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Abstract. We consider non-preemptively scheduling a bag of independent mixed 
tasks in computational grids. We construct a novel Generalized Distributed 
Scheduler (GDS) for tasks with different priorities and deadlines. Tasks are 
ranked based upon priority and deadline and scheduled.  Tasks are shuffled to 
earlier points to pack the schedule and create fault tolerance.  Dispatching is 
based upon task-resource matching and accounts for computation as well as 
communication capacities. Simulation results demonstrate that with respect to 
the number of high-priority tasks meeting deadlines, GDS outperforms prior 
approaches by over 40% without degrading schedulability of other tasks. Indeed, 
with respect to the total number of schedulable tasks meeting deadlines, GDS 
outperforms them by 4%. The complexity of GDS is O(n2m) where n is the 
number of tasks and m the number of machines. GDS successfully schedules 
tasks with hard deadlines in a mix of soft and firm tasks, without a knowledge of 
a complete state of the grid.  This way it helps open the grid and makes it 
amenable for commercialization.  

1   Introduction 

A major motivation of grid computing [5] [6] is to aggregate the power of widely 
distributed resources to provide services. Application scheduling plays a vital role in 
pro- viding such services. A number of deadline-based scheduling algorithms already 
exist. However, in this paper we address the problem of scheduling a bag of 
independent mixed tasks in computational grids. We consider three types of tasks: hard, 
firm and soft [8]. It is reasonable for a grid scheduler to prioritize such mission critic- al 
tasks while maximizing the total number of tasks meeting deadlines. Doing so may 
make the grid commercially viable as it opens it up for all classes of users. 

To the best of our knowledge, GDS is the first attempt at prioritizing tasks according 
to task types as well as considering deadlines and dispatch times. It also matches tasks 
to appropriate computational and link bandwidth resources. Additionally, GDS consists 
of a unique shuffle phase that reschedules mission critical tasks as early as possible to 
provide temporal fault tolerance. Dispatching tasks to peers is based upon both 
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computational capacity and link bandwidth. Furthermore, GDS is highly scalable as it 
does not require a full knowledge of the state of all nodes of the grid as many other 
algorithms do. For GDS’s peer to peer dispatch, knowledge of peer site capacities is 
sufficient. One must consider that obtaining full knowledge of the state of the grid is 
difficult and/or temporally intensive.  

The rest of this paper is organized as follows. A review of recent related works has 
been given in Section 2. In Section 3, we outline the task taxonomy used in this work. 
Section 4 describes the grid model. Section 5 presents the detailed design of GDS. 
Section 6 presents a comprehensive set of simulations that evaluate the performance of 
GDS. Conclusions and suggestions for future work appear in Section 7. 

2   Related Work 

Several effective scheduling algorithms such as EDF [9], Sufferage [11], and Min-Min 
[12] have been proposed in previous works. The rationale behind Sufferage is to 
allocate a site to a task that would “suffer” most in completion time if the task is not 
allocated to that site. For each task, Min-Min tags the site that offers the earliest 
completion time. Among all tasks, the one that has the minimal earliest completion 
time is chosen and allocated to the tagged site.  

Few scheduling algorithms take into account both the task types and deadlines in 
grids. A deadline based scheduling algorithm appears in [16] for multi-client, multi- 
server environment existing within a single resource site. It aims at minimizing 
deadline misses by using load correction and fallback mechanisms. In [2], a deadline 
scheduling algorithm with priority appropriate for multi-client, multi-server 
environment within a single resource site has been proposed. Since preemption is 
allowed, it leaves open the possibility that tasks with lower priority but early deadlines 
may miss their deadlines. Also, it does not evaluate the fraction of tasks meeting 
deadlines. 

Venugopal and Buyya [17] propose a scheduling algorithm that tries to minimize the 
scheduling budget for a bag of data-intensive applications on data grid. Casanova [3] 
describes an adaptive scheduling algorithm for a bag of tasks in Grid environment that 
takes data storage issues into consideration. However, they make scheduling decisions 
centrally, assuming full knowledge of current loads, network conditions and topology 
of all sites in the grid. Liu and Baskiyar [10] propose a distributed peer to peer grid 
scheduler that solves the scalability issue in grid systems. Ranganathan and Foster [15] 
consider dynamic task scheduling along with data staging requirements. Data 
replication is used to suppress communication and avoid data access hotspots. Park and 
Kim [14] describe a scheduling model that considers both the amount of computational 
resources and data availability in a data grid environment. a 

The aforementioned algorithms do not consider all of the following criteria: task 
types, dispatch times, deadlines, scalability and distributed scheduling. Furthermore, 
they require a full knowledge of the state of the grid which is difficult and/or expensive 
to maintain.  
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3   Task Taxonomy 

We consider three types of tasks: hard, firm and soft. GDS uses such a task taxonomy 
that considers the consequence of missing deadlines, and the importance of task. Hard 
tasks are mission critical since the consequences of failure are catastrophic, e.g. 
computing the orbit of a moving satellite to make real-time defending decisions [13]. 
For firm tasks a few missed deadlines will not lead to total failure, but missing more 
may. For soft tasks, failures only result in degraded performance.  

