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Abstract—Uniform heterogeneous multicore architectures are becoming increasingly popular due to their potential of achieving
high performance and energy efficiency compared to the homogeneous multicore architectures. In such systems, the real-
time scheduling problem becomes more challenging because processors have different speeds. Prior research on uniform
heterogeneous multiprocessor real-time scheduling has focused on hard real-time systems, where, significant processing
capacity may have to be sacrificed in the worst-case to ensure that all deadlines are met. As meeting hard deadlines is overkill
for many soft real-time systems in practice, this paper shows that on soft real-time uniform heterogeneous multiprocessors,
bounded response times can be ensured for globally-scheduled sporadic task systems with no utilization loss. A GEDF-based
scheduling algorithm, named as GEDF-H, is presented and response time bounds are established under both preemptive and
non-preemptive GEDF-H scheduling. Extensive experiments show that the magnitude of the derived response time bound is
reasonable, often smaller than four task relative deadlines. To the best of our knowledge, this paper is the first to show that
soft real-time sporadic task systems can be supported on uniform heterogeneous multiprocessors without utilization loss under
global scheduling, and with reasonable predicted response times.
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1 INTRODUCTION

G IVEN the need to achieve higher performance
without driving up power consumption and heat

dissipation, most chip manufacturers have shifted to
multicore architectures. An important subcategory of
such architectures are those that are uniform hetero-
geneous in design. For example, the Intel’s QuickIA
platform [7] employs two kinds of processors with
different speeds. By integrating processors with differ-
ent speeds, such architectures can provide high per-
formance and power efficiency [16]. Heterogeneous
multicore architectures have been widely adopted in
various domains, ranging from embedded applica-
tions (e.g. consumer multimedia [14] and video object
tracking [13]) to high performance computing systems
(e.g. GPGPU [4]). In order to apply heterogeneous
multicore architectures in a real-time system, a fun-
damental problem is to analyze the schedulability of
such systems.

Most prior work on supporting real-time work-
loads on such uniform heterogeneous multiproces-
sors has focused on hard real-time (HRT) systems.
Unfortunately, if all task deadlines must be viewed
as hard, significant processing capacity must be sac-
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rificed in the worst-case, due to either inherent
schedulability-related utilization loss—which is un-
avoidable under most scheduling schemes—or high
runtime overheads—which typically arise in opti-
mal schemes that avoid schedulability-related loss. In
many systems where less stringent notions of real-
time correctness suffice, such loss can be avoided by
viewing deadlines as soft. In this paper, we consider
the problem of scheduling soft real-time (SRT) spo-
radic task systems on a uniform heterogeneous mul-
tiprocessor; the notion of SRT correctness we consider
is that response time is bounded [15].

All multiprocessor scheduling algorithms follow
either a partitioning or globally-scheduling approach (or
some combination of the two). Under partitioning,
tasks are statically mapped to processors, while under
global scheduling, they may migrate. Under parti-
tioning schemes, constraints on overall utilization are
required to ensure timeliness even for SRT systems
due to bin-packing-related loss. On the other hand,
a variety of global schedulers including the widely
studied global earliest-deadline-first (GEDF) schedul-
ing algorithm are capable of ensuring bounded re-
sponse times for sporadic task systems on a homo-
geneous multiprocessor, as long as the system is not
over-utilized [9]. Motivated by this optimal result,
we investigate whether GEDF remains optimal in a
uniform heterogeneous multiprocessor SRT system.

Under GEDF, we select m highest-priority jobs at
any time instant and execute them on m processors.
The job prioritization rule is according to earliest-
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Fig. 1: Motivational example.

deadline-first. Regarding the processor selection rule
(i.e., which processor should be selected for executing
which job), it is typical to select processors in an
arbitrary manner. On a homogeneous multiprocessor,
such an arbitrary processor selection rule is reasonable
since all processors have identical speeds. However,
on a uniform heterogeneous multiprocessor, this arbi-
trary strategy may fail to schedule a SRT sporadic task
system that is actually feasible under GEDF. Consider
a task system with two sporadic tasks τ1(2, 2) and
τ2(4, 2) (notation τi(Ci, Ti) denotes that task τi has
an execution cost of Ci units, which costs Ci time
units on a unit-speed processor, and a minimum inter-
arrival time of Ti time units) scheduled on a uniform
heterogeneous multiprocessor with two processors, π1
with speed of one unit execution per unit time and
π2 with speed of two units execution per unit time.
Assume in the example that task deadlines equal their
minimum inter-arrival times and priority ties are bro-
ken in favor of τ1. Fig. 1(a) shows the corresponding
GEDF schedule with an arbitrary processor selection
strategy for this task system. As seen in the figure,
if we arbitrarily select processors for job executions,
the response time of τ2 grows unboundedly. However,
if we define specific processor selection rules—for
example always executing tasks with higher utiliza-
tions on processors with higher speeds—then this task
system becomes schedulable, as illustrated in Fig. 1(b).

The above example suggests that on a uniform het-
erogeneous multiprocessor, the processor selection strategy
is critical to ensuring schedulability. Motivated by this
key observation, we consider in this paper whether it
is possible to develop a GEDF-based scheduling algo-
rithm with a specific processor selection rule, which
can schedule SRT sporadic task systems on a uniform
heterogeneous multiprocessor with no utilization loss.

Contribution. In this paper, we design and analyze
a GEDF-based scheduling algorithm GEDF-H (GEDF
for Heterogeneous multiprocessors) for supporting
SRT sporadic task systems on a uniform heteroge-
neous multiprocessor that contains processors with
different speeds. The analysis in this paper shows that
under both preemptive and non-preemptive GEDF-
H scheduling the bounded response times could be
ensured if Usum ≤ Rsum and Eq. (1) (in Sec. 3) holds,
where Usum is the total task utilization, Rsum is the
total system capacity, and Eq. (1) is a requirement on
the relationship between task parameters and proces-
sor parameters. Intuitively speaking, Eq. (1) implies
that a system with a small number of high-speed
processors cannot support too many high-utilization
tasks even if the total resource capacity is sufficient.
We show via a counterexample that task systems that
violate Eq. (1) may have unbounded response time
under any scheduling algorithm. As demonstrated by
experiments, the derived response time bound under
GEDF-H is reasonably low, often within four task
relative deadlines.

Organization. This paper is organized as follows. In
Sec. 2, we introduce the related work. Then in Sec. 3,
we formally define the system model and the GEDF-
H algorithm is described in Sec. 4. In Secs. 5, 6 and
7, we present the analysis of preemptive and non-
preemptive GEDF-H scheduling. In Sec. 8, we show
the experimental results. We conclude in Sec. 10.

2 RELATED WORK
In the general heterogeneous multiprocessors, the rate
of execution of a task depends on both the processor
platform and the task system, and even not all tasks
may be able to execute on all processors. In this paper,
we limit our attention to uniform heterogeneous mul-
tiprocessors, where the rate of the execution of a task
is directly proportional to the speed of the processor.

The real-time scheduling problem on uniform het-
erogeneous multiprocessors has received much atten-
tion.

