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Abstract
This paper presents the delay composition algebra: a set of
simple operators for systematic transformation of distributed
real-time task systems into single-resource task systems such
that schedulability properties of the original system are pre-
served. The transformation allows performing schedulabil-
ity analysis on distributed systems using uniprocessor the-
ory and analysis tools. Reduction-based analyses techniques
have been used in other contexts such as control theory and
circuit theory, by defining rules to compose together compo-
nents of the system and reducing them into equivalent single
components that can be easily analyzed. This paper is the
first to develop such reduction rules for distributed real-time
systems. By successively applying operators such as PIPE
and SPLIT on operands that represent workload on com-
posed subsystems, we show how a distributed task system
can be reduced to an equivalent single resource task set from
which the end-to-end delay and schedulability of tasks can
be inferred. We show through simulations that the proposed
analysis framework is less pessimistic with increasing system
scale compared to traditional approaches.

1. Introduction

In this paper, we present an algebra for schedulabil-
ity analysis of distributed real-time systems. The algebra
reduces the distributed system workload to an equivalent
uniprocessor workload that can be analyzed using unipro-
cessor schedulability analysis techniques to infer end-to-end
delay and schedulability properties of each of the original
distributed jobs. Existing techniques for analyzing delay and
schedulability of jobs in distributed systems can be broadly
classified into two categories: (i) decomposition-based, and
(ii) extension-based. The decomposition-based techniques
break the system into multiple subsystems, analyze each
subsystem independently using current uniprocessor analysis
techniques, then combine the results. The extension-based
techniques explore ways to extend current uniprocessor anal-
yses to accommodate distributed tasks and resources. In con-
trast, we propose to use a third category of techniques for
analyzing distributed systems that are based on reduction (as
opposed to decomposition or extension). Rather than break-
ing up the problem into subproblems, or extending unipro-
cessor analyses to more complex systems, we systematically
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reduce the distributed system schedulability problem to a sin-
gle simple problem on a uniprocessor.

A reduction-based approach to system analysis has been
devised in many contexts outside distributed system schedul-
ing. For instance, in control theory, there are rules to re-
duce complex block diagrams into a single equivalent block,
which can later be analyzed for stability and performance
properties. In circuit theory, laws such as Kirchoff’s laws
enable complex circuits to be reduced to a single equivalent
source and impedance. Apart from reducing the complexity
of the problem to that of a single component, such reduction
rules also provide fundamental insights into how key perfor-
mance properties are affected by the structure and arrange-
ment of individual components in the system. The contribu-
tion of this paper lies in developing a compositional algebraic
framework for analyzing timing issues in distributed systems
by reducing them to an equivalent uniprocessor.

While the theory developed in this paper can handle a gen-
eral class of distributed systems, it has several limitations
that motivate further work. For instance, in this paper, we
assume that jobs require only a single resource at any given
time (although they may need different resources at different
times). We do not consider jobs that simultaneously require
two or more resources. Further, we only consider systems
where a job has the same priority on all resources. Finally,
the analysis is developed mostly for acyclic systems (where
no cycles in execution graphs exist). We discuss extensions
to cyclic systems but do not evaluate them in this work. We
hope that this paper serves as one of the first of a series of
reduction-based approaches to analyzing complex systems,
and that future work can relax some of the restrictive assump-
tions made.

The rest of this paper is organized as follows. We present
the algebra and the intuition behind it in Section 2. In Sec-
tion 3, we formally prove the correctness of the algebra.
We extend our results to non-acyclic systems in Section 4.
In Section 5, we evaluate the performance of our algebraic
framework through simulation studies. In Section 6, we dis-
cuss related work and conclude in Section 7.

2. Delay Composition Algebra

The main goal of the delay composition algebra is to al-
low schedulability analysis of distributed jobs by reducing
them to a uniprocessor workload. Given a graph of system
resources, where nodes represent processing resources and
arcs represent the direction of job flow, our algebraic opera-
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tors systematically “merge” resource nodes, composing their
workloads per rules of the algebra, until only one node re-
mains. The workload of that node represents a uniproces-
sor job set. Uniprocessor schedulability analysis can then be
used to determine the schedulability of the set. In this sec-
tion, we provide a detailed description of the algebra and its
underlying basic intuition. A formal proof of correctness is
presented in Section 3.

Section 2.1 describes the assumed system model. We pro-
vide the intuition leading to our algebra in Section 2.2. In
Section 2.3, we describe the basic operand representation
and show how to translate a system into operands of the de-
lay composition algebra. The operators of the algebra and a
proof of liveness are described in Section 2.4. In Section 2.5,
we show how end-to-end delay and schedulability of jobs are
determined from the final operand matrix. Finally, we con-
clude with an illustrative example, in Section 2.6.

2.1 System Model and Problem Statement

Consider a distributed system given by a resource graph
of N nodes that serves a set of real-time jobs. Each node
in the graph is a resource (e.g., a stage of distributed pro-
cessing). Arcs represent the direction of execution flow. A
resource could be anything that is allocated to jobs in priority
order. For example, it could be a processor or a communica-
tion link. In this paper, we assume that a job has the same pri-
ority on all resources of the distributed system. We focus first
on acyclic systems, meaning that the resource graph is a di-
rected acyclic graph (DAG). Later, in Section 4, we show that
if cycles or bi-directional arcs exist between nodes, we can
cut the offending arcs using a task set transformation, reduc-
ing the graph to a DAG again. Different jobs in the system
can traverse different paths in the DAG, and may have dif-
ferent start and end nodes. Each job traverses a sequence of
multiple stages of execution, between its start and end node,
and must exit the system within a pre-specified end-to-end
deadline. The DAG is the union of all job paths. Let the
(worst-case) execution time of job Ji on stage j in its path be
denoted by Ci,j , and let the relative end-to-end job deadline
be denoted by Di.

We further augment the DAG with an arc from each end
node of a job to a single virtual “finish” node, f . The exe-
cution time of any job Ji on the finish node f , Ci,f , is set
to zero, so as to not affect schedulability. This augmentation
ensures that the graph is never partitioned and hence can be
reduced to a single node using our algebraic operators.

We make no assumptions on the periodicity of the task
set. Indeed, jobs may or may not be invocations of peri-
odic tasks. In our model, if the jobs are in fact invocations
of periodic tasks, different invocations of the same periodic
task can simultaneously be present in the system, and can
have different priority values. The above model can represent
static and dynamic priority scheduling, periodic or aperiodic
task scheduling, as well as preemptive and non-preemptive
scheduling. The question we would like to answer is whether
each job is schedulable (i.e., can traverse its path through the
system by its deadline).

