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Abstract—Recently, much research effort has been devoted to
employing mobile chargers for energy replenishment of the robots
in robotic sensor networks. Observing the discrepancy between
the charging latency of robots and charger travel distance, we
propose a novel tree-based charging schedule for the charger,
which minimizes its travel distance without causing the robot
energy depletion. We analytically evaluate its performance and
show its closeness to the optimal solutions. Furthermore, through
a queue-based approach, we provide theoretical guidance on the
setting of the remaining energy threshold at which the robots
request energy replenishment. This guided setting guarantees the
feasibility of the tree-based schedule to return a depletion-free
charging schedule. The performance of the tree-based charging
schedule is evaluated through extensive simulations. The results
show that the charger travel distance can be reduced by around
20%, when compared with the schedule that only considers the
robot charging latency.

I. INTRODUCTION

Robotic sensor networks have been increasingly adopted in

applications such as environmental monitoring for detecting

harmful algal blooms [1], concentration of chemical sub-

stances [2], aquatic diffusion process [3], [4], and search and

rescue systems [5]. While efficient in performance, the limited

energy supply of robots impedes the sustainable operation

of robotic sensor networks [6]. Various solutions have been

proposed to solve this energy issue in recent years. Silverman

et al. propose to deploy fixed charging stations to replenish

the robot energy [7]. However, such a mechanism requires

additional robot movement, which may conflict with their reg-

ular operations. Energy harvesting has also been proposed for

the robot energy replenishment, which requires no additional

movements [8], [9]. However, the harvested energy is highly

unpredictable [10], [11], which significantly affects system

reliability.

Adopting mobile chargers to carry out the energy replen-

ishment of robots is a promising approach to provide reliable

and sustainable energy supply for robots, and has attracted

much research attention [12]–[14]. Unfortunately, most exist-

ing schemes require the robot to coordinate with the mobile

charger for energy replenishment. Such coordination may

cause the robot to be interfered from their normal operations,

which is undesirable and even infeasible under scenarios where

robots are designated to perform critical tasks such as life

search and rescue [5] and diffusion process tracking [3]. Due

to this limitation, previous schemes with mobile chargers in

robotic sensor networks may not be employed for the mission-

critical applications.

Motivated by the above observations, in this paper, we focus

on the mission-critical mobile-to-mobile charging scenario, in

which the energy replenishment of the robots cannot interfere

with their normal operations, e.g., due to the emergency of the

robot’s rescue tasks. Consequently, it is solely the responsibili-

ty of the charger to rendezvous and travel along with the to-be-

charged robot to accomplish the charging task. Specifically, by

observing the discrepant requirements between robots (short

charging latency) and chargers (short travel distance), we

propose a novel charging schedule design for the charger that

jointly optimizes the energy replenishing process according

to these two requirements. By eliminating the interference

on robots due to the charging requirements, we expect our

solution to be a better alternative for mission-critical robotic

sensor networks.

Our major contributions in this paper include:

• We introduce the concept of mission-critical mobile-to-

mobile energy replenishment in robotic sensor networks.

To the best of our knowledge, this is the first design that

jointly optimizes the energy replenishment for both the

robots and chargers.

• We transform the mission-critical mobile-to-mobile

charging problem to a shortest-path problem, and design

an efficient charging schedule that minimizes the charger

travel distance without causing the robot energy deple-

tion. The performance of the proposed schedule is ana-

lytically evaluated with regard to the optimal solutions.

• To assist system implementation, we present a queue-

based analytical approach that provides guidance on

setting the robot’s remaining energy threshold (according

to which the robots send out requests for energy replen-

ishment). We show that this approach can guarantee the

feasibility for the proposed schedule to return a depletion-

free solution.

The paper is organized as follows. We present the problem

statement in Section II. The proposed charging schedule is

presented in Section III, and the guidance on setting the re-

maining energy threshold is presented in Section IV. Section V

evaluates the performance of the charging schedule and the

guidance. Section VI reviews the literature, and we conclude

this paper in Section VII.

II. PRELIMINARIES

A. Mobile-to-Mobile Energy Replenishment

The advancement of energy-transferring technologies has

made the mobile-to-mobile charging effective and desirable.



For example, Zhu et al. has prototyped an energy-sharing

system with capacitor-array powered MicaZ motes [8], and the

empirical measurements in [10] show that the time to charge

a 300 F super-capacitor to a voltage of 2.5 V is in the order

of tens of seconds. At the larger scale, the charging power of

the current charging stations for electric vehicles can easily

reach up to 100 kW , e.g., the CT3000 charging station [15].

These high power charging technologies significantly facilitate

the adoption of the mobile-to-mobile energy replenishment in

the near future.

B. System Model

We consider the scenario where n robots are deployed to

carry out tasks such as field exploring and monitoring with

travel speed vr. A mobile charger with controlled mobility

and speed vc (vc > vr) is employed to replenish the robot

energy supply via direct-contact charging technologies [16] as

in iRobot Roomba [17].