An example of mission-critical application is the Distributed Aircraft Maintenance 
Environment [4], a pilot project which uses a grid to the problems of aircraft engine 
diagnosis and maintenance. Modern aero-engines must operate in highly demanding 
environments with extreme reliability. As one would expect, such systems are equipped 
with extensive sensing and monitoring capabilities for real-time performance analysis. 
Catastrophic consequences may occur if any operation fails to meet its deadline.  

An example of a firm task with deadline is of financial analysis and services [7]. The 
emergence of a competitive market force involving customer satisfaction, and 
reduction of risk in financial services requires accuracy and fast execution. Many 
corresponding solutions in the financial industry are dependent upon providing 
increased access to massive amounts of data, real-time modeling, and faster execution 
by using grid job scheduling and data access. Such applications do have deadlines; 
however, the consequences of missing them are not that catastrophic. 

Applications which fall in the category of soft tasks include coarse-grained 
task-parallel computations arising from parameter sweeps, Monte Carlo simulations, 
and data parallelism. Such applications generally involve large-scale computation to 
search, optimize, and statistically characterize products, solutions, and design space but 
normally do not have hard real-time deadlines. 

4   Grid Model 

In our grid model, as shown in Fig. 1, geographically distributed sites interconnect 
through WAN. We define a site as a location that contains many computing resources 
of different processing capabilities. Heterogeneity and dynamicity cause resources in 
grids to be distributed hierarchically or in clusters rather than uniformly. At each site, 
there is a main server and several supplemental servers, which are in charge of 
collecting information from all machines within that site. If the main server fails, a 
supplemental server will take over. Intra-site communication cost is usually negligible 
as compared to inter-site communication. 

5   Scheduling Algorithm 

The following are the design goals of GDS: 

• Maximize number of mission-critical tasks meeting their deadlines 
• Maximize total number of tasks meeting their deadlines 
• Provide temporal fault tolerance to the execution of mission-critical tasks 
• Provide Scalability 
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Fig. 1. Grid Model 

Since neither EDF nor using priorities alone can achieve the above goals, we 
proposed GDS. GDS consists of three phases. First incoming tasks at each site are 
ranked. Second, a shuffling based scheduling algorithm is used to assign each task to a 
specific resource on a site, and finally those tasks that are unable to be scheduled are 
dispatched to remote sites where the same shuffling based algorithm is used to make 
scheduling decisions. The pseudo code of GDS’s main function is shown in Fig. 2.  

5.1   Notations 

The following notations have been used in this paper. 

• ti: task i 
• eijk: estimated execution time of ti on machinek at sitej 
• cij: estimated transmission time of ti from current site to sitej 
• lijk: latest start time of tasks ti on machinek at sitej 
• ei: instruction size of ti 
• di: deadline of ti 
• CCRij: communication to computation ratio of taski residing at sitej 
• nj: number of machines within sitej 
• ccjk: computing capacity of machinek at sitej 
• Spkj: start time of the pth slack on mk at sj 
• Epkj: end time of the pth slack on mk at sj 
• CCj: average computing capacity of sitej 
• Ave_CCi: average computing capacity of all the neighboring sites of sitei 
• Ave_Cij: estimated average transmission time of ti from sitej to all the neighbors 
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A task is composed of execution code, input and output data, priority, deadline, and 
CCR. Tasks are assigned one of the priorities: high, normal, or low, which correspond 
to mission-critical, firm, and soft tasks. A task’s CCR-type is decided by its 
Communication to Computation Ratio (CCR), which represents the relationship 
between the transmission time and execution time of a task. It can be defined as:        

CCRij=Ave_Cij / (ei / Ave_CCi) (1) 

If CCRij >>1, we assign a CCR-type of communication-intensive to task ti. If CCRij 
<<1, we assign a CCR-type of computation-intensive to ti. If CCRij is comparable to 1, 
we assign a CCR-type of neutral to ti. In estimating CCR, we assume that users can 
estimate the size of output data. This assumption can be valid under many situations 
particularly when the size of input output data are related.  

