
Guest Lectures for Dr. MacFarlane’s EE3350 — Part Deux

Michael Plante

Mon., 08-30-2010

Write name in corner. Point out this is a review, so I will go faster. Remind them to go listen to online
lecture about “getting an A in engineering.”

1. Dirac Delta
δ(t) is the Dirac delta. It is even, has unit area, and has infinite amplitude. It doesn’t generally make sense
outside of an integral. In particular, the argument of the delta should be linear in the variable of integration.
Basic properties:

δ(t) = δ(−t) ,
∫ ∞

−∞

δ(t) = 1 , δ(t) =


0 t < 0
∞ t = 0
0 t > 0

Take a rectangle of width A and height 1/A, centered on the origin, as shown in Figure 1.1. In the limit
as A→ 0, we get our delta.

A

1/A

-A/2 A/2

Figure 1.1: Dirac Delta — Progression
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Our sifting property diagram is shown in Figure 1.2.

t

f(t)

Figure 1.2: Sifting Property

We can ignore regions not immediately over the delta:

∫ ∞

−∞

f (t)δ(t) dt =
��

��
�
��
�*0∫ 0−

−∞

f (t) · 0 dt +

∫ 0+

0−
f (t)δ(t) dt +

��
��

�
��
�*0∫ ∞

0+

f (t) · 0 dt

Now, because f (t) is continuous in the near vicinity of t = 0, we can take it as approximately constant for
a small region. Then: ∫ ∞

−∞

f (t)δ(t) dt =

∫ 0+

0−
f (t)δ(t) dt = f (0)

∫ 0+

0−
δ(t) dt︸       ︷︷       ︸
1

= f (0)

Similarly, ∫ ∞

−∞

f (t)δ(t − T ) dt = f (T )

Also, as illustrated in Figure 1.3,∫ t

−∞

δ(τ) dτ = u(t) ,
∫ t

−∞

u(τ) dτ = tu(t) , δ′(t) ,
d
dt
δ(t)
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Figure 1.3: Delta, its Derivative, and its First Two Integrals

The Kronecker delta is:

δ[n] =

1 n = 0
0 n , 0

2. LTI and Transfer Functions
We like to use the delta to characterize linear systems. Take x(t) as the input, and y(t) as the output, as
shown in Figure 2.1. The impulse response h(t) will be introduced shortly.

System/D.U.T.

x(t) y(t)h(t)

x[n] y[n]h[n]

System/D.U.T.

δ(t) h(t)h(t)

δ[n] h[n]h[n]

Figure 2.1: System, Input, Output, Impulse Response
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Time-invariance implies that x(t−a) yields y(t−a) (i.e., both have their time origin shifted by the same
amount). If this holds true for any x and a, then the system is time-invariant.

If x1(t) is input, and we obtain an output of y1(t), and ditto for x2/y2, then linearity implies that ax1(t) +

bx2(t) should yield ay1(t) + by2(t). If this holds true for any x, a, and b, then the system is linear. Systems
that are both linear and time-invariant get the acronym LTI, since we refer to them so often.

If x(t) = δ(t) is input into a continuous linear system, the output is h(t), the impulse response. If
x[n] = δ[n] is input into a discrete linear system, the output is h[n], the impulse response.

If an arbitary x(t) is input into the linear system, it is convolved with the impulse response to obtain
the output. So, for the discrete case, we have:

y[n] = x[n] ~ h[n] =

∞∑
k=−∞

x[k]h[n − k] =

∞∑
p=−∞

x[n − p]h[p] (p = n − k)

and for the continuous case, we have:

y(t) = x(t) ~ h(t) =

∫ ∞

−∞

x(τ)h(t − τ) dτ =

∫ ∞

−∞

x
(
t − τ′

)
h
(
τ′
)

dτ′
(
τ′ = t − τ

)
In the above, it’s not required to choose a different dummy variable name when you do a change of

variables, but it often helps with clarity and checking your work. I won’t be doing any discrete examples,
but, if the continuous example (integral) looks difficult, you’re in luck...

3. Convolution Examples

3.1 Boxcar and Sine

t=a t=b

1/(b-a)

f(t)

t

Figure 3.1: Unit-area Boxcar

g(t) = sin ωt

t

2π/ω

Figure 3.2: Sine Wave

As shown in Figures 3.1 and 3.2,

f (t) =
1

b − a
[u(t − a) − u(t − b)] , b > a

g(t) = sinωt , ω > 0

Convolve f (t) and g(t):∫ ∞

−∞

f (τ) g(t − τ) dτ =

∫ b

a

g(t − τ)
b − a

dτ =

∫ b

a

sinω (t − τ)
b − a

dτ =
1

ω (b − a)
[cosω (t − b) − cosω (t − a)]

=
2

ω (b − a)
sin

ω (b − a)
2

sin
[
ωt −

ω (a + b)
2

]
= sinc

ω (b − a)
2

sin
[
ωt −

ω (a + b)
2

]
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First note that when b = −a, the phase offset on the final sinusoid disappears: sinc bω sinωt. So the
symmetry of the boxcar about the origin leads to a lack of a phase offset. This is a special case of (a + b) /2
being a multiple of 2π/ω, or, equivalently, the center of the boxcar being a multiple of the period of the
sinusoid. This could be interpreted as the sinusoid being shifted by the center of the boxcar, but, when
that’s a multiple of 2π radians, it is unnoticeable.

