Guest Lectures for Dr. MacFarlane's EE3350

Michael Plante

Sat., 11-08-2008

Write name in corner.

1. Problem Statement

- Formulas simplified, not applicable at RF
- Noise Factor given by:

$$
F_{0}=\frac{(\text { noise total @ output) }}{(\text { noise from src @ output) }}=1+\frac{(\text { noise from amp @ output })}{(\text { noise from src @ output })}
$$

- Can be rewritten as:

$$
F_{0}=\frac{(\text { noise tot @ out })}{(\text { gain })(\text { src noise } @ \operatorname{inp})}=\frac{(\text { noise tot @ out })}{(\text { gain })(\operatorname{src} \text { noise } @ \operatorname{inp})} \frac{(\text { sig @ inp })}{(\text { sig @ out })}=\frac{(\mathrm{SNR})_{\text {in }}}{(\mathrm{SNR})_{\text {out }}}>1
$$

- Will use previous formula here, but latter formula useful for nonlinear systems
- Measures noisiness of amp, relative to source noise
- Noise Figure - $\quad N F=10 \log _{10} F_{0}>0(\mathrm{~dB})$

2. Superposition Review

- Short voltage, Open current

- We'll add RMS 2 output noise voltages

3. PSD Primer

Bendat and Piersol p. 131

$$
S_{x x}(f)=\int_{-\infty}^{\infty} R_{x x}(\tau) e^{-j 2 \pi f \tau} \mathrm{~d} \tau \quad G_{x x}(f)=2 S_{x x}(f)
$$

- FT of autocorrelation; used for random signals, while FT of signal itself used for deterministic signals
- We will use one-sided PSD here, as that is more common; 2-sided is half as large

$$
\begin{aligned}
& 20 \log _{10} \frac{V}{V_{0}}=10 \log _{10} \frac{V^{2}}{V_{0}^{2}} \\
& \text { area }=4 k T R \Delta f\left(\mathrm{~V}^{2}\right) \\
& \mathrm{V}_{\mathrm{RMS}}=\sqrt{\operatorname{area}}=\sqrt{4 k T R \Delta f} \\
& \text { area }=4 k T \Delta f / R\left(\mathrm{~A}^{2}\right)
\end{aligned}
$$

- talk dB/dec
- talk equal power per linear range or per decade/octave
- Johnson noise (WGN), $k \approx 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, k \approx 4 \times 10^{-21} \mathrm{~J} @ 289.9 \mathrm{~K}$ or $62.2^{\circ} \mathrm{F}$
- ${ }^{1 / f}$ and $|H(\omega)|^{2}$ (Bode/Controls), origin annoyance, just use it
- Shot noise from discrete events (photons/electrons), rain on tin roof, white, area $=2 q I \Delta f\left(\mathrm{~A}^{2}\right)$
- Reduced by metal film resistors and some types of feedback, not covered
- $q \approx 1.602 \times 10^{-19} \mathrm{C}$, shot: $1 \mathrm{~mA}_{\mathrm{DC}} \Rightarrow 17.90 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, Johnson: $62.5 \Omega @ 289.9 \mathrm{~K} \Rightarrow 1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Hit flicker, popcorn, avalanche

4. Nonideal Op Amp Primer

- Harry Black, 1927 negative feedback amp, 1934 paper, 1937 patent, permitted operational amplifiers, used in analog computers
- Talk input Z, gain, dominant pole, second pole, output resistance, internal compensation
- Talk about ${ }^{1 / f}$, white, averaging operation to get effective noise
- Mention stability and second pole
- Mention ideal op-amp problem (equal V, 0 I), and the fact that another problem will come up
- Draw (not shown separately here) noisy ideal opamp, talk noise src dominance