Robots actively monitor their remaining energy levels [18],

[19]. Specifically, let C denote the robot energy capacity

and θ denote the remaining energy threshold that triggers

the energy replenishment requests. A robot will send out its

charging request when its remaining energy level is below θC.

The delivery of the charging requests to the charger can be

accomplished through techniques such as satellite and wireless

ad hoc communications [20], [21]. The time for the delivery

of the charging requests is assumed to be negligible when

compared with the travel time of the robots [22].

The charger maintains a buffer to store the received charging

requests, and travels to rendezvous with the corresponding

robots to replenish their energy supply. The charger power

capacity is assumed to be enough for the energy replenishment

process in consideration [23], [24]. After the rendezvous

between the charger and the robot, the time required to

accomplish the charging of the robot can be determined based

on the robot charging profile and its remaining energy level.

We utilize the time to fully charge an energy depleted robot

Tc as the required charging time to simplify the presentation.

We focus on the mission-critical mobile-to-mobile energy

replenishment, which imposes two unique requirements on the

energy replenishment process. First, the operation schedule of

the robots should not be modified to facilitate their energy

replenishment, and thus it is solely the responsibility of the

charger to accomplish the charging tasks; second, the charger

should reduce its speed to vr and travel along with the

to-be-charged robot during the charging process after their

rendezvous.

Nowadays, many off-the-shelf robots can achieve hours of

continuous operation time, e.g., our customized robot powered

by two 1, 000 mAh Lithium-Polymer battery connected in

series, can continuously operate for up to four hours with

a single charge. Similar operation times have been reported

by the Pioneer 3-AT robot (two to four hours) [25] and the

Scout robot (around two hours) [26]. Therefore in a typical

robotic sensor network, a robot normally would not send out
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Fig. 1. Postponing charging service achieves a shorter charger travel distance.

its charging request so frequently. As a result, we focus on the

light charging request intensity scenario in this work.

C. Problem Statement

For the sustainable system operation, the charging latency of

the robots, defined as the time from which a robot sends out its

charging request to the time its energy supply is replenished,

has to be controlled within a certain range to avoid their

energy depletion. On the other hand, the travel distance of the

charger to carry out the energy replenishment can be viewed

as the overhead to provide the charging service, and should

be minimized for the interests of the charger.

In the context where the targets are stationary devices, the

device charging latency and the charger travel distance can be

inferred from each other [27]. However, these two metrics con-

flict with each other in the mobile-to-mobile charging context.

More importantly, we observe that in order to minimize the

charging overhead, it is not necessary for the mobile charger

to always provide the charging service continuously, and

sometimes intelligently postponing its charging service can

improve the charging process in terms of its travel distance.

An illustration of this observation is shown in Fig. 1, where

the charger and the to-be-charged robot is located at A and B,

respectively. We can see that by delaying the rendezvous time

of the charger and the robot (and thus increasing the charging

latency), the charger travel distance can be reduced from |AC|
in Fig. 1(a) to |AC′| in Fig. 1(b).

This observation prompts us to determine when it is benefi-

cial for the charger to postpone its charging service, and for

how long this postponement should last. To answer these ques-

tions, we design a novel charging schedule for the charger that

intelligently postpones its charging service without causing

robot energy depletion. Furthermore, we also provide guidance

on how to set the remaining energy level θ for the robots to

request energy through a queue-based analytical approach.

III. TREE-BASED CHARGING SCHEDULE

In this section we introduce a tree-based schedule scheme

for the charger, which minimizes the charger travel distance

without causing the robot energy depletion. Our approach is to

construct a weighted travel tree based on the planned trajec-

tory of the robots, and then transform the charging schedule

problem to a Single-Source Shortest Path Problem [28], based

upon which a feasible and efficient charging schedule can be

obtained.



A. Travel Profiles of the Robots

Normally, the travel trajectories of in-operation robots have

been planned for certain time into the future, e.g., in diffusion

process tracking [3]. The mobile charger needs these planned

trajectories (referred to as the robot travel profiles) to carry

out the energy replenishment of robots, which can be made

available through the communications between them. Consider

the scenario where m requests exist in the charger’s buffer

when it needs to make its charging schedule at location

a0, with corresponding requesting robots {r1, r2, · · · , rm}
according to their arrival sequence. Discretizing the time into

short slots of duration δ, the travel profile of robot ri can be

represented as

Pi = {(aji , jδ)} (j ∈ [0,
Ti

δ
]),

where Ti is the time period during which the trajectory of

ri has been planned (the current time is treated as 0 for

notation convenience), and aji is its location at time jδ 1. The

discretization granularity δ is a critical factor that trades off

between the schedule performance and complexity, which we

will further investigate in Section V-B. Our results show that

the effect of reducing δ on shortening the travel distance is

limited.

B. Estimate the Rendezvous Deadline

For any requesting robot, the charger can estimate its

remaining operation time before energy depletion. Denote

µ as the busy state energy consumption rate of the robots.

