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Abstract—Large-scale battery packs with hundreds/thousands
of battery cells are commonly adopted in many emerging cyber-
physical systems such as electric vehicles and smart micro-grids.
For many applications, the load requirements on the battery
systems are dynamic and could significantly change over time.
How to resolve the discrepancies between the output power
supplied by the battery system and the input power required
by the loads is key to the development of large-scale battery
systems. Traditionally, voltage regulators are often adopted to
convert the voltage outputs to match loads’ required input power.
Unfortunately, the efficiency of utilizing such voltage regulators
degrades significantly when the difference between supplied and
required voltages becomes large or the load becomes light. In
this paper, we propose to address this problem via an adaptive
reconfiguration framework for the battery system. By abstracting
the battery system into a graph representation, we develop two
adaptive reconfiguration algorithms to identify the desired system
configurations dynamically in accordance with real-time load
requirements. We extensively evaluate our design with empirical
experiments on a prototype battery system, electric vehicle
driving trace-based emulation, and battery discharge trace-based
simulations. The evaluation results demonstrate that, depending
on the system states, our proposed adaptive reconfigurationalgo-
rithms are able to achieve1× to 5× performance improvement
with regard to the system operation time.

I. I NTRODUCTION

Large-scale battery systems with hundreds or thousands of
batteries are now widely used in electric vehicles [33], [36],
energy storage in both macro [9] and micro [35], [42] smart
grids. For many of these applications, the load requirementon
the battery system is dynamic and could significantly change
over time [3], [28]. For example, depending on the driving
states, the required voltage output of electric vehicles may vary
from around70 V to more than700 V [3], [4], [23]. Such
dynamic loads make the problem of optimizing the energy
efficiency of large-scale battery systems even more critical
and challenging, which is attracting increasing attentions of
funding agencies [2], [8] (e.g., ARPA-E has awarded USD43
million to 19 energy storage projects in 2012 [2]), and research
efforts [25], [27], [29].

A traditional method of handling dynamic loads is to adopt
voltage regulators to accept voltages supplied by the battery
pack and adjust them to the required levels as the input to the
loads [29], [41]. Unfortunately, the energy efficiency of voltage
regulators may degrade significantly under two scenarios: (i)
the difference between the supplied and required voltages is
large [23], [29], [34], and (ii ) the load is light and the system
operates in a low power modes [41].

In contrast, dynamically adjusting the connections among
batteries inside a battery system based on the real-time load
requirements, referred as theadaptive system reconfiguration,
is an alternative approach to handle the mismatch between
the supply and the requirement [19]. The adaptive recon-
figuration not only avoids the low efficiency issue of the
traditional regulator-based approaches, but also increases the
system robustness in that failed batteries can be by-passed
without significantly degrading the system performance [23],
[26]. Much research has been conducted to design battery
systems that offer higher configuration flexibility with fewer
supplementary electronic components such as connectors and
switches [10], [20], [24], which has already been implemented
in many off-the-shelf battery packs [8], [19], [24], [26], [39].

Besides offering configuration flexibility, there yet exists
another open challenge in maximizing energy efficiency, which
is to optimally determine battery system configurations in
accordance with real-time load requirements. Motivated by
this, in this paper, we advance the state-of-the-art by ad-
dressing the following research question:with a given con-
figuration flexibility of a battery system, how to adaptively
identify the optimal system configuration based on real-time
load requirements.We first prove that this problem isNP-
Hard in general, and then we effectively solve it based on
two empirical observations on battery systems. We propose a
near-optimal adaptive reconfiguration algorithm based on the
classic 0-1 integer programming problem for the single load
change scenario. For the scenario where multiple loads change
simultaneously, we extend our design with a greedy heuristic
to identify the desired system configurations.

Our major contributions in this paper include
• We propose a generic graph representation of large-scale

battery systems, which facilitates the optimization of
battery system reconfigurations.

• For the scenario where only a single load changes,
we transform the problem of identifying the optimal
system configuration to apath selectionproblem in the
corresponding graph. We first prove that the problem is
NP-Hard. We then propose a practically feasible solu-
tion based on two empirical observations, which is able
to return a near-optimal system configuration through
Depth-First-Search with pruning method and 0-1 integer
programming formulation.

• Extending our investigation to the scenario of multiple
load changes, we propose a greedy solution to identify



the desired system configuration by greedily selecting
the load to be processed and progressively achieving the
desired configuration.

• We extensively evaluate our design with empirical experi-
ments on a prototype battery system, electric vehicle driv-
ing trace-based emulation, and battery discharge trace-
based simulations. The evaluation results demonstrate
that the proposed adaptive reconfiguration algorithms can
achieve1× to 5× improvement in the system operation
time.

The paper is organized as follows. The problem statement
is presented in Section II. The scenarios with a single and
multiple loads changes are investigated in Section III and
Section IV, respectively. Our prototype implementation and
simulation/emulation results are presented in Section VI and
Section VII, respectively. Section VIII reviews the literature.
Section V briefly discuss practical issues relevant to our
design. Section IX concludes.

