi∈R(Ci,j)

with same period and deadline as T1.
If task T ∗

1 is schedulable using preemptive scheduling on
a uniprocessor, so is T1 on the original acyclic distributed
system under non-preemptive scheduling.

5.3 Examples of Equivalent Uniprocessor Schedu-
lability Analysis

The reduction described in the previous subsections en-
ables large complex acyclic distributed systems to be eas-
ily analyzed using any single stage schedulability analysis
technique. For this reason, we call our solution a ‘meta-
schedulability test’. The only assumptions made by the re-
duction on the scheduling model are fixed priority preemp-
tive scheduling, and that tasks do not block for resources on
any of the stages (i.e., independent tasks). In this section, we
show how the Liu and Layland bound [9] and the necessary
and sufficient test based on response time analysis [1] can
be applied to analyze periodic tasks in an acyclic distributed
system, under both preemptive and non-preemptive schedul-
ing. Other uniprocessor schedulability tests can be applied in
a similar manner.

Define Ci,max as the largest execution time of Ti on any
stage, Di as the end-to-end deadline, and n as the number
of periodic tasks in the system. Let Mk,i be the number of
times the paths of Tk and Ti meet for one or more consecu-
tive common stages.

For preemptive scheduling, C∗
k = 2Ck,max;

C∗
e (i) = 2Ci,max +

∑
k>i 2Ck,maxMk,i +∑

j∈Path1,j≤N−1 maxk≥i(Ck,j).

For non-preemptive scheduling, C∗
k = Ck,max;
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C∗
e (i) = Ci,max +

∑
k≥i Ck,maxMk,i +∑

j∈Pathi,j≤N−1 max1≤k≤n(Ck,j) +∑
j∈Pathi

maxk<i Ck,j .

The Liu and Layland bound [9], applied to periodic tasks
in an acyclic distributed system is:

C∗
e (i)
Di

+
n∑

k=i+1

C∗
k

Dk
≤ (n − i + 1)(2

1
(n−i+1) − 1)

for each i, 1 ≤ i ≤ n.
Our meta-schedulability test, when used together with the

necessary and sufficient test for schedulability of periodic
tasks under fixed priority scheduling proposed in [1], will
have the following recursive formula for the worst case re-
sponse time Ri of task Ti:

R
(0)
i = C∗

e (i); R
(k)
i = C∗

e (i) +
∑
j>i

⌈R
(k−1)
i

Pj

⌉
C∗

j

The worst case response time for task Ti is given by the
value of R

(k)
i , such that R

(k)
i = R

(k−1)
i . For the task set

to be schedulable, for each task Ti, the worst case response
time should be at most Di.

6. Handling Tasks whose Sub-Tasks Form a
DAG

In the discussion so far, we have only considered tasks
whose sub-tasks form a path in the Directed Acyclic Graph.
In this section, we describe how this can be extended to tasks
whose sub-tasks themselves form a DAG. We shall refer to
such tasks as DAG-tasks. Figure 3(a) shows an example task,
whose sub-tasks form a DAG. Edges in the DAG, as before,
indicate precedence constraints between sub-tasks and each
sub-task executes on a different resource. A sub-task s can
execute only after all sub-tasks which have edges to sub-task
s have completed execution. In the task shown in the figure,
sub-task 5 can execute only after sub-tasks 2 and 3 have com-
pleted execution. We call this a ‘merger’ of sub-tasks. Note
that a split, that is, edges from one sub-task s to two or more
sub-tasks indicate that once sub-task s completes, it spawns
multiple sub-tasks each executing in parallel. It can be ob-
served from the example in Figure 3(a), that once sub-task
1 completes, it spawns sub-tasks 2 and 3 that can execute in
parallel on different stages.

1

3 5

6

42

7

1 42

1 53

1 52

6 7

(a) (b)

Figure 3: (a) Figure showing an example of a DAG-task (b)
Different parts of the DAG-task that need to be separately
analyzed to analyze schedulability of the DAG-task.

