
S. Aluru et al. (Eds.): HiPC 2007, LNCS 4873, pp. 320–330, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A General Distributed Scalable Peer to Peer Scheduler
for Mixed Tasks in Grids

Cong Liu, Sanjeev Baskiyar*, and Shuang Li

Dept. of Computer Science and Software Engineering
Auburn University, Auburn, AL 36849

{liucong, baskisa, lishuan}@auburn.edu

Abstract. We consider non-preemptively scheduling a bag of independent mixed
tasks in computational grids. We construct a novel Generalized Distributed
Scheduler (GDS) for tasks with different priorities and deadlines. Tasks are
ranked based upon priority and deadline and scheduled. Tasks are shuffled to
earlier points to pack the schedule and create fault tolerance. Dispatching is
based upon task-resource matching and accounts for computation as well as
communication capacities. Simulation results demonstrate that with respect to
the number of high-priority tasks meeting deadlines, GDS outperforms prior
approaches by over 40% without degrading schedulability of other tasks. Indeed,
with respect to the total number of schedulable tasks meeting deadlines, GDS
outperforms them by 4%. The complexity of GDS is O(n2m) where n is the
number of tasks and m the number of machines. GDS successfully schedules
tasks with hard deadlines in a mix of soft and firm tasks, without a knowledge of
a complete state of the grid. This way it helps open the grid and makes it
amenable for commercialization.

1 Introduction

A major motivation of grid computing [5] [6] is to aggregate the power of widely
distributed resources to provide services. Application scheduling plays a vital role in
pro- viding such services. A number of deadline-based scheduling algorithms already
exist. However, in this paper we address the problem of scheduling a bag of
independent mixed tasks in computational grids. We consider three types of tasks: hard,
firm and soft [8]. It is reasonable for a grid scheduler to prioritize such mission critic- al
tasks while maximizing the total number of tasks meeting deadlines. Doing so may
make the grid commercially viable as it opens it up for all classes of users.

To the best of our knowledge, GDS is the first attempt at prioritizing tasks according
to task types as well as considering deadlines and dispatch times. It also matches tasks
to appropriate computational and link bandwidth resources. Additionally, GDS consists
of a unique shuffle phase that reschedules mission critical tasks as early as possible to
provide temporal fault tolerance. Dispatching tasks to peers is based upon both

* This research was supported in part by NSF-grant OCI 048136.

 A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks in Grids 321

computational capacity and link bandwidth. Furthermore, GDS is highly scalable as it
does not require a full knowledge of the state of all nodes of the grid as many other
algorithms do. For GDS’s peer to peer dispatch, knowledge of peer site capacities is
sufficient. One must consider that obtaining full knowledge of the state of the grid is
difficult and/or temporally intensive.

The rest of this paper is organized as follows. A review of recent related works has
been given in Section 2. In Section 3, we outline the task taxonomy used in this work.
Section 4 describes the grid model. Section 5 presents the detailed design of GDS.
Section 6 presents a comprehensive set of simulations that evaluate the performance of
GDS. Conclusions and suggestions for future work appear in Section 7.

2 Related Work

Several effective scheduling algorithms such as EDF [9], Sufferage [11], and Min-Min
[12] have been proposed in previous works. The rationale behind Sufferage is to
allocate a site to a task that would “suffer” most in completion time if the task is not
allocated to that site. For each task, Min-Min tags the site that offers the earliest
completion time. Among all tasks, the one that has the minimal earliest completion
time is chosen and allocated to the tagged site.

Few scheduling algorithms take into account both the task types and deadlines in
grids. A deadline based scheduling algorithm appears in [16] for multi-client, multi-
server environment existing within a single resource site. It aims at minimizing
deadline misses by using load correction and fallback mechanisms. In [2], a deadline
scheduling algorithm with priority appropriate for multi-client, multi-server
environment within a single resource site has been proposed. Since preemption is
allowed, it leaves open the possibility that tasks with lower priority but early deadlines
may miss their deadlines. Also, it does not evaluate the fraction of tasks meeting
deadlines.