II. SYSTEM MODEL AND DESIGN PRINCIPLES

A. System Model

We consider large-scale battery systems that can support
multiple loads simultaneously in this work [24], as shown in
Fig. 1. The battery pack in the system has multiple output ter-
minal pairs, and each terminal pair is connected to a different
load. For theith terminal pair, we denote the load’s required
voltage and power as[V i, (1 + σ)V i] and P i respectively,
whereσ is the tolerable jitter voltage ratio. The battery pack
consists of a total number ofN batteries, and the voltage of
the ith battery at the decision time isvi ∈ [vc, vf ], wherevc
andvf are the battery cutoff voltage1 and full charge voltage,
respectively.

Load 1

Load 2

Load x

Battery Pack

Fig. 1. System model.
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Fig. 2. Reducing discharge current im-
proves energy efficiency.

In practice, the probability for multiple loads to change at
the same time is relatively low. Thus we first simplify our
investigation by assuming a single load change in Section III.
We then tackle the case where multiple loads change simulta-
neously in Section IV.

B. Design Principles

The ultimate goal of adaptive system reconfiguration is to
maximize energy efficiency by adopting the optimal configura-
tions in accordance with real-time load requirements. Energy
efficiency of a battery system is jointly determined by many

1The cutoff voltage generally defines theemptystate of the battery.

factors such as adopted electronic components, battery tem-
perature, loads, battery chemical properties, etc. To hidethese
complex factors from practical implementation, we propose
the following rule-of-thumb design principles.

1) Matching Supplied and Required Voltages:Using volt-
age regulators to convert the battery pack supplied voltages to
the load’s required levels is a common approach in practice.
However, the voltage regulators introduce additional energy
loss when converting voltages, and the energy loss on reg-
ulators increases as the difference between the supplied and
required voltages increases. This fact is also reported in [23],
[34]. Thus, to optimize the system energy efficiency, it is key
to match the supplied voltage with the load’s required voltage
as much as possible.

2) Minimizing the Discharge Current of Individual Bat-
teries: Large discharge current degrades battery performance
in many ways, e.g., increasing the internal energy loss [12],
reducing the deliverable battery capacity [14], causing signif-
icant temperature rise [31], and introducing additional energy
overheads due to a higher system monitoring frequency [27].
As a result, the theoretical relationship among the operation
time T , the battery capacityQ, and the discharge currentI
(i.e., T = Q

I
) is in fact T < Q

I
in practice.

To understand the impact of discharge current on battery
performance, we conduct a set of measurements as follows.
We adopt two series connected and initially fully charged
2450 mAh AA batteries to power several parallel connected
motors with an operation voltage of6 V. In this way, the
battery discharge current increases with a larger number of
motors. We record the time that the batteries can support the
loads, i.e., the operation time, with the motor numbers varying
from 1 to 5. The measurement results are shown in Fig. 2.
It is intuitive that the operation time decreases with heavier
loads. Furthermore, the operation time decreases faster than
the increase of loads: normalizing the operation time with
one single motor as the unit time1, the operation time with
c parallel motors (and thus ac× battery discharge current)
is smaller than1

c
. This super-linear decreasing speed of the

operation time indicates that it is highly desirable to minimize
the battery discharge current to optimize the performance.To
support a given load requirement, the battery pack supplied
current is normally limited to a certain range; however, we
can reduce the discharge current of individual batteries inthe
pack by optimizing the system configuration.

III. R ECONFIGURATION WITH SINGE-LOAD-CHANGE

We investigate the adaptive system reconfiguration in the
scenario with only a single load change in this section. We
first abstract the battery system into a weighted directed graph,
with which the problem of identifying the optimal system
configuration is transformed to find as many as possible
disjoint paths conforming to a given weight requirement. We
then show that the problem can be solved in a near-optimal
way by a combination of a Depth-First-Search (DFS) with
pruning and 0-1 integer programming.



A. Problem Formulation

Given the two design principles described in Sec. II, our
problem in identifying the optimal system configuration can
be formulated as2

min
P

np · Vout
(1)

s.t. V ≤ Vout ≤ (1 + σ)V,

where np is the number of series battery strings that are
connected in parallel to supply the load requirements andσ is
the tolerable jitter voltage ratio. The objective in Equation (2)
reflects the design principle in minimizing battery discharge
current, and the constraint in Equation (2) is guided by
the design principle in matching the supplied and required
voltages. Note that in order to provide the corresponding power
output P , a current draw of P

Vout

from the battery pack is
required (we consider the case that it is possible for the battery
pack to provide such a current draw in this paper). Because
the jitter voltage ratio is normally small for the considerations
of both energy efficiency and system safety, e.g,2.5% in [24],
thus with a givenP andV , the objective in Equation (2) can
be approximated by

max np. (2)

We need to consider the voltage imbalance issue when
the parallel connection of multiple series strings are adopted,
which may cause the reverse charging of batteries if the
voltage of these strings deviate too much from each other [25].
This imbalance issue in our problem is bounded with the jitter
voltage ratioσ in (2).

