
Analysis Techniques for Supporting Harmonic Real-Time Tasks with Suspensions

Cong Liu†, Jian-Jia Chen§, Liang He‡, Yu Gu‡
†The University of Texas at Dallas, USA

§Karlsruhe Institute of Technology (KIT), Germany
‡Singapore University of Technology and Design, Singapore

Abstract

In many real-time systems, tasks may experience suspen-
sion delays when they block to access shared resources or
interact with external devices such as I/O. It is known that
such suspensions delays may negatively impact schedulabil-
ity. Particularly in hard real-time systems, a few negative
results exist on analyzing the schedulability of such systems,
even for very restricted suspending task models on a unipro-
cessor.

In this paper, we focus on the particular case of hard
real-time suspending task systems with harmonic periods,
which is a special case of practical relevance. We pro-
pose a new uniprocessor suspension-aware analysis tech-
nique for supporting such task systems under rate-monotonic
scheduling. Our analysis technique is able to achieve only
Θ(1) suspension-related utilization loss on a uniproces-
sor.Based upon this technique, we further propose a parti-
tioning scheme that supports suspending task systems with
harmonic periods on multiprocessors. The resulting schedu-
lability test shows that compared to existing schedulabil-
ity tests designed for ordinary non-suspending task systems,
suspensions only results in Θ(m) additional suspension-
related utilization loss, wherem is the number of processors.
Furthermore, experiments presented herein show that both
our uniprocessor and multiprocessor schedulability tests im-
prove upon prior approaches by a significant margin.

1 Introduction
In many real-time systems, suspension delays may oc-

cur when tasks block to access shared resources or interact
with external devices such as I/O. Such delays can be quite
lengthy (e.g., 15ms for a disk read), in which schedulabil-
ity in real-time systems is negatively impacted. It has been
shown that precisely analyzing hard real-time (HRT) sys-
tems with suspensions is difficult, even for very restricted
suspending task models on uniprocessors [22]. We con-
sider this problem in the context of analyzing HRT suspend-
ing task systems with harmonic periods, where the periods
of the tasks pairwise divide each other. Task systems with

harmonic periods are seen in a number of application do-
mains [2, 3, 6, 11, 18]. It is know that for ordinary sporadic
and periodic task systems (without suspensions), harmonic
periods may allow a larger system utilization [9, 17]. In this
paper, we show that system utilization can be significantly
improved for suspending task systems with harmonic peri-
ods under rate-monotonic (RM) scheduling on both a unipro-
cessor and a multiprocessor.

For analyzing suspensions, there exist two major cate-
gories of techniques, suspension-oblivious v.s. suspension-
aware analysis. Under suspension-oblivious analysis (which
is perhaps the most commonly used approach), suspensions
are simply integrated into per-task worst-case execution time
requirements. However, this approach clearly yields Θ(n)
utilization loss, where n is the number of suspending tasks
in the system. Unless n is small and suspension delays are
short, this approach may sacrifice significant system capac-
ity. The alternative is to employ suspension-aware analy-
sis, where suspensions are explicitly considered in the task
model and resulting schedulability analysis. On a unipro-
cessor, suspension-aware analysis techniques that are cor-
rect in a sufficiency sense have been proposed [8,19–21,24].
However, these analysis can be quite pessimistic in many
cases. On multiprocessors, the only existing suspension-
aware analysis is the one proposed in [16]. This analysis
is an improvement over suspension-oblivious analysis for
many task systems, but does not fully address the root cause
of pessimism due to suspensions, and thus may still cause
significant utilization loss. Indeed, suspensions are hard to
analyze because they may leave the processor idle and it is
impossible to predict when suspensions may occur in the
runtime schedule. This causes pessimism in the analysis be-
cause we have to assume that all suspending tasks suspend
concurrently at any idle time instant.

In this paper, we focus on studying periodic suspend-
ing task systems with harmonic periods. This class of task
systems is appealing from a practical point of view as har-
monic periods are seen in many application domains such
as avionics [1]. For ordinary periodic task systems without
suspensions, a well-known result is that RM scheduling on



a uniprocessor is not optimal for non-harmonic periods but
becomes optimal for harmonic periods. Attempts have also
been made to extend such results for systems with harmonic
periods to other system models. For example, the utilization
bound of uniprocessor RM scheduling has been generalized
using the notion of harmonic chains [9] and techniques have
been proposed to transform task periods to make them nearly
harmonic [23]. However, in the case of suspending task sys-
tems with harmonic periods, no schedulability analysis tech-
niques and tests exists.

Overview of related work. Recently the problem of
scheduling soft real-time (with guaranteed bounded response
times) suspending task systems on multiprocessor has re-
ceived much attention [12–15]. In our recent work [15],
we proposed a transformation technique that converts a por-
tion of certain tasks’ suspensions into computation, which
results in a much improved schedulability test for soft real-
time self-suspending task systems. The essential idea behind
the uniprocessor analysis technique proposed in this paper
(Sec. 4) is mainly motivated by this prior technique [15],
which is to convert the analyzed task’s suspensions into com-
putation such that the cumbersomeness on analyzing suspen-
sions is eliminated. However, different from the technique
presented in [15] that is designed for soft real-time suspend-
ing task systems, the partial suspension-to-computation con-
version technique presented in Sec. 4 is tailored to handle
the HRT case.