Venugopal and Buyya [17] propose a scheduling algorithm that tries to minimize the
scheduling budget for a bag of data-intensive applications on data grid. Casanova [3]
describes an adaptive scheduling algorithm for a bag of tasks in Grid environment that
takes data storage issues into consideration. However, they make scheduling decisions
centrally, assuming full knowledge of current loads, network conditions and topology
of all sites in the grid. Liu and Baskiyar [10] propose a distributed peer to peer grid
scheduler that solves the scalability issue in grid systems. Ranganathan and Foster [15]
consider dynamic task scheduling along with data staging requirements. Data
replication is used to suppress communication and avoid data access hotspots. Park and
Kim [14] describe a scheduling model that considers both the amount of computational
resources and data availability in a data grid environment. a

The aforementioned algorithms do not consider all of the following criteria: task
types, dispatch times, deadlines, scalability and distributed scheduling. Furthermore,
they require a full knowledge of the state of the grid which is difficult and/or expensive
to maintain.

322 C. Liu, S. Baskiyar, and S. Li

3 Task Taxonomy

We consider three types of tasks: hard, firm and soft. GDS uses such a task taxonomy
that considers the consequence of missing deadlines, and the importance of task. Hard
tasks are mission critical since the consequences of failure are catastrophic, e.g.
computing the orbit of a moving satellite to make real-time defending decisions [13].
For firm tasks a few missed deadlines will not lead to total failure, but missing more
may. For soft tasks, failures only result in degraded performance.

An example of mission-critical application is the Distributed Aircraft Maintenance
Environment [4], a pilot project which uses a grid to the problems of aircraft engine
diagnosis and maintenance. Modern aero-engines must operate in highly demanding
environments with extreme reliability. As one would expect, such systems are equipped
with extensive sensing and monitoring capabilities for real-time performance analysis.
Catastrophic consequences may occur if any operation fails to meet its deadline.

An example of a firm task with deadline is of financial analysis and services [7]. The
emergence of a competitive market force involving customer satisfaction, and
reduction of risk in financial services requires accuracy and fast execution. Many
corresponding solutions in the financial industry are dependent upon providing
increased access to massive amounts of data, real-time modeling, and faster execution
by using grid job scheduling and data access. Such applications do have deadlines;
however, the consequences of missing them are not that catastrophic.

Applications which fall in the category of soft tasks include coarse-grained
task-parallel computations arising from parameter sweeps, Monte Carlo simulations,
and data parallelism. Such applications generally involve large-scale computation to
search, optimize, and statistically characterize products, solutions, and design space but
normally do not have hard real-time deadlines.

4 Grid Model

In our grid model, as shown in Fig. 1, geographically distributed sites interconnect
through WAN. We define a site as a location that contains many computing resources
of different processing capabilities. Heterogeneity and dynamicity cause resources in
grids to be distributed hierarchically or in clusters rather than uniformly. At each site,
there is a main server and several supplemental servers, which are in charge of
collecting information from all machines within that site. If the main server fails, a
supplemental server will take over. Intra-site communication cost is usually negligible
as compared to inter-site communication.

5 Scheduling Algorithm

The following are the design goals of GDS:

• Maximize number of mission-critical tasks meeting their deadlines
• Maximize total number of tasks meeting their deadlines
• Provide temporal fault tolerance to the execution of mission-critical tasks
• Provide Scalability

 A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks in Grids 323

Fig. 1. Grid Model

Since neither EDF nor using priorities alone can achieve the above goals, we
proposed GDS. GDS consists of three phases. First incoming tasks at each site are
ranked. Second, a shuffling based scheduling algorithm is used to assign each task to a
specific resource on a site, and finally those tasks that are unable to be scheduled are
dispatched to remote sites where the same shuffling based algorithm is used to make
scheduling decisions. The pseudo code of GDS’s main function is shown in Fig. 2.

5.1 Notations

The following notations have been used in this paper.

• ti: task i
• eijk: estimated execution time of ti on machinek at sitej
• cij: estimated transmission time of ti from current site to sitej
• lijk: latest start time of tasks ti on machinek at sitej
• ei: instruction size of ti
• di: deadline of ti
• CCRij: communication to computation ratio of taski residing at sitej
• nj: number of machines within sitej
• ccjk: computing capacity of machinek at sitej
• Spkj: start time of the pth slack on mk at sj
• Epkj: end time of the pth slack on mk at sj
• CCj: average computing capacity of sitej
• Ave_CCi: average computing capacity of all the neighboring sites of sitei
• Ave_Cij: estimated average transmission time of ti from sitej to all the neighbors

324 C. Liu, S. Baskiyar, and S. Li

A task is composed of execution code, input and output data, priority, deadline, and
CCR. Tasks are assigned one of the priorities: high, normal, or low, which correspond
to mission-critical, firm, and soft tasks. A task’s CCR-type is decided by its
Communication to Computation Ratio (CCR), which represents the relationship
between the transmission time and execution time of a task. It can be defined as:

CCRij=Ave_Cij / (ei / Ave_CCi) (1)

If CCRij >>1, we assign a CCR-type of communication-intensive to task ti. If CCRij
<<1, we assign a CCR-type of computation-intensive to ti. If CCRij is comparable to 1,
we assign a CCR-type of neutral to ti. In estimating CCR, we assume that users can
estimate the size of output data. This assumption can be valid under many situations
particularly when the size of input output data are related.