Their worst-case (shortest) remaining operation time can be

estimated as θC
µ , which is the case if the robot stays in

the busy state after sending its charging request until energy

depletion. We adopt this shortest remaining operation time as

the rendezvous deadline for the corresponding charging task in

our design, which is denoted as Di for robot ri. To simplify the

presentation, we assume Di ≤ Ti−Tc where Tc is the charging

time after rendezvous, indicating the remaining energy of

requesting robots is not sufficient for them to accomplish the

planed travel. However, this constraint is not required for our

design.

C. Construct the Travel Tree

In our design, the charging of individual robots is scheduled

according to a travel tree constructed based on the robots travel

profiles. Denoting the travel tree as Tree(V , E ,W), we discuss

how to obtain the corresponding vertex set V , edge set E , and

edge weight set W in the following, respectively.

1) Identify the Vertex Set: Each vertex in the travel tree

has a location property and a time property, representing the

feasible location and the corresponding time at which the

charger may encounter the requesting robot, or the charging

completion of the robot could happen. Clearly, not all the

locations and the corresponding times on the robot travel

profiles are feasible for these two events.

1When the same location appears in the trajectory multiple times at different
time instances, i.e., the robot revisits certain locations, each visit of the
location is treated as a unique element in its travel profile.
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Fig. 2. Demonstration of the travel tree.

The rendezvous with robot ri needs to be accomplished

before its rendezvous deadline Di to avoid energy depletion.

Thus the locations and times after Di in Pi are not feasible

for the rendezvous with ri. Furthermore, the earliest possible

locations and times for the charger to rendezvous with ri can

be identified by the following best-effort charging schedule.

Best-Effort Charging Schedule: with the best-effort charg-

ing schedule, the charger always tries to rendezvous with the

to-be-charged robot as early as possible.

Denote the charger location upon the completion of the

previous charging task at time t′ as a′0 (t′ = 0 and a′0 = a0
for the first charging task). The earliest location aβi

i and time

βiδ for the charger to rendezvous with the next to-be-charged

robot ri can be identified by

min βi ∈ [t′/δ,Di/δ]

s.t. ‖ a′0, a
βi

i ‖ /vc− ‖ a
t′/δ
i , aβi

i ‖ /vr <= 0. (1)

Note that if no βi satisfies (1), it indicates the charger cannot

rendezvous with ri before its energy depletion. Thus the

charger can only try to rendezvous with ri at location a
Di/δ
i ,

where ri is forced to stay after depleting its energy supply.

Denote (aβi

i , βiδ) as the earliest locations and times for

the charger to rendezvous with ri. The time between the

rendezvous with two consecutively charged robots is at least

the charging time Tc, specifically,

βi+1 ≥ βi + Tc/δ. (2)

This indicates the infeasible locations and times on Pi increase

with at least a speed of Tc/δ as i increases.

We create a vertex for each of these feasible locations and

times ({(aji , jδ)} (j ∈ [βi,
Di

δ ])), and label them as

Loc(vki ) = aβi+k−1
i ,

T ime(vki ) = (βi + k − 1)δ,

where k ∈ [1, 1 − βi +Di/δ]. A vertex set Vi containing all

these vertices is created as shown in Fig. 2. Clearly,

|Vi| = [1− βi +Di/δ]
+
. (3)

The charger starts the energy replenishment of ri after their

rendezvous. With a charging time Tc, the feasible locations

and times at which the charging of ri can be completed are

{(aji , jδ)} (j ∈ [βi + Tc/δ, Ti/δ]). We create a vertex set Ui

to represent these locations and times, and label them as

Loc(uk
i ) = a

βi+
Tc

δ
+k−1

i ,

T ime(uk
i ) = (βi + Tc/δ + k − 1)δ,



where k ∈ [1, 1− βi + (Ti − Tc)/δ]. Specifically,

|Ui| = [1− βi + (Ti − Tc)/δ]
+
. (4)

Finally, a vertex u0 representing the charger location at the

start time is created and labeled as < a0, 0 >.

The vertex set V of the travel tree consists of u0, Vi, and

Ui (i = 1, 2, · · · ,m). The tree is rooted at u0 and structured

into 2m levels, where the vertices in Vi fall in its (2i − 1)th
level, and the vertices in Ui fall in its (2i)th level. As a result,

the number of vertices in the travel tree is

|V| =
m∑
i=1

(|Vi|+ |Ui|) + 1. (5)

2) Identify the Edge Set: Next we discuss the edge set E
in the tree. The edges can be classified into two categories.

First, the edges connecting a vertex v ∈ Vi (i ∈ [1,m]) to a

vertex u ∈ Ui reflect the charging process of the robot after its

rendezvous with the charger. This type of edge is referred to

as the v → u edges (the dashed arrows in Fig. 2). Second, the

edges connecting a vertex u ∈ Ui (i ∈ [0,m− 1]) to a vertex

v ∈ Vi+1 reflect the travel of the charger to rendezvous with

the to-be-charged robot, which are referred to as the u → v
edges (the solid arrows in Fig. 2).