For the HRT case, besides the suspension-oblivious ap-
proach of treating all suspensions as computation, several
schedulability tests have been presented for analyzing peri-
odic tasks that may suspend at most once on a uniproces-
sor [8, 10, 19–21, 24]. Unfortunately, these tests are rather
pessimistic as their techniques involve straightforward ex-
ecution control mechanisms, which modify task deadlines
(often known as the end-to-end approach [4, 17]). For ex-
ample, a suspending task that suspends once can be di-
vided into two subtasks with appropriately shorted deadlines
and modified release times. Such techniques inevitably suf-
fer from significant capacity loss due to the artificial short-
ening of deadlines. On multiprocessors, [16] presents the
only existing global suspension-aware analysis for periodic
suspending task systems scheduled under global EDF and
global fixed-priority schedulers. This test improves upon the
suspension-oblivious approach for some task systems. Gen-
erally speaking, however, these two tests are incomparable.

Contributions. In this paper, we present sufficient schedu-
lability tests for scheduling periodic suspending task systems
with harmonic periods under RM on a uniprocessor and on
a multiprocessor, respectively. On a uniprocessor, our anal-
ysis technique yields a new utilization-based schedulability

test (Theorem 1), maxk

{∑k
i=1 ui +

sk
pk

}
≤ 1, where uk,

sk and pk denote task τk’s utilization, suspension length,

and period, respectively. This test results in only Θ(1)
suspension-related utilization loss and theoretically domi-
nates the suspension-oblivious approach. Then based upon
this uniprocessor test, we present a partitioning scheme for
solving the multiprocessor case. The derived schedulabil-
ity test (Theorem 2) shows that any periodic harmonic task
system is schedulable if Usum ≤ m − Um−1 − Vm, where
Usum is the total system utilization, m is the number of
processors, Um−1 is the sum of m − 1 largest task utiliza-
tions, and Vm is the sum of m largest task suspension ra-
tio, where a task’s suspension ratio is given by the ratio of
its suspension time over its period. This result shows that
on a multiprocessor, the negative impact due to suspensions
on HRT schedulability can be limited to an order of Θ(m)
suspension-related utilization loss.1 As demonstrated by ex-
periments, our proposed tests improve upon prior methods
with respect to schedulability, and are often able to guaran-
tee schedulability with little or no utilization loss.

The rest of this paper is organized as follows. In Secs. 2
and 3, we present the system model and a suspending task
set with a minimum utilization that exhibits the worst-case
behavior due to suspensions. In Sec. 4, we present our
Θ(1) analysis technique and the corresponding uniproces-
sor schedulability test. Then, in Sec. 5, we present our pro-
posed partitioning scheme and the corresponding multipro-
cessor schedulability test. In Sec. 6, we experimentally com-
pare our proposed schedulability tests with prior methods. In
these experiments, our tests exhibited superior performance,
typically by a wide margin. We conclude in Sec. 7.

2 System Model
We model a given real-time system as a set τ =

{τ1, ..., τn} of n synchronous periodic suspending tasks with
harmonic periods scheduled on m ≥ 1 identical proces-
sors M1,M2, ...,Mm. Tasks are indexed by periods, i.e.,
pi ≤ pi+1, and ties are broken arbitrarily. A task system is
harmonic if and only if the periods of its tasks are pairwise
divisible. A task system is synchronous if all n tasks in the
system release their first jobs at the same time. Each task
is released repeatedly, with each such an invocation called
a job. Jobs alternate between computation and suspension
phases. We assume that each job of τi executes for at most
ei time units (across all of its execution phases) and suspends
for at most si time units (across all of its suspension phases).
We place no restrictions on how these phases interleave (a
job can even begin or end with a suspension phase). Dif-
ferent jobs belong to the same task can also have different
phase-interleaving patterns. For many applications, such a
general suspension model is needed due to the unpredictable
nature of I/O operations. The jth job of τi, denoted by τi,j ,
is released at time ri,j and has a deadline at time di,j . Suc-

1This claim is obtained by comparing our test to a known multiprocessor
schedulability test, namely, Usum ≤ m− (m− 1) · umax, where umax

is the maximum task utilization in the system [7].



m Number of processors
Mi ith processor
n Number of tasks
vi Suspension ratio of task τi
Vm Sum of the m largest task suspension

ratios
Usum Utilization of task system τ
Um−1 Sum of the m − 1 largest task utiliza-

tions

Table 1: Summary of notation.

Time

τ2

τ3

τ1

10 200 2 4 6 8 1612 14 18

computation phase suspension phase

Figure 1: Example task system.

cessive jobs of the same task are required to execute in se-
quence. Associated with each task τi are a period pi, which
specifies the exact time between two consecutive job releases
of τi, and a deadline di, which specifies the relative deadline
of each such job, i.e., di,j = ri,j + di. The utilization of a
task τi is defined as ui = ei/pi, and the utilization of the
task system τ as Usum =

∑
τi∈τ ui. The suspension ratio

of a task τi is defined to be vi =
si
pi

. An SSS task system

τ is said to be an implicit-deadline system if di = pi holds
for each τi. Due to space constraints, we limit attention to
implicit-deadline suspending task systems in this paper.

We focus on RM scheduling, where tasks are prioritized
by their periods. We assume that ties are broken by task ID
(lower IDs are favored). According to our task indexing rule,
we know that task τi has a higher priority than any task τk
where i < k. A summary of the terms defined so far, as
well as some additional terms defined later, is presented in
Table 1.

Example A uniprocessor RM schedule of a periodic sus-
pending task system with harmonic periods is shown
in Fig. 1. This task system contains three suspend-
ing tasks, τ1(1, 2, 5), τ2(3, 3, 10), and τ3(7, 10, 20), where
τi(ei, si, pi) is used to characterize a task. As seen in Fig. 1,
different jobs of the same task can have different interleaving
patterns of computation and suspension phases.