As the delay composition theorem only addresses tasks
which execute in sequential stages (that is, the sub-tasks form
a path in the DAG) and does not consider DAG-tasks, we

need to break the DAG-task into smaller tasks which form a
path of the DAG. This is carried forth as follows. Similar to
traditional distributed system scheduling, artificial deadlines
are introduced after each merger of sub-tasks. Each split in
the DAG creates additional paths that need to be analyzed
(the number of additional paths is one less than the fan-out).
In the example DAG-task, an artificial deadline is imposed
after sub-task 5. Sub-tasks 6 and 7 are analyzed indepen-
dently using any single stage schedulability test. As there
are two splits within sub-tasks 1 through 5, there are 3 paths
that need to be analyzed as shown in Figure 3(b). The path 1-
2-4 is analyzed independently using the meta-schedulability
test and this sequence of sub-tasks need to complete within
the end-to-end deadline of the DAG-task. The paths 1-2-5
and 1-3-5 can be independently analyzed using the meta-
schedulability test, with their deadline set as the artificial
deadline. Sub-tasks 6 and 7 need to complete in a duration at
most equal to the end-to-end deadline of the DAG-task mi-
nus the artificial deadline set for sub-task 5. If all the parts
of the DAG-task are determined to be schedulable, then the
DAG task is deemed to be schedulable.

As observed in [6], imposing artificial deadlines add to the
pessimism of the schedulability analysis. The use of the de-
lay composition theorem reduces the need to impose artificial
deadlines to only stages in the execution where two or more
sub-tasks merge. This is in contrast to traditional distributed
schedulability analysis, that imposes artificial deadlines af-
ter each stage of execution, causing the pessimism to quickly
increase with system scale.

7. Simulation Results

In this section, we evaluate the preemptive and non-
preemptive schedulability analysis techniques described in
Section 5.3. A custom-built simulator that models a dis-
tributed system with directed acyclic flows is used. Due to
paucity of space, we consider only periodic tasks, and fur-
ther assume that partitioned resources within the system have
been transformed into resources scheduled in priority order
as described in Section 4, and focus this evaluation on pri-
oritized resources. An admission controller is used to main-
tain real-time guarantees within the system. The admission
controller is based on a single stage schedulability test for
deadline monotonic scheduling, such as the Liu and Layland
bound [9] or response time analysis [1], together with our re-
duction of the multistage distributed system to a single stage,
as shown in Section 5.3. Each periodic task that arrives at the
system is tentatively added to the set of all tasks. The new
task is admitted if the task set is found to be schedulable by
the admission controller, and dropped if not.

Although the meta schedulability test derived in this pa-
per is valid for any fixed priority scheduling algorithm, we
only present results for deadline monotonic scheduling due
to its widespread use. In the rest of this section, we use the
term utilization to refer to the average per-stage utilization.
Each point in the figures below represents average utilization
values obtained from 100 executions of the simulator, with
each execution running for 80000 task invocations. When
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comparing different admission controllers, each admission
controller was allowed to execute on the same 100 task sets.

The default number of nodes in the distributed system is
assumed to be 8. Each task on arrival requests processing on
a sequence of nodes (we do not consider DAG tasks in this
evaluation), with each node in the distributed system having
a probability of NP (for Node Probability) of being selected
as part of the route. The task’s route is simply the sequence
of selected nodes in increasing order of their node identifier.
The default value of NP is chosen as 0.8. End-to-end dead-
lines (equal to the periods, unless explicitly specified other-
wise) of tasks are chosen as 10xa simulation seconds, where
x is uniformly varying between 0 and DR (for deadline ra-
tio parameter), and a = 500 ∗ N , where N is the number of
stages in the task’s route. Such a choice of deadlines enables
the ratio of the longest to the shortest task deadline to be as
large as 10DR. The default value for DR is 0.5. The execu-
tion time for each task on each stage was chosen based on the
task resolution parameter, which is the ratio of the total com-
putation time of a task over all stages to its end-to-end dead-
line. The stage execution time of a task is calculated based
on a uniform distribution with mean equal to DT

N , where D is
the deadline of the task and T < 1 is the task resolution. We
used a task resolution of 1/100. The stage execution times
of tasks were allowed to vary up to 10% on either side of
the mean. Choosing the stage execution times to be nearly
proportional to the end-to-end deadline, ensures that when
tasks have similar deadlines (DR close to zero), then the ex-
ecution times are also comparable. When tasks have widely
different deadlines (a high value for DR), then the execution
times are also widely varying. Our simulations show that
non-preemptive scheduling performs better than preemptive
scheduling when the task execution times are similar, and
preemptive scheduling performs better than non-preemptive
scheduling when the task execution times are different by
more than two orders of magnitude.