For the HRT case, Funk et al. in [12] provides an
exact test to determine whether a given periodic task
system is feasible on a specified uniform multipro-
cessor. Partitioning approaches have been proposed
in [1]–[3], [11], [16] and quantitative approximation
ratios have been derived for quantifying the quality
of these approaches. Unfortunately, such partitioning
approaches inherently suffer from bin-packing-related
utilization loss, which may be significant in many
cases. The feasibility problem of global scheduling of
HRT sporadic task systems on a uniform heteroge-
neous multiprocessor has also been studied [2]. In [8],
a global scheduling algorithm has been implemented
on Intel’s QuickIA uniform heterogeneous prototype
platform and experimental studies showed that this
approach is effective in improving the system energy
efficiency.
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For the SRT case, most of the prior works have been
focused on partitioning approach. A semi-partitioned
approach has been proposed in [15], where tasks
are categorized as either “fixed” or “intergroup” and
processors are partitioned into groups according to
their speeds. Tasks belonging to the fixed category
are only allowed to migrate among processors within
in the task’s assigned group. Only tasks belonging
to the migrating category are allowed to migrate
among groups. Although this approach is quite ef-
fective in many cases, it yields utilization loss and
requires several restricted assumptions (e.g., the sys-
tem contains at least 4 processors and each processor
group contains at least two processors). In [17], an
improved partitioned approach is presented. Under
this approach, the multiprocessor scheduling could be
reduced to the uniprocessor case and the utilization
loss can be eliminated. Unfortunately, few works have
been focused on the global scheduling on uniform
multiprocessors for SRT systems. Thus, our focus in
this paper is on designing GEDF-based global sched-
ulers that are able to ensure bounded response time
with no utilization loss under both preemptive and
non-preemptive scheduling.

Other prior works (e.g., [5], [6] and [10]) have also
studied the problem of energy-efficient scheduling in
multiprocessors with variant speeds. These works aim
to minimize the energy consumption by either scaling
voltage and frequency of processors, or manipulating
the scheduling scheme of tasks. Different from those
works, this paper focuses on improving the utilization
of uniform heterogeneous multiprocessors under the
SRT scheduling.

3 SYSTEM MODEL

In this paper, we consider the problem of scheduling n
sporadic SRT tasks on m ≥ 1 uniform heterogeneous
processors.

Let χ = {π1, ..., πm} denotes the set of m uniform
heterogeneous processors and vπi be the speed of
processor πi. Without the loss of generality, we as-
sume πi is sorted by the speed of the processor in
the non-increasing order. Assume there are z ≥ 1
kinds of processors distinguished by their speeds. Let
χi (1 ≤ i ≤ z) and Mi ≥ 1 denote the subset of
the ith kind of processors in χ and the number of
processors in χi respectively. Thus, χ =

⋃z
i=1 χi and

m =
∑z
i=1Mi. We assume the processors in χ1 have

unit speed and processors in χi have speed αi where
αi < αi+1, 1 ≤ i ≤ z − 1. For clarity, we use αmax to
denote the maximum speed (i.e., αmax = αz = vπ1 ).
Let Rsum =

∑z
i=1 αi ·Mi.

Let τ = {τ1, ..., τn} denote the set of n independent
sporadic tasks. We define the unit workload to be the
amount of work done under the unit speed within
a unit time. We assume that each job of τi executes
for at most Ci workload which needs Ci time units

under the unit speed. The jth job of τi, denoted τi,j ,
is released at time ri,j and has an absolute deadline
at time di,j . Each task τi has a minimum inter-arrival
time Ti, which specifies the minimum time between
two consecutive job releases of τi, and a deadline Di,
which specifies the relative deadline of each such job,
i.e., di,j = ri,j + Di. The utilization of a task τi is
defined as ui = Ci/Ti, and the utilization of the task
system τ as Usum =

∑
τi∈τ ui. An sporadic task system

τ is said to be an implicit-deadline system if Di = Ti
holds for each τi. Due to space limitation, we limit
attention to implicit-deadline sporadic task systems
in this paper.

Successive jobs of the same task are required to exe-
cute in sequence. If a job τi,j completes at time t, then
its response time is t− ri,j . The response time of a task
(resp. a task system) is the maximum response time of
any of its jobs (resp. tasks). Note that, when a job of
a task misses its deadline, the release time of the next
job of that task is not altered. We require ui ≤ αmax,
and Usum ≤ Rsum, for otherwise the response time of
a task system must grows unboundedly in the worst-
case.

In this paper, we assume that the time system is
continuous and the parameters are positive rational
numbers.

Based on the system model, several terms are de-
fined as follows.

Definition 1. Let Uk be the sum of the k largest ui ,
Ck be the sum of the k largest Ci and V k be the sum
of the k smallest ui · Ci. Such values are used in the
expression of the response time bound derived later
in this paper.

Definition 2. A job is considered to be completed if
it has finished its execution. We let fi,j denote the
completion time of job τi,j .

Definition 3. Job τi,j is pending at time t if ri,j < t <
fi,j . Job τi,j is enabled at t if ri,j ≤ t < fi,j , and its
predecessor (if any) has completed by t. Note that
each task has at most one enabled job at any time
instant.

Definition 4. If an enabled job τi,j dose not execute
at time t, then it is preempted at t.

Definition 5. A time instant t is busy (resp. non-busy)
for a job set β if there exists (resp. does not exist) an
ε > 0 that all m processors execute jobs in β during
(t, t+ ε). A time interval [a, b) is busy (resp. non-busy)
for β if all (resp. not all) the instants within [a, b) are
busy for J .

The following property directly follows from the
definition above.

Property 1. Suppose β is a set of jobs and t is a non-
busy time instant for β. At most m − 1 tasks have
jobs in β pending at t, for otherwise t would have to



4

0 102 4 86 12

 2

 1

Idleness

 32，

Processors

Time m

 22， 12，

 11，  21，  31，

Fig. 2: GEDF schedule of the tasks in counterexample.

become busy.

On a uniform heterogeneous multiprocessor, the
response time can still grow unboundedly, even if
ui ≤ αmax and Usum ≤ Rsum hold. This is illustrated
by the following counterexample.

Counterexample. Consider a sporadic task system
with two tasks τ1 = τ2 = (2, 1) and a uniform hetero-
geneous multiprocessor with m ≥ 3 processors where
π1 has a speed of αmax = 2 and other m−1 processors
have unit speed. For this system, u1 = u2 = αmax = 2
and Rsum = 2+(m−1) = m+1 ≥ 4 = Usum. Note that,
the ratio of Usum/Rsum may approximate to 0 when
m is arbitrarily large. However, as seen in the GEDF
schedule illustrated in Fig. 2, regardless of the value
we choose for m, the response time of τ2 still grows
unboundedly. Actually, we analytically prove that this
task system cannot be scheduled under any global or
partitioned schedule algorithm. This counterexample
implies that a task system may not be feasible on a
uniform heterogeneous multiprocessor even provided
Usum ≤ Rsum. As seen in Fig. 2, adding more unit
speed processors does not help because there are two
tasks with utilization greater than 1 while only one
processor with speed greater than 1. Motivated by this
observation, we enforce the following requirement.