3 Worst-Case Behavior due to Suspensions
In this section, we present a suspending task set with a

minimum utilization that exhibits the worst-case behavior

Time

τ2

τm+1

τ1

p0

...
...

ε

Figure 2: Schedule of the worst-case suspending task set.

due to suspensions, where all tasks have long suspensions
that occur in parallel and thus cause deadline misses.

Consider a task set containingm+1 identical suspending
tasks. Each task has a period of p time units, and first exe-
cutes for ε time units, then suspends for p− 2 · ε time units,
and finally executes for another ε time units, where ε can
be arbitrarily small. A schedule of this task set is shown in
Fig. 2. Regardless of which scheduling algorithms we use,
it is impossible to meet all deadlines of this task set on m
processors. Note that this task set has a total utilization of

(m+ 1) · 2 · ε
p

, which can be arbitrarily small.

As seen in Fig. 2, allm+1 tasks have a suspension length
of p − 2 · ε and all these suspensions occur concurrently.
These suspensions force jobs to be denied processor time,
which reduce the time available for their completions. This
leads to a task not behaving like a periodic task because it
may demand more execution time over some interval than a
periodic task. For this task set, within time interval [p−ε, p),
a total demand of (m+1) ·ε is requested by all tasks in order
for them to meet deadlines, which is clearly infeasible.

Due to the fact that we cannot precisely predict when a
job’s suspension may occur, we have to consider such worst-
case behaviors in the analysis. That is, when one task sus-
pends at some time t, all tasks may suspend at the same time
at t and thus cause t to be idle. Interestingly, the suspension-
oblivious approach is able to eliminate this worst-case be-
havior at the cost of pessimism by converting all n tasks’
suspensions into computation. Next, we present a unipro-
cessor suspension-aware analysis technique that can avoid
such worst-case behaviors at the cost of converting only one
task’s suspension into computation, and thus yields a much
improved schedulability test.

4 Uniprocessor Schedulability Analysis
We now present our proposed suspension-aware schedu-

lability analysis on a uniprocessor. We first describe the
proof setup, then present a new analysis technique, and fi-
nally derive a utilization-based schedulability test.

Definition 1. A job is considered to be completed if it has
finished its last phase (be it suspension or computation). A
job is pending at time t if it is released before t but has not
completed by t.



rl,j dl,j

Intervals in which τl,j and jobs 
with higher priorities self-suspend

computation 
phases of τl,j 

suspension 
phases of τl,j 

computation phases of  jobs 
with higher priorities than τl,j

Figure 3: Our analyzed interval [rl,j , dl,j).

Definition 2. If a job is enabled and not suspended at time t
but does not execute at t, then it is preempted at t.

Let S be an RM schedule of τ such that a job τl,j of task
τl is the first job in S to miss its deadline at dl,j , as shown in
Fig 3. Under RM, tasks with lower priorities than τl do not
affect the scheduling of τl and tasks with higher priorities
than τl, so we will henceforth discard from S all tasks with
priorities lower than τl (i.e., any task τk where k > l).

Our objective is to determine conditions necessary for τl,j
to miss its deadline, i.e., for τl,j to execute its computation
and suspension phases for strictly fewer than el + sl time
units over [rl,j , dl,j).

As discussed in Sec. 3, the pessimism of analyzing sus-
pending task systems is due to the worst-case scenario where
all suspending tasks might have enabled jobs that suspend
concurrently. For ordinary periodic task systems without
suspensions, if job τl,j misses its deadline, then it must be
the case that the total demand placed in [rl,j , dl,j) due to τl,j
and jobs with higher priorities than τl,j exceeds the available
processor capacity in this interval (i.e., pl). For suspending
tasks, unfortunately, this fact no longer holds. As seen in
Fig. 3, due to suspensions, the total amount of such work
does not need to exceed pl in order for τl,j to miss its dead-
line.

Therefore, our goal is to avoid such a worst case. Our
key observation is that τl,j must suspend at any non-busy
time t ∈ [rl,j , dl,j) since it does not complete by dl,j . The
key idea behind our new technique is the following: Treat-
ing τl,j’s suspensions happening within idle time intervals
in [rl,j , dl,j) as computation forces [rl,j , dl,j) to be a busy
interval. Doing so avoids the need of analyzing suspensions
and thus eliminates the analytical pessimism due to suspen-
sions, at the expense of treating only one task’s suspensions
as computation.

Our new technique involves transforming the schedule S
partially within [rl,j , dl,j). The goal of this transformation
is to convert τl,j’s suspensions into computation in non-busy
intervals to eliminate idleness as discussed above. Since τl,j
misses its deadline, τl,j must suspend in all non-busy interval
within [rl,j , dl,j). Thus, within all such non-busy intervals,
we convert τl,j’s suspensions into computation. Note that if
τl,j’s suspensions are converted into computation in a time
interval [t1, t2), then τl,j is considered to execute in [t1, t2).

rl,j dl,j

computation 
phases of τl,j 

computation phases of  jobs 
with higher priorities than τl,j

suspensions of τl,j           
turned into computation

Figure 4: Convert suspensions of τl,j within all idle intervals
in [rl,j , dl,j).

Time

τ1

τ2

10 200 2 4 6 8 1612 14 18

Time

τ1

τ2

10 200 2 4 6 8 1612 14 18

computation phase suspension phase
suspensions of τ2,1 

converted into 
computation

(a) Original schedule S

(b) Transformed schedule S after converting ‘s 
suspension into computation in idle intervals

⟨

Figure 5: Example schedule and the corresponding trans-
formed schedule.