B. Graph Representation

We propose an abstracted graph model for the battery
system to facilitate in optimizing its performance. Given a
battery pack and the battery voltages at the decision time,
we construct a corresponding weighted and directed graph
G = (V , E ,W) in the way that

1) the vertex setV represents the batteries in the pack, and
denoteV = {n1, n2, · · · , nN};

2) the edge setE represents the configuration flexibility of
the pack, i.e., how the batteries can be connected. A
directed edgeni → nj ∈ E if and only if the discharge
current can flow fromni to nj without passing any other
batteries;

3) the weight of each vertex is the voltage of the corre-
sponding battery at the decision time:∀wi ∈ W , wi =
vi (i = 1, 2, · · · , N).

The above constructed graph only incorporates the batteries
in the system. To further include the terminal pairs on which
the load has changed into the graph representation, we further
extend the graph with the following three steps. First, we add
two verticesn+ andn− to V , representing the two output ter-
minals. Then to capture the connectivity of the two terminals,
we add edgen+ → ni and ni → n− (i = 1, 2, · · · , N) to
E if the output terminals can be directly connected to theith

2Because we focus on the scenario of a single load change in this section,
we remove the superscript representing theith load for notation convenience.

battery. Note that for many existing battery packs, the output
terminals can be directed connected to any batteries through
backbone buses [26]. In the following, we assume this full
connectivity of the output terminals. At last, we extend the
weight setW by settingw(n+) = w(n−) = 0.

Figure 3 illustrates an example of the extended graph with
N = 3 based on the battery pack design proposed in [26], as
shown in Fig 3(a). With this circuit design, we can draw the
current by series connecting battery-0, battery-1, and battery-
2. As a result, directed edgesn− → n2, n2 → n1, n1 → n0,
andn0 → n+ exist in the corresponding graph, as shown in
Fig. 3(b) 3.
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Fig. 3. An example on the graph representation of battery systems.

The extended graph captures all the potential system con-
figurations, and the out-degree of vertices is a direct metric
to quantify the configuration flexibility offered by the system.
Note that any specific battery pack can be mapped to only
one corresponding graph, while one graph may have multiple
battery pack implementations. This is because the edges in the
graph only reflect the logical connectivity between batteries,
but do not specify how to physically achieve such connectivity.

C. Problem Transformation

With the constructed graph, the problem formulation (2) can
be transformed toidentifying the maximal number of disjoint
simple paths connectingn+ and n− with weight sum in the
range of [V, (1 + σ)V ]. Specifically, we say a simple path
connectingn+ andn− is feasibleif the weight sum of involved
vertices is within[V, (1+σ)V ]. The requirement on the disjoint
paths is to avoid involving the same battery in multiple series
strings, which increases its discharge current and unbalances
the battery utilization.

D. Identifying the Optimal Configuration

We first show that identifying the optimal configuration is
NP-hard, then based on two important observations on battery
system, we propose a solution which is feasible in practice
and achieves the near-optimal performance.

1) NP-hardness:
Theorem1: Given a directed graphG = {V , E ,W} and an

interval [V, (1+σ)V ], finding the maximal number of disjoint
simple paths inG with weight sum in[V, (1+σ)V ] is NP-hard.

Proof: The decision version of the above problem can be
stated as:given a directed graphG = {V , E ,W}, can we find
n (n = 0, 1, 2, · · · ) disjoint simple paths inG with weight
sum in[V, (1+ σ)V ]? For the ease of description, denote this

3We use the flow direction of positive charges as the edge direction.



decision problem asΥ. We can prove that theLongest Path
Problem in graph theory (i.e., finding a simple path of the
maximum length in a given graph), which is a classic NP-hard
problem, can be reduced to a special case ofΥ by assuming:
a) n = 1 andσ = 0; b) the weights of all vertices are1; c)
V is an integer larger than1. If a polynomial time algorithm
Ψ exists for the special case ofΥ, we can applyΨ on the
Longest Path Problem with path length increasing from1 to
|V|, until no solution can be returned. In this way, we solve the
Longest Path Problem in polynomial time, which contradicts
with its NP-hardness. As a result, we show that no polynomial
time algorithm exists for the special case ofΥ, and thus prove
its NP-hardness.

Our approach to solve the problem consists of two steps:
first, we identify all feasible paths in the graph, then we find
their largest disjoint subset. Each path in the returned subset
represents a series string of the corresponding batteries,and
all these strings are connected in parallel to support the load.
Although the original problem is NP-hard, our solution is
feasible in practice based on two important observations on
battery systems.

2) Finding All Feasible Paths:We implement a DFS with
pruning method to identify all the feasible paths in the graph.
If using the basic DFS idea to identify all the feasible paths,
we need a computational time ofO(NN−1) to identify all the
feasible battery strings (note that we assume fully connected
output terminals, and the computation time to identify all
the paths is quite different from graph traversal). However,
the following two observations on battery systems assist in
reducing the computation complexity in practice.

Observation1: Given a battery pack, the set of supported
configurations is limited.

For example, the AHR32113 Power Modules only support
10S(1-4)P connectivity configurations [1]4. This is because
an higher configuration flexibility is achieved at the cost
of significantly increased system implementation complexity.
For example, the number of required electronic components
increases in a quadric relationship with the number of batteries
that a given battery can connect to [23]. With the graph
representation, this is reflected by the fact that the vertices
out-degree will not be large. Denote the average out-degreeof
vertices asd, the worst case computational complexity of the
DFS search can be reduced toO(NdN−1), where the itemN
accounts for starting the search at each of theN vertices, and
dN−1 accounts for the space to find all the paths starting at a
given vertex.