Under preemptive scheduling, task preemptions are as-
sumed to be instantaneous, that is, the task switching time is
zero. The default single stage schedulability test used is the
response-time analysis technique presented in [1]. The 95%
confidence interval for all the utilization values presented in
this section is within 0.02 of the mean value, which is not
plotted for the sake of legibility.
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Figure 4: Meta-schedulability test vs. holistic analysis for
different number of nodes in DAG

We first study the achievable utilization of our meta-
schedulability test using both the Liu and Layland bound
and response time analysis, for both preemptive as well as
non-preemptive scheduling. We compare this with holistic
analysis [13], applied to preemptive scheduling, for different
number of nodes in the DAG, the results of which are shown
in Figure 4. While extensions to holistic analysis have been
proposed (such as [11]), we use holistic analysis as a com-
parison as these extensions are targeted to handle offsets (we
do not consider offsets in our analysis). Further, they suf-
fer from similar drawbacks as holistic analysis such as poor
scalability and requiring global knowledge of all tasks in the
system. For meta-schedulability test curves that are marked
preemptive, the scheduling was preemptive and the preemp-
tive version of the test was used in admission control. Like-
wise, for the meta-schedulability test curves that are marked
non-preemptive, the scheduling was non-preemptive and the
non-preemptive version of the test was used. We only eval-
uated holistic analysis applied to preemptive scheduling as
presented in [13], as the non-preemptive version presented
in [8] adds an extra term to account for blocking due to lower
priority tasks and tends to be more pessimistic than the pre-
emptive version, and the corresponding curve would always
be lower than the curve for preemptive scheduling.

It can be observed from Figure 4, that even for an eight
node DAG, non-preemptive scheduling analyzed using our
meta-schedulability test significantly outperforms preemp-
tive scheduling analyzed using both holistic analysis and our
meta-schedulability test. As the utilization curve for holis-
tic analysis applied to non-preemptive scheduling would be
lower than the curve for the preemptive scheduling version
of holistic analysis, non-preemptive scheduling analyzed us-
ing our meta-schedulability test would also outperform the
non-preemptive version of holistic analysis. A drawback of
holistic analysis is that it analyzes each stage separately as-
suming the response times of tasks on the previous stage to
be the jitter for the next stage. It therefore assumes that every
higher priority job will delay the lower priority job at every
stage of its execution, ignoring possible pipelining between
the executions of the higher and lower priority jobs. This
causes holistic analysis to become increasingly pessimistic
with system size when periods are of the order of end-to-
end deadlines (as opposed to per-stage deadlines). As moti-
vated in [7], preemption can reduce the overlap in the execu-
tion of jobs on different stages, resulting in non-preemptive
scheduling performing better than preemptive scheduling in
the worst case.