Let Φi = {τj |αi < uj}, 1 ≤ i < z, and |Φi| be the
number tasks in Φi. For completeness, let Φ0 = τ . Let
Ψi =

⋃z
j=i+1 χj , 0 ≤ i < z, and |Ψi| be the number of

processor in Ψi. Thus, Φi is the set of tasks that would
fail their deadlines if run entirely on a processor of
type i or lower, and Ψi is the set of processors of type
i+1 or higher. For each 1 ≤ i < z, we require

|Φi| ≤ |Ψi| (1)

Intuitively, Eq. (1) requires that if we have k processors
with speed larger than αi, then at most k tasks with
utilization larger than αi can be supported in the system.
Note that, other than Usum ≤ Rsum, we do not
place any restriction on Usum. The following example
illustrates Eq. (1).

Example 1. Consider a task system with 4 tasks,
τ1 = (2, 1), τ2 = (2, 1), τ3 = (1, 1), τ4 = (1, 1) and a
uniform heterogeneous multiprocessor consisting of
3 processors, π1, π2 and π3, where vπ1

= vπ2
= 2.5

and vπ3 = 1. Thus, χ1 = {π3}, χ2 = {π1, π2} and
Ψ1 = {π1, π2}. For this task system, u1 = u2 = 2, u3 =
u4 = 1 and we have Φ0 = {τ1, τ2, τ3, τ4}, Φ1 = {τ1, τ2}.
Thus, we have |Φ1| = 2 ≤ |Ψ1| = 2. This system clearly

Algorithm 1 Preemptive GEDF-H

1: Input: An set J∗ of the enabled jobs at time instant t
2: Output: A mapping f from J∗ to the processor set χ =
{π1, ..., πm}

3: k ← min(m, |J∗|);
4: Let J

′
be the set of k highest priority jobs in J∗;

5: Sort the jobs in J
′

by their utilizations in the non-
increasing order. Let J

′
= {ji, ..., jk};

6: for i = 1 : k do
7: f(ji)← πi;
8: for each job j

′
in J∗ but not in J

′
do

9: f(j
′
)← null; // j

′
is preempted by other jobs

10: Return f ;

meets the requirement stated in Eq. (1).
In the next section, we describe the GEDF-H

scheduling algorithm.

4 GEDF-H SCHEDULING ALGORITHM

On a homogeneous multiprocessor, at any time in-
stant, under GEDF, we can arbitrarily choose pro-
cessors for tasks because processors have the same
speed. However, on a uniform heterogeneous multi-
processor, if we arbitrarily choose processors for tasks,
the bounded response time cannot be guaranteed as
discussed in Sec. 1. Motivated by this key observa-
tion, we design a GEDF-based scheduling algorithm
GEDF-H to support SRT sporadic task systems on a
uniform heterogeneous multiprocessor.

Under GEDF-H, released jobs are prioritized by
their absolute deadlines. We assume that ties are
broken by task ID (lower IDs are favored). Thus, two
jobs cannot have the same priority.

Preemptive GEDF-H. Under the preemptive case,
at any time instant t, GEDF-H follows the following
two phases to schedule a given task system on m
uniform heterogeneous processors.

1) Job selection phase. Suppose there are n
′

en-
abled jobs at time instant t. GEDF-H selects k =
min(n

′
, m) enabled jobs, namely Ji, 1 ≤ i ≤ k,

with the highest priorities for execution. Assume
these jobs Ji are sorted by their utilizations in
the non-increasing order, where ties are broken
by task ID (lower IDs are favored).

2) Processor selection phase. For 1 ≤ i ≤ n
′
,

GEDF-H assigns Ji to execute on πi (πi is sorted
by the speed as mentioned in Sec. 3). In other
words, GEDF-H assigns the higher-utilization
job to the slowest processor.

Preemptive GEDF-H is formally shown in Algo-
rithm 1.

Non-preemptive GEDF-H. Under the non-
preemptive case, at any time instant t, GEDF-H
follows the following two phases to schedule a given
task system on m uniform heterogeneous processors.

1) Job selection phase. Let β1 be the set of enabled
jobs that are not executing on any processor at t,
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Fig. 3: GEDF-H schedule of the tasks in Example 1.

and β2 be the set of jobs that are executing at t.
Assume the number of jobs in β1 and β2 are n1
and n2. Let k = min

(
n1, max(0, m−n2)

)
and β∗1

be the set of k highest priority jobs in β1. Then,
GEDF-H selects β∗1

⋃
β2 for execution at t. Let

Ji, 1 ≤ i ≤ k + n2, be the jobs in β∗1
⋃
β2 sorted

by their utilization in the non-increasing order.
By the selection of n1, n2, and k, k + n2 ≤ m.

2) Processor selection phase. If k + n2 > 0, i.e.,
β∗1
⋃
β2 is not empty, for 1 ≤ i ≤ k + n2, GEDF-

H assigns Ji to execute on πi.
Note that, GEDF-H is still a job-level static-priority

scheduler because we do not change a job’s priority
at runtime. The processor selection phase of GEDF-H
offers the following property.

Property 2. At any time instant t, if a job of task τi
is executing on a processor π

′
with speed vπ′ where

αj < ui ≤ αj+1, we have ui ≤ vπ′ .

Proof: Let vτi be the slowest speed of the proces-
sors on which jobs of τi could execute under GEDF-H.
Thus, by processor selection rule of GEDF-H and Eq.
(1), we have

vτi ≥ αj+1

Therefore,
vπ′ ≥ vτi ≥ αj+1 ≥ ui (2)

Fig. 3 shows the preemptive GEDF-H schedule of
the task system in Example 1 within time interval
[0, 2). At time instant 1, in the job selection phase of
GEDF-H, τ4,1, τ2,2 and τ1,2 are selected for execution;
in the processor selection phase, τ4,1 is assigned to the
slowest processor π1.

In the Secs. 5, 6 and 7, we present our analy-
sis of both preemptive GEDF-H and non-preemptive
GEDF-H. Our analysis draws inspiration from [9], the
seminal work for SRT scheduling on homogeneous
multiprocessors. In the next section, we first introduce
a perfect schedule that is needed in the analysis in
Secs. 6 and 7.
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Fig. 4: PS schedule of the tasks in Example 1.

5 PS SCHEDULE

To keep track of the workload completed in the GEDF-
H schedule, we introduce the following PS schedule
which is a perfect schedule in theory.

PS schedule. For any given sporadic task system
τ , a processor share (PS) schedule is an ideal schedule
where each task τi executes with a speed equal to ui
when it is pending (which ensures that each job of τi
completes exactly at its deadline).

Fig. 4 shows the PS schedule of the tasks in Example
1. Note that the PS schedules does not depend on
processor platform.

Our response time bound is obtained by comparing
the workload done by jobs in the GEDF-H schedule S
and the corresponding PS schedule, and quantifying
the difference between the two. Let A(τi,j , t1, t2, S)
and A(τi,j , t1, t2, PS) respectively denote the total
workload done by τi,j in S and PS within [t1, t2).
Then, the total workload done by each task τi and all
tasks in τ in [t1, t2) under GEDF-H is given by

A(τi, t1, t2, S) =
∑
j≥1

A(τi,j , t1, t2, S)

and

A(τ, t1, t2, S) =

n∑
i=1

A(τi, t1, t2, S).