2.2 Intuition for a Reduction Approach

To answer the above question, we reduce the distributed
system to a single node. Our reduction operators simplify the
resource DAG progressively by breaking forks into chains
and compacting chains by merging neighboring nodes, pro-
ducing an equivalent workload for the resulting merged node.
Workload of any one node (that may represent a single re-
source or the result of reducing an entire subsystem) is de-
scribed generically by a two-dimensional matrix stating the
worst-case delay that each job, Ji, imposes on each other job,
Jk, in the subsystem the node represents. Let us call it the
load matrix of the subsystem in question.

Observe that if jobs are invocation instances of periodic
or sporadic tasks (which we expect to be the most common
use of our algebra), we include in the load matrix only one
instance of each task. We need to consider only one instance
of each task because all individual invocation instances of
the same task have the same parameters and thus will im-
pose the same delay on a lower priority instance. It is there-
fore enough to compute this delay once. We are able to get
away with this because our algebra is only concerned with
job transformation. It is not concerned, for example, with
computing the number of invocations of one task that may
preempt another. This is the responsibility of uniprocessor
schedulability analysis that we apply to the resulting unipro-
cessor task set. The algebra simply reduces a distributed in-
stance into a uniprocessor instance. This decoupling between
the reduction part and the analysis part is a key advantage of
the reduction-based approach. Hence, in the following, when
we mention a job, it could either mean an aperiodic job or a
single representative instance of a periodic or sporadic task.
For periodic or sporadic task sets, the dimension of the load
matrix is therefore n × n, where n is the finite number of
tasks in the set.

Observe that, on a node that represents a single resource
j, any job Ji, that is of higher priority than job Jk, can de-
lay the latter by at most Ji’s worst-case computation time,
Ci,j , on that resource. This allows one to trivially produce
the load matrix for a single resource given job computation
times, Ci,j , on that resource. Element (i, k) of the load ma-
trix for resource j, denoted qj

i,k (or just qi,k where no am-
biguity arises) is equal to Ci,j as long as Ji is of (equal or)
higher priority than Jk. It is zero otherwise.

The main question becomes, in a distributed system, how
to compute the worst-case delay that a job imposes on an-
other when the two meet on more than one resource? The
answer decides how delay components of two load matri-
ces are combined when the resource nodes corresponding to
these matrices are merged using our algebraic operators. In-
tuitions derived from uniprocessor systems suggest that de-
lays are combined additively. This is not true in distributed
systems. In particular, we have shown in [7] that delays in
pipelines are sub-additive because of gains due to parallelism
caused by pipelining. More specifically, the worst-case delay
imposed by a higher priority job, Ji, on a lower priority job,
Jk, when both traverse the same set of stages, varies with the
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maximum of Ji’s per-stage computation times, not their sum
(plus another component we shall mention shortly).

The delay composition algebra leverages the aforemen-
tioned result. Neighboring nodes in the resource DAG
present an instance of pipelining, in that jobs that complete
execution at one node move on to execute at the next. Hence,
when these neighboring nodes are combined, the delay com-
ponents, qi,k, in their load matrices are composed by a max-
imization operation. In our algebra, this is done by the PIPE
operator. It reduces two neighboring nodes to one and com-
bines the corresponding elements, qi,k, of their respective
load matrices by taking the maximum of each pair. For this
reason, we call qi,k the max term.

It could be, however, that two jobs travel together in a
pipelined fashion1 for a few stages (which we call a pipeline
segment), then split and later merge again for several more
stages (i.e., another pipeline segment). Figure 1 demon-
strates such a scenario for a job Jk and a higher priority
job, Ji. In this case, the max terms of each of the pipeline
segments (computed by the maximization operator) must be
added up to compute the total delay that Ji imposes on Jk. It
is convenient to use a running counter or “accumulator” for
such addition. Whenever the jobs are pipelined together, de-
lays are composed by maximization (kept in the max term)
as discussed above. Every time Ji splits away from Jk, sig-
naling the termination of one pipeline segment, the max term
(i.e., the delay imposed by Ji on Jk in that segment) is added
to the accumulator. Let the accumulator be denoted by ri,k.
Hence, ri,k represents the total delay imposed by Ji on a
lower priority job Jk over all past pipeline segments they
shared. Observe that jobs can split apart only at those nodes
in the DAG that have more than one outgoing arc. Hence,
in our algebra, a SPLIT operator is used when a node in the
DAG has more than one outgoing arc. SPLIT updates the
respective accumulator variables, ri,k, of all those jobs Jk,
where Jk and a higher priority job Ji part on different arcs.
The update simply adds qi,k to ri,k and resets qi,k to zero.

Max computation time of J
over first set of consecutive
common execution stages

i
Max computation time of J

over second set of consecutive
common execution stages

i
Max computation time of J

over third set of consecutive
common execution stages

i

J  splits from path of J
and causes no delay at

these stages

i k

+ +

All prior stages have been
composed into a single stage

(q    ,r    ) denotes the delay that J  
causes J  on all stages composed so far

i

k

i,k

r q Not yet 
accounted 

i,k i,k

i,k

Figure 1. Figure showing the components of
the delay that Ji causes Jk, and how the com-
position of stages works

In summary, in a distributed system, it is useful to repre-

1The term pipelined execution has also been used in the literature to refer
to the situation where an invocation of a task can start before the previous
invocation has completed, when deadlines are larger than task periods. We
do not intend the term pipelined execution in this context.

sent the delay that one job Ji imposes on another Jk as the
sum of two components qi,k and ri,k. The qi,k term is up-
dated upon PIPEs using the maximization operator (the max
term). The ri,k is the accumulator term. The qi,k is added
to the ri,k (and reset) upon SPLITs, when Ji splits from the
path of Jk. PIPE and SPLIT are thus the main operators of
our algebra. In the final resulting matrix, the qi,k and ri,k

components are added to yield the total delay that each job
imposes on another in the entire system.

The final matrix is indistinguishable from one that repre-
sents a uniprocessor task set. In particular, each column k in
the final matrix denotes a uniprocessor set of jobs that delay
Jk. In this column, each non-zero element determines the
computation time of one such job Ji. Since the transforma-
tion is agnostic to periodicity, for periodic tasks, Ji and Jk

simply represent the parameters of the corresponding peri-
odic task invocations. Hence, for any task, Tk, in the original
distributed system, the final matrix yields a uniprocessor task
set (in column k), from which the schedulability of task Tk

can be analyzed using uniprocessor schedulability analysis.
Finally, the above discussion omitted the fact that the re-

sults in [7] also specified a component of pipeline delay that
grows with the number of stages traversed by a job and is
independent of the number of higher priority jobs. We call
it the stage-additive component, sk. Hence, the load matrix,
in fact, has an extra row to represent this component. As the
name suggests, when two nodes are merged, this component
is combined by addition. With the above background and in-
tuition in mind, in the following subsections, we describe the
algebra more formally, then prove it.