In order to estimate when deadlines are actually being
missed, and to evaluate the pessimism of the admission con-
trollers, we conducted simulations to identify the lowest uti-
lization at which deadlines are missed. The curve labeled
‘Simulation’ in Figure 4 presents the results from simulations
of the lowest utilization at which deadline misses were ob-
served for different number of nodes in the system when non-
preemptive scheduling was employed. The corresponding
curve for preemptive scheduling, was within 0.02 of those
of non-preemptive scheduling, and we don’t show the values
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here for the sake of clarity (the reader must bear in mind that
task sets were generated randomly, and that the task sets do
not represent worst case scenarios). Each point for the sim-
ulation curve was obtained from 500 executions of the sim-
ulator in the absence of any admission controller, with each
execution considering a workload with utilization close to
where deadline misses were being observed. We observe that
the meta-schedulability test curves degrade only marginally
with increasing scale, while the performance of holistic anal-
ysis degrades more rapidly.
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To precisely evaluate the scenarios under which non-
preemptive scheduling performs better than preemptive
scheduling in distributed systems, we conducted experiments
varying the deadline ratio parameter (DR) while keeping the
other parameters equal to their default values. Figure 5 plots
a comparison of the meta-schedulability test under both pre-
emptive as well as non-preemptive scheduling, with holistic
analysis for different DR values ranging between 0.5 and
3.0. A DR value of x indicates that the end-to-end dead-
lines of tasks can differ by as much as 10x. As stage exe-
cution times are chosen proportional to the end-to-end dead-
line, when the end-to-end deadlines of tasks are widely dif-
ferent, the lower priority tasks (those with large deadlines)
have a large stage execution time. Initially, as DR increases,
the utilization for both preemptive as well as non-preemptive
scheduling increases, as lower priority tasks can execute in
the background of higher priority tasks resulting in better
system utilization. Up to DR = 2, non-preemptive schedul-
ing (together with the non-preemptive version of the meta-
schedulability test) results in better performance than pre-
emptive scheduling (together with the preemptive version
of the test). However, for values of DR greater than 2,
that is, the end-to-end deadlines vary by over two orders
of magnitude, preemptive scheduling performs better than
non-preemptive scheduling. The achievable utilization under
non-preemptive scheduling decrease beyond a DR value of
2, as higher priority tasks can now be blocked for a longer du-
ration under non-preemptive scheduling, leading to a greater
likelihood of deadline misses.

The above results have all been obtained by setting the
end-to-end deadlines equal to the periods of tasks. Fig-
ure 6 plots a comparison of the meta-schedulability test un-
der preemptive and non-preemptive scheduling with holistic
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Figure 6: Meta-schedulability test vs. holistic analysis for
different ratios of end-to-end deadline to task periods

analysis for different ratios of the end-to-end deadlines to
the periods. When the ratio of the end-to-end deadline to
period is higher, the laxity available to jobs is larger, and
hence, the utilization of all the three analysis techniques are
high. The meta-schedulability test under non-preemptive
scheduling consistently outperforms preemptive scheduling
analyzed using either the meta-schedulability test or holis-
tic analysis. As holistic analysis applied to non-preemptive
scheduling (curve not shown) would perform worse than the
preemptive scheduling version of holistic analysis, it would
also perform worse than the meta-schedulability test applied
to non-preemptive scheduling. Similar to Figure 4, the curve
labeled as ‘simulation’ plots the lowest utilization at which
deadline misses were observed obtained from simulations
under non-preemptive scheduling in the absence of any ad-
mission controller. The corresponding values for preemptive
scheduling were close to those obtained for non-preemptive
scheduling and are not presented here for the sake of clar-
ity. We observe that our analysis tends to be less pessimistic
for larger values of the ratio between the end-to-end deadline
and the period.

8. Related Work
Algorithms for statically scheduling precedence con-

strained tasks in distributed systems have been proposed in
[4,14]. Such algorithms construct a schedule of length equal
to the least common multiple of the task periods of the set of
periodic tasks. This schedule can then be used to accurately
specify the time intervals during which each task will be exe-
cuted. Such algorithms have a huge time complexity and are
clearly unsuitable for large, complex distributed systems.

Pipelined distributed systems have been studied in the
context of job-fair scheduling, where the objective is to find
a feasible schedule of executing the tasks. In [2], polyno-
mial time algorithms are presented for special cases where
the problem is tractable, and heuristic solutions are devel-
oped for the general case. In contrast, we study the problem
of schedulability of an arbitrary set of priority ordered tasks
under a given scheduling policy.

A few offline schedulability tests have been proposed,
which divide the end-to-end deadline into individual stage
deadlines, and tend to ignore the overlap between the exe-
cution of different stages. In [10, 12], offset-based response
time analysis techniques for EDF were proposed, which di-
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vide the end-to-end deadline into individual stage deadlines.
Holistic schedulability analysis for distributed hard real-

time systems [13], assumes the worst case delay at a stage
as the jitter for the next stage. While this technique does not
divide the end-to-end deadline into sub-deadlines for individ-
ual stages, it nevertheless does not account for the overlap in
the execution of different pipeline stages.