A(τi, t1, t2, PS) and A(τ, t1, t2, PS) can be defined
in a similar manner corresponding to PS schedule.

The difference between the workload done by a job
τi,j up to time t in PS and S, denoted the lag of job τi,j
at time t in schedule S, is defined by

lag(τi,j , t, S) = A(τi,j , 0, t, PS)−A(τi,j , 0, t, S).

Similarly, the difference between the workload done
by a task τi up to time t in PS and S, denoted the lag
of task τi at time t, is defined by

lag(τi, t, S)

=
∑
j≥1

lag(τi,j , t, S)

=
∑
j≥1

(
A(τi,j , 0, t, PS)−A(τi,j , 0, t, S)

)
. (3)
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The LAG for a certain job set β at time t in schedule
S is defined as

LAG(β, t, S) =
∑
τi,j∈β

lag(τi,j , t, S). (4)

The following property follows from the definitions
above.

Property 3. Let β be a set of jobs. If LAG(β, t2, S) >
LAG(β, t1, S), where t2 > t1, then [t1, t2) is non-busy
for β.

Proof: We prove by contradiction. Suppose [t1, t2)
is busy for β. By this supposition,∑

τi,j∈β

A(τi,j , t1, t2, S) = (t2 − t1) ·Rsum (5)

and by the definition of PS schedule,∑
τi,j∈β

A(τi,j , t1, t2, PS) = (t2 − t1) · Usum. (6)

Thus, by the definition of LAG

LAG(β, t2, S)− LAG(β, t1, S)

=
∑
τi,j∈β

A(τi,j , t1, t2, PS)−
∑
τi,j∈β

A(τi,j , t1, t2, S)

= (t2 − t1) · Usum − (t2 − t1) ·Rsum
≤ 0,

which is a contradiction.

6 PREEMPTIVE GEDF-H ANALYSIS
We now present our analysis for preemptive GEDF-H
scheduling. Our goal is to prove that the bounded re-
sponse time can be guaranteed by preemptive GEDF-
H without the loss of utilization.

Let τk be an arbitrary task in τ and τk,l be an
arbitrary job of task τk, td = dk,l, and S be a GEDF-H
schedule for τ with the following inductive assump-
tion.

Assumption 1. The response time of every job τi,j ,
where τi,j has a higher priority than τk,l, is at most
x+ 2 · Ti in S, where x ≥ 0.

Our objective is to determine an x such that the
response time of τk,l is at most x + 2 · Tk under this
assumption. If we can find such x, by induction, this
implies a response time of at most x+2 ·Ti for all jobs
of every task τi, where τi ∈ τ .

Definition 6. We categorize jobs based on the rela-
tionship between their priorities and those of τk,l:

H = {τi,j : (di,j < td) ∨ (di,j = td ∧ i ≤ k)}.

Thus, H is the set of jobs with priority no less than
that of τk,l.

By Def. 6, τk,l is in H. Also jobs not in H have lower
priorities than those in H and thus do not affect the

scheduling of jobs in H. For simplicity, in the rest of
the analysis in this section, we get rid of the jobs that
are not in H from the task system τ . Thus,

LAG(H, t, S) = LAG(τ, t, S) =
∑
τi∈τ

lag(τi, t, S) (7)

Because each job in H completes before or at td
in the PS schedule, LAG(H, td, S) denotes the total
workload of jobs in H pending at td in the GEDF-
H schedule (i.e, the workload that is able to compete
against τk,l after td). Intuitively, the response time of
τk,l cannot exceed x+2·Tk if the value of LAG(H, td, S)
is adequately small.

The steps for determining the value for x are as
follows.

1) Determine a safe bound on LAG(H, td, S) re-
quired for the response time of τk,l to exceed
x+ 2 · Tk, under the Assumption 1. This is dealt
with in Lemma 1 in Sec. 6.1.

2) Determine an upper bound on LAG(H, td, S)
under the Assumption 1. This is dealt with in
Lemmas 2 and 3 in Sec. 6.2.

3) Determine the smallest x such that the upper
bound is no more than the safe bound. This is
dealt with in Theorem 1 in Sec. 6.3.

6.1 Safe Bound on LAG(H, td, S)

Lemma 1 below provides a safe bound on
LAG(H, td, S). The response time of τk,l does
not exceed x + 2 · Tk when LAG(H, td, S) is lower
than that safe bound and Assumption 1 holds.

Lemma 1. If LAG(H, td, S) ≤ Rsum · x + Tk and
Assumption 1 holds, then the response time of τk,l is at
most x+ 2 · Tk,

Proof: Let ηk,l be the amount of work τk,l performs
by time td in S, 0 ≤ ηk,l < Ck. Define y as follows.

y = x+
ηk,l
Rsum

(8)

We consider two cases.
Case 1. [td, td + y) is a busy interval for H. In this

case, the amount of work completed in [td, td + y) is
exactly

∑p
i=1 αi·Mi·y = Rsum·y, as illustrated in Fig. 5.

Hence, the amount of work pending at td+y is at most
LAG(H, td, S)−Rsum·y ≤ Rsum·x+Tk−Rsum·x−ηk,l =
Tk − ηi,j . This remaining work will be completed no
later than td+y+Tk−ηk,l = td+x+

ηk,l
Rsum

+Tk−ηk,l ≤
td + x + Tk, even on a slowest processor. Since that
remaining work includes the work due for τk,l, τk,l
thus completes by td + x + Tk. The response time of
Tk,l is not more than td + x+ Tk − rk,l = x+ 2 · Tk.

Case 2. [td, td + y) is a non-busy interval for H. Let
ts be the earliest non-busy instant in [td, td + y), as
illustrated in Fig. 6. By Prop. 1, at most m − 1 tasks
have pending jobs in H at ts. Moreover, since no jobs
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Time 

t d
yt d



 1

 2

m

Busy interval

 lk ,

Fig. 5: [td, td + y) is a busy interval.

in H can be released after td, we have the following
property.

Property 4. At most m − 1 tasks have pending jobs
in H at or after ts. This implies no job in H would be
preempted at or after ts.

There are two sub-cases to consider.

Case 2.1: τk,l is executing at ts. By Props. 4 and 2,
we have

fk,l ≤ ts +
Ck − ηk,l
vπk

{by Eq. (2)}

≤ td + y +
Ck − ηk,l

uk
{by Eq. (8)}

≤ td + x+
ηk,l
Rsum

+
Ci − ηk,l

uk

≤ td + x+
Ck
uk

= td + x+ Tk.

Thus, the response time of τk,l is not more than
fk,l − rk,l = fk,l − td + Tk ≤ x+ 2 · Tk.

Case 2.2: τk,l is not executing at ts. In this case,
ηk,l = 0, and the predecessor job τk,l−1 has not
completed by ts. Because dk,l−1 = td − Tk < td , by
Assumption 1, fk,l−1 ≤ rk,l−1+x+2·Tk ≤ rk,l+x+Tk.
Thus, combined with Props. 4 and 2,

fk,l ≤ fk,k−1 +
Ck
vπk

≤ rk,l + x+ Tk +
Ck
vπk

{by Eq. (2)}

≤ rk,l + x+ Tk +
Ck
uk

= rk,l + x+ 2 · Tk.

The response time of τk,l is thus not more than x+2·Tk.