Due to the fact that τl,j misses its deadline, interval
[rl,j , dl,j) consists of four types of subintervals: (i) those in
which τl,j is executing, (ii) those in which τl,j is preempted,
(iii) those in which τl,j is suspending and some other job is
executing, and (iv) those in which τl,j and (possibly) other
enabled jobs are suspending. Note that only intervals of
the last type are idle. Within all such idle time intervals in
[rl,j , dl,j), convert suspensions of τl,j into computation, as
illustrated in Fig. 4. Let Ŝ denote the transformed schedule.

Example Fig. 5(a) shows an RM schedule S of an ex-
ample task system consisting of two tasks τ1(4, 4, 10) and
τ2(7, 6, 20). Although this task system has a total utilization
less than 1, job τ2,1 misses its deadline at time 20 because
its suspensions reduce the time available for its completion.
Fig. 5(b) shows the corresponding schedule Ŝ after applying
the transformation method. As seen in Fig. 5(b), the trans-
formation method is able to eliminate all idle intervals due
to suspensions. Job τ2,1 misses its deadline exactly because
the total amount of computation (including both original and
converted computation) demanded in interval [r2,1, d2,1) ex-
ceeds the interval length, which is similar to the ordinary
periodic task case.

Analysis. Since τl,j misses its deadline, we know that it
must suspend within all non-busy intervals in [rl,j , dl,j) in
the original schedule S. According to the our transforma-
tion method, τl,j’s suspensions are converted into compu-



tation within all non-busy intervals in [rl,j , dl,j) in Ŝ. The
following property of schedules Ŝ thus follows.

Property 1. [rl,j , dl,j) in Ŝ is a busy interval.

The following theorem gives a sufficient RM schedulabil-
ity test.

Theorem 1. An HRT synchronous periodic harmonic sus-
pending task system τ with Usum ≤ 1 is schedulable under
RM if

max
k

{
k∑
i=1

ui +
sk
pk

}
≤ 1 (1)

holds.

Proof. We prove the theorem by contrapositive: if τ is not

schedulable, then maxk

{∑k
i=1 ui +

sk
pk

}
> 1.

Assume that τ is not schedulable. Let τl,j be the first
job that misses its deadline in the corresponding schedule
S. We first transform S to Ŝ by applying the transformation
technique discussed earlier. By Property 1, we know that
[rl,j , dl,j) in Ŝ is a busy interval. Therefore, in order for τl,j
to miss its deadline, the amount of work due to τl,j and jobs
with higher priorities placed in [rl,j , dl,j), denoted by W ,
must exceed pl. That is, W > pl is a necessary condition for
τl,j to miss its deadline.

Since tasks have harmonic periods and jobs are released
in a synchronous periodic manner, the number of jobs re-
leased by any task τk with pk ≤ pl within [rl,j , dl,j) is given
by

pl
pk

. Note that under RM and our task indexing policy

(defined in Sec. 2), tasks with IDs > l have lower priorities
than τl and thus do not contribute to W .

For task τl, the amount of work it contributes to W is at
most el + sl, where sl represents the maximum amount of
suspensions of τl,j that can be converted into computation.
Therefore, we have

pl <W

≤
l−1∑
k=1

pl
pk
· ek + (el + sl)

=

l∑
k=1

uk · pl + sl

By rearrangements, we have

1 <

l∑
i=1

ui +
sl
pl

≤max
k

{
k∑
i=1

ui +
sk
pk

}
Thus the theorem follows.

Time

τ2

τ3

τ1

20 400

Figure 6: RM schedule of an example task system with
Usum = 1.

Theoretical dominance over the suspension-oblivious ap-
proach. We now show that our derived schedulability test
theoretically dominates the suspension-oblivious approach.
When using the approach of treating all suspensions as
computation, the resulting utilization constraint for har-
monic task systems on a uniprocessor under RM is given
by Usum +

∑n
i=1

si
pi
≤ 1 [17]. Clearly the constraint

maxk

{∑k
i=1 ui +

sk
pk

}
≤ 1 in Theorem 1 is less restric-

tive than this prior approach. As will be seen in Sec. 6, our
proposed schedulability test is able to support many task sys-
tems with little or even no utilization loss. Next we show that
an example task system with Usum = 1 that satisfies Eq. (1)
is schedulable.

Example Consider a task system consisting of three sus-
pending tasks τ1(2, 8, 10), τ2(6, 10, 20), and τ3(20, 40).
This task system has a total utilization equal to 1 and is
schedulable since it satisfies Eq. (1). Fig. 6 shows an ex-
ample RM schedule of this task system.

Negative impact due to asynchronous (or sporadic) re-
leases, arbitrary periods, and EDF scheduling. Theo-
rem 1 applies to synchronous periodic suspending task sys-
tems with harmonic periods under RM scheduling. We com-
ment here why it is non-trivial to apply this technique to
more general task models and EDF scheduling.

The negative impact due to asynchronous (or sporadic)
releases is that since we do not have a deterministic releas-
ing pattern, we do not know the worst-case behavior of a sus-
pending task system. For ordinary task systems without sus-
pensions, we know that the worst-case behavior under RM
scheduling occurs at a well-defined critical instant, where
all higher-priority tasks release their first jobs at the same
time [17]. However, the critical instant theorem does not
hold for suspending task systems. This forces us to always
consider the worst-case suspending pattern in the analysis.
Consider an example schedule shown in Fig. 7, where a task
τi with pi = pk releases two jobs whose execution windows
(i.e., from job release to job deadline) overlap with our ana-
lyzed interval [rl,j , dl,j ]. In this example, we have to assume
that job τi,k first suspends and carries all its computation into
the interval, and job τi,k first executes its computation after



rl,j dl,j

computation 
phases of jobs of τi 

suspension     
phases of jobs of τi 

ri,k ri,k+1

Figure 7: Asynchronous releases cause problems.

its release. Thus in this case, τi contributes
(
pi
pk

+ 1
)
· ei

instead of pi
pk
· ei to W , which will cause the utilization con-

dition to be rather pessimistic.
The case of arbitrary periods causes similar problems as

sporadic releases under RM scheduling, as the amount of
work contributed to W by a higher priority task cannot be
efficiently bounded.