In [5], a schedulability test based on aperiodic schedul-
ing theory for fixed priority scheduling was derived. Al-
though this solution handles arbitrary-topology resource sys-
tems and resource blocking, it does not consider the overlap
in the execution of multiple stages in the system. In ear-
lier publications [6, 7], we proved a delay composition the-
orem for pipelined systems under both preemptive and non-
preemptive scheduling. This paper extends these results to
more general distributed systems and partitioned resources.

In stark contrast to preemptive scheduling, non-
preemptive scheduling has received very little attention from
the real-time community. An extension to holistic analysis
in distributed systems to account for blocking due to non-
preemptive scheduling is presented in [8]. The paper presents
a comparison of this analysis technique with network calcu-
lus [3], and concludes that the worst case response time as
predicted by the holistic analysis technique tends to be su-
perior to that of network calculus in most cases. In contrast
to such techniques, we reduce the problem of analyzing a
distributed acyclic system with non-preemptive scheduling
to that of analyzing a single stage system using preemp-
tive scheduling. Thus, well known uniprocessor tests can
be adopted to analyze multistage systems, resulting in more
efficient schedulability analysis.

9. Discussion and Future Work

A key step in deriving the DAG delay composition the-
orems was to split each higher priority job Ji into Mi sub-
jobs Jik

, each executing on one or more consecutive com-
mon stages with J1. The precedence constraints in the arrival
times of the different sub-jobs can be relaxed by assuming
that each sub-job arrives independently of the others. This in-
dependence assumption can only result in a more pessimistic
delay analysis for J1. The same transformation of splitting
jobs into sub-jobs and assuming independent arrivals for sub-
jobs, can also be conducted for non-acyclic higher priority
jobs (jobs that visit a stage more than once). Each visit to a
stage can be considered as an independent arrival of a sub-
job. In the case where J1 (the job under consideration) itself
has loops in its path, then J1 can be split into sub-jobs each
of which is acyclic. The DAG delay composition theorem
can then be used to determine the worst-case delay for each
sub-job, and the worst-case delay for J1 can be estimated
as the sum of the worst-case delays of each of its sub-jobs.
Even with only one loop in the task path, there may be mul-
tiple ways in which the loop can be broken. For example,
suppose that a task traverses stages 1, 2, 3, and then revisits
stage 1. This loop 1-2-3-1 can be broken as either (1, 2-3-1)
(one sub-job on stage 1 and another that executes along the
path 2-3-1), (1-2, 3-1), or (1-2-3, 1). This choice becomes an

art of design, and the choice that maximizes pipelining and
minimizes the number of independent sub-jobs would typi-
cally yield the best delay bound. A better characterization of
the precedence constraints between sub-jobs (instead of as-
suming them to be independent) could yield a more accurate
delay bound for non-acyclic task systems.

The delay composition rule derived in this paper could
aid the study of obtaining optimal rate control, routing
and scheduling policies in distributed systems and large
networks. Extensions to allow both preemptive and non-
preemptive scheduling to be employed within the same sys-
tem, will also be useful.

10. Conclusion
In this paper, we present a delay composition theorem

that bounds the worst-case delay of jobs for preemptive and
non-preemptive scheduling in distributed systems, where the
routes of tasks form a directed acyclic graph. We consider
systems where resources can be either partitioned or sched-
uled in priority order. We also show a simple extension of the
results to non-acyclic task sets. The composition rule leads to
the reduction of the distributed system to an equivalent single
stage system, which then enables any single stage schedula-
bility test to analyze distributed systems. We show that un-
der certain conditions, non-preemptive scheduling can per-
form better than preemptive scheduling for distributed sys-
tems. We believe the results derived in this paper will serve
as a first step towards a general transformation theory for dis-
tributed systems.
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A Derivation of Delay Bound Using the
Pipeline Result

In the proof of the preemptive DAG delay composition
theorem in Section 3.1, we used the pipeline delay compo-
sition theorem [6] to derive the delay bound. The pipeline
result was proved assuming that all jobs follow the same se-
quence of stages. However, in the system under considera-
tion, each sub-job Jik

of Ji executes only on a certain con-
secutive sequence of stages j through j′ (say) and does not
execute on the other stages. We now show that the delay
bound of a job J1 as per the pipeline delay composition the-
orem also bounds its delay in the presence of higher priority
jobs that execute at an arbitrary sequence of stages j through
j′ (1 ≤ j ≤ j′ ≤ N ) before exiting the system.