Observation2: Because all the vertices weights are within
range [vc, vf ], for a given load requirement, the number of
vertices involved in a feasible path is limited.

Specifically, the minimal and maximal number of vertices
in any feasible paths are⌈ V

vf
⌉ and ⌈ (1+σ)V

vc
⌉, respectively.

With this observation, the DFS only needs to examine a depth
of at most⌈ (1+σ)V

vc
⌉, and thus the worst case computational

4The notation ofαSβP represents that a total number ofα · β batteries
are configured intoβ parallel connected strings, and each string consists of
α series connected batteries.

complexity can be further reduced toO(Nd⌈
Vmax

vc
⌉−1).

Besides reducing the worst case space complexity, the
second observation also assists in pruning the DFS branches
and thus reducing the average computational complexity from
the following two aspects. First, if the weights of the firsti

vertices in the current search are too small, it indicates that
they cannot be part of any feasible paths. Specifically, denote
p(j) (j = 1, 2, · · · , i) as the firsti vertices that have been
included in the current search, then

if V −
i

∑

j=1

w(p(j)) > vf · (⌈ (1 + σ)V

vc
⌉ − i)

→ terminate the current search. (3)

Likewise, the current search can also be terminated if the
weight of the firsti vertices is too large

if (1 + σ)V −
i

∑

j=1

w(p(j)) > vc · (⌈
V

vf
⌉ − i)

→ terminate the current search. (4)

With this DFS with pruning, we can practically identify all
the feasible paths in the graph.

3) Finding the Largest Set of Disjoint Feasible Paths:Due
to the requirement on disjoint paths for a balanced battery
utilization, if we include a specific path into the system
configuration, other paths with overlapping vertices will not
be able to be added to the configuration later. Thus our next
step is to find the largest disjoint subset of all these feasible
paths. AssumingM feasible paths have been identified, which
are denoted asP = {path1, path2, · · · , pathM}. We refer two
paths asconflictedif they share at least one common vertex,
specifically, define a 0-1 matrixAM×N as

ai,j =

{

1 if nj ∈ pathi

0 otherwise.

Then we define aconflict matrixCM×M is defined as

CM×M = {conflict(i, j)}.
and for anypathi andpathj ,

conflict(i, j) = 1 ⇐⇒ ∃k, ai,k · aj,k = 1.

Thus our problem in finding the largest set of disjoint paths
can be formulated as

max |P∗| (P∗ ⊆ P) (5)

s.t. ∀ pathi, pathj ∈ P∗ ⇒ conflict(i, j) = 0.

whereP∗ is the to be obtained largest path set. By further
defining

xi =

{

1 if pathi ∈ P∗

0 otherwise,

we can transform the problem formulation in (5) to

max

M
∑

i=1

xi s.t. ∀j,
M
∑

i=1

ai,j · xi ≤ 1.

This transformed problem is a classic 0-1 integer program-
ming problem. As the DFS with pruning method identifies
all the feasible paths in the graph, we can see that the
optimality of the identified configuration only depends on how
optimal a solution the 0-1 integer programming can return.



Fortunately, efficient 0-1 integer programming solvers exist in
the literature [13], and thus the near-optimality of the identified
configuration can be guaranteed.

IV. RECONFIGURATION WITH MULTI -LOAD-CHANGES

We have investigated the scenario where only a single load
changes in the previous section. To complete our investigation,
in this section, we extend our design to the scenario where
multiple loads may change simultaneously.

A. Problem Formulation

Let U denote the number of changed loads. Specifically, for
i = 1, 2, · · · , U , we denote the required voltage and power
output as[V i, (1 + σ)V i] andP i, respectively.

The graph representation of the battery pack can be ex-
tended by adding2U vertices inV and extending the edge set
E and weight setW in the same way as in the single load
change case.

An important difference between the scenarios of a single
and multiple loads changes is that the battery discharge
currents are likely to be heterogeneous in the latter case.
This is because the loads on different terminal pairs are quite
likely to be heterogeneous, and the number of series strings
for each load in the adopted system configuration may be
heterogeneous as well. As a result, we need tominimize
the maximal discharge current of batteriesin this multiple
loads changes case to improve the overall battery utilization
efficiency.

We can use the same DFS with pruning method as in the
single load change scenario to identify all the feasible paths
for each load, denoted asQ = {P1,P2, · · · ,PU}. Define the
0-1 matrixAM×N in the same way as Equation (5), except
that M now is the total number of paths identified for allU

loads. We thus have

M =

U
∑

i=1

|Pi|.

Define another two 0-1 matrixesBM×U andYM×U as

bi,k =

{

1 if pathi is feasible for the kth load
0 otherwise,

and

yi,k =

{

1 if pathi is selected for the kth load
0 otherwise.

Our problem in the multiple load changes scenario can be
formulated as

minmax{
P k

V k
∑M

i=1
yi,k

} (k ∈ {1, 2, · · · , U}) (6)

s.t. ∀i, k, yi,k = 1 ⇒ bi,k = 1,

∀i,
U∑

k=1

yi,k ≤ 1,

∀j,
M∑

i=1

U∑

k=1

ai,j · yi,k ≤ 1.