Each site contains a number of machines. The average computing capacity of sitej is 
defined as: 

j
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GDS  
// Q is a task queue in site S  

 Sort Q by decreasing priority then by decreasing CCR-type  
then by increasing deadline 

     Schedule 
 If unscheduled tasks remain in Q 
     Send message to each m∈ S to execute Shuffle 
    Schedule 
 endif 
 If unscheduled tasks remain in Q 
     Dispatch 
 endif 

end GDS 
 

Fig. 2. GDS 

5.2   Multi-attribute Ranking 

At each site, various users may submit a number of tasks with different priorities and 
deadlines. Our ranking strategy takes task priority, deadline and CCR-type into 
consideration. The scheduler at each site puts all incoming tasks into a task queue. First, 
tasks are sorted by decreasing priority, then by decreasing CCR-type and then by 
increasing deadline. Sorting by decreasing priority allows executing mission-critical 
tasks as soon as possible. Sorting by decreasing CCR-type allows executing most 
communication-intensive tasks locally. If we were to dispatch such tasks to a remote 
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site, the transfer time may be negative to performance. Experimental results show that 
sorting by CCR-type gives us good performance. 

5.3   Scheduling Tasks Within Slacks 

To schedule task ti on a site sj, each machine mk at sj will check if ti can be assigned to 
meet its deadline. If tasks have already been assigned to mk, slacks of varying length 
will be available on mk. If no task has been assigned, slacks do not exist, thus: 

Spkj=0  &&  ∞=pkjE  (3)

The scheduler checks whether ti may be inserted into any slack while meeting its 
deadline. The slack search starts from the last to first. The criteria to find a feasible 
slack for ti are: 

eijk + max(Spkj, cij) <= Epkj  &&  eijk + max(Spkj, cij) <= di (4) 

If the above conditions are satisfied, we schedule ti to the pth slack on mk at sj, and set 
its start time to: 

lijk = min(di, Epkj) - eijk (5) 

Setting tasks start time to their latest start times creates large slacks, enabling other 
tasks to be scheduled within such slacks. Also, if sj is the local site for ti, the 
transmission time is ignorable; in other words, cijk = 0. The pseudo code of Schedule is 
shown in Fig. 3.  

 Schedule 
for each unscheduled task t∈Q 

dofor each machine m∈S //visit in random order to balance load 
Visit slacks from latest to earliest 
If t fits within slack  // while meeting deadline 

         Schedule t on m at the latest possible time within the slack 
         Mark t scheduled 

Update count of unscheduled tasks in Q 
 endif 

until t is scheduled 
endfor 

end Schedule  

Fig. 3. Schedule 

5.4   Shuffle 

If after executing Schedule, unscheduled tasks remain, a shuffling procedure is 
executed on each machine of the site. Shuffle tries to move all mission-critical tasks as 
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early as possible. Next, it moves other tasks as close as possible to their earliest start 
times. In doing so, Shuffle creates larger slacks for possible use by unscheduled tasks. 
The pseudo code of Shuffle is shown in Fig. 4. An example of GDS’s ranking, 
scheduling and shuffling phases are given in Fig. 5. The advantages of shuffling are two 
fold: 

• Longer slacks may be obtained by packing tasks. 
• Executing mission-critical tasks early provides temporal fault-tolerance. 

 Shuffle 
for each task t // select tasks from highest priority to lowest priority 

Re-Schedule t to the earliest available slack 
   endfor 
end Shuffle 

 

Fig. 4. Shuffle 

5.5   Peer to Peer Dispatching 

Each task is assigned a ticket, which is a very small file that contains certain attributes 
of a task. A ticket [1] has several fields: ID, priority, deadline, CCR-type, instruction 
size, input data size, output data size, schedulable flag and route information. Since 
tickets are small they are dispatched in scheduling decisions, rather than the tasks 
themselves. If a task can not be scheduled locally, its ticket is dispatched to a remote 
site to find a suitable resource. 

In dispatching, previous works have selected a remote site randomly or used a single 
characteristic, such as computing capacity, bandwidth, or load. GDS uses both the 
computing capacity and bandwidth in dispatching. Furthermore, GDS helps decrease 
communication overhead since each site only needs to maintain its immediate 
neighbors’ basic information such as bandwidth and average computing capacity.  

Every site always maintains three dispatching lists which are used for the three 
CCR-type tasks. In each list, immediate neighbors are sorted according to different 
attributes. The order of neighbors represents the preference of choosing a target 
neighboring site for dispatch. For computation-intensive tasks, the corresponding list 
has neighboring sites sorted by decreasing average computing capacity. For 
communication-intensive tasks, neighboring sites are sorted by decreasing bandwidth. 
For neutral-CCR tasks, neighboring sites are sorted by decreasing rank. The rank of 
sitej, a neighbor of sitei, is defined as:  
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where r is the number of neighbors of sitei. The three lists are available at each site and 
are periodically updated. A site will check whether any of its neighbors can consume a 
task within deadline or not. Neighbors are checked breadth-first. If none can, the most  
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Task Priority Exec. Time Deadline 

1 Mission-critical 1 3 

2 Mission-critical 1.5 7 

3 Mission-critical 1 11 

4 Firm 2 14 

5 Firm 0.5 1 

6 Soft 1 4.5 

7 Soft 1.5 9 

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15 

5 1 6 2 47 3

Initial Scheduling 

5 1 3 6 2 7 4 

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15 

Time 

Time Final Schedule 

Slack Assigned Task 

Ranked Tasks at a Resource Site

 

Fig. 5. An example of GDS schedule 

favorite neighbor will search its neighbors. This process continues until suitable remote 
resource has been found, or all sites have been visited. The pseudo code of Dispatch is 
shown in Fig. 6.  