For each ordered vertex pair <uj
i , v

k
i+1>, the u → v edge

eu→v
i (j, k) connecting them reflects the fact that the charger

travels to rendezvous with robot ri+1 at Loc(vki+1) from

Loc(uj
i ). Thus eu→v

i (j, k) exists in the tree if and only if the

charger can travel from Loc(uj
i ) to Loc(vki+1) within the time

interval of their associated time properties. Specifically,

eu→v
i (i, j) ∈ E ⇔
T ime(vki+1)− T ime(uj

i) ≥‖ Loc(uj
i ), Loc(v

k
i+1) ‖ /vc.

On the other hand, for ordered vertex pair <vji , u
k
i>, the

v → u edge ev→u
i (j, k) connecting them means that after the

rendezvous with ri at Loc(vji ), the energy replenishment of ri
has been accomplished at Loc(uk

i ). Thus ev→u
i (j, k) exists in

the tree if and only if the interval between the time properties

of vji and uk
i is longer than the required charging time Tc.

Specifically,

ev→u
i (j, k) ∈ E ⇔ T ime(uk

i+1)− T ime(vji ) ≥ Tc.

Following the above principles, the number of edges in the

tree is upper bounded by

|E| ≤
m∑
i=1

|Vi||Ui|+
m−1∑
i=0

|Ui||Vi+1|. (6)

where the first summation accounts for the maximal number

of v → u edges, and the second summation represents the

maximal number of u → v edges.

3) Identify the Weight Set: The edge weights are assigned

as the Euclidean distance between associated locations.

wv→u
i (j, k) = ‖ Loc(vji ), Loc(u

k
i ) ‖,

wu→v
i (j, k) = ‖ Loc(uj

i ), Loc(v
k
i+1) ‖ .

Overall, the complexity in constructing the travel tree is

O(|V|) + O(|E|) + O(|E|), where the three terms stand for

the time required to identify the vertex set, the edge set, and

the weight set, respectively. It is clear from (5) and (6) that

O(|V|) < O(|E|), and thus the tree construction complexity

is O(|E|).

D. Schedule based on the Travel Tree

Each path in the travel tree connecting its root u0 and any

of its leaves represents a charging schedule for the charger to

carry out the m charging tasks.

Theorem 1 No robot energy depletion results if the charger

replenishes the robot energy according to a path connecting

the root u0 and any leaves in Tree(V , E ,W).
This is because an edge connecting to vji exists in the tree

only if the charger can arrive at Loc(vji ) before T ime(vji ),
and the arrival of the charger at any vertex in Ui indicates

the charging completion of ri. We do not include the explicit

proof here due to the space limit.

Based on Theorem 1, the problem of identifying a charg-

ing schedule that minimizes the charger travel distance can

be transformed to find the shortest root-to-leaf path in the

constructed travel tree. Thus we formulate a Single-Source

Shortest Path Problem based on {V , E ,W} with u0 as the

source, and adopt existing algorithms [28], [29] to find the

shortest paths between u0 and each leaf of the tree (i.e.,

uj
m ∈ Um (j ∈ [1, |Um|]). Then the shortest path among these

paths is returned as the charging schedule of the charger.

The first step can be completed in O(|E| + |V| log |V|)
time [29], and the second step needs another O(log |Um|) time.

Combining with the computation time required to construct the

travel tree, the time for the charger to carry out this tree-based

scheduling is O(|E| + |V| log |V|).
For any eu→v

i (j, k) in the returned schedule, if

T ime(vki+1)− T ime(uj
i) >‖ Loc(uj

i ), Loc(v
k
i+1) ‖ /vr,

it means the charger needs to postpone its charging ser-

vice either at Loc(uj
i ) (i.e., sojourn-before-traveling) or at

Loc(vki+1) (i.e., sojourn-after-traveling). During the mobile

charging process, new charging request may be received at

any time. Thus with the sojourn-after-traveling approach,

newly received request during the traveling may change the

previously obtained schedule, and thus make the charger travel

in vain. As a result, the sojourn-before-traveling approach is

adopted in our design to reduce the unnecessary travel of the

charger.

Note that the tree-based scheduling needs to be executed

every time when 1) the travel profiles of requesting robots are

updated, or 2) a new charging request is received. Furthermore,

two events, if happen, indicate the robot energy depletion is

inevitable: 1) if any of the vertex set Vi or Ui is empty, or 2)

if no path from the root to any of its leaves exists in the tree.

This in turn implies the remaining energy threshold θ is set

too small, and thus the time left for the charger to replenish

the robot energy supply before its depletion is too short. We

will present guidance on identifying a proper θ in Section IV.

E. Performance Analysis

With the tree-based schedule, the mobile charger performs

the charging tasks of sensor nodes according to their arrival
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ABC is the travel trajectory for a specific charging task returned by the tree-
based charging schedule, where A is the location from which this charging
task is started, B is the rendezvous location with the to-be-charged robot, and

C is the location at which the charging of the robot is accomplished; A′B′C′

is the trajectory returned by the optimal schedule.

sequence {r1, r2, · · · , rm}, and denote l as the obtained charg-

er’s travel distance. With this robots sequence, all the online

schedules can be classified into two categories: those charge

the robots with the same sequence as the tree-based schedule

and those with different sequences. Next we present two the-

orems on the performance of the tree-based charging schedule

with regard to these two schedule categories, respectively.