By the above discussion, in either case, Lemma 1
holds.

Time 

t d
ytd



m

Busy interval

Some proc. is  idle

t s

 lk ,

 2

 1

Fig. 6: [td, td + y) is a non-busy interval.

6.2 Upper Bound on LAG(H, td, S)

In this section, we determine an upper bound on
LAG(H, td, S) under Assumption 1.

Definition 7. Let tn ≤ td be the latest non-busy instant
by td for H, if any; otherwise, tn = 0.

By the above definition and Prop. 3, we have

LAG(H, td, S) ≤ LAG(H, tn, S). (9)

Lemma 2. For any task τi, if τi has one or more pending
jobs at tn in the preemptive GEDF-H schedule S, then we
have

lag(τi, tn, S) ≤

{
Ci if di,j ≥ tn
ui · x+ 2 · Ci − ui·Ci

αmax
if di,j < tn

where di,j is the deadline of the earliest released pending
job of τi, τi,j , at time tn in S.

Proof: Let ηi,j (ηi,j < Ci) be the amount of work
τi,j performs before tn in the preemptive GEDF-H
schedule.

In the both PS schedule and preemptive GEDF-
H schedule S, because the job released before
τi,j has completed, we have lag(τi, tn, S) =∑
h≥j lag(τi,h, tn, S) =

∑
h≥j

(
A(τi,h, 0, tn, PS) −

A(τi,h, 0, tn, S)
)
. By the definition of A(τi,j , t1, t2, S),

A(τi,h, 0, tn, S) = A(τi,h, ri,h, tn, S). Thus,

lag(τi, tn, S)

= A(τi,j , ri,j , tn, PS)−A(τi,j , ri,j , tn, S)

+
∑
h>j

(
A(τi,h, ri,h, tn, PS)

−A(τi,h, ri,h, tn, S)
)
. (10)

By the definition of PS schedule,

A(τi,j , ri,j , tn, PS) ≤ Ci,

and∑
h>j

A(τi,h, ri,h, tn, PS) ≤ ui ·max(0, tn − di,j).

In the preemptive GEDF-H schedule S, by the selec-
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tion of τi,j ,

A(τi,j , ri,j , tn, S) = ηi,j

and ∑
h>j

A(τi,h, ri,h, tn, S) = 0.

By setting these values into Eq. (10), we have

lag(τi, tn, S) ≤ Ci − ηi,j + ui ·max(0, tn − di,j). (11)

There are two cases to consider.

Case 1. di,j ≥ tn. In this case, Eq. (11) implies
lag(τi, tn, S) ≤ Ci − ηi,j ≤ Ci.

Case 2. di,j < tn. In this case, the earliest possible
completion time of τi,j is tn+

Ci−ηi,j
αmax

(executes on the
fastest processor without being preempted). Thus,

fi,j ≥ tn +
Ci − ηi,j
αmax

(12)

Because di,j < tn = td, τi,j is not the job τk,l. Thus,
by Assumption 1, the response time of τi,j is at most
x+ 2 · Ti. Hence,

fi,j − ri,j ≤ x+ 2 · Ti = x+ Ti + di,j − ri,j (13)

By, Eqs. (12) and (13),

tn − di,j ≤ x+
ηi,j
αmax

+ Ti −
Ci
αmax

. (14)

Setting this value into Eq. (11), we have

lag(τi, tn, S)

≤ Ci − ηi,j + ui · (x+
ηi,j
αmax

+ Ti −
Ci
αmax

)

≤ ui · x+ Ci + ui · (Ti −
Ci
αmax

)

= ui · x+ 2 · Ci −
ui · Ci
αmax

(15)

Lemma 2 thus follows.

As a consequence of the above discussion, Lemma 3
below upper bounds LAG(H, td, S).

Lemma 3. With Assumption 1, LAG(H, td, S) ≤ Um−1 ·
x+ 2 · Cm−1 − Vm−1

αmax
.

Proof: The upper bound of LAG(H, tn, S) can be
derived by summing the individual task lags at tn.
Given that the instant tn is non-busy, by Prop. 1, at
most m−1 tasks have pending jobs at tn. Let ξ denote
the set of such tasks. Note that, if a task τi does not
have a pending job at tn in the preemptive GEDF-H
schedule S, lag(τi, tn, S) ≤ 0. Therefore, by Eq. (9), we

have

LAG(H, td, S)

≤ LAG(H, tn, S)

=
∑
τi∈τ

lag(τi, tn, S) {by Eq. (7)}

≤
∑
τi∈ξ

lag(τi, tn, S)

{by Lemma 2}

≤
∑
τi∈ξ

(
ui · x+ Ci + ui ·

(
Ti −

Ci
αmax

))
=

∑
τi∈ξ

(
ui · x+ 2 · Ci −

ui · Ci
αmax

)
=

∑
τi∈ξ

ui · x+
∑
τi∈ξ

2 · Ci −
∑
τi∈ξ

ui · Ci
αmax

(16)

By Def. 1, ∑
τi∈ξ

ui · x+
∑
τi∈ξ

2 · Ci −
∑
τi∈ξ

ui · Ci
αmax

≤ Um−1 · x+ 2 · Cm−1 −
V m−1
αmax

Lemma 3 thus follows.

6.3 Determining the value of x
Setting the upper bound on LAG(H, td, S) in Lemma 3
to be at most the safe bound in Lemma 1 will ensure
that the response time of τk,l is at most x + 2 · Tk.
The resulting inequality can be used to determine a
value for x. By Lemmas 1 and 3, this inequality is
Rsum · x + Tk ≥ Um−1 · x + 2 · Cm−1 − Vm−1

αmax
. Solving

for x, to make a x valid for all tasks, we have

x ≥
2 · Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
. (17)

By Usum ≤ Rsum and Def. 1, Um−1 < Rsum clearly
holds. Let

x∗ = max(0,
2 · Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
), (18)

then the response time of any job τi,j will not exceed
x∗ + 2 · Ti in S.

By the above discussion, the theorem below follows.

Theorem 1. The response time of any task τi scheduled
under preemptive GEDF-H is at most x+ 2 · Ti, provided
Usum ≤ Rsum, where

x = max(0,
2 · Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
), (19)

7 NON-PREEMPTIVE GEDF-H ANALYSIS

We now present our analysis for non-preemptive
GEDF-H scheduling.
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Fig. 7: Blocking instant.

Let τk be an arbitrary task in τ and τk,l be an
arbitrary job of task τk, td = dk,l, and S∗ be a
non-preemptive GEDF-H schedule S∗ for τ with the
following assumption.

Assumption 2. The response time of every job τi,j ,
where τi,j has higher priority than τk,l is at most x+
2 · Ti in S∗, where x ≥ 0.

In the analysis of GEDF-H scheduling, only the
workload pending for jobs in H can compete with τk,l.
However, under non-preemptive GEDF-H, jobs not in
H are still able to compete with τk,l, because a job
cannot be preempted once it starts to execute. Hence,
the pending workload from blocking jobs should be
taken into consideration. We first define following
terms for the non-preemptive case.

Definition 8. Let H∗ denote the set of jobs not in H
that block one or more jobs in H at time instant td and
may continue to execute at td under non-preemptive
GEDF-H schedule S∗. Let B(H∗, td, S∗) denote the
total workload pending for jobs in H∗ at td.