EDF scheduling may also cause significant pessimism in
the analysis. The fundamental reason is due to an invalid
property of the “idle instant” in the presence of suspensions.
Recall that in the original EDF proof [17], the utilization-
based test (Usum ≤ 1) utilizes an important property of an
idle instant, i.e., no job is pending at any idle instant, which
certainly holds for ordinary tasks without suspensions. Un-
fortunately, jobs that suspend at an idle instant can still carry
computation work into later intervals. This again causes the
amount of competing work due to jobs with higher priorities
than τl,j to be inefficiently bounded.

Due to these observations, we identify the issue of sup-
porting more general task models as open problems and
leave them as future work.

5 Self-Suspending Task Partitioning on Mul-
tiprocessors

In this section, we propose a partitioning approach for
supporting suspending task systems on multiprocessors. Al-
though partitioning suffers from bin-packing-related utiliza-
tion loss, previous research [5] has shown that it is prefer-
able to global scheduling for hard real-time task systems, in
which most industrial systems also adopt such partitioning
approaches. A major reason is due to the optimality of EDF
on a uniprocessor for ordinary task systems without suspen-
sions. In our context, partitioning also appears to be an ap-
pealing choice due to the fact that Theorem 1 ensures lit-
tle utilization loss in many cases on a uniprocessor. Next,
we present an algorithm SSPartition that efficiently parti-
tions suspending tasks on a multiprocessor based upon The-
orem 1. We then analyze the properties of SSPartition and
derive a corresponding schedulability test.

The utilization loss seen in the utilization constraint

maxk

{∑k
i=1 ui +

sk
pk

}
≤ 1 (Eq. (1)) is mainly caused

by large values of pi and
si
pi

(i.e., large periods and sus-

pension ratios). A large value of pi implies a large value

of
∑i
j=1 uj because tasks with shorter periods than pi con-

tribute to
∑i
j=1 uj ; while a large value of

si
pi

may also lead

to a large value of the left-hand side of Eq. (1). An inter-
esting observation on Eq. (1) is that on a single processor,
among the tasks with large pi and/or

si
pi

values, the utiliza-

tion loss due to the term
si
pi

in Eq. (1) is caused by only one

such task. If we can partition x tasks onto one processor,
such undesirable properties of x − 1 of them can actually
be “masked” by the one task that yields the maximum value
of the left-hand side of Eq. (1). Motivated by this, Algo-
rithm SSPartition always seeks to assign tasks with long pe-
riods and large suspension ratios to the same processor, as
described next.

Definition 3. Let δ(τi,Mk) denote the difference between
values of the left-hand side of Eq. (1) for processor Mk be-
fore and after assigning task τi to that processor. Let u(Mj)
denote the available utilization of Mj .

Algorithm description. Algorithm SSPartition partitions
tasks in a suspending task system τ onto m processors. The
pseudocode is shown in Fig. 8. Tasks are ordered and re-
indexed according to non-increasing suspension ratio.2 Then
for each task τi in order, we find a set of used processors3

onto which τi can be assigned (lines 3-7). We then as-
sign τi to one such processor Mj that results in the small-
est δ(τi,Mj) (lines 8-10). As discussed earlier, the intuition
of doing this is to always partition tasks with large suspen-
sion ratios to the same processor so that (ideally) on each
processor Mj , tasks assigned to Mj with large suspension
ratios can be “masked” by the one task assigned to Mj that
has the largest suspension ratio. If a task cannot be assigned
to any used processor, then it is assigned to a new proces-
sor on which no task has been assigned (lines 12-13). The
algorithm returns failure if a task cannot be assigned to any
processor (line 11). SSPartition clearly yields a polynomial-
time complexity of Θ(n · logn+ n ·m).

Example Consider a two-processor suspending task system
consisting of six tasks: τ1(1, 4, 5), τ2(3, 5, 10), τ3(2, 4, 10),
τ4(1, 2, 5), τ5(12, 0, 20), τ6(10, 0, 20) (ordered according to
Algorithm SSparition). By applying this algorithm, tasks τ1,
τ2, and τ6 are assigned to processor 1 and τ3, τ4, and τ5 are
assigned to processor 2. This task system can be success-
fully partitioned onto two processors even if it has a total
utilization of two. This is mainly due to the fact that τ1 and
τ2 which are the two tasks with the largest suspension ratio
are assigned to the same processor.

2Note that after partitioning tasks onto processors, on each processor,
tasks are again indexed by periods. This is because this indexing rule is re-
quired by Theorem 1 in order to check the schedulability on each individual
processor using Eq. 1.

3A used processor is one to which at least one task has been assigned.