1) Performance w.r.t Schedules with Identical Sequence:

Denote l∗ as the shortest achievable travel distance with any

online schedules that carries out the charging tasks with the

arrival sequence. For example, when the charging requests

intensity in the network is light, in most cases, the charger will

carry out the charging tasks according to their arrival sequence

no matter which online schedule discipline is adopted. We

have the following theorem stating that the charger travel

distance with the tree-based schedule l approaches l∗ as the

discretized time slot δ decreases.

Theorem 2 l < l∗ + 4mδvr.
In the tree-based schedule, the locations where the charger

starts to rendezvous with the robots, their rendezvous loca-

tions, and the locations where the charging of the robots are

accomplished, are all discretized locations on the robot travel

profiles. Thus the distances between these locations and the

corresponding optimal locations are upper bounded by the

discretization granularity δvr. In Fig. 3, ABC and A′B′C′

are the travel trajectories to accomplish a specific charging

task with the tree-based and the optimal schedule, respectively.

We can extend A′B′C′ by adding A′A, AA′, B′B, and BB′

to it, and the resultant tour A′AA′B′BB′C′ is longer than

ABC according to triangle inequality. Furthermore, with a

discretization granularity δ, we know the length of AA′ (and

BB′) is at most δvr. Thus l < l∗ + 4mδvr.

2) Performance w.r.t. Any Schedules: In the following, we

will show that even when compared with schedules that may

charge the robots in different sequence, the tree-based schedule

still achieves a charger travel distance that is within a constant

factor to the optimal solutions. We emphasize that identifying

such an optimal charging sequence, however, is NP-hard.2

We first derive the distribution of the rendezvous travel

distance with the best-effort schedule in the following, which

is needed to analytically compare the tree-based schedule with

the optimal solutions. Observing the randomness in applica-

tions such as event detection and emergency rescue, we adopt

2For any traveling salesman problem, we can construct a case of our
problem with ∀i, Ti = 0 in polynomial time.

the results in [30] to derive the robot location distribution in

our problem, which is obtained based on randomly distributed

travel destinations3. With some simple modifications, the robot

location distribution in a square field of L × L m2 can be

analytically described by

fX,Y = 36(x2 − Lx)(y2 − Ly)/L6 (0 ≤ x, y ≤ L), (7)

from which the marginal distributions of the x and y coordi-

nates can be derived as (h is utilized to emphasize that they

are identically distributed)

fX(h) = fY (h) = −6h2/L3 + 6h/L2 (0 ≤ h ≤ L). (8)

This distribution is independent of the robot speed [30].

The charger travel distance to rendezvous with the robot

is determined by the rendezvous location ar = (xr, yr) and

the location ac = (xc, yc) from which the charger starts to

travel for rendezvous. It is clear that ar, essentially a location

on the robot travel trajectory, follows the distribution in (7).

Furthermore, with the mission-critical charging context, the

charger travels with the robot together during the charging

time, and thus the distribution of ac can also be approxi-

mated as (7). Thus xc, yc, xr, and yr are independently and

identically distributed conforming to (8), and the distribution

of the rendezvous travel distance fDc
(dc) can be derived,

which is not included here due to the space limit. Specifically,

E[dc] ≈ 0.41L.

Clearly, the rendezvous travel distance with the tree-based

schedule is shorter than that with the best-effort schedule

E[l] ≤ m(E[dc] + vrTc). (9)

It has been shown that with stationary charging targets,

the asymptotically shortest travel distance is achieved when

the charger always starts the charging tasks from the field

center, and returns to the center afterwards if possible [32]. The

optimality of the center-started charging process is even more

obvious in the mobile-to-mobile charging context, because it

is more likely for the robots to travel through the center area

of the field [30]. The rendezvous travel distance d′c in this

center-started charging process can be derived with the same

approach as in the appendix, and E[d′c] ≈ 0.21L. Thus a lower

bound on the asymptotically shortest travel distance l∗∗ is

E[l∗∗] ≥ m(E[d′c] + vrTc). (10)

From (9) and (10), we have the following theorem.

Theorem 3 When the travel destinations are randomly

distributed in a square deployment field, we have

E[l]

E[l∗∗]
≤ E[dc] + vrTc

E[d′c] + vrTc
<

E[dc]

E[d′c]
≈ 1.95.

Theorem 3 also indicates that the tree-based schedule ap-

proaches the optimal solutions as the robot speed or the

required charging time increases.