The first constraint means that a path can be selected only
for the load it can support, the second constraint requires that
each of theM paths can be adopted by at most one load, and
the final constraint requires the same vertex to be involved in at

most one selected path. Thismin-maxoptimization problem
cannot be efficiently solved by 0-1 programming. We thus
propose a greedy algorithm to identify the desired system
configurations in this case.

B. Greedy Solution

After identifying the path setQ, the greedy solution adds
paths into the system configuration in astep-by-stepmanner
until no more paths can be added. Because the inclusion of
a specific path prevents other paths sharing common vertices
from being included in the future, the sequence with which the
paths are added into the configuration plays a critical role in
determining the final results. Thus, two sub-questions needto
be addressed are: (i) which load should be selected to explore
for each step, and (ii ) which path should be included into
the configuration for the selected load. Our solution greedily
addresses these two sub-questions: we greedily select the load
with the largest battery discharge current for each step, and
then greedily include the path with the least conflict on other
paths into the system configuration.

1) Select the Load with the Largest Current:Given the load
requirements and the paths that have been already included
into the system configuration, in each step, we can calculate
the discharge current of the batteries supporting each load.
Specifically, letn1

p, n
2
p, · · · , nU

p denote the number of selected
paths for each load. With a smallσ, the discharge current of
batteries supporting individual loads can be approximatedby

Ii ≈ P i

ni
p · V i

. (7)

Then we select the load with the largest discharge current
for individual batteries for each step, specifically, the selected
load is

argmax
i

{Ii}. (8)

2) Select the Path with the Least Conflict:After selecting
the load, the next step is to select a feasible path for the load
and include the path into the system configuration.

The selection of a specific path prevents other overlapping
paths to be selected in the future due to the disjoint paths
requirement. Thus, we select the path that has the least
negative impact on other paths. We define the conflict matrix
C in the same way as (5). When thekth load is selected in
a specific step, we select (and include into the configuration)
the path according to

argmin
i

{
∑

i,j

conflict(i, j) | bi,k = 1, pathi, pathj ∈ Qa}, (9)

whereQa ⊂ Q is the set of paths that are still available for
selection before this step.

Note that the inclusion of a specific path into the config-
uration changes the values of (7), and thus we need to re-
select the load to be processed for each step. If no path can be
selected for the load under consideration, we mark the load as
saturated, and re-select thenon-saturatedload with the largest
discharge current for individual batteries as the next to process.
This process continues until no paths can be selected for any
loads.
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(b) Mild Loads
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Fig. 6. Operation time with different loads.

V. PRACTICAL ISSUES ANDFURTHER DISCUSSION

Energy Overhead of Reconfiguration OverheadThe
adaptive system reconfiguration is achieved by the operation
of supplementary electronic components such as switches and
connectors, which also consumes energy. Because the energy
consumption on these supplementary components are normally
smaller than the battery capacities in orders of magnitudes, we
can separate the identification of optimal configurations from
minimizing the operation costs of supplementary components
as two independent problems in practice.

Time Overhead of ReconfigurationBesides energy loss,
the system reconfiguration also requires certain time duration
to accomplish, i.e., the reconfiguration latency. This recon-
figuration latency introduces two additional challenges: how
to minimize the latency and how to supply the load during
the transient phase. A possible approach to address the first
question is through the coordinated supplementary component
operations, and the second question can be addressed by
incorporating super-capacitor based secondary power supply
systems.

Battery Charging through System ReconfigurationBat-
tery charging is another important issue for battery-powered
systems, which is desired to be fast (i.e., accomplished in
short time) and efficient (i.e., more energy is charged into
the batteries). It is also possible to apply the idea of system
reconfiguration to assist the charging of batteries: the charging
current/voltage can be controlled by adjusting the way in
which the batteries are connected.

VI. EXPERIMENT EVALUATIONS

In this section, we evaluate the proposed adaptive reconfig-
uration algorithms based on a prototype battery system.

A. Experiment Settings

1) Battery Pack: We build a prototype battery pack with
sixteen2450 mAh AA rechargeable batteries, which are or-
ganized into eight modules each with two series connected

batteries. Similar to the configuration flexibility offeredby
the existing off-the-shelf products [1], our prototype supports
a configuration set of{1S8P, 2S4P, 4S2P}. For the ease of
implementation, the prototype only has a single pair of output
terminals, and thus can only support a single load at any time.

2) Loads: We adopt twelve0.5 A 3.6 W flashlight bulbs
as the loads, which are organized into four 1S3P bulb
modules. We randomly generate load traces in the form of
{t1, a1}, {t2, a2}, · · · , whereti is the lasting duration andai
is the number of series connected bulb modules during that
time (ai ∈ {1, 2, 3, 4}). Because the bulbs can operate under
a wide voltage range (but with different lightness), for a fair
comparison, we impose an additional requirement that each
bulb module requires a2.5 V input voltage, and the tolerable
jitter voltage is1 V. As a result, the load required voltages
vary from 2.5× 1 = 2.5 V to 2.5× 4 = 10 V.