5.6   Complexity 

Let n be the number of incoming tasks, m the number of machines within each site, and 
s the number of sites. Then, the complexity of Shuffle is O(n), of Schedule is O(n2m) 
and of Dispatch is O(ns). The complexity of GDS’s ranking phase is O(nlogn). 
Therefore, the complexity of GDS is O(n2m), assuming s < nm. If in Schedule, the 
slacks within each machine were to be evaluated in parallel by each machine in a 
non-blocking fashion, the complexity of GDS would be O(n2). We note that the 
complexity of Sufferage and MinMin is O(n2m).  
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Dispatch 
  for each unscheduled task t∈ Q 
     for each neighbor N of S 

// visit neighbors in order depending upon CCR-type of t 
        Send t’s ticket to N 
        if N can successfully schedule t 
           Send t to N 
           Mark t scheduled 

       endfor 
endfor 

end Dispatch 
 

Fig. 6. Dispatch 

6   Simulations 

We conducted extensive simulations to evaluate GDS. The goal of simulations was two 
fold: (i) to compare GDS against other heuristics, and (ii) to evaluate the merits of each 
component of GDS. 

We generated 17 sites with each site having a random number of computers between 
20 and 50. The CCR value of each task was varied between 0.05-20. We varied other 
parameters to understand their impact on different algorithms. The deadlines and 
number of tasks were chosen such that the grid system is close to its breaking point 
where tasks start to miss deadlines. We varied the instruction size, size of input and 
output data, bandwidth between sites, and each machine’s processing capability. Each 
data point is an average of 20 runs. The Critical Successful Schedulable Ratio (Critical 
SSR) and the Overall SSR have been used as the main metrics of evaluation. They are 
defined as: 

tasksofnumbertotal

deadlinesmeetingtasksofnumber
OverallSSR

taskscriticalmissionofnumbertotal

deadlinesmeetingtaskscriticalmissionofnumber
SSRCritical

=

=  

6.1   Performance 

The first experiment set was to evaluate the performance against other algorithms. We 
compared GDS against three other heuristics: EDF, Min-Min, and Sufferage. 

For Critical SSR, from Fig. 7, we observe that GDS yield 41% better performance  
on average than others especially when the number of tasks is high. The other  
three heuristics do not consider task priority, which results in a number of 
un-schedulable mission-critical tasks. Also, ranking tasks by CCR-type brings benefits 
to GDS through executing communication-intensive tasks locally and dispatching 
computation-intensive tasks to other sites. 
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With respect to Overall SSR, as shown in Fig. 8, the performance difference among 
the five heuristics diminishes. Although EDF, Min-Min and Sufferage do not consider 
priorities of tasks, overall they are very effective. But, the fact that GDS still 
outperforms them by 4% on average is important. Thus, GDS not only maximizes the 
number of mission-critical tasks meeting deadlines, but it does so without degrading 
the Overall SSR. 
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      Fig. 7. Critical SSR                                       Fig. 8. Overall SSR  

6.2   Impact of Shuffling 

In this experiment, we investigate the use of the shuffling component of GDS. To do so, 
we use GDS1, which is the scheduler obtained upon removing the shuffling portion 
from GDS. From Fig.9, we see that GDS’s Critical SSR is almost identical to GDS1. 
However, From Fig. 10 we observe that GDS’s Overall SSR is higher than GDS1 by 5%. 
In other words, Shuffle schedules more tasks with firm and soft deadlines while 
maximizing the number of mission-critical tasks that meet deadlines. It also provides 
temporal fault tolerance to mission-critical tasks by re-scheduling them earlier. 
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      Fig. 9. Critical SSR                                       Fig. 10. Overall SSR  
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7   Conclusion 

In this paper, we proposed a novel algorithm to schedule independent tasks with 
different priorities and deadlines in grid systems. Detailed simulations demonstrate that 
GDS significantly increases both the Critical SSR and the Overall SSR of all incoming 
tasks. In the future, we will investigate the schedulability analysis of GDS in order to 
provide deadline guarantees as well as address temporal fault tolerance. 
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