For notational simplicity, let us renumber all higher-
priority jobs Jik

so they are given a single index increasing
in priority order, and let Q̄ denote the set of all such jobs
including J1. Further (also for notational simplicity), let us
assume that each job has a unique priority. Ties are broken
arbitrarily (e.g., in a FIFO manner).

Lemma 1. The pipeline delay composition theorem [6] pro-
vides a worst-case delay bound for job J1 in the presence of
higher priority jobs (denoted by set Q̄ with the inclusion of
J1), each executing on some arbitrary consecutive sequence
of stages in the path of J1.

Delay(J1) ≤
∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j)

Proof. The proof is by induction on task priority. While car-
rying out the induction, we also successively transform each
added task, so that it executes on all stages 1 through N with
zero execution times on stages on which it did not execute
previously. We show that this transformation does not inval-
idate the delay bound as per the lemma.

The basis step of the lemma is when only J1 is present in
the system. In this case,

Delay(J1) ≤ 2C1,max +
∑

j∈Path1,
j≤N−1

C1,j

which is trivially true.
Now, assume that the lemma is true for k− 1 jobs, k ≥ 2.

We shall prove the lemma when a kth job Jk of highest pri-
ority is added. To do so, we need to show that the additional
delay due to the presence of Jk is at most 2Ck,max, in addi-
tion to Jk’s contribution to the stage additive component of
the delay (the sum of maximum computation times over all
jobs at each stage).

Let Jk execute between stages j and j′ in the path of J1.
By adding a zero execution time requirement for Jk on each
stage beyond j′ in the path of J1, we do not change the ex-
ecution intervals or the end-to-end delay of J1. Now in the
system with only k − 1 jobs, in the absence of Jk, let the
delay of J1 from the time of its arrival till the time it arrives
at stage j be x, and the delay from the time it arrives at stage
j till the time it completes its execution in the system be y.
The end-to-end delay of J1 is thus x + y, when the system
has k − 1 jobs. In the system with job Jk, let the delay of
J1 from the time it arrives at stage j till the time it completes
execution on all stages be y + ∆ (∆ is the additional delay
caused by Jk).

Consider the system starting from stage j and including
all subsequent stages in the path of J1. All k jobs execute on
all the stages (the transformation has been performed for the
other k − 1 jobs), and the system is a pipelined system. We
can now apply the pipeline delay composition theorem [6] to
this system. From the pipeline delay composition theorem,
the worst case delay that Jk can induce J1, that is the maxi-
mum value for ∆, is 2Ck,max, in addition to Jk contributing
to the stage additive component of the delay, which is one
maximum stage execution time over all jobs for each stage.
Thus, ∆ is bounded regardless of the value of x and y and
the arrival times of the other jobs. Now, add a zero execution
time requirement for Jk on each stage prior to stage j on the
path of J1. As Jk is the highest priority job in the system,
as soon as it arrives to the system it would complete its zero
execution time requirement on each stage and arrive at stage
j instantaneously. Thus, when zero execution time require-
ments have been added for Jk on stages prior to stage j and
beyond stage j′, the delay that Jk causes J1 is still ∆, which
is bounded as described above regardless of the arrival times
of the other jobs. This proves the induction step and each
higher priority job Jk inflicts a delay of at most 2Ck,max in
addition to contributing to the stage additive component.

The lemma is precisely Inequality 2 in Section 3.1. The
same proof applies even for the case of non-preemptive
scheduling, except for invoking the non-preemptive pipeline
delay composition theorem [7] instead of the preemptive ver-
sion of the theorem. Thus, under non-preemptive schedul-
ing, ∆ is bounded by Ck,max (one maximum stage execu-
tion time for each higher priority job instead of two), and an
additional blocking term determines the delay due to lower
priority jobs as shown in Section 3.2.
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