3) Baseline: We adopt the 4S2P battery configuration as
a baseline, which trades-off between the highest voltage the
system can supply (i.e., 4S) and the preference on small battery
discharge current (i.e., 2P). To match the supplied voltage
with the load requirement, we implement an adjustable voltage
regulator with the LM317 IC [6], and connect it between the
battery pack and the load to adjust the load input voltage
to the required level. Figure 4 presents an overview of our
experiment methods, and the circuit diagram of the adjustable
voltage regulator is shown in Fig 5.

4) Evaluation Metric:We adopt the operation time, defined
as the time from the start of the measurement to the time
when the bulbs cannot be lightened anymore, as the metric
to evaluate the system performance. The batteries are initially
fully charged for each measurement.

B. Experiment Results

To investigate the performance of the adaptive configura-
tion algorithm with different load conditions, we randomly
generate three load traces with light, mild, and heavy loads
respectively. Specifically, with light load, only1-2 bulb mod-
ules are series connected as the load. The numbers of bulb



modules adopted with the mild and heavy loads are randomly
chosen from1-4 and2-4, respectively. In this way, the number
of bulb modules used in the light, mild, and heavy loads are
1.5, 2.5, and3 in average, respectively. The load lasting time
ti is set to30 minutes.

The operation time obtained with the two configuration
methods for each load trace are shown in Fig. 6. The advantage
of the adaptive configuration over the baseline is obvious, and
an average operation time increase of3.06 hour is obtained
over the three loads conditions. This operation time improve-
ment is due to two reasons: first, by adaptively converting the
supplied voltages to the load required levels, the energy loss
on the voltage regulator is reduced; second, by minimizing the
discharge current of individual batteries, more battery capacity
can be delivered and the heat dissipation on other system
components is also reduced.

Furthermore, we can observe that the lighter the loads, the
more improvement can be obtained, which can be explained
by the following two facts. First, with the 4S2P configuration,
the lighter the loads, the larger the gap between the supplied
and required voltages, which degrades the regulator efficiency.
Second, the lighter the loads, the fewer batteries are needed
to form a single series string to support the loads. This in turn
offers more space for the adaptive configuration to identify
more parallel connected strings, and thus reduces the battery
discharge current.

Another observation from our experiment result is that
with the 4S2P configuration, the temperature of the LM
317 IC easily rises to44◦C at the maximum. Such a high
temperature not only indicates significant energy loss (and
thus supports our design principle in matching supplied and
required voltages), but also reduces the system stability.
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Fig. 7. Battery discharge traces.

VII. S IMULATION /EMULATION EVALUATIONS

In this section, we evaluate the proposed adaptive reconfig-
uration algorithms through extensive trace-based simulations.
We first evaluate the adaptive reconfiguration based on battery
discharge traces obtained from the data sheet ofoff-the-
shelf battery products. Then, the efficiency of the adaptive
reconfiguration is further verified base on two sets of electric
vehicle traces collected during driving.

A. Simulation based on Battery Discharge Traces

1) Trace-based Battery Model:Analytical modeling of
battery properties is computational expensive, and thus weuse
a trace-based method to track the battery states. We simulate a
battery pack consisting of2, 900 mAh Panasonic NCR18650

Li-ion batteries [7], whose discharge curves with discharge
currents of550 mA, 2, 750 mA, and5, 500 mA are provided
in its data sheet. The full and cutoff voltages arevf = 4.25 V
andvc = 2.5 V, respectively.

To obtain more fine grained battery discharge traces, we
divide the current interval[550, 5500] mA into 99 intervals
with a gap of50 mA each, and proportionally approximate
the corresponding discharge traces based on the three traces
provided in the data sheet. Note that we could further reduce
the current gap to improve the approximation accuracy. A
subset of the obtained discharge curves is shown in Fig. 7
(not all the curves are shown for figure clarity).

2) Simulated Battery Packs:The simulated battery pack
consists of64 batteries and can support three loads simul-
taneously. The current drawn from each battery can directly
reach two other batteries on average (i.e., an average vertices
out-degree of two in the graph). The simulation follow these
settings unless otherwise specified. The initial battery voltages
are randomly generated in the range of

[α · vc, vf ], (10)

whereα is a control parameter that determines the battery
voltage diversity and is set to1.2 unless otherwise specified.

3) Load Traces:Similar to the traces in the experiment, we
randomly generate load traces in the form of{tji , V

j
i , P

j
i }

for each loads, wheretji is the lasting duration of theith
trace for thejth load, andV j

i andP j
i are the required voltage

and power of that trace, respectively. A unit time interval of
10 minutes is adopted for loads’ lasting time, i.e.,ti only
takes the values of10 min, 20 min, and so on. The system
configuration is updated every10 minutes by first updating
the battery voltages according to the traces in Fig. 7, and then
adaptively reconfiguring the battery pack. The required voltage
V is randomly generated from15-20 V unless otherwise
specified. The tolerable jitter voltage is2.5 V (i.e., vc) by
default. The required powerP is randomly generated from
15 V × 550 mA = 8.25 W to 20 V × 5500 mA = 110 W .

4) Baselines: We implement the following three system
configurations as baselines.