SSPARTITION(τ , m)
. A set of periodic suspending tasks with

harmonic periods τ = {τ1, τ2, ..., τn} is to be
partitioned on m processors denoted by M1,M2,
...,Mm. Tasks are indexed according to non-
increasing suspension ratio:

si
pi
≥ si+1

pi+1
for all

i. Ties are broken by pi (pi ≤ pi+1 for all i).
. {M1, ...,Mk} represents the set of used processors

that have been assigned at least one task

1 for i← 1 to n
2 . i ranges over the tasks
3 for j ← 1 to k
4 . j ranges over the processors that have been

assigned at least one task
5 if u(Mj) ≤ 1 and Eq. (1) both hold after

assigning τi to Mj

6 mark Mj as a feasible processor for τi
7 endfor
8 if the feasible processor set for τi is not empty
9 assign τi to a processor Mj in this set that

results in the smallest δ(τi,Mj)
10 continue;
11 if k == m return PARTITIONING FAILED
12 assign τi to Mk+1

13 k = k + 1
14 endfor
15 return PARTITIONING SUCCEEDED

Figure 8: SSPartition pseudocode.

Analysis of SSPartition. The following theorem gives a
condition for SSPartition to successfully partition any given
task system onto m processors. Before stating the theorem,
we first prove the following lemma.

Definition 4. Let Um−1 denote the sum of m − 1 largest
task utilizations. Let Vm denote the sum of m largest task
suspension ratios.

Lemma 1. Under Algorithm SSPartition, if a task τi is the
first task that cannot be assigned to any processor, then∑i
k=1 uk > m− Um−1 − Vm.

Proof. Due to the fact that some task τi cannot be assigned
to any processor, the last processor Mm does not have
enough capacity to accommodate τi. That is, if τi is as-
signed to Mm, then either the total utilization on Mm be-
comes greater than 1 or Eq. (1) does not hold. Moreover, for
each previous processor Mj , where j ≤ m − 1, there exists
a task, denoted by τ j (for the last processor, we know that
τm is τi), that could not be assigned to Mj , and thus another

processor was considered to accommodate τ j . Let u(τ j) de-
note the utilization of τ j . Hence, we know that for processor
Mj , either

u(Mj) + u(τ j) > 1, (2)

or, after assigning τ j to Mj , on Mj ,4 we have

max
k

{
k∑
i=1

ui +
sk
pk

}
> 1

⇒ u(Mj) + u(τ j) +maxk

(
sk
pk

)
≥ max

k

{
k∑
i=1

ui +
sk
pk

}
> 1. (3)

Thus, according to Eqs. (2) and (3), for any processor Mj ,
its allocated capacity before being assigned τ j must be

strictly greater than 1 − u(τ j) −maxk
(
sk
pk

)
. Since tasks

{τ1, τ2, ..., τi−1} have been successfully assigned, the total
utilization of these tasks is equal to the total allocated capac-
ity of processors, which is given by

∑i−1
k=1 uk. Hence, we

have ∑i−1
k=1 uk >

∑m
j=1

(
1− u(τ j)−maxk

(
sk
pk

))
⇔ {adding ui on both sides}∑i

k=1 uk >
∑m
j=1

(
1− u(τ j)−maxk

(
sk
pk

))
+ui

⇔ {because u(τm) = ui and by the definition of Vm}∑i
k=1 uk > m−

∑m−1
j=1 u(τ j)− Vm

⇒ {by the definition of Um−1}∑i
k=1 uk > m− Um−1 − Vm.

Theorem 2. Algorithm SSPartition successfully partitions
any synchronous periodic harmonic suspending task system
τ on m processors for which

Usum ≤ m− Um−1 − Vm. (4)

Proof. Let us suppose that Algorithm SSPartition fails to as-
sign the ith task τi to any processor for contradiction. Then
by Lemma 1,

∑i
k=1 uk > m−Um−1−Vm holds. Therefore,

we have ∑i
k=1 uk > m− Um−1 − Vm

⇒ Usum ≥
∑i
k=1 uk > m− Um−1 − Vm.

Hence, any system that Algorithm SSPartition fails to parti-
tion must have Usum > m−Um−1−Vm, in which we reach
the contradiction.

4Recall that tasks that have been assigned to Mj are indexed again by
periods.



0 %

20 %

40 %

60 %

80 %

100 %

 0  0.2  0.4  0.6  0.8  1

[1] Our-l
[1’] Our-m
[1’’] Our-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(a) short suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  0.2  0.4  0.6  0.8  1

[1] Our-l
[1’] Our-m
[1’’] Our-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(b) moderate suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  0.2  0.4  0.6  0.8  1

[1] Our-l
[1’] Our-m
[1’’] Our-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(c) long suspension length

Figure 9: Uniprocessor schedulability results. In all three graphs, the x-axis denotes the task set utilization cap and the y-axis
denotes the fraction of generated task sets that were schedulable. In inset (a) (respectively, (b) and (c)), short (respectively,
moderate and long) per-task suspension lengths are assumed. Each graph gives six curves per tested approach for the cases of
light, medium, and heavy per-task utilizations, respectively. As seen at the top of the figure, the label “Θ(1)-l(m/h)” indicates
the approach of Θ(1) assuming light (medium/heavy) utilizations. Similar “SC” labels are used for SC.

6 Experiments
In this section, we describe experiments conducted us-

ing randomly-generated task sets to evaluate the applicabil-
ity of our uniprocessor schedulability test (Theorem 1) and
partitioning-based multiprocessor schedulability test (Theo-
rem 2).