2.3 Operand Representation

In order to represent a task set on a resource for the pur-
pose of analyzing delay and schedulability, we represent the
delay that each job (or periodic task invocation) causes every
other job in the system. As mentioned above, we represent
this as an n×n array of delay terms, with the (i, k)th element
denoting the delay that job Ji causes job Jk. Each element
(i, k) is represented as a two-tuple (qi,k, ri,k), where the first
term in the tuple qi,k denotes the max-term, and the second
term ri,k denotes the accumulator-term. The operand matrix
has an additional row in which the kth element, sk (that we
shall define shortly), represents the delay of job Jk that is
independent of the number of jobs in the system, and is addi-
tive across the stages on which Jk executes. An operand A,
represented as an (n + 1) × n matrix is shown below:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 J2 . . . Jn

J1 (qA
1,1, r

A
1,1) (qA

1,2, r
A
1,2) . . . (qA

1,n, rA
1,n)

J2 (qA
2,1, r

A
2,1) (qA

2,2, r
A
2,2) . . . (qA

2,n, rA
2,n)

. . .

. .

. .
Jn (qA

n,1, r
A
n,1) (qA

n,2, r
A
n,2) . . . (qA

n,n, rA
n,n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sA
1 sA

2 . . . sA
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Let us now construct the matrix for a single stage j, the
basic operand. Let us first assume that the scheduling is pre-
emptive. Without loss of generality, assume that the jobs are
ordered according to priority, and i < k implies that Ji has a
higher priority than Jk. If a job Jk does not execute at stage
j, then all the elements qi,k, ri,k, and sk are set to zero. For
each job Jk that executes on stage j, ri,k = 0 (the accumula-
tor is initialized to zero). Further, qi,k = Ci,j if Ji executes
on stage j and has a higher or equal priority compared to Jk.
Otherwise, qi,k = 0. The term sk, is defined as the maxi-
mum computation time over all higher priority jobs on stage
j. That is, sk = maxi≤k Ci,j . An example operand matrix
for a stage j in a system with four jobs, of which only J1, J2

and J4 execute on the stage, is shown below:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)
J2 (0, 0) (C2,j , 0) (0, 0) (C2,j , 0)
J3 (0, 0) (0, 0) (0, 0) (0, 0)
J4 (0, 0) (0, 0) (0, 0) (C4,j , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C1,j max(C1,j , C2,j) 0
max(C1,j ,
C2,j , C4,j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When the scheduling is non-preemptive, the matrix for a
single stage j is constructed similarly, except for the stage-
additive component sk, which in this case is a sum of two
terms. The first term is the maximum computation time of
any job (not just higher priority jobs) on stage j. The second
term is the maximum computation time of any lower priority
job on stage j. Thus, sk = maxi Ci,j +maxi>k Ci,j . An ex-
ample matrix for a stage j under non-preemptive scheduling,
for the same 4-job system as before is shown below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)
J2 (0, 0) (C2,j , 0) (0, 0) (C2,j , 0)
J3 (0, 0) (0, 0) (0, 0) (0, 0)
J4 (0, 0) (0, 0) (0, 0) (C4,j , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C1,j+ max(C1,j , 0

max(C1,j ,
max(C2,j , C4,j) C2,j) + C4,j C2,j , C4,j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.4 Operators of the Algebra

We describe the two operators, namely PIPE and SPLIT.
These operators ensure that every term (qi,k, ri,k) in the re-
sultant operand matrix correctly represents the max-term and
accumulator-term of the delay that Ji can cause Jk over all
the stages that the operand represents.

j1 j2

PIPE
j

(a)

j
SPLIT j1

j 2(b)

Figure 2. Figure showing the operators and the
equivalent stages they result in (a) PIPE (b)
SPLIT

2.4.1 The PIPE Operator
The PIPE operator merges two neighboring nodes in the re-
source graph (as shown in Figure 2(a)). Each of the two
nodes being merged may themselves be resulting from the
composition of multiple nodes. PIPE can be applied to any
two nodes connected by an arc as long as the node at the tail
of the arc (i.e., the upstream node) has only one outgoing arc.
If the node has more than one outgoing arc, it must be split
first as described in the SPLIT operator.

Let C = A PIPE B, where A, B, and C are matri-
ces of the form described in Section 2.3. The result of the
PIPE operation (qC

i,k, rC
i,k) is obtained by taking the maxi-

mum of corresponding elements qi,k and ri,k from the two
operand matrices A and B. As we shall show later in Sec-
tion 3, only the first (i.e., upstream) of the elements ri,k from
the two operand matrices can be non-zero, so the max op-
eration on the ri,k elements essentially copies the upstream
value of ri,k onto matrix C. The stage-additive component,
sC

k , on the other hand is additive across stages, and hence
the corresponding stage-additive components from the two
operand matrices are added. The PIPE operator can formally
be defined as follows:
Definition 1: PIPE Operator. For any two neighboring
nodes in the resource graph, represented by operand ma-
trices A and B, if the upstream node has exactly one out-
going arc, the two nodes can be composed into a single
node represented by matrix C using the PIPE operator, C =
A PIPE B, as follows:

1. ∀i, k: qC
i,k = max(qA

i,k, qB
i,k)

2. ∀i, k: rC
i,k = max(rA

i,k, rB
i,k)

3. ∀k: sC
k = sA

k + sB
k

For instance, when jobs J1 and J2 execute on stages 1 and
2 (represented as matrices A and B, respectively), the PIPE
operation between the two stages can be denoted as:

⎛
⎜⎜⎜⎝

J1 J2

J1 (qA
1,1, r

A
1,1) (qA

1,2, r
A
1,2)

J2 (0, 0) (qA
2,2, r

A
2,2)

. . . . . . . . . . . . . . . . . . . . .
sA
1 sA

2

⎞
⎟⎟⎟⎠PIPE

⎛
⎜⎜⎜⎝

J1 J2

J1 (qB
1,1, r

B
1,1) (qB

1,2, r
B
1,2)

J2 (0, 0) (qB
2,2, r

B
2,2)

. . . . . . . . . . . . . . . . . . . . .
sB
1 sB

2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 J2

J1
(max(qA

1,1, q
B
1,1), (max(qA

1,2, q
B
1,2),

max(rA
1,1, r

B
1,1)) max(rA

1,2, r
B
1,2))