Definition 9. For any time instant t, if there exists
an ε > 0 such that during interval [t, t + ε) there is
an enabled job τi1,j1 in H is not executing while any
job τi2,j2 in H∗ is executing on some processor during
this interval, we say τi1,j1 is blocked by τi2,j2 at time
t where τi1,j1 is a blocked job, τi2,j2 is a blocking job and
t is a blocking instant.

Fig. 7 illustrates the blocking instant. Suppose we
have two tasks running on one processor. As shown
in the figure, at time instant t, even though τ2,2 is
enabled and has a higher priority than that of τ1,2,
τ2,2 cannot execute under the non-preemptive GEDF-
H. In this example, t is a blocking instant, τ1,2 is a
blocking job and τ2,2 is a blocked job.

Definition 10. An interval [a, b) is a blocking interval
if every instant in it is a blocking instant. A blocking
interval is said to be a maximal blocking interval if for
any c < a, [c, b) cannot be a blocking interval.

The following properties directly follows from the
definition above.

Property 5. No processor is idle at any instant t within
a blocking interval [a, b).

Property 6. Consider a blocking interval [a, b). Sup-
pose job τi2,j2 in H∗ blocks one or more jobs in H at
time instant b. Then τi2,j2 must execute at time instant
a.

Proof: Suppose t
′

is a blocking instant in [a, b) and
job τi1,j1 in H is a blocked job at t

′
. Hence, GEDF-H

scheduler would choose τi1,j1 to execute at t
′

instead
of τi2,j2 . Thus τi2,j2 cannot commence to execute at
any time instant within [a, b) and therefore must be
executing at a.

Property 7. Consider a maximal blocking interval
[a, b). If task τi1 is not executing at a, then it has no
job in H pending at time instant a.

Proof: Let τi2,j2 be a blocking job at time instant
a. We prove by contradiction. Suppose τi1 is not
executing at a and it has a job, namely τi1,j1 , in
H pending at a. Let ri1,j1 and si2,j2 be the release
time of τi1,j1 and the start time of τi2,j2 . By Def.
3, τi1,j1 is released before a, i.e., ri1,j1 < a; by and
Prop. 6, si2,j2 < a. Thus, τi1,j2 is blocked by τi2,j2 in
[max(ri1,j1 , si2,j2), a). This contradicts that [a, b) is a
maximal blocking interval.

Now let us consider how to find the response time
bound for the non-preemptive case. By the discussion
above, the total pending work that can compete with
τk,l after td is given by

LAG(H, td, S∗) +B(H∗, td, S∗). (20)

Analogous to the analysis of preemptive GEDF-H
schedule in Sec. 6, we follow the three steps below to
determine the value of x for the non-preemptive case.

1) Determine a safe bound on LAG(H, td, S∗) +
B(H∗, td, S∗) required for the response time of
τk,l to exceed x + 2 · Tk, under the Assumption
2. This is dealt with in Lemma 4 in Sec. 7.1.

2) Determine an upper bound on LAG(H, td, S) +
B(H∗, td, S∗) under the Assumption 2. This is
dealt with in Lemma 7 in Sec. 7.2.

3) Determine the smallest x such that the response
time of τk,l is at most x+ 2 · Tk, using the above
safe and upper bounds. This is dealt with in
Theorem 2 in Sec. 7.3.

7.1 Safe Bound on LAG(H, td, S∗) +B(H∗, td, S∗)

To find a safe bound on LAG(H, td, S∗)+B(H∗, td, S∗),
we have the following parallel lemma for non-
preemptive GEDF-H schedule S∗.

Lemma 4. If LAG(H, td, S∗) + B(H∗, td, S∗) ≤ Rsum ·
x+Tk and the Assumption 2 holds, then the response time
of τk,l is at most x+ 2 · Tk.
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Proof: This proof is similar to the proof of Lemma
1. We only show the sketch of the proof. Let ηk,l be
the amount of work τk,l performs by time td in S,
0 ≤ ηk,l < Ck. Define y as follows.

y = x+
ηk,l
Rsum

(21)

We consider the following two cases.

1) Case 1. [td, td+y) is a busy interval for H
⋃

H∗.
2) Case 2. [td, td + y) is a non-busy interval for

H
⋃

H∗.

Following the same analysis in the proof of Lemma
1, Lemma 4 directly follows.

7.2 Upper Bound on LAG(H, td, S∗) +B(H∗, td, S∗)

For the non-preemptive case, in order to find the
upper bound on LAG(H, td, S∗) + B(H∗, td, S∗), we
first present the analysis of the maximal blocking
interval.

Lemma 5. Suppose [t1, t2), where t2 ≤ td is a maximal
blocking interval. If τi has a job in H that is executing at
t1, then

lag(τi, t1, S
∗) ≤ ui · x+ 2 · Ci −

ui · Ci
αmax

. (22)

Proof: Let τi,j be the job of τi in H that is executing
at t1 and ηi,j (ηi,j < Ci) be the amount of work τi,j
performs before t1 in the non-preemptive GEDF-H
schedule S∗.

Case 1: di,j < t1. Because τi,j cannot be preempted,
the earliest time instant at which τi,j could complete

is t1 +
Ci − ηi,j
αmax

. We have

fi,j ≥ t1 +
Ci − ηi,j
αmax

. (23)

and, by Assumption 2,

fi,j − ri,j ≤ x+ 2 · Ti. (24)

Thus,

t1 − di,j = t1 − (ri,j + Ti)

{by Eq. (24)}
≤ t1 − (fi,j − x− Ti)
{by Eq. (23)}

≤ ηi,j − Ci
αmax

+ x+ Ti (25)

Because both in the PS schedule and non-preemptive
GEDF-H schedule the job of τi released be-
fore τi,j has completed by t1, lag(τi, t1, S

∗) =∑
h≥j lag(τi,h, t1, S

∗). In the PS schedule,∑
h≥j

A(τi,h, 0, t1, PS) = (t1 − ri,j) · ui (26)

and in the non-preemptive GEDF-H schedule,∑
h≥j

A(τi,h, 0, t1, S
∗) = ηi,j (27)

Thus,

lag(τi, t1, S
∗)

=
∑
h≥j

lag(τi,h, t1, S
∗)

{by Eq. (3)}
=

∑
h≥j

A(τi,h, 0, t1, PS)−
∑
h≥j

A(τi,h, 0, t1, S
∗)

{by Eqs. (26) and (27)}
= (t1 − ri,j) · ui − ηi,j
= (t1 − di,j + Ti) · ui − ηi,j
= (t1 − di,j) · ui + Ci − ηi,j
{by Eq. (25)}

≤ (
ηi,j − Ci
αmax

+ x+ Ti) · ui + Ci − ηi,j

= ui · x+ Ci + ui · (Ti −
Ci
αmax

) + (
ui

αmax
− 1) · ηi,j

≤ ui · x+ Ci + ui · (Ti −
Ci
αmax

)

= ui · x+ 2 · Ci +−ui · Ci
αmax

Case 2: di,j ≥ t1. In this case, t1 − ri,j ≤ Ti and Eqs.
26 and 26 still hold. Thus, similar to Case 1,

lag(τi, t1, S
∗)

=
∑
h≥j

lag(τi,h, t1, S
∗)

=
∑
h≥j

A(τi,h, 0, t1, PS)−
∑
h≥j

A(τi,h, 0, t1, S
∗)

= (t1 − ri,j) · ui − ηi,j
≤ Ti · ui − ηi,j
= Ci − ηi,j
≤ Ci (28)

Therefore, in either case, Lemma 5 holds.