In our experiments, harmonic suspending task sets were
generated similar to the methodology used in [15, 16]. Har-
monic task periods were distributed uniformly over [2ms,
1024ms] (e.g., {2ms, 4ms, 8ms, ..., 1024ms}). Task uti-
lizations were distributed differently for each experiment us-
ing three uniform distributions. The ranges for the uniform
distributions were [0.005, 0.1] (light), [0.1, 0.3] (medium),
and [0.3, 0.5] (heavy). Task execution costs were calcu-
lated from periods and utilizations. Suspensions lengths of
tasks were also distributed using three uniform distributions:
[0.005 ·(1−ui) ·pi, 0.1 ·(1−ui) ·pi] (suspensions are short),
[0.1 · (1− ui) · pi, 0.3 · (1− ui) · pi] (suspensions are mod-
erate), [0.3 · (1− ui) · pi, 0.6 · (1− ui) · pi] (suspensions are
long).5 Suspension lengths generated by these parameters
range from 5µs - 611ms, which we believe is wide enough
to cover a large set of workloads that incur suspensions in
practice. We varied the total system utilization Usum within
0.1, 0.2, ...,m. For each combination of task utilization dis-
tribution, suspension length distribution, and Usum, 10,000
task sets were generated for system with m = 1, m = 4
and m = 8 processors. Each such task set was generated
by creating tasks until total utilization exceeded the corre-
sponding utilization cap, and by then reducing the last task’s
utilization so that the total utilization equaled the utilization
cap.

Uniprocessor schedulability. We evaluated the effec-
tiveness of the proposed uniprocessor schedulability test
by comparing Theorem 1, denoted by “Θ(1)”, to the

5Note that any si is upper-bounded by (1− ui) · pi

suspension-oblivious approach denoted by “SC”.6 That is,
after transforming all suspending tasks into ordinary peri-
odic tasks (no suspensions) using SC, the original task sys-
tem is schedulable if the total utilization of the transformed
task system is not greater than 1.

The obtained schedulability results are shown in Fig. 9
(the organization of which is explained in the figure’s cap-
tion). Each curve plots the fraction of the generated task
sets the corresponding approach successfully scheduled, as
a function of total utilization. As seen, in all tested scenar-
ios, Θ(1) improves upon SC by a substantial margin. For ex-
ample, as seen in Fig. 9(a), when suspensions are short, Θ(1)
can achieve 100% schedulability under all three task suspen-
sion length distributions whenUsum ≤ 0.9; while SC fails to
do so whenUsum merely exceeds 0.4, 0.6, and 0.7 with light,
medium, and heavy task utilizations, respectively. Moreover,
as seen in all insets of Fig 9, when task suspension lengths
and task utilizations increase, the utilization loss suffered by
SC becomes much more significant. For example, when sus-
pension lengths are long and task utilizations are heavy, SC
fails for task sets even with Usum < 0.2, while Θ(1) can
still guarantee 100% schedulability when Usum ≤ 0.4. The
negative impact due to long task suspension lengths on Θ(1)
is limited because only one suspending task can cause addi-
tional suspension-related utilization loss.

Multiprocessor schedulability. We also evaluated the ef-
fectiveness of the proposed partitioning algorithm by com-
paring Theorem 2, denoted by “Par”, to an existing schedu-
lability test [16] for suspending tasks, denoted “GlobalSA”,
which is the only available global suspension-aware analy-

6We choose to compare against the suspension-oblivious approach be-
cause it can be used to support the general suspension model considered
in this paper; whereas most existing uniprocessor suspension-aware anal-
ysis techniques assume a restricted suspension model (e.g., tasks that can
suspend at most once [8, 24]).



0 %

20 %

40 %

60 %

80 %

100 %

 0  0.5  1  1.5  2  2.5  3  3.5  4

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] GlobalSA-l
[2’] GlobalSA-m

[2’’] GlobalSA-h   

(a) m = 4; short suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  1  2  3  4  5  6  7  8

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(b) m = 8; short suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  0.5  1  1.5  2  2.5  3  3.5  4

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(c) m = 4; moderate suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  1  2  3  4  5  6  7  8

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(d) m = 8; moderate suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  0.5  1  1.5  2  2.5  3  3.5  4

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(e) m = 4; long suspension length

0 %

20 %

40 %

60 %

80 %

100 %

 0  1  2  3  4  5  6  7  8

[1] Par-l
[1’] Par-m
[1’’] Par-h

[2] SC-l
[2’] SC-m

[2’’] SC-h   

(f) m = 8; long suspension length

Figure 10: Multiprocessor schedulability results. In all six graphs, the x-axis denotes the task set utilization cap and the y-axis
denotes the fraction of generated task sets that were schedulable. In the first (respectively, second) column of graphs, m = 4
(respectively, m = 8) is assumed. In the first (respectively, second and third) row of graphs, short (respectively, moderate
and long) per-task suspension length are assumed. Each graph gives three curves per tested approach for the cases of light,
medium, and heavy per-task utilizations, respectively. As seen at the top of the figure, the label “Par-l(m/h)” indicates the
approach of Par assuming light (medium/heavy) per-task utilizations. Similar “GlobalSA” labels are used for GlobalSA.

sis.7 Also, it has been shown in [16] that this suspension-
aware approach achieves better performance w.r.t. HRT
schedulability compared to other existing approaches.

7Note that the analysis presented in [16] is able to handle more general
periodic suspending task systems.

The obtained multiprocessor schedulability results are
shown in Fig. 10 (the organization of which is explained in
the figure’s caption). As seen, in most scenarios, Par im-
proves upon GlobalSA. For example, as seen in Fig. 10(a),
when task utilizations are heavy and suspension lengths
are short, Par is able to achieve 100% schedulability when



Usum ≤ 2.3; while GlobalSA fails to do so when Usum
exceeds 1.9. This suggests the effectiveness of Par even if
it suffers from the bin-packing-related utilization loss. An-
other observation is that when suspension lengths are long
and utilizations are heavy, Par yields weaker performance,
which becomes comparable to GlobalSA in one case (as
shown in Fig. 10(f)). This is because the utilization con-
straint (as seen in Eq. (4) becomes more severe in this case,
as Um−1 increases when task utilizations become heavier,
and Vm also increases when suspension lengths become
longer.