J2 (0,0)
(max(qA

2,2, q
B
2,2),

max(rA
2,2, r

B
2,2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sA
1 + sB

1 sA
2 + sB

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.4.2 The SPLIT Operator
The SPLIT operator can be used when a node in the resource
graph has more than one outgoing arc, but no incoming arcs.
(If the node has incoming arcs, PIPE should be executed first
along such arcs.) The existence of multiple outgoing arcs
indicates that the paths of some jobs split from each other
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and move on to execute at different stages. Let there be l
outgoing arcs at node j. The operator splits that node into
l nodes each with only one outgoing arc. The load matrix
A of node j is split into l matrices, one for each resulting
node/arc. Each of these l matrices is obtained by replicating
matrix A and zeroing out the columns corresponding to jobs
that do not follow the arc in question. Further, for any job Jk

and a higher priority job Ji on node j, if the two jobs con-
tinue on different arcs, the accumulator term of Jk must be
updated. Hence, in the output matrix containing Jk (where
the column elements corresponding to a job Ji are zero), we
update elements (qi,k, ri,k) with (0, qi,k + ri,k). Figure 2(b)
shows the SPLIT operation with l = 2, and two hypothetical
stages are created after the operation. We formally define the
SPLIT operator as follows:
Definition 2: SPLIT Operator. Let matrix A represent node
j, with l > 1 outgoing arcs and no incoming arcs. Let sets
X1, X2, . . ., Xl represent the sets of jobs that flow from j
along each of these arcs respectively. Hence, Xi1 ∩Xi2 = φ
for i1 �= i2. The SPLIT operation results in l nodes, each
with one outgoing arc and load matrix, Ax, 1 ≤ x ≤ l, ob-
tained as follows:
∀Jk:

1. if Jk ∈ Xx:
sAx

k = sA
k ; ∀i: if Ji ∈ Xx: qAx

i,k = qA
i,k, rAx

i,k = rA
i,k, else

qAx

i,k = 0, rAx

i,k = qA
i,k + rA

i,k.

2. if Jk /∈ Xx:
sAx

k = 0; ∀i: qAx

i,k = 0, rAx

i,k = 0.

For instance, when jobs J1 and J2 executing on stage j
(represented by matrix A) split from one another, the resul-
tant matrices are created as shown below:

SPLIT

⎛
⎜⎜⎜⎜⎝

J1 J2

J1 (qA
1,1, r

A
1,1) (qA

1,2, r
A
1,2)

J2 (0, 0) (qA
2,2, r

A
2,2)

. . . . . . . . . . . . . . . . . . . . . .
sA
1 sA

2

⎞
⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎝

J1 J2

J1 (qA
1,1, r

A
1,1) (0, 0)

J2 (0, 0) (0, 0)
. . . . . . . . . . . . . . . .

sA
1 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

J1 J2

J1 (0, 0) (0, qA
1,2 + rA

1,2)
J2 (0, 0) (qA

2,2, r
A
2,2)

. . . . . . . . . . . . . . . . . . . .
0 sA

2

⎞
⎟⎟⎟⎠

Observe that, for a system with n jobs, every operand ma-
trix has n + 1 rows and n columns. Any job that does not
execute at a stage has a column with all its elements set to
zero. It is possible to optimize this representation by remov-
ing all zero-element columns and having operand matrices
of variable dimensions. Row and column indices would have
to be represented explicitly (rather than the implicit global
job-numbering assumed in the above exposition).

The definition of the operators are the same regardless of
whether the scheduling in the system is preemptive or non-
preemptive. By applying these operators in succession, the
distributed system can be reduced to an equivalent single
stage represented by a single operand matrix. Note that, as

both the max and sum operations are commutative and as-
sociative, the PIPE operation is commutative and associative
as well. Due to space limitations, we do not formally prove
these properties, nor show that the final single stage obtained
after the reduction procedure is unique regardless of the or-
der in which the operations are performed.

2.4.3 Proof of Liveness and Algorithm Complexity
Given the operator definitions described above, we now
prove the following theorem:

Theorem 1: The delay composition algebra always reduces
the original resource DAG (augmented with the extra finish
node as mentioned in Section 2.1) to a single node.

Proof: To prove the above, observe that we defined the fol-
lowing rules for applying the algebraic operators: (i) a PIPE
can only be applied to a pair of nodes if the upstream node
has exactly one outgoing arc, and (ii) a SPLIT can only be
applied to a node if it has no incoming arcs and multiple out-
going arcs.

Hence, a PIPE can always be performed unless we are left
only with those nodes that have multiple outgoing arcs (and
their immediate downstream neighbors). However, in such
a case, a SPLIT can always be performed on the earliest of
these nodes. This is because (i) this node does not have in-
coming arcs from earlier nodes (that would contradict it be-
ing earliest), and (ii) it has multiple outgoing arcs (since only
such nodes are left together with their downstream neighbors
but the earliest node, by definition, is not downstream from
another). Hence, at any given time, either a PIPE or a SPLIT
can always be performed until no arcs are left.

It is left to show that the graph always remains connected,
and hence when no arcs are left only one node remains. We
prove it by induction. First note that the initial DAG is con-
nected, and the virtual finish node f is downstream from ev-
ery node. This is because each node j is either an end node
of some job, in which case it is connected directly down-
stream to the virtual finish node, f , or is not an end node, in
which case it must have a downstream path to the end node of
some job, and the latter is connected downstream to the vir-
tual finish node. Hence, the finish node can be reached from
any node by a downstream path and the graph is connected.
Next, we prove the induction step, showing that applying
a PIPE or SPLIT does not disconnect the graph and keeps
f downstream from every node. For a PIPE, this is self-
evident, since it only merges nodes. For a SPLIT, assume
that the graph before the SPLIT was applied was connected
and each node had a downstream path to the virtual finish
node. SPLIT takes a node j with an immediate downstream
neighbor set Nj and replaces it with multiple nodes, each in-
heriting a downstream arc to one of these neighbors. Thus,
since neighbors in set Nj are connected to the virtual finish
node by a downstream path, so will be each of the newly cre-
ated nodes. The induction hypothesis is maintained. By in-
duction, the graph is never disconnected by PIPEs or SPLITs,
and the finish node is always downstream from every node.
Hence, when the algebra has removed all arcs, the DAG is
reduced to a single node.
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A PIPE operation can be performed in O(n2) time, where
n is the number of jobs in the system, and each PIPE oper-
ation reduces the number of arcs in the DAG by one. The
time complexity for a SPLIT operation involving k arcs is
O(kn2), and each of these k arcs can be eliminated through
PIPE operations in the next step. Hence, the complexity for
eliminating each arc is O(n2), and the net complexity of the
algebra to reduce a DAG to a single node is O(|E|n2), where
|E| is the number of arcs in the original resource DAG.

2.5 Task Set Transformation

Once the system is reduced to one node, the end-to-end
delay and schedulability of any job Jk can be inferred from
the node’s load matrix. Remember that in periodic or spo-
radic task systems, Jk stands for an instance of task Tk. We
shall use the task notation in this section, since we expect
the algebra to be applied mostly for periodic or sporadic task
sets. Once the system is reduced to one node, the max-term
for each element in the final matrix is first added to the accu-
mulator term, that is, (qi,k, ri,k) is replaced by (0, qi,k+ri,k).
To analyze the schedulability of any task Tk in the original
distributed system, an equivalent uniprocessor task set is ob-
tained from column k of the final load matrix as follows:

• Each task Ti, i �= k in the original distributed sys-
tem is transformed to task T ∗

i on a uniprocessor, with
a computation time C∗

i = ri,k, if scheduling is non-
preemptive, or C∗

i = 2ri,k, if scheduling is preemptive
(the reason for which is explained in Section 3). The pe-
riod Pi (if Ti is periodic) or minimum inter-arrival time
(if it is sporadic) remains the same (i.e., P ∗

i = Pi).