Serial: The batteries are evenly assigned to individual loads,
and for each load, the assigned batteries are series connected.

Parallel:
√
N series strings with

√
N batteries each are

formed, and then these strings are assigned to individual loads
in a round-robin manner.

Oracle: Given the range of all possible load required
voltage, we can calculate how many batteries are needed for
a string to be able to support any potential loads, and then we
form as many as possible such strings. The remaining batteries
(those are not enough to construct another such string) form
the last string. This oracle configuration maximizes the number
of parallel connected strings while guaranteeing each string is
able to support the load requirement. These strings are then
assigned to individual loads in a round-robin manner.

5) Performance Evaluation:We evaluate the impact of
different system parameters on the performance of adaptive
reconfiguration.
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Fig. 9. Impact of initial battery voltages.
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Fig. 10. Impact of required voltage.

TABLE I
THREE CASES OF CONFIGURATION FLEXIBILITY DISTRIBUTIONS.

Vertices Out-degree 1 2 3 4 5
Case A 0.5 0 0 0 0.5
Case B 0.2 0.2 0.2 0.2 0.2
Case C 0 0 1 0 0

Number of Loads: We first examine the impact of the
number of supported loads on the system operation time. The
results with1 to 5 simultaneously supported loads are shown
in Fig. 8. Note that it is not necessary for all these loads
to change at the same time. The operation time decreases as
more loads have to be supported, which is intuitive because
increasing the number of supported loads essentially indicates
a heaver loads for the battery system. Furthermore, we can see
that compared with the baselines, the adaptive reconfiguration
achieves around4× gain in operation time when only one load
is supported. Although the gain decreases as more loads need
to be supported, the adaptive reconfiguration still obtainsa 2×
operation time even with a load number of5.

Battery Voltage Diversities: We then explore the impact of
battery voltages on the operation time. The battery voltages are
controlled by the parameterα in (10), and a smallerα indicates
both a higher voltage diversity among batteries and a lower
average battery voltages. The operation time withα varying
from 1.1 to 1.7 are shown in Fig. 9. Note that withα = 1.7,
it indicates that the battery voltages are randomly generated
from [2.5 × 1.7, 4.25] = {4.25}, meaning all the batteries
are initially fully charged. The operation time increases as
α increases because of higher initial battery voltages, and
the adaptive reconfiguration outperforms the baselines in all
the explored cases. Furthermore, we can see the advantage
of adaptive reconfiguration is more obvious with smallerα.
This is because the smallerα is, the more likely that certain
batteries are close to depletion. Depleted batteries significantly
degrade the system performance if the configuration is not
adjustable. On the other hand, the adaptive reconfigurationcan
bypass low-voltage batteries when necessary, which reduces
the impact of the near-depletion batteries on system perfor-
mance.

Loads Requirements: The operation time with different
load required voltages and powers are shown in Fig. 10 and
Fig. 11, respectively. The load required power is set to55 W
in Fig. 10 and the required voltage is20 V in Fig. 11. Again,
significant improvement on the operation time can be observed
with the adaptive reconfiguration, which is about3×-5× of
those obtained with the baselines. Furthermore, the operation
time decreases as the loads become heavier, as a result of the
increase in either the required voltage or power. Note that

Fig. 10 shows that when the required voltage is relatively
low (e.g., 10–25 V), the operation time obtained with the
non-reconfigurable baselines slightly increases with a higher
voltage. This is because when the required voltage increases,
the load current decreases with a fixed required power, which
in turn leads to a longer operation time. However, as the
required voltage continuously increases (e.g.,[25, 30]), the
probability for the fixed configuration to not able to support
such required voltage increases, and thus the operation time
is reduced.

Configuration Flexibilities: We investigate the impact of
system configuration flexibility on the adaptive reconfiguration
in the following. The operation time with different configura-
tion flexibilities (i.e., the vertices out-degree in the graph) are
shown in Fig. 12, with an average out-degree of1, 2, and
3, respectively. Significant increase in system operation time
can be observed when the configuration flexibility increases.
However, the increase in operation time slows down with
larger average out-degrees. This implies that an excessive
high configuration flexibility may not be desirable, especially
when considering the fact that the configuration flexibilitydoes
not come without costs, e.g., the implementation complexity
would be dramatically increased.

Besides the average configuration flexibility, the distribution
pattern of these flexibilities also affects the system perfor-
mance. Fixing the average vertices out-degree as3, we explore
three cases on how the configuration flexibilities are distributed
among batteries, as shown in Table I. The resulting operation
times under these three cases are shown in Fig. 13. We
can see that the flexibility distribution significantly affects
the performance. An important observation is that when the
configuration flexibility is more evenly distributed among
batteries, the performance becomes better. This is becausesuch
an evenly distribution pattern alleviates the negative impact
due to bottleneck batteries on the system performance. This
observation serves as a guidance in practical battery system
design.

B. Emulation based on Electric Vehicle Driving Traces

We further evaluate the adaptive reconfiguration based on
empirical electric vehicle driving traces. We collect two driv-
ing traces of around900 s and2400 s each, containing the
corresponding operation voltages and powers during that time
period, as shown in Fig. 14 and Fig. 15, respectively.