7 Conclusion and Future Work
In this paper, we have presented new techniques for an-

alyzing HRT synchronous periodic suspending tasks with
harmonic periods. The resulting uniprocessor schedulability
test yields only an Θ(1) suspension-related utilization loss,
which theoretically dominates the suspension-oblivious ap-
proach [17]. Then based upon this uniprocessor schedulabil-
ity test, we further present a partitioning scheme for handling
such task systems on multiprocessors. The resulting mul-
tiprocessor schedulability test yields only an Θ(m) utiliza-
tion loss. As demonstrated by experiments presented herein,
our proposed tests significantly improves upon prior meth-
ods with respect to schedulability, and are often able to guar-
antee schedulability with little or no utilization loss.

In future work, we plan to design new analysis techniques
that can efficiently handle general sporadic suspending task
systems. Moreover, new scheduling algorithms that may bet-
ter deal with suspensions need to be designed and analyzed,
as classical schedulers such as EDF and RM might not be
the best choices in this case.

Acknowledgment: This research was supported in part by a
start-up grant from the University of Texas at Dallas, DFG,
as part of the Collaborative Research Center SFB876, the
priority program ”Dependable Embedded Systems”, iTrust
IGDSi1301013.

References
[1] Avionics application software standard interface: Part 1 - required ser-

vices (arinc specication 653-2). Technical report, Avionics Electronic
Engineering Committee (ARINC), 2006.

[2] Green hills software, arinc 653 partition scheduler.
www.ghs.com/products/safety critical/arinc653.html, 2013.

[3] Windriver, platform for arinc 653. www.windriver.com/ prod-
ucts/platforms/safetycritical/, 2013.

[4] Riccardo Bettati and Jane W-S Liu. End-to-end scheduling to meet
deadlines in distributed systems. In Distributed Computing Systems,
1992., Proceedings of the 12th International Conference on, pages
452–459. IEEE, 1992.

[5] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, University of North Carolina
at Chapel Hill, Chapel Hill, NC, 2011.

[6] A. Easwaran, L. Insup, O. Sokolsky, and S. Vestal. A compositional
scheduling framework for digital avionics systems. In Proceedings of
the 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 371–380, 2009.

[7] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of
periodic task systems on multiprocessors. Real-Time Systems, 25(2-
3):187–205, 2003.

[8] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling
of tasks that contain the external blocking intervals. In Proceedings
of the 2nd International Workshop on Real-Time Computing Systems
and Applications, pages 54–59, 1995.

[9] T. Kuo and A. Mok. Load adjustment in adaptive real-time systems.
In Proceedings of the 12th Real-Time Systems Symposium, pages 160–
170, 1991.

[10] K. Lakshmanan and R. Rajkumar. Scheduling self-suspend- ing real-
time tasks with rate-monotonic priorities. In Proceedings of the 16th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pages 3–12, 2010.

[11] J. Lee, S. Xi, S. Chen, L. Phan, C. Gill, I. Lee, C. Lu, and O. Sokol-
sky. Realizing compositional scheduling through virtualization. In
Proceedings of the 18th IEEE Real Time and Embedded Technology
and Applications Symposium, pages 13–22, 2012.

[12] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft
real-time multiprocessor systems. In Proceedings of the 30th Real-
Time Systems Symposium, pages 425–436, 2009.

[13] C. Liu and J. Anderson. Improving the schedulability of sporadic self-
suspending soft real-time multiprocessor task systems. In Proceedings
of the 16th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 14–23, 2010.

[14] C. Liu and J. Anderson. Scheduling suspendable, pipelined tasks with
non-preemptive sections in soft real-time multiprocessor systems. In
Proceedings of the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 23–32, 2010.

[15] C. Liu and J. Anderson. An O(m) analysis technique for supporting
real-time self-suspending task systems. In Proceedings of the 33th
IEEE Real-Time Systems Symposium, pages 373–382, 2012.

[16] C. Liu and J. Anderson. Suspension-aware analysis for hard real-
time multiprocessor scheduling. In Proceedings of the 25th EuroMi-
cro Conference on Real-Time Systems, pages 271–281, 2013.

[17] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[18] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos.
Mixed criticality real-time scheduling for multicore systems. In Pro-
ceedings of the 7th IEEE International Conference on Embedded Soft-
ware and Systems, pages 1864–1871, 2010.

[19] J. C. Palencia and M. Gonzlez Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings of the 19th IEEE
Real-Time Systems Symposium, pages 26–37, 1998.

[20] J. C. Palencia and M. Gonzlez Harbour. Response time analysis of
EDF distributed real-time systems. Journal of Embedded Computing,
1(2):225–237, 2005.

[21] R. Rajkumar. Dealing with Suspending Periodic Tasks. Technical
report, IBM T. J. Watson Research Center, 1991.

[22] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Proceed-
ings of the 25th IEEE Real-Time Systems Symposium, pages 47–56,
2004.

[23] L. Sha and J. Goodenough. Real-time scheduling theory and Ada.
IEEE Computer, 23(4):53–62, 1990.

[24] K. Tindell. Adding time-offsets to schedulability analysis. Technical
Report 221, University of York, 1994.


	Introduction
	System Model
	Worst-Case Behavior due to Suspensions
	Uniprocessor Schedulability Analysis
	Self-Suspending Task Partitioning on Multiprocessors
	Experiments
	Conclusion and Future Work