• Task Tk, for which schedulability analysis is performed,
is transformed to task T ∗

k with C∗
k = rk,k plus an extra

task of computation time sk. The period or minimum
inter-arrival time for both, remains that of Tk.

We prove in Section 3 that if T ∗
k meets its deadline on the

uniprocessor when scheduled together with this task set, then
Tk meets its deadline in the original distributed system. Any
uniprocessor schedulability test can be used to analyze the
schedulability of T ∗

k . Note that a separate test is needed per
task. First, however, we present an example.

2.6 An Illustrative Example

We now illustrate the composition of a distributed system
into an equivalent single stage using the algebra. We consider
an eight stage system as shown in Figure 3(a). There are
three periodic tasks executing in the system T1, T2, and T3,
in decreasing priority order. T1 follows the path S1 − S3 −
S4 −S5 −S7 −S8, T2 follows S1 −S3 −S6 −S7 −S8, and
T3 follows S2 − S3 − S6 − S7 − S8. For simplicity, let us
assume that every job requires one unit of computation time
at each stage in its path. T1 has a period (same as end-to-end
deadline) of 10 time units, while T2 and T3 have a period
(same as end-to-end deadline) of 20 time units. In describing
the matrices, we remove all columns with zero elements for
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Figure 3. (a) Example system to be composed
(b) Composed system after 2 steps (c) Com-
posed system after 4 steps

the sake of conciseness. As the example has only one finish-
node (S8), we do not create an additional virtual finish-node.

Let the initial matrices for stage Si be denoted by Ai. We
start the composition with the PIPE operations between S1

and S3 to give S3′ , and PIPE S2 with S3′ resulting in S3′′ .
Step 1: A1 PIPE A3 = A3′ , A2 PIPE A3′ = A3′′

As the maximum of job-additive components and the sum
of stage-additive components are taken, we get,

A3′ =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)
T2 (0, 0) (1, 0) (1, 0)
T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . . .
2 2 1

⎞
⎟⎟⎟⎟⎟⎠

A3′′ =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)
T2 (0, 0) (1, 0) (1, 0)
T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . . .
2 2 2

⎞
⎟⎟⎟⎟⎟⎠

We next PIPE S7 and S8 to form S7′ , S4 and S5 to form
S4′ , S6 and S7′ to form S6′ .
Step 2: A7 PIPE A8 = A7′ , A4 PIPE A5 = A4′ ,
A6 PIPE A7′ = A6′

A7′ =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)
T2 (0, 0) (1, 0) (1, 0)
T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . . .
2 2 2

⎞
⎟⎟⎟⎟⎟⎠

A4′ =

⎛
⎜⎝

T1

T1 (1, 0)
. . . .
2

⎞
⎟⎠ , A6′ =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)
T2 (0, 0) (1, 0) (1, 0)
T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .
2 3 3

⎞
⎟⎟⎟⎟⎟⎠

The distributed system obtained after steps 1 and 2 is
shown in Figure 3(b). Stage S3′′ does not have any incom-
ing arcs and can be split into stages S31 consisting of task T1

(represented as A31), and S32 consisting of tasks T2 and T3

(represented as A32 ).
Step 3: SPLIT (A3′′) => A31 , A32
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A31=

⎛
⎜⎝

T1

T1 (1, 0)
. . . . .

2

⎞
⎟⎠ , A32=

⎛
⎜⎜⎜⎜⎜⎝

T2 T3

T1 (0, 1) (0.1)
T2 (1, 0) (1, 0)
T3 (0, 0) (1, 0)

. . . . . . . . . . . . .
2 2

⎞
⎟⎟⎟⎟⎟⎠

Note that as T1 has split from the paths of the other two
jobs, the max-terms of the delay that T1 causes T2 and T3 on
all previous stages has been accumulated on to the respective
accumulator-terms. We now have only PIPE operations left.
We PIPE S31 with S4′ (giving rise to stage S4′′ ), and S32

with S6′ (giving rise to stage S6′′ ).
Step 4: A31 PIPE A4′ = A4′′ , A32 PIPE A6′ = A6′′

A4′′ =

⎛
⎜⎝

T1

T1 (1, 0)
. . . . .

4

⎞
⎟⎠ , A6′′ =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1, 0) (1, 1) (1, 1)
T2 (0, 0) (1, 0) (1, 0)
T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . .
2 5 5

⎞
⎟⎟⎟⎟⎟⎠

Figure 3(c) shows the distributed system after step 4. We
finally PIPE S4′′ and S6′′ to obtain the single equivalent final
stage Sfinal (represented as Afinal).
Step 5: A4′′ PIPE A6′′ = Afinal, copying max-terms into
accumulator-terms

Afinal =

⎛
⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (0, 1) (0, 2) (0, 2)
T2 (0, 0) (0, 1) (0, 1)
T3 (0, 0) (0, 0) (0, 1)

. . . . . . . . . . . . . . . . . . . . .
6 5 5

⎞
⎟⎟⎟⎟⎟⎠

Using the final matrix Afinal, we can test the schedulabil-
ity of each of the three tasks using any single stage schedula-
bility analysis technique, as described in Section 2.5. In this
example, we shall use the response time analysis technique
proposed in [1]. In the interest of brevity, we shall only ana-
lyze the schedulability of T3.

To test the schedulability of T3, we construct 3 tasks T ∗
1

with a computation time of 4 units (twice the value in the col-
umn for T3 and the first row in matrix Afinal) and period 10,
T ∗

2 with a computation time of 2 (twice the value in the col-
umn for T3 and the second row in matrix Afinal) and period
20, and T ∗

3 with a computation time 2 + 4 (the value in the
third row in the column for T3 + the stage-additive compo-
nent of T3) and period 20. In the first iteration of the response
time analysis [1], the delay of T ∗

3 due to one invocation each
of T ∗

1 and T ∗
2 is calculated as 4 + 2 + 6 = 12 time units. As

this is more than the period of T ∗
1 , one additional invocation

of T ∗
1 can delay T ∗

3 , increasing T ∗
3 ’s delay to 16 time units.

As this is lower than T ∗
3 ’s deadline of 20 time units, T ∗

3 is
schedulable on the hypothetical uniprocessor. Therefore, T3

is schedulable in the original distributed system.