The following lemma is crucial for the analysis of
non-preemptive GEDF-H.

Lemma 6. Suppose [t1, t2) is a blocking interval. Then,
LAG(H, t2, S∗) + B(H∗, t2, S∗) < LAG(H, t1, S∗) +
B(H∗, t1, S∗) .

Proof: Let Wd and Wd∗ respectively be the amount
of workload done by jobs in H and H∗ during [t1, t2)
in the non-preemptive GEDF-H schedule S∗. There-
fore,

A(τ, t1, t2, S
∗) = Wd

and, in the PS schedule,

A(τ, t1, t2, PS) = (t2 − t1) · Usum.
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Therefore,

LAG(H, t2, S∗)− LAG(H, t1, S∗)
= A(τ, t1, t2, PS)−A(τ, t1, t2, S

∗)

= (t2 − t1) · Usum −Wd (29)

By the definition of B(H∗, t, S∗),

B(H∗, t2, S∗) = B(H∗, t1, S∗)−Wd∗ (30)

By Prop. 5, no processor is idle at any time instant
within [t1, t2), thus Wd +Wd∗ = (t2 − t1) ·Rsum. As a
consequence of the above discussion,

LAG(H, t2, S∗)− LAG(H, t1, S∗) +B(H∗, t2, S∗)
{by Eqs. (29) and (30)}

= B(H∗, t1, S∗) + (t2 − t1) · Usum −Wd −Wd∗

= B(H∗, t1, S∗) + (t2 − t1) · (Usum −Rsum)

≤ B(H∗, t1, S∗) (31)

Lemma 6 thus follows.

After the above preparing work, we try to find an
upper bound on LAG(H, td, S∗) +B(H∗, td, S∗).

Lemma 7. With Assumption 2, LAG(H, td, S∗) +

B(H∗, td, S∗) ≤ Um−1 · x+ Cm + Cm−1 − Vm−1

αmax
.

Proof: we consider two cases depending on
whether td is a blocking instant.

Case 1: td is not a blocking instant. In this case,
by Def. 9, H∗ is empty and B(H∗, td, S∗) = 0. Thus,
the analysis of this case is the same as that of the
preemptive case as shown in Lemmas 2 and 3. We
have

LAG(H, td, S∗) +B(H∗, td, S∗)
= LAG(H, td, S∗)

≤ Um−1 · x+ 2 · Cm−1 −
V m−1
αmax

≤ Um−1 · x+ Cm−1 + Cm −
V m−1
αmax

Case 2: td is a blocking instant. Let [t∗, td) be the
maximal blocking interval.

We first consider the upper bound on
LAG(H, t∗, S∗) + B(H∗, t∗, S∗). By Prop. 7, if task τi
is not executing at t∗, it has no job in H pending at
t∗ and, by Prop 6, it has not job in H∗. Thus, such
tasks cannot contribute to either LAG(H, t∗, S∗) or
B(H∗, t∗, S∗). Let ξd be set the of tasks that have a
job in H that is executing at t∗ and ξd∗ be set the of
tasks that have a job in H∗ that is executing at t∗.

Thus,

LAG(H, t∗, S∗)

=
∑
τi∈ξd

lag(τi, t
∗, S∗)

{by Lemma (5)}

≤
∑
τi∈ξd

(
ui · x+ 2 · Ci −

ui · Ci
αmax

)
(32)

By Prop. 6, each task τi in ξd∗ has only one job in H∗

so it contributes at most Ci to B(H∗, t∗, S∗). Thus,

B(H∗, t∗, S∗) ≤
∑
τi∈ξd∗

Ci (33)

Note that there are m tasks in ξd
⋃
ξd∗ and at most

m− 1 tasks in ξd. By Eqs. (32) and (33), we have

LAG(H, t∗, S∗) +B(H∗, t∗, S∗)

≤
∑
τi∈ξd

(
ui · x+ 2 · Ci −

ui · Ci
αmax

)
+
∑
τi∈ξd∗

Ci

=
∑
τi∈ξd

(ui · x+ Ci +
ui · Ci
αmax

) +
∑

τi∈ξd∪ξd∗
Ci

≤ Um−1 · x+ Cm−1 −
V m−1
αmax

+ Cm (34)

Combine with Lemma 6,

LAG(H, td, S∗) +B(H∗, td, S∗)
≤ LAG(H, t∗, S∗) +B(H∗, t∗, S∗)

≤ Um−1 · x+ Cm + Cm−1 −
V m−1
αmax

Lemma 7 thus follows.

7.3 Determining the values of x
Similar to the analysis in Sec. 6.3, in order to find a
value for x that ensures the value of LAG(H, td, S∗)+
B(H∗, td, S∗) is less than the safe bound, we set
the upper bound to be at most the safe bound. By
Lemmas 4 and 7, this inequality is Rsum · x + Tk ≥
Um−1 ·x+Cm+Cm−1− Vm−1

αmax
. Solving for x, to make

a x valid for all tasks, we have

x ≥
Cm + Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
.

By Usum ≤ Rsum and Def. 1, Um−1 < Rsum clearly
holds. Let

x∗ = max(0,
Cm + Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
), (35)

then the response time of each job in τi will not exceed
x∗ + 2 · Ti in the non-preemptive GEDF-H schedule.

By the above discussion, the theorem below follows
for the non-preemptive case.

Theorem 2. The response time of any task τi scheduled
under non-preemptive GEDF-H is at most x + 2 · Ti,
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provided Usum ≤ Rsum, where

x = max(0,
Cm + Cm−1 − Vm−1

αmax
− Tmin

Rsum − Um−1
), (36)

8 EXPERIMENT

Although GEDF-H ensures SRT schedulability with
no utilization loss under both preemptive and non-
preemptive scheduling, the magnitude of the result-
ing response time bound is also important. In this
section, we describe the experiments conducted using
randomly-generated task sets to evaluate the applica-
bility of the response time bound given in Theorems
1, and 2. Our goal is to examine how large the
magnitude of response time is.

8.1 Experimental setup

We set the processor platform in our experiment close
to the Intel’s QuickIA uniform heterogeneous pro-
totype platform [7]. The QuickIA platform contains
two kinds of processors and each kind contains two
processors. We assume that two of the processors π1
and π2 have unit speed and the other two processors
π3 and π4 have two-unit speed, i.e., α1 = 1 and α2 = 2.
The unit time is assumed to be 1ms.

By the definitions of Ψ and Φ, we have Ψ0 =
{π1, π2, π3, π4}, |Ψ0| = 4, Ψ1 = {π3, π4} and |Ψ1| = 2.
We generated tasks as follows.