We generate the load traces for our emulation based on
these two raw traces. First, both the discharging and charging
of battery pack happen during the driving of electric vehicles.
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This is reflected in the traces that the both positive (i.e.,
discharging of battery pack) and negative (i.e., charging of
battery pack) values exist in the power trace. Because we only
focus on the discharge management in our design, we set all
the negative powers and the voltages at the corresponding time
instance in the traces to zeros. This can be interpreted as no
load is imposed on the battery pack during those time periods.
Second, because the raw traces are relatively short in time,we
combine them sequentially to form a900 + 2360 = 3260 s
trace, and then repeat it for10 time. As a result, a3260×10

60 ≈
550 minutes load trace is generated for our emulation.

The battery packs for electric vehicles normally take the
hierarchical architecture: it can be divided into a set of battery
modules which in turn are consisted of individual batteries.
In our emulation, we form a battery pack consisting of64
modules each with16S4P connected batteries. The battery
discharge property conforms to the discharge traces shown in
Fig. 7.

Again, we take the non-reconfigurable Oracle baseline for
comparison. The operation time with varying initial battery
voltages (i.e., by adjustingα in (10)) is shown in Fig. 16.
Obvious advantage of the adaptive reconfiguration can be
observed, especially when the battery initial voltages arelow,
which agrees with the observation in Fig. 9. The operation
time obtained with the two configuration methods converge as
α increases, because in this case the battery pack has sufficient
energy supply to survive the load even without the assistance
of adaptive reconfiguration.

VIII. R ELATED WORK

Large-scale battery systems are commonly adopted in prac-
tice, and many research efforts have been devoted to im-
prove the system performance focusing on the battery dis-
charge scheduling [11], [14], [17], [25], [32], the effective
system monitoring [27], the design of battery management
systems [16], [30], [38], etc.

Due to the load dynamics in large-scale battery systems,
traditionally, the battery supplied voltage is adjusted tothe load

required level by adopting additional electronic components,
e.g., voltage regulators [41]. However, the additional compo-
nents introduces additional energy consumption/loss [5],[22],
and thus degrades the battery energy utilization efficiency.

Another approach to provide the dynamic load requirement
is to adaptively adjust the battery connections in the system.
Investigations on this adaptive system reconfiguration have
been reported in [20], [41], targeting on small multicell battery
systems such as mobile devices. In our work, we extend the
investigation to large-scale scale battery systems.

Two necessary conditions must be satisfied to effectively
and adaptively reconfigure the system. First, the system hasto
offer certain configuration flexibility on which the adaptive re-
configuration can operate. However, the system configuration
flexibility is achieved by adopting more electronic components
such as connectors and switches, which not only introduces
additional energy costs, but also increases the system imple-
mentation complexity. Research efforts have been devoted to
effectively offer configuration flexibility with less additional
costs [10], [23], [24]. Based on the system design in [24],
six switches are enough to connect a battery in any manner:
series, parallel, or by-passed. Our work advances the state-of-
the-art by proposing adaptive reconfiguration algorithms that
return the desired system configuration based on the offered
configuration flexibility and the real time load requirements.

Second, the system has to be aware of individual battery
conditions to carry out the adaptive reconfiguration. Many
works on battery modeling and simulation exist in the lit-
erature [15], [18], [21], [37], [38], [40]. However, most of
these models are computational extensive, and the simulators
require practical parameters to implement. Furthermore, most
of these models/simulators are for specific battery types, and
thus their universalities are limited. Our proposed adaptive
reconfiguration algorithms hide the complex low level battery
properties by focusing on two rules of thumb in identifying
the desired system configurations: matching the supplied and
required voltages and minimizing the discharge currents.



The most similar works are [19], [23], [28]. In [23], apower
tree representation of the battery pack is proposed to assist
the effective system reconfiguration when the battery failures
happen. We tackle the system reconfiguration with a different
objective, i.e., optimizing the system energy efficiency, and our
solutions can also effectively handle the case with batteryfail-
ures. An optimization formulation w.r.t the energy efficiency is
presented in [19], which requires low level battery properties
such as thestate of charge, the state of health, etc. Our work
hides the complex battery properties from engineering and
thus facilitates its practical implementation. A reconfigurable
series-connected battery string is proposed in [28] to adjust
the supplied voltage to the load required level. We advance
the investigation by further exploring minimizing the battery
discharge current to improve the system energy efficiency.

IX. CONCLUSIONS

In this paper, we have explored the adaptive reconfiguration
of large-scale battery systems to dynamically provide the
load’s required voltages, which avoids the low efficiency issue
of the traditional voltage regulator-based solutions. Based on
two empirically observed design principles, our approach hides
the complex battery properties from engineering, and thus
makes it more practical for implementation. Specifically, by
abstracting the battery system into a graph representation, we
have investigated both scenarios with a single and multiple
load changes, and proposed corresponding adaptive recon-
figuration algorithms. Through prototype implementation and
extensive simulation, we have shown the proposed adaptive
reconfiguration algorithms can significantly improve the per-
formance w.r.t. system operation time. In the future, we will
investigate the trade-off between the system energy efficiency
and implementation complexity.
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