3. Proof of Correctness

In this section, we prove the correctness of the delay com-
position algebra. By correctness, we mean that if a job

is schedulable in the resulting uniprocessor task set, it is
schedulable in the original distributed system. Below, we
show the proof for preemptive systems. The proof for non-
preemptive systems is similar and is thus omitted. Consider
a job Jk that executes along a path pk in the original directed
acyclic graph. It is desired to determine the schedulability
of Jk. Consider a higher-priority job Ji (i �= k) that exe-
cutes along path pi. Let paths pk and pi intersect in some
set Segi,k of sequences of consecutive (i.e., directly con-
nected) nodes. For example if Jk has the path (1, 2, 5, 8,
11, 13) and Ji has the path (9, 1, 2, 16, 8, 11, 10) then
Segi,k = {(1, 2), (8, 11)}. Each member of this set is a
shared path segment between Jk and Ji. Let the part of Ji

that executes on segment s in set Segi,k be called sub-job Js
i .

In the above example, J1
i is the part of Ji that executes on the

path segment (1, 2) and J2
i is the part of Ji that executes on

the path segment (8, 11). Note that sub-jobs Js
i are the only

parts of Ji that may delay Jk since they are the only parts
that share (part of) Jk’s path. Let the maximum execution
time of sub-job Js

i over its path be Cs
i,max. Let the maxi-

mum execution time of all jobs Js
i on node j be Nodej,max.

In an earlier result [7], we derived a delay bound for jobs in a
pipelined preemptive system, called the preemptive pipeline
delay composition theorem. Applied to job Jk and the set
S of all sub-jobs Js

i of all higher-priority jobs that share its
path, the theorem states that Jk may be delayed due to these
jobs by a total amount, Delay(Jk), bounded as follows:

Delay(Jk) ≤
∑

i

(
∑

Js
i ∈S

2Cs
i,max) +

∑
j∈pk

Nodej,max (1)

A proof of this theorem for the case when jobs share all
nodes of the path can be found in [7] and extended in [9]
to jobs that share arbitrary subsets of the path as in the case
above (in view of simplicity, we have chosen a slightly more
pessimistic bound than what was derived in [7]). We can re-
write the above inequality as:

Delay(Jk) ≤
∑

i

2r∗i,k + s∗k (2)

r∗i,k =
∑

Js
i ∈S

Cs
i,max; s∗k =

∑
j∈pk

Nodej,max (3)

For periodic or sporadic systems, the summation in In-
equality (2) can be rewritten in terms of the higher priority
tasks (set ST ) and their instances as follows:

Delay(Tk) ≤
∑

Ti∈ST

2 (Invoci)r∗i,k + s∗k (4)

where Invoci is the number of invocations of task Ti that
delay Jk. For example, in deadline-monotonic scheduling,
if deadlines are less than periods, Invoci is bounded by
�Dk/Pi	. Since, on a uniprocessor, delays due to higher-
priority jobs are additive, adding the delays in column k (af-
ter multiplying rM

i,k by 2 per rules in Section 2.5), yields that
the transformed Jk, called J∗

k , is delayed on the uniproces-
sor precisely by Delay(J∗

k ) =
∑

i 2rM
i,k + sM

k . Similarly,
for periodic or sporadic systems, an invocation of the trans-
formed task Tk, denoted T ∗

k , is delayed due to higher-priority
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tasks by Delay(T ∗
k ) =

∑
i 2(Invoci)rM

i,k + sM
k . Comparing

these expressions to Inequality (2) and (4) it follows that if
rM
i,k = r∗i,k and sM

k = s∗k, then substituting in the delay com-
position theorem, we get:

Delay(Jk) ≤ Delay(J∗
k ) (5)

Delay(Tk) ≤ Delay(T ∗
k ) (6)

Thus, if J∗
k (T ∗

k ) is schedulable on the uniprocessor, so is Jk

(Tk) in the original system. Observe that finding the actual
number, Invoci, for each Ti is not the responsibility of our
reduction. It is the responsibility of schedulability analysis
on the reduced set. Invoci as determined by uniprocessor
schedulability analysis will at least be as large as the number
of invocations of Ti that delay Tk in the distributed system.
This is because every invocation of T ∗

i that arrives before J∗
k

(T ∗
k ) completes execution will delay J∗

k on the uniprocessor,
but the corresponding invocation of Ti in the distributed sys-
tem may never catch up with Jk to preempt it as they may be
executing on different resources [8].

We now prove that, indeed, in matrix M , produced by the
delay composition algebra for the system at hand, elements
of column k satisfy rM

i,k = r∗i,k and sM
k = s∗k.

To compute the elements of column k of the final result
matrix M , consider the entire sequence of PIPE and SPLIT
operations used to reduce the original directed acyclic re-
source graph (augmented with a finish node) to a single node.
Since these operations will split or merge nodes in that graph,
it is useful to refer to its arcs by unique identifiers, as op-
posed to their source-destination vertex pairs. Let the set of
the unique identifiers given to the arcs in the initial graph be
denote by L0. In the following, for short-hand, we refer to
an arc whose identifier is l ∈ L0 as simply arc l. First, note
that SPLITs neither add nor remove arcs in L0. They simply
split a node that has no incoming arcs into multiple nodes,
each inheriting one of the original outgoing arcs of the split
node. PIPEs remove exactly one arc from L0.

To compute the rM
i,k entries in column k of the final ma-

trix M , consider the path of job Jk through the graph. Let
the subset of arcs in L0 that lie on this path be denoted by
L0

k. Observe that, all PIPEs performed fall into one of three
categories: path PIPEs (those applied to an arc in L0

k), inci-
dent PIPEs (those applied to an arc that shares only one node
with an arc in L0

k), and detached PIPEs (those that share no
nodes with arcs in L0

k). Similarly, for SPLIT, there are two
categories: path SPLITs (those applied to a node with an arc
in L0

k) and detached SPLITs (the rest).
Trivially, detached PIPEs and SPLITs do not change col-

umn k of any node because the nodes they are applied to have
zeros in column k (not being on Jk’s path). It is also easy to
see that incident PIPEs do not change column k of the node
on the path of Jk, since they max it with zero (because Jk

does not execute on the other node). Hence, column k is
affected only by path PIPEs and path SPLITs.

Consider one job Ji of higher priority than Jk. Let
L0

i,k ∈ L0
k denote the set of arcs in Segi,k (i.e., those traveled

by both Ji and Jk). Note that, path PIPEs reducing arcs not
traveled by Ji (i.e., not in L0

i,k) simply propagate qi,k of the

downstream node and ri,k of the upstream node to the result.
This is because qi,k of the upstream node must be zero as
Ji does not travel the reduced arc (and hence does not exe-
cute on the upstream node). Similarly, the ri,k of the down-
stream node is zero because it is only updated by SPLITs,
but a SPLIT could not have been performed on that node be-
cause it has an incoming arc. Note also that SPLITs involv-
ing nodes with no arcs traveled by Ji (i.e., no arcs in L0

i,k)
do not update qi,k and ri,k since Ji could not have parted
Jk at the split node. Consequently, qi,k and ri,k are updated
only by PIPEs and SPLITs applied to nodes with an arc in
L0

i,k. Hence, only PIPEs and SPLITs involving arcs traveled
by both jobs (i.e., in Segi,k) need to be considered.