Figure 4.1: Noise in TI/BB OPA2350

- Good GP op-amp, chose arbitrary BW of 180 kHz to 220 kHz , meaning $\Delta f=40000 \mathrm{~Hz}$
- $e_{n}=5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ or $e_{n^{\prime}}=1 \mu \mathrm{~V}_{\mathrm{RMS}}$
- Fit from 10 k to 10 MHz gives $i_{n}(f) \approx f / 2500 \mathrm{fA} / \sqrt{\mathrm{Hz}}$

$$
i_{n} \rightarrow \sqrt{\frac{1}{40000} \int_{180000}^{220000} \frac{f^{2}}{2500^{2}} \mathrm{~d} f} \approx 80^{\mathrm{fA}} / \sqrt{\mathrm{Hz}} \text { or } i_{n^{\prime}}=16 \mathrm{pA}_{\mathrm{RMS}}
$$

5. Inverting Operational Amplifier

- Define $R_{1}^{\prime}=R_{1}+R_{S}$. Choice of R_{3} as either R_{2} in parallel with R_{1}^{\prime} or as zero. Talk bias I.
- $R_{S}=75 \mathrm{k}, R_{1}=75 \mathrm{k}, R_{2}=300 \mathrm{k}, R_{3}=100 \mathrm{k}, R_{1}^{\prime}=150 \mathrm{k}$
- $V_{S}, e_{R S}$, and $e_{R 1}$ all see the same gain; $e_{R 3}, e_{n}$, and $i_{n p} R_{3}$ all see the same gain.

Figure 5.1: Noise Sources in Inverting Operational Amplifier

Source	Node Voltage	RMS	Noise $\left(\mu \mathrm{V}^{2}\right)$
R_{S}		$e_{r s} R_{2} / R_{1}^{\prime}$	192
R_{1}		$e_{r 1} R_{2} / R_{1}^{\prime}$	192
R_{2}		$e_{r 2}$	192
R_{3}	$\frac{e_{r 3}}{R_{1}^{\prime}}=\frac{v_{0}-e_{r 3}}{R_{2}}$	$e_{r 3}\left(1+R_{2} / R_{1}^{\prime}\right)$	576
$e_{n^{\prime}}$		$e_{n^{\prime}}\left(1+R_{2} / R_{1}^{\prime}\right)$	9
$i_{n n}$	$i_{n n}+\frac{0-v_{0}}{R_{2}}=0$	$i_{n n} R_{2}$	23.04
$i_{n p}$		$i_{n p} R_{3}\left(1+R_{2} / R_{1}^{\prime}\right)=i_{n p} R_{2}$	23.04

- Noise from amp at output:

$$
\begin{aligned}
& \frac{1}{R_{1}^{\prime 2}}\left[e_{r 1}^{2} R_{2}^{2}+e_{r 2}^{2} R_{1}^{\prime 2}+e_{r 3}^{2}\left(R_{1}^{\prime}+R_{2}\right)^{2}+e_{n^{\prime}}^{2}\left(R_{1}^{\prime}+R_{2}\right)^{2}+i_{n n}^{2} R_{2}^{2} R_{1}^{\prime 2}+i_{n p}^{2} R_{2}^{2} R_{1}^{\prime 2}\right] \\
= & \frac{1}{R_{1}^{\prime 2}}\left[4 k T \Delta f\left(R_{1} R_{2}^{2}+R_{2} R_{1}^{\prime 2}+R_{1}^{\prime} R_{2}\left(R_{1}^{\prime}+R_{2}\right)\right)+e_{n^{\prime}}^{2}\left(R_{1}^{\prime}+R_{2}\right)^{2}+i_{n n}^{2} R_{2}^{2} R_{1}^{\prime 2}+i_{n p}^{2} R_{2}^{2} R_{1}^{\prime 2}\right]
\end{aligned}
$$

- Noise from src at output:

$$
\frac{1}{R_{1}^{\prime 2}}\left[4 k T \Delta f R_{S} R_{2}^{2}\right]
$$

- Johnson noise from amp is $960 \mu \mathrm{~V}^{2}$ at output
- Other noise from amp is $55.08 \mu \mathrm{~V}^{2}$ at output
- Johnson noise from src is $192 \mu \mathrm{~V}^{2}$ at output
- $F_{0}=1+5+\frac{459}{1600} \approx 6.3$ or $N F \approx 10 \log _{10} 6.3 \approx 8.0 \mathrm{~dB}$

6. Instrumentation Amplifier

- Talk CMRR (50-60 dB @ 200kHz) and high input Z (10 T Ω)