Each site contains a number of machines. The average computing capacity of sitej is
defined as:

j

n

k
jkj nccCC

j

∑
=

=
1

 (2)

GDS
// Q is a task queue in site S

 Sort Q by decreasing priority then by decreasing CCR-type
then by increasing deadline

 Schedule
 If unscheduled tasks remain in Q
 Send message to each m∈ S to execute Shuffle
 Schedule
 endif
 If unscheduled tasks remain in Q
 Dispatch
 endif

end GDS

Fig. 2. GDS

5.2 Multi-attribute Ranking

At each site, various users may submit a number of tasks with different priorities and
deadlines. Our ranking strategy takes task priority, deadline and CCR-type into
consideration. The scheduler at each site puts all incoming tasks into a task queue. First,
tasks are sorted by decreasing priority, then by decreasing CCR-type and then by
increasing deadline. Sorting by decreasing priority allows executing mission-critical
tasks as soon as possible. Sorting by decreasing CCR-type allows executing most
communication-intensive tasks locally. If we were to dispatch such tasks to a remote

 A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks in Grids 325

site, the transfer time may be negative to performance. Experimental results show that
sorting by CCR-type gives us good performance.

5.3 Scheduling Tasks Within Slacks

To schedule task ti on a site sj, each machine mk at sj will check if ti can be assigned to
meet its deadline. If tasks have already been assigned to mk, slacks of varying length
will be available on mk. If no task has been assigned, slacks do not exist, thus:

Spkj=0 && ∞=pkjE (3)

The scheduler checks whether ti may be inserted into any slack while meeting its
deadline. The slack search starts from the last to first. The criteria to find a feasible
slack for ti are:

eijk + max(Spkj, cij) <= Epkj && eijk + max(Spkj, cij) <= di (4)

If the above conditions are satisfied, we schedule ti to the pth slack on mk at sj, and set
its start time to:

lijk = min(di, Epkj) - eijk (5)

Setting tasks start time to their latest start times creates large slacks, enabling other
tasks to be scheduled within such slacks. Also, if sj is the local site for ti, the
transmission time is ignorable; in other words, cijk = 0. The pseudo code of Schedule is
shown in Fig. 3.

 Schedule
for each unscheduled task t∈Q

dofor each machine m∈S //visit in random order to balance load
Visit slacks from latest to earliest
If t fits within slack // while meeting deadline

 Schedule t on m at the latest possible time within the slack
 Mark t scheduled

Update count of unscheduled tasks in Q
 endif

until t is scheduled
endfor

end Schedule

Fig. 3. Schedule

5.4 Shuffle

If after executing Schedule, unscheduled tasks remain, a shuffling procedure is
executed on each machine of the site. Shuffle tries to move all mission-critical tasks as

326 C. Liu, S. Baskiyar, and S. Li

early as possible. Next, it moves other tasks as close as possible to their earliest start
times. In doing so, Shuffle creates larger slacks for possible use by unscheduled tasks.
The pseudo code of Shuffle is shown in Fig. 4. An example of GDS’s ranking,
scheduling and shuffling phases are given in Fig. 5. The advantages of shuffling are two
fold:

• Longer slacks may be obtained by packing tasks.
• Executing mission-critical tasks early provides temporal fault-tolerance.

 Shuffle
for each task t // select tasks from highest priority to lowest priority

Re-Schedule t to the earliest available slack
 endfor
end Shuffle

Fig. 4. Shuffle

5.5 Peer to Peer Dispatching

Each task is assigned a ticket, which is a very small file that contains certain attributes
of a task. A ticket [1] has several fields: ID, priority, deadline, CCR-type, instruction
size, input data size, output data size, schedulable flag and route information. Since
tickets are small they are dispatched in scheduling decisions, rather than the tasks
themselves. If a task can not be scheduled locally, its ticket is dispatched to a remote
site to find a suitable resource.

In dispatching, previous works have selected a remote site randomly or used a single
characteristic, such as computing capacity, bandwidth, or load. GDS uses both the
computing capacity and bandwidth in dispatching. Furthermore, GDS helps decrease
communication overhead since each site only needs to maintain its immediate
neighbors’ basic information such as bandwidth and average computing capacity.