F. Further Reduce the Complexity

The complexity in carrying out the tree-based schedule can

be further reduced by identifying two special cases during the

3Application-specific robot location distributions can be adopted without
changing our design, which is possible to be obtained through a similar
approach as in [31].



energy replenishment process. First, when there is only one

request in the buffer (i.e., m = 1), the tree-based schedule re-

gresses to a greedy approach that rendezvouses with the robot

with the shortest travel distance, and thus no discretization

is required. On the other hand, if there are relatively more

requests in the buffer, it is not necessary for the charger to

determine the complete schedule for all these charging tasks.

This is because the longer the schedule lasts, the more likely

a new request will be received before its completion, which

can potentially change the current schedule.

IV. IMPLEMENTATION GUIDANCE

Given a specific system deployment, the remaining ener-

gy threshold θ is the dominating parameter that determines

whether it is possible for the tree-based schedule to return a

depletion-free solution for the charger. It is clear that a small

θ may leave the charger insufficient time to accomplish the

charging tasks, in which case the robot energy depletion cannot

be avoided. However, an excessively large θ is undesirable

neither, because in this case the charger may rendezvous with

the requesting robot only to find out whether it still has a

sufficient energy supply. This not only unnecessarily increases

the charger workload, but increases the charging latency of

other requesting robots as well. Intuitively, the robot energy

depletion occurs when their charging latency is too long.

In this section, we identify the minimal achievable charging

latency and the depletion probability with a given θ through

a queue-based approach, and then propose guidance on the

setting of θ based on them.

A. Identify the Shortest Charging Latency

For any online schedules that charge the robots with the

same sequence, the best-effort charging schedule achieves the

shortest charging latency with any given θ, which can be easily

proved by contradiction. The clear queuing behavior in the

mobile-to-mobile charging process promotes us to identify the

shortest charging latency based on a queuing model, in which

the charger acts as the server and the charging requests from

the robots are the clients.

The distribution of the rendezvous travel time S1 with the

best-effort schedule can be derived as

fS1
(t) = F ′

S1
(t) = vcfDc

(vct) (0 ≤ t ≤
√
2L/vc) .

With charging time Tc, the time to accomplish the energy

replenishment of a robot follows the distribution4

fS(t) = fS1
(t− Tc) (Tc ≤ t ≤

√
2L/vc + Tc). (11)

Specifically, E[S] = E[S1] + Tc and V[S] = V[S1].
Due to the fact that the location at which the charger starts

the travel to rendezvous with the to-be-charged robot is also

the location at which the previous charging task completed, the

time to accomplish the charging tasks may not be independent.

However, a distribution-ergodic property of this time can be

identified with a similar approach as in [33]. This encourages

4Note that in a more general case where the profile of the charging time S2

has been identified, we can adopt the convolution theorem to substitute (11)
as fS(t) = fS1

(t) ∗ fS2
(t), where ∗ represents the convolution operation.

us to adopt the distribution of the time between two charging

completions as the service time in the queuing system.

After characterizing the service time, we next investigate the

arrival of charging requests at the charger. Two operation states

are possible for the robots: busy and idle. The distribution of

the robot travel distance to carry out each exploring/monitoring

task, denoted as dr, can be obtained according to [30], with an

average of approximately 0.53L. Thus the asymptotic travel

(busy) time for the robot to carry out an exploring/monitoring

task is 0.53L
vr

. Denote p as the probability for a new task to

be assigned to a specific robot. The expected idle time of the

robot is averaged at∫
∞

0

(1− p)t−1pdt =
1

p
.

Thus the steady-state probability for the robot to be in the busy

state is

q = (0.53L/vr)/(0.53L/vr + 1/p).

Then the asymptotic time interval between two consecutive

charging requests from a specific robot is

E[I] = (1− θ)C/(µq) + E[R], (12)

where (1 − θ)C is the energy consumption between two

consecutive charging requests from a specific robot, and R
is the robot charging latency. The first term on the right side

of (12) is the time since the robot is fully charged last time

to the time it requests charging again, and the second term

represents the time since the request is sent out to the time

the robot is charged.

Furthermore, the following observation has been reported

and verified in many existing works [34], [35].

Theorem 4 The superposition of n sub-processes resembles

a Poisson process whose arrival rate is the sum of all the sub-

processes, especially when n is large.

We will further verify Theorem 4 with various n values in

Section V-C. Thus the request arrival at the charger can be

captured by a Poisson process with intensity

λ =
n

E[I]
=

n

(1− θ)C/(µq) + E[R]
. (13)

With the Poisson arrival of requests and the service time

distribution derived above, we can capture the charging process

with an M/G/1 queuing model. By Pollaczek-Khinchine (P-

K) formula [36], the expected response time of an M/G/1
queuing system is

E[R] = E[S] + λ(E[S]2 + V[S])/(2(1− λE[S])), (14)

and λ can be obtained by substituting (14) into (13).

After deriving the service time distribution (S), characteriz-

ing the aggregated arrival process at the charger (Poisson ar-

rival), and identifying its arrival intensity (λ), the construction

of the queuing model is accomplished. The M/G/1 queuing

system has been extensively studied, and we do not include

the explicit results here due to the space limit. We will further

verify the soundness of the model in Section V.