Figure 6.1: Noiseless Instrumentation Amplifier

- $v_{O}-v_{3}=v_{3}-v_{1}$ and $-v_{3}=v_{3}-v_{2}$ give $v_{O}=v_{2}-v_{1}$, so the difference propagates with unity gain through the final stage and the common mode signal is greatly attenuated.
- In the first stage:

$$
\frac{v_{1}-v_{-}}{R_{2}}=\frac{v_{-}-v_{+}}{R_{1}}=\frac{v_{+}-v_{2}}{R_{2}}
$$

- Solving:

$$
v_{1}=\frac{\left(R_{1}+R_{2}\right) v_{-}-R_{2} v_{+}}{R_{1}}, \quad v_{2}=\frac{\left(R_{1}+R_{2}\right) v_{+}-R_{2} v_{-}}{R_{1}}, \quad v_{2}-v_{1}=\left(v_{+}-v_{-}\right)\left(1+\frac{2 R_{2}}{R_{1}}\right)
$$

- Take $R_{1}=13 \mathrm{k}, R_{2}=91 \mathrm{k}, R_{S}=10 \mathrm{M}, R_{3}=10 \mathrm{k}$.

- $e_{n 1}, e_{n 2}$ and $e_{R S}$ all see the same gain; $e_{R 2 a}$ and $e_{R 2 b}$ see the same gain; $i_{n p 1}$ and $i_{n p 2}$ see the same gain; $i_{n n 1}$ and $i_{n n 2}$ see the same gain

- $R_{3 b}$ and $R_{3 d}$ see the same gain.

Source	Node Voltage	RMS	Noise ($\mu \mathrm{V}^{2}$)
$R_{3 a}$	$\frac{e_{R 3 a}}{R_{3}}=\frac{-v_{0}}{R_{3}}$	$e_{\text {R3a }}$	6.4
$R_{3 b}$		$e_{R 3 b}$	6.4
$R_{3 c}$	$\frac{R_{3}-e_{\text {R } 3 c}}{R_{3}}=0$	$e_{R 3 c}$	6.4
$e_{n 3}$	$\frac{e_{n 3} R_{3}}{R_{3}}=\frac{v_{0}-e_{n 3}}{R_{3}}$	$2 e_{n^{\prime}}$	4
$i_{n n}$	$i_{n n 3}+\frac{-v_{O}}{R_{3}}=0$	$i_{n n} R_{3}$	0.0256
$i_{n p 3}$	$\frac{i_{n p} 3^{3} / 2}{R_{3}}=\frac{v_{0}-i_{n p 3} R_{3} / 2}{R_{3}}$	$i_{n p} R_{3}$	0.0256

- Johnson noise due to source is $1440000 \mu \mathrm{~V}^{2}$
- Johnson noise due to first stage of amp is $1747 \mu \mathrm{~V}^{2}$
- Opamp noise in first stage is $11520500 \mu \mathrm{~V}^{2}$
- Johnson noise due to second stage of amp is $25.6 \mu \mathrm{~V}^{2}$
- Opamp noise in second stage is $4.05 \mu \mathrm{~V}^{2}$
- Noise Factor, with current noise on first stage broken off separately:

$$
F_{0} \approx 1+0.001549+8=9.001549, \quad N F \approx 10 \log _{10} 9.001549 \approx 9.54 \mathrm{~dB}
$$

- At very high source impedances, opamp current noise "dominates".

7. Loose Ends

- Draw a string of single-wire amps with G,F written in. Friis:

$$
\begin{aligned}
F_{1,2} & =F_{1}+\frac{F_{2}-1}{G_{1}} \\
F_{1,2,3} & =F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}
\end{aligned}
$$

References:

- SLOD006B Op Amps for Everyone
- SLVA043B Noise Analysis in Operational Amplifier Circuits
- Bendat and Piersol - Random Data: Analysis and Measurement Procedures
- Davenport and Root - An Introduction to the Theory of Random Signals and Noise
- Horowitz and Hill - The Art of Electronics
- Bob Pease - Troubleshooting Analog Circuits