The above observation makes the proof simple. Consider
segment s ∈ Segi,k. Let Es be the last node of this segment.
Initially, each node j ∈ s had qj

i,k = Ci,j . To reduce each arc
in that segment, a PIPE must have been performed producing
qi,k = max Ci,j over PIPE operands. Any SPLIT performed
on nodes j ∈ s, other than the last node Es did not affect
qi,k and ri,k variables per SPLIT definition, since Jk and Ji

did not part ways at j. At node Es, Jk and Ji did part ways,
but a SPLIT could not have been performed until the entire
segment s was reduced to one node (because SPLIT cannot
be performed for nodes with incoming arcs). In that node,
qi,k = Cs

i,max since, by then, the max operator (the PIPE)
will have been applied over all nodes in the segment. The
SPLIT would then add Cs

i,max to ri,k. As we noted above,
subsequent PIPEs propagate ri,k to the result node. When all
segments have been reduced, ri,k will have been updated by
one SPLIT at the end of each segment, each adding Cs

i,max

of one segment, resulting in
∑

Cs
i,max over all sub-jobs Js

i ,
or rM

i,k = r∗i,k. (Observe that, if the end node of Jk and Ji

is the same, there would be no SPLIT for the last segment
and its max-term would still be stored in qi,k, which is why
we need to manually add qM

i,k and rM
i,k at the end, essentially

compensating for the missing SPLIT.)
Similarly, to compute sM

k , observe that for each node j

on path pk, initially, sj
k = Nodej,max. Since SPLITs do not

affect sk and PIPEs add it, when all arcs on L0
k are reduced,

sM
k =

∑
j∈pk

Nodej,max = s∗k.

4. Handling Non-Acyclic Task Graphs

In this section, we describe how the system model can be
extended to handle non-acyclic task graphs (i.e., those where
the set of all paths of tasks taken together may contain cy-
cles). The basic idea is to modify the non-acyclic system
into an acyclic system, in a manner that does not improve the
delay and schedulability of jobs. We define a third operator,
called CUT.
Definition 3: CUT Operator. When the directed resource
graph contains a cycle, a CUT operation can be performed on
one of the arcs forming the cycle. Each job crossing that arc
is thereby replaced by two independent jobs; one for the part
before the cut and one for the part remaining. Each new job
will have a separate row and column in the operand matrices
for stages on which they execute.
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The CUT operation only relaxes constraints on the arrival
times of jobs, allowing jobs to arrive in a manner that can
cause worse delay than when the constraint was present (an
adversary has greater freedom in choosing the arrival times
of jobs so as to create a worst-case delay). This decreases
schedulability of the resulting task set. Hence, if the CUT
set is schedulable so is the original set. The CUT operation
can be repeatedly performed until all cycles have been bro-
ken. The PIPE and SPLIT operations can then be used. After
obtaining the final operand matrices, to determine the delay
(and schedulability) of a job Ji that has been cut into two or
more sub-jobs, one needs to simply consider the cumulative
delay of all the sub-jobs of job Ji. It must be noted that, the
pessimism in schedulability analysis can be reduced by intel-
ligently choosing the jobs to cut, and the stages at which to
perform the cut. Determining rules or guidelines to optimize
the cut operations can be an interesting future direction.

5. Evaluation

In this section, we evaluate the accuracy and tightness of
the delay composition algebra in estimating the end-to-end
delay and schedulability of jobs. A custom-built simulator
that models periodic tasks executing in a distributed system
is used. An admission controller based on the delay compo-
sition algebra is used to guarantee the deadlines of tasks in
the system. When a periodic task enters the system, it is ad-
mitted if the set of all tasks is found to be schedulable, and
is dropped otherwise. The analysis is meant as a design-time
capacity-planning tool and hence the need for global knowl-
edge by the admission controller is not a problem.

We consider two measures of performance. First, we esti-
mate the average ratio of the end-to-end delay of tasks to their
computed worst-case end-to-end delay bound. This met-
ric shows how pessimistic the theoretically computed worst-
case is (as per each approach) compared to the average case.
Second, we consider the average per-stage utilization of tasks
admitted into the system and is a measure of the through-
put of the system. Utilization of a resource is defined as the
fraction of time the resource is busy servicing a task. We
compare our analysis using the delay composition algebra
with holistic analysis [14] and network calculus [3, 4], under
both preemptive and non-preemptive scheduling. We use the
result from [10], for holistic analysis under non-preemptive
scheduling. We build an admission controller for each anal-
ysis technique (delay composition algebra, holistic analysis,
and network calculus) and compare the conservatism of the
various analyses with respect to admission control. While ex-
tensions (such as [12]) have been proposed, we use holistic
analysis as a basis for comparison as these extensions are tar-
geted to handle invocation offsets (which we do not consider
in this paper), and they have similar performance degradation
as holistic analysis with increasing system scale.

The scheduling policy was assumed to be deadline mono-
tonic scheduling. Tasks that enter the system, request pro-
cessing at a sequence of stages, with each stage having a
probability NP (for Node Probability) of being part of the
task’s route (default is 0.8). End-to-end deadlines (equal to

the periods, unless explicitly specified otherwise) of tasks are
chosen as 10xa simulation seconds, where x is a uniformly
varying real value between 0 and DR (for deadline ratio pa-
rameter), and a = 500 ∗N , where N is the number of stages
in the task’s route. This enables the ratio of the longest to
the shortest task deadline to be as large as 10DR. The default
value for DR is 2.0. We define the task resolution parameter
T , as the ratio of the total computation time of a task over
all the stages on which it executes to its end-to-end deadline.
The stage execution times for each task is calculated based
on a uniform distribution with mean DT

N , where D is the
end-to-end deadline and T is the task resolution. The default
value for T is 1 : 20. The stage execution times of tasks were
allowed to vary up to 10% on either side of the mean. The de-
fault schedulability test used on the composed uniprocessor
is the response-time analysis technique presented in [1].

Each point in the figures below represents average val-
ues obtained from 100 executions of the simulator, with each
execution running for 80000 task invocations. When com-
paring different admission controllers, each admission con-
troller was allowed to execute on the same 100 task sets. The
95% confidence interval for all the values presented in this
section is within 1% of the mean value, which is not plotted
for the sake of legibility.