B. Identify the Energy Threshold

For robotic sensor networks, the threshold θ desires to be

1) as small as possible, which means less work load on the



charger, and 2) the resultant energy depletion probability of

the robots is no larger than a system requirement q, meaning

the charging requests can be accomplished with probability

1− q before the corresponding requesting robots deplete their

energy supply. The desired setting of θ can be identified based

on the queuing model constructed above.

With a given θ, the robot charging latency distribution can

be obtained based on the queuing model. Furthermore, the

robot remaining operation time after requesting energy re-

plenishment can be estimated as well. Thus the corresponding

robot energy depletion probability can be obtained. Based on

this observation, we identify the desired θ under the system

requirement q through a fixed-point iteration approach. Start-

ing with θ = 0, we estimate the corresponding θ̂q according to

the latency distribution. If θ̂q > q, then θ is increased with a

small step length ǫ. Repeat the process until the first (smallest)

θ satisfying the requirement on q is identified and return it as

the desired setting. It is possible to adopt more efficient method

such as binary search to accelerate the iteration. The iteration

returns a proper θ if the feasible solution exists, otherwise we

need to either increase the robot energy capacity or relax the

requirement on q.

The returned θ is essentially a lower bound of its optimal

setting with the tree-based schedule, which reduces the charger

travel distance at the cost of increased charging latency, and

thus increases the depletion probability. Homogeneous robot

energy consumption rates are assumed in above description. In

a more general case with heterogeneous energy consumptions,

we can find θi for each ri by modifying (13) accordingly.

V. EVALUATIONS

A. Simulation Setup

We consider a 1, 000 × 1, 000 m2 field where 20 to 200
robots are deployed, and one mobile charger is employed

for their energy replenishment. The robot energy capacity is

40, 000 J (e.g., powered by four 1, 000 mAh 3.7 V Lithium-

Polymer batteries), and the consumption rates in busy state

are random from 1 J/s to 5 J/s (e.g., a four-wheel driving

robot with four 80 mA 6 V motors), with an average of
1+5
2 = 3 J/s. These energy settings indicate an average

operation time of 40,000
3×3,600 ≈ 2.78 hours with a single charge,

which is consistent with our empirical experience (Section II).

The exploring/monitoring sites are randomly selected in the

field. With these settings, we simulate the operation of the

robots and update their remaining energy levels accordingly.

The robots send charging requests to the charger when their

remaining energy is below θ = 5%, which is set based on

the proposed guidance as will be explained in Section V-C.

We implement a linear charging model in the simulation,

with which the robot charging time increases linearly with

the amount of charged energy. This simplified charging model

agrees with our empirical observation that a large portion of

the battery capacity can be charged in a linear relationship with

the charging time. Similar observations are reported in the data

sheets of off-the-shelf battery products [37]. Unless otherwise

specified, the worst case charging time is Tc = 200 s, the travel

speeds of the robots and the charger are vr = 0.2 m/s [26]

and vc = 5 m/s [38], and the discretization granularity is

δ = 50 s. Note the default setting of δ is determined based

on our observations on δ’s impact on the charging process, as

will be explained later. The simulation is implemented with

Matlab and the results are averaged with 100 runs.

B. Performance Evaluation

Figure 4 shows the average charger travel distance to

accomplish one charging task, with the maximal charging time

Tc varies from 50 s to 300 s. Besides the results obtained

with the best-effort charging schedule, the lower bounds of

the shortest travel distance in Theorem 2 and Theorem 3 are

also shown for comparison. We can see that by intelligently

postponing its charging service, the charger travel distance

can be reduced by 13–18% when compared with the best-

effort schedule, and the improvement increases as the charging

time increases. The resultant travel distance is around 1.05×
of the optimal schedule which carries out the charging tasks

with the same sequence. Even when compared with schedules

charging robots with any sequences, the tree-based schedule

still achieves a travel distance that is about 1.45–1.65× of the

lower bound of the optimal solution. These results show that

the tree-based schedule achieves promising performance for

the mobile charging process. However, we can also see that

further improvement on the charging process is possible by

adjusting the task sequence.

The travel distance with the robot number varying from 20
to 100 is shown in Fig. 5. The travel distance is reduced by

around 16–23% with the tree-based schedule when compared

with the best-effort schedule, and is around 1.05× and 1.40–

1.52× of the lower bounds with the same and any sequences,

respectively. Another observation is that the travel distance

with the tree-based schedule slightly increases with the robot

numbers. This is because a larger network scale indicates a

heavier charger workload and the robots need to wait longer

before the charger rendezvouses with them after they send

our the charging requests. As a result, the probability for the

charger to rendezvous with the robot before its travel profile

finishes is reduced, and thus the search space for the charger to

find a shorter travel distance is reduced as well. For example,

the rendezvous of more than 90% charging tasks is achieved

before the robot travel profile finishes when 20 robots are

deployed, which is reduced to 70% when n = 100.