The minimum inter-arrival time Ti of tasks ranged
from 100ms to 1000ms. First, we generated tasks in
Φ1. According to Eq. (1), |Φ1| ≤ |ψ1| = 2 and the
utilization of tasks in Φ1 is at most 2. We thus first
randomly generated the number of tasks in Φ1 from
0 to 2, and task utilizations were generated using
the uniform distribution (1, 2]. Task execution costs
were calculated from Ti and utilizations. Then, we
generated tasks in Φ0/Φ1. The utilization of tasks in
Φ0/Φ1 is not more than 1. In the first experiment, these
task utilizations were generated using three uniform
distributions:

1) Light:[0.001, 0.05]
2) Medium:[0.05, 0.2]
3) Heavy: [0.2, 0.5]

In the second experiment, the minimum inter-arrival
time of each task was fixed by 100ms, 500ms and
1000ms, and the per-task utilization ranged from 0.1
to 1.

For each experiment, 100,000 task systems were
generated. Each such task system was generated by
creating tasks until total utilization exceeded Rsum =
6, and by then reducing the last task’s utilization so
that the total utilization equaled Rsum. We recorded
the maximum response time bound, the minimum
response time bound, and the average response time
bound among the task systems.

8.2 Results Analysis
The obtained results are shown in Fig. 8 (the organi-
zation of which is explained in the figure’s caption).
Each graph in Fig. 8 contains six curses, which plots
the calculated maximum response time bound, av-
erage response time bound, and minimum response
time bound among all task systems in the system by
using the formulas in Theorems 1, and 2, respectively.

In all of the six graphs, the differences of the
response time bound between the two cases (i.e.,
preemptive and non-preemptive) are not significant,
especially when the utilization is light as shown in
Figs. 8(e).

In the first experiment, as seen in Figs. 8(a), (c),
and (e), in all tested scenarios, the maximum re-
sponse time bound is smaller than seven task relative
deadlines, while the average response time bound is
close to three task relative deadlines. One observation
herein is that when task utilizations become heavier,
the response time bounds increase. This is intuitive
because the denominator of Eqs. (19) and (36) be-
comes smaller when task utilizations are heavier.

In the second experiment, under three fixed mini-
mum inter-arrival time scenarios as seen in Figs. 8(b),
(d), and (f), the response time bounds under GEDF-H
slightly increase along with the increase of the average
task utilization of the system. Specifically, we recorded
the ratio of the derived response time bound to the
relative deadline of each task. Fig. 9 clearly shows
that such ratio is not larger 4 and smaller than 3 in
the most cases.

Note that if we increase the maximum speed (i.e.,
αmax) of the processors without changing the total
resource capacity (i.e., Rsum), the response time bound
shall correspondingly increase, as suggested by Eqs.
(19) and (36).

9 SIMULATION

In order to further evaluate the proposed schedul-
ing algorithm and the corresponding response time
bound, we have done simulations on randomly gen-
erated task systems scheduled under both the pre-
emptive GEDF-H in Algorithm 1 and the original
GEDF with random processor selection policy (termed
as GEDF-R). The partitioning and semi-partitioning
algorithms are not considered in our simulations,
because in this paper we only focus on the global
approach where the bin-packing-related loss can be
avoided. We have done sets of simulations on task
systems with different parameters and we could al-
ways have the following conclusions:

1) The response time bound derived in Theorem 1
is indeed a safe bound.

2) The theoretical response time bound is less than
twice of the simulated response time.

3) GEDF-H is superior to GEDF-R with respect to
the response time. Moreover, with the random
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(a) Heavy task utilization
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(b) Medium task utilization
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(c) Light task utilization
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(d) Relative deadline = 100ms
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(e) Relative deadline = 500ms
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(f) Relative deadline = 1000ms

Fig. 8: Response time bounds. In all six graphs, the y-axis denotes the response time bound value. Each graph gives
six curves plotting the maximum, average, and minimum response time bound among the generated task systems. The
labels ”GEDF-H” and ”NP-GEDF-H” are used for the preemptive GEDF-H and non-preemptive GEDF-H, respectively.
In the first column of graphs, the x-axis denotes the task periods. Heavy, medium, and light task utilizations are assumed
in insets (a), (c), and (e), respectively. In the second column of graphs, the x-axis denotes the per-task utilization of the
generated task system. Three specific values of minimum inter-arrival time, 100ms, 500ms, and 1000ms, are assumed in
insets (b), (d), and (f), respectively.
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processor selection rule, the response time of the
task is prone to grow to be unbounded.

Consider that the results of simulations with differ-
ence parameters are similar, we only show one set of
simulation with detailed description.

9.1 Setup

We simulated six tasks running on two processors,
where τ1 = (60, 50), τ2 = (20, 60), τ3 = (40, 70),
τ4 = (20, 40), τ5 = (20, 80), τ6 = (10, 80), vπ1

= 2
and vπ2

= 1. In this set of simulation, we have
Usum = 3 = Rsum, which means the total utilization
has reached its limitation. We simulated for 10000 time
units and recorded the results for the first 500 jobs of
each task.

9.2 Results Analysis
The simulation results are shown in Fig. 10 where the
organization is explained in the figure’s caption.

In this set of simulation, the response time of each
job scheduled under preemptive GEDF-H never ex-
ceeds its theoretical bound, which verifies the correct-
ness of our analysis in Sec. 6.

As shown in the figure, the response time bound
derived in this paper is not larger than twice of
the simulated response time. Given that the response
time bound is derived by considering the worst-
case scenarios, the difference between our bound and
simulated response time is reasonable.

Moreover, the GEDF-H algorithm proposed in this
paper is superior to the GEDF-R which randomly
selects processors for tasks. As the figures suggest,
the response time under GEDF-H fluctuates within a
bounded range while it unboundedly increases along
with the job ID under GEDF-R. Such a result implies
that on a uniform heterogeneous multiprocessor plat-
form, an appropriate processor selection strategy is
critical.

10 CONCLUSION

We have shown that SRT sporadic task systems can
be supported on a uniform heterogeneous multipro-
cessor with no utilization loss provided bounded
response time is acceptable. The scheduling algorithm
proposed in this paper is identical to GEDF except
that it enforces a specific processor selection rule
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Fig. 10: Simulation Results. In all six graphs, the y-axis
and x-axis denote the response time (ms) and the job ID,
respectively. In each graph, the horizontal line denotes the
response time bound of each job scheduled under GEDF-H,
and the lines labled ”GEDF-H” and ”GEDF-R” respectively
show the response time of each job scheduled under GEDF-
H and GEDF-R in the simulation.

which is critical on heterogeneous multiprocessors.
GEDF-H and NP-GEDF-H could be implemented in
real-time operating systems and hypervisors to co-
ordinate processes or virtual machines with timing
requirements. As demonstrated by experiments pre-
sented herein, GEDF-H is able to guarantee schedu-
lability with no utilization loss while providing pre-
dicted response time. Besides, compared with the
simulation results the response time bound derived
in this paper is not only safe but also reasonably
tight. Compared to GEDF, GEDF-H may incur more
job migrations among processors due to the specific
processor selection rule. However, without such a
processor selection rule, the bounded response time
may not be guaranteed. For the future work, we plan
to design better algorithm that can reduce the job
migration cost. Also it would be interesting to extent
this work to hard-real systems and self-suspending
task systems.
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