First, we ascertain that the performance does not signif-
icantly drop with increasing system size. We measured the
average ratio of end-to-end delay of jobs to the calculated
upper bound on the worst-case delay, as a function of system
size. The results are shown in Figure 4.
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Figure 4. Comparison of average ratio of end-
to-end delay to estimated delay bound for dif-
ferent number of nodes in the system

For the delay composition algebra, under both preemptive
and non-preemptive scheduling, the ratio remains nearly the
same regardless of system size, showing that the pessimism
in analysis does not increase with system scale. However,
holistic analysis tends to be increasingly pessimistic with
system scale, and the ratio drops with increasing number of
nodes in the system. The ratio is lower for non-preemptive
scheduling, as there are several low priority jobs that finish
well before their worst-case delay estimate as they are not
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Figure 5. Comparison of average per-stage uti-
lization for different number of nodes in the
system

preempted by higher priority jobs and therefore encounter
only a smaller fraction of all higher priority jobs during their
execution (on an average) than under preemptive scheduling.

For the same experiment, Figure 5 plots the average per-
stage utilization of admitted tasks. Note that, the drop in
average utilization is faster for holistic analysis and network
calculus than for our algebraic analysis with increasing sys-
tem size. Holistic analysis consistently outperforms network
calculus for all system sizes.

We next varied the size of jobs by adjusting the task res-
olution parameter T . A large value for T (e.g., 1:5) de-
notes a system with a small number of large tasks, and a
small value of T (e.g., 1:50) denotes a large number of small
tasks. We measured the ratio of the end-to-end delay to the
delay bound for the three analysis techniques under both
preemptive and non-preemptive scheduling, and the results
are shown in Figure 6. Delay composition algebra tends
to be the least pessimistic under preemptive as well as non-
preemptive scheduling. As the number of tasks in the system
increases (as T decreases), jobs encounter a smaller frac-
tion of higher priority jobs, and therefore the average end-
to-end delay significantly differs from the worst-case delay.
Under non-preemptive scheduling, when task sizes are large
(T is large) the blocking penalty for higher priority jobs is
also high, although on an average jobs are not blocked for
the estimated worst-case period. This causes the ratio under
non-preemptive scheduling to be lower than under preemp-
tive scheduling.

Due to paucity of space, we do not show results from vary-
ing other parameters such as the ratio of task deadlines to
periods, which further confirm that using delay composition
algebra leads to less pessimistic schedulability analysis of
tasks in distributed systems.

6. Related Work

The technique of reducing large complex systems into
smaller and simpler components that are easier to analyze
have been used in contexts outside real-time systems. In
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Figure 6. Comparison of average ratio of end-
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control theory, for example, there exist rules for transform-
ing complex block diagrams into an equivalent single block
that can be analyzed for stability, convergence, and perfor-
mance properties. In circuit theory, laws such as the Kir-
choff’s laws, permit the reduction of a circuit into a single
equivalent source and impedance. Such transformation and
reduction techniques help to largely reduce the complexity
of analysis. In this paper, we define primitives to enable
distributed systems serving delay constrained tasks to be re-
duced to equivalent uniprocessors, which can then be ana-
lyzed using traditional uniprocessor analysis techniques.

The schedulability of real-time tasks in distributed sys-
tems has been analyzed using several techniques with dif-
ferent time complexities. The compositional framework pre-
sented in this paper is unique in the sense that it provides a
systematic way to reduce complex distributed systems into
equivalent single stage systems, thereby largely reducing the
complexity of analysis.

There has been a lot of work in the context of job-fair
scheduling, where the objective is to obtain a feasible sched-
ule of executing the tasks on a pipelined distributed sys-
tem. A representative example is the work in [2], where
polynomial-time algorithms were developed for certain spe-
cial cases and heuristic algorithms were proposed for the
general case. Algorithms have been proposed to statically
schedule precedence constrained tasks in distributed sys-
tems [15, 5]. These algorithms construct a schedule of length
equal to the least common multiple of the task periods, that
would precisely define the time intervals of execution of each
job. Offline schedulability tests have been proposed that di-
vide the end-to-end deadline of tasks into per-stage dead-
lines. Uniprocessor schedulability tests are then used to an-
alyze if each stage is schedulable. For instance, offset-based
response time analysis techniques for EDF were proposed in
[11, 13].

Holistic schedulability analysis for distributed sys-
tems [14], estimates the worst case response time of tasks
by assuming that the worst-case delay at a stage to be the jit-
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ter for the next stage. This technique requires global knowl-
edge of all task routes and computation times in order to es-
timate the end-to-end delay of any given task. In contrast,
to analyze the delay and schedulability of a particular task,
the algebra presented in this paper only requires knowledge
of tasks along its path. An extension to holistic analysis to
handle resource blocking under non-preemptive scheduling
was presented in [10]. Network calculus has been derived
in [3, 4] to analyze delay and burstiness of flows in networks
of resources. While being more general and more widely ap-
plicable than delay composition algebra, it tends to be very
pessimistic especially for large systems. In [6], a utilization-
based schedulability test for analyzing aperiodic tasks under
fixed priority scheduling was proposed. While this test is
very simple to apply, it nevertheless does not account for the
parallelism in the execution of different pipeline stages.

In earlier publications [7, 8], we derived a delay com-
position theorem that bounds the worst-case end-to-end de-
lay of jobs in pipelined systems under preemptive and
non-preemptive scheduling. We extended them to di-
rected acyclic graphs, and also to partitioned resources (e.g.,
TDMA scheduling) in [9]. While these results were from the
perspective of a single job in the system, in this paper, we
take a system-wide view and present an algebra for compos-
ing distributed system components. Further, we present ways
to extend the results to non-acyclic systems.

7. Conclusion and Future Work

In this paper, we present an algebra, which we call delay
composition algebra, for composing together resource stages
in real-time distributed systems, under both preemptive and
non-preemptive scheduling. We define operators to compose
resource stages based on the traversal pattern of jobs in the
system. By successively applying the operators of the al-
gebra on operands that represent tasks in resource stages,
the distributed system can be reduced to an equivalent sin-
gle stage that can be analyzed to infer end-to-end delay and
schedulability of jobs in the distributed system. We show us-
ing simulation studies that the proposed algebraic framework
is less pessimistic with increasing system scale compared to
traditional approaches.

While the algebra developed in this paper can handle a
general class of distributed systems, it has several limita-
tions that motivate future work. The operators defined in
this paper can be improved to reduce the pessimism of the
analysis. For instance, the reduction of the multi-stage sys-
tem to an equivalent single stage disregards information re-
garding the particular set of stages on which each job exe-
cuted. The uniprocessor analysis can be improved if the op-
erators make this information available, perhaps at the cost
of simplicity. While this paper describes a technique to han-
dle non-acyclic systems, the solution involves converting the
non-acyclic system into an acyclic system, which can then be
analyzed. A set of operators that handle non-acyclic systems
naturally without having to convert the system into an acyclic
system, can lead to improved analysis. The theory also needs
to be extended to handle partitioned resources (e.g., TDMA

scheduling), systems where each job need not have the same
priority on every resource, and systems where jobs may si-
multaneously require more than one resource.
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