Every site always maintains three dispatching lists which are used for the three
CCR-type tasks. In each list, immediate neighbors are sorted according to different
attributes. The order of neighbors represents the preference of choosing a target
neighboring site for dispatch. For computation-intensive tasks, the corresponding list
has neighboring sites sorted by decreasing average computing capacity. For
communication-intensive tasks, neighboring sites are sorted by decreasing bandwidth.
For neutral-CCR tasks, neighboring sites are sorted by decreasing rank. The rank of
sitej, a neighbor of sitei, is defined as:

∑∑
==

+=
r

k
ikij

r

k
kjji BWBWCCCCRank

11

 (6)

where r is the number of neighbors of sitei. The three lists are available at each site and
are periodically updated. A site will check whether any of its neighbors can consume a
task within deadline or not. Neighbors are checked breadth-first. If none can, the most

 A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks in Grids 327

Task Priority Exec. Time Deadline

1 Mission-critical 1 3

2 Mission-critical 1.5 7

3 Mission-critical 1 11

4 Firm 2 14

5 Firm 0.5 1

6 Soft 1 4.5

7 Soft 1.5 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 1 6 2 47 3

Initial Scheduling

5 1 3 6 2 7 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Time Final Schedule

Slack Assigned Task

Ranked Tasks at a Resource Site

Fig. 5. An example of GDS schedule

favorite neighbor will search its neighbors. This process continues until suitable remote
resource has been found, or all sites have been visited. The pseudo code of Dispatch is
shown in Fig. 6.

5.6 Complexity

Let n be the number of incoming tasks, m the number of machines within each site, and
s the number of sites. Then, the complexity of Shuffle is O(n), of Schedule is O(n2m)
and of Dispatch is O(ns). The complexity of GDS’s ranking phase is O(nlogn).
Therefore, the complexity of GDS is O(n2m), assuming s < nm. If in Schedule, the
slacks within each machine were to be evaluated in parallel by each machine in a
non-blocking fashion, the complexity of GDS would be O(n2). We note that the
complexity of Sufferage and MinMin is O(n2m).

328 C. Liu, S. Baskiyar, and S. Li

Dispatch
 for each unscheduled task t∈ Q
 for each neighbor N of S

// visit neighbors in order depending upon CCR-type of t
 Send t’s ticket to N
 if N can successfully schedule t
 Send t to N
 Mark t scheduled

 endfor
endfor

end Dispatch

Fig. 6. Dispatch

6 Simulations

We conducted extensive simulations to evaluate GDS. The goal of simulations was two
fold: (i) to compare GDS against other heuristics, and (ii) to evaluate the merits of each
component of GDS.

We generated 17 sites with each site having a random number of computers between
20 and 50. The CCR value of each task was varied between 0.05-20. We varied other
parameters to understand their impact on different algorithms. The deadlines and
number of tasks were chosen such that the grid system is close to its breaking point
where tasks start to miss deadlines. We varied the instruction size, size of input and
output data, bandwidth between sites, and each machine’s processing capability. Each
data point is an average of 20 runs. The Critical Successful Schedulable Ratio (Critical
SSR) and the Overall SSR have been used as the main metrics of evaluation. They are
defined as:

tasksofnumbertotal

deadlinesmeetingtasksofnumber
OverallSSR

taskscriticalmissionofnumbertotal

deadlinesmeetingtaskscriticalmissionofnumber
SSRCritical

=

=

6.1 Performance

The first experiment set was to evaluate the performance against other algorithms. We
compared GDS against three other heuristics: EDF, Min-Min, and Sufferage.

For Critical SSR, from Fig. 7, we observe that GDS yield 41% better performance
on average than others especially when the number of tasks is high. The other
three heuristics do not consider task priority, which results in a number of
un-schedulable mission-critical tasks. Also, ranking tasks by CCR-type brings benefits
to GDS through executing communication-intensive tasks locally and dispatching
computation-intensive tasks to other sites.

 A General Distributed Scalable Peer to Peer Scheduler for Mixed Tasks in Grids 329

With respect to Overall SSR, as shown in Fig. 8, the performance difference among
the five heuristics diminishes. Although EDF, Min-Min and Sufferage do not consider
priorities of tasks, overall they are very effective. But, the fact that GDS still
outperforms them by 4% on average is important. Thus, GDS not only maximizes the
number of mission-critical tasks meeting deadlines, but it does so without degrading
the Overall SSR.