Figure 6 shows the charger travel distance when discretizing

the time into slots of 50–300 s. Two network scales of 20 and

100 are explored, respectively. Note that the travel distance

with the best-effort schedule is relatively insensitive to the

network scale (as in Fig. 5), and thus we just show that

with n = 100 for clarity. The charger travel distance in-

creases with a larger discretization granularity, and eventually

approaches that of the best-effort schedule. Furthermore, we

find that further reducing the discretized time from 50 s
cannot significantly reduce the travel distance. Specifically,

our results show that the average travel distance is around

384 m with a discretized time slot of 10 s when n = 100,
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TABLE I
VERIFICATION OF THE QUEUING MODEL (OUT OF 50 TRIALS)

# of Robots 20 60 100 140 180

# of Rej. 0 1 3 1 1

Arrival Corr. 0.0593 0.0276 0.0197 0.0134 0.0140

Service Corr. 0.0980 0.0965 0.0984 0.1031 0.1013
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Fig. 7. Guidance on θ.

which is close to that resultant with a time slot of 50 s
(389 m in Fig. 5). In our simulation, a granularity of 50 s
indicates the robot travel profile is discretized into about
E[dr]
δvr

= 0.53×1,000
50×0.2 = 53 locations, which can be easily

handled with current computation power.

C. Guidance Effectiveness

Next we evaluate the effectiveness of the proposed guidance

on identifying the desired θ. The guidance is based on the

queue-based analysis in Section IV-A; thus before investigat-

ing the guidance performance, we first verify the soundness

of the queuing model.

The Kolmogorov-Smirnov (K-S) test [39] is adopted to

verify the Poisson arrival hypothesis. We carry out the tests

(with a significance level of 5%) with different robot numbers

(20–200), each with 50 trials. We record the number of trials

that rejects the hypothesis, which is expected to be small if

the hypothesis holds. The verification results are shown in the

first row of Table I. We can see that even in the worst case,

only 3
50 = 6% of the trials reject the hypothesis, and thus

we conclude the Poisson arrival in our modeling is sound.

We record the request inter-arrival time and service time, and

adopt the 1-lag autocorrelation to evaluate their respective

independencies. The simulation is run for 50 times with 20
to 200 robots respectively, and the absolute values of the

autocorrelations are averaged as shown in the second and third

rows of Table I. The correlations of both the request arrival

and their service are small, which supports our modeling.

With a network scale of 100 and a maximal tolerable energy

depletion probability q = 0.0001, the proposed guidance

returns a remaining energy threshold θ of 5%. Then we

simulate a network operation time period of 1, 000, 000 s, with

θ varies from 1% to 10%, respectively. The results are shown

in Fig. 7, where the vertical line represents the result returned

by the guidance. We can see that the proposed guidance can

effectively identify a proper setting of θ that trades off between

the robot disruption time and the charger travel distance. First,

the robot disruption time will dramatically increase if the

returned θ is further reduced. Second, increasing the returned

θ has a limited effect in further reducing the robot disruption

time, while increasing the charger travel distance.

VI. RELATED WORK

The mobile energy replenishment with stationary sensor

nodes have been explored in many works [18], [19], [23], [27],

[40]–[43]. However, it is fundamentally different in robotic

sensor networks due to the movement of the robots.

The energy harvesting is an environmental friendly approach

[8], [9]. However, the system reliability cannot be guaranteed

due to the dynamics in the harvested energy [10], [11]. A

more reliable approach is to deploy a stationary energy tank

in the field, at which the robot energy can be replenished [7].

However, this requires the robots to travel to the tank for

energy replenishment, and thus increases their load intensi-

ties. Employing mobile chargers for the energy replenishment

of the robots is a reliable approach which also makes the

energy replenishment easier [13]. Significant research efforts

have been devoted to improving the energy replenishment

performance through the coordination between the charger

and robots [14]. For example, a frugal feeding problem was

formulated and investigated in [12].

Different from existing efforts, we investigate the mission

critical scenario. This is similar to classic operational research

problems such as dynamic vehicle routing and job shop

scheduling. However, an important difference is that, in the



mission critical scenario, the efforts (time and charger travel)

required to accomplish a specific charging task is jointly

determined by the locations of the charger and the robot,

and thus demonstrates clear dynamic property. To the best

of our knowledge, the most similar problems are 1) the aerial

refueling in military operations [44], which is normally treated

in the 1-dimensional space and the aerial trajectory is much

more predictable and controllable; 2) the real-time hard disk

scheduling [45], which falls in the mobile (i.e., the read/write

head)-to-static (i.e., the place where the requested content

is stored) scenario. The randomness in the 2-dimensional

movement, the dual-mobility of both the charger and the

robots, and the feasibility for the charger to postpone its

charging service make our problem unique.

VII. CONCLUSIONS

We have presented a tree-based schedule in robotic sensor

networks, which minimizes its travel distance without causing

robot energy depletion. The performance of the tree-based

schedule has been analytically investigated. Furthermore, we

have proposed a guidance on the setting of the robot remaining

energy threshold. The performances of both the tree-based

schedule and the guidance have been evaluated through ex-

tensive simulation.
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