68%

72%

76%

80%

84%

88%

92%

96%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

 S
SR

EDF
Min-Min
Sufferage
GDS

0%

20%

40%

60%

80%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
ri

ti
ca

l S
S

R

EDF Min-Min
Sufferage GDS

 Fig. 7. Critical SSR Fig. 8. Overall SSR

6.2 Impact of Shuffling

In this experiment, we investigate the use of the shuffling component of GDS. To do so,
we use GDS1, which is the scheduler obtained upon removing the shuffling portion
from GDS. From Fig.9, we see that GDS’s Critical SSR is almost identical to GDS1.
However, From Fig. 10 we observe that GDS’s Overall SSR is higher than GDS1 by 5%.
In other words, Shuffle schedules more tasks with firm and soft deadlines while
maximizing the number of mission-critical tasks that meet deadlines. It also provides
temporal fault tolerance to mission-critical tasks by re-scheduling them earlier.

0%

20%

40%

60%

80%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

C
ri

ti
ca

l S
SR

GDS GDS1

0%

20%

40%

60%

80%

100%

3000 4000 5000 6000 7000 8000 9000 10000

Number of Tasks

O
ve

ra
ll

 S
SR

GDS

GDS1

 Fig. 9. Critical SSR Fig. 10. Overall SSR

330 C. Liu, S. Baskiyar, and S. Li

7 Conclusion

In this paper, we proposed a novel algorithm to schedule independent tasks with
different priorities and deadlines in grid systems. Detailed simulations demonstrate that
GDS significantly increases both the Critical SSR and the Overall SSR of all incoming
tasks. In the future, we will investigate the schedulability analysis of GDS in order to
provide deadline guarantees as well as address temporal fault tolerance.

References

[1] Baskiyar, S., Meghanathan, N.: Scheduling and load balancing in mobile computing using
tickets. In: Proceedings of the 39th ACM Southeast Conference (2001)

[2] Caron, E., Chouhan, P.K., Desprez, F.: Deadline Scheduling with Priority for Client-Server
Systems on the Grid. In: Proceedings of the 5th International Workshop on Grid Computing
(2004)

[3] Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid. In: Proceedings of the 13th International
Conference for High Performance Computing, Networking, Storage and Analysis (2000)

[4] Distributed Aircraft Maintenance Environment [Online]. Available: [Accessed May 8,
2007], http://www.cs.york.ac.uk/dame

[5] Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers, San Francisco (1998)

[6] Foster, I., Kesselman, C.: The Grid2. Morgan Kauffmann Publishers, San Francisco (2003)
[7] Joseph, J., Fellenstein, C.: Grid Computing. Prentice Hall, Englewood Cliffs (2004)
[8] Laplante, P.A.: Real-Time Systems Design and Analysis, Wiley-IEEE Press (2004)
[9] Liu, C., Layland, J.: Scheduling Algorithms for Multiprogramming in a hard Real-Time

Environment. Journal of the ACM (1973)
[10] Liu, C., Baskiyar, S., Wang, C.: A distributed peer to peer grid scheduler. In: Proceedings

of the 18th International Conference on Parallel and Distributed Computing and Systems
(2006)

[11] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.: Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In:
Proceedings of the 8th Heterogeneous Computing Workshop (1999)

[12] Menasce, D., Saha, D., Porto, S.: Static and Dynamic Processor Scheduling disciplines in
Heterogeneous Parallel Architectures. Journal of Parallel and Distributed
Computing (1995)

[13] National Aeronautics and Space Admin. [Online]. Available : [Accessed May 8, 2007],
http://liftoff.msfc.nasa.gov/academy/rocket_sci/satellites

[14] Park, S., Kim, J.: Chameleon: A Resource Scheduler in a Data Grid Environment. In:
Proceedings of the 3rd IEEE International Symposium on Cluster Computing and the Grid
(2003)

[15] Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High
Performance Data Grid. In: International Workshop on Grid Computing (2001)

[16] Takefusa, A., Casanova, H., Matsuoka, S., Berman, F.: A Study of Deadline Scheduling for
Client-Server Systems on the Computational Grid. In: Proceedings of the 10th IEEE
Symposium on High Performance and Distributed Computing (2001)

[17] Venugopal, S., Buyya, R.: A Deadline and Budget Constrained Scheduling Algorithm for
eScience Applications on Data Grids. In: Proceedings of the 6th International Conference
on Algorithms and Architectures for Parallel Processing (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