It is interesting to note what happens in the limit as a and b become close:

lim
b→a

( f ~ g) = sinω (t − b)

The sinusoid has just been shifted to the right by b units of time. This is precisely what would have
happened if f had instead been a Dirac delta at b: f (t)→ δ(t − b).

3.2 Triangle and One-Sided Exponential

f(t)

t

-a a

1/a

Figure 3.3: Unit-Area Triangle

t

e-1/T

(36.8%)

1/T

T

g(t)=u(t)
e-t/T

T

Figure 3.4: Unit-Area One-Sided
Exponential

As shown in Figures 3.3 and 3.4,

f (t) =


t

a2 + 1
a −a ≤ t ≤ 0

−t
a2 + 1

a 0 ≤ t ≤ a
0 otherwise

, a > 0

g(t) = T−1e−t/T u(t) , T > 0

Convolve f (t) and g(t):∫ ∞

−∞

f (τ) g(t − τ) dτ =
1

a2T

∫ 0

−a
(a + τ) e−(t−τ)/T u(t − τ) dτ +

1
a2T

∫ a

0
(a − τ) e−(t−τ)/T u(t − τ) dτ

=
e−t/T

a2T

∫ min(0,t)

min(−a,t)
(a + τ) eτ/T dτ +

e−t/T

a2T

∫ min(a,t)

min(0,t)
(a − τ) eτ/T dτ

=
e−t/T

a2

[
(a + τ − T ) eτ/T

]min(0,t)

min(−a,t)
+

e−t/T

a2

[
(a − τ + T ) eτ/T

]min(a,t)

min(0,t)

=
e−t/T

a2 ·


−2T + Te−a/T + Tea/T t ≥ a
−2T + Te−a/T + (a − t + T ) et/T a ≥ t ≥ 0
Te−a/T + (a + t − T ) et/T 0 ≥ t ≥ −a
0 −a ≥ t
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This result has a maximum at t = −a + T ln
(
2ea/T − 1

)
, with t in the interval from 0 to a.

In the limit as a→ 0, an intermediate result is:
T−1e−t/T t > a
undefined a � |t| ≥ 0
0 −a > t

→


T−1e−t/T t > 0
undefined t = 0
0 0 > t

Other than at the origin, this is effectively equal to g(t). In other words, f (t) → δ(t) as a → 0. Note that
the limit in the middle case is dependent on the relative way a and t approach zero, so it is undefined. For
example, on the assumption that t approaches 0 much faster, then it gives 1/2T , but if we instead approach
along the line t = a, the limit changes to 0. This is not surprising, since some definitions of the unit step
are undefined at the origin.

If we instead take the limit as T approaches 0, we obtain:
0 |t| ≥ a
(a − t) a−2 a ≥ t ≥ 0
(a + t) a−2 0 ≥ t ≥ −a

This is clearly just f (t). What’s interesting here is that g(t), which is clearly not even (for T strictly
positive, anyway), appears to have the same effect as the even function δ(t) as T approaches 0. It is not
clear if this happens for every f (t).

3.3 Windowed Ramp and Windowed Cosine

t

f(t)=u(a-|t|)

3

2a2

-3

2a2

a

a

-3t

2a3

Figure 3.5: Truncated Ramp,
Approximation of Unit
Doublet

g(t) =                  1 + cos

t

1/T

2T

u(T-|t|)

2T (        )πt

T

Figure 3.6: Truncated Cosine

As shown in Figures 3.5 and 3.6,

f (t) =
−3t
2a3 u(a − |t|) a > 0

g(t) =

(
1 + cos

πt
T

) u(T − |t|)
2T

, T > 0
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Convolve f (t) and g(t):∫ ∞

−∞

f (t − τ) g(τ) dτ =
−3

4a3T

∫ T

−T
(t − τ) u(a − |t − τ|)

(
1 + cos

πτ

T

)
dτ

We already accounted for the step in g(t) by our choice of integration limits. We can account for the step
remaining in the integrand by also forcing t + a > τ > t − a. Both sets of limits can be easily enforced by
using the method we found before.

But we also need to ensure that t + a > −T and T > t − a, both of which follow from transitivity. If
that is not obvious, we can equivalently state that this amounts to clamping the original integration limits
of ±T to the range between t − a and t + a, rather than merely clamping from one side, as before. So:∫ ∞

−∞

f (t − τ) g(τ) dτ =
−3

4a3T

∫ max(min(T,t+a),t−a)

max(min(−T,t+a),t−a)
(t − τ)

(
1 + cos

πτ

T

)
dτ

=
−3

4a3T

[
τ
(
t −

τ

2

)
+

T
π2

(
−T cos

πτ

T
+ π (t − τ) sin

πτ

T

)]max(min(T,t+a),t−a)

max(min(−T,t+a),t−a)

While this could be evaluated entirely in terms of step functions, the results would not be terribly clear.
Instead we’ll consider that there are really just six possibilities:

1. −T t − a t + a T
2. t − a −T T t + a
3. t − a −T t + a T
4. −T t − a T t + a
5. t − a t + a −T T
6. −T T t − a t + a

The results are then:

3
2a3π2 sin πt

T

(
aπ cos aπ

T − T sin aπ
T

)
−T ≤ t − a ≤ t + a ≤ T

−3t
2a3 t − a ≤ −T ≤ T ≤ t + a

1
8a3π2T

[
3a2π2 + 6T 2 − 3π2 (t + T )2 + 6T

(
T cos π(a+t)

T + aπ sin π(a+t)
T

)]
t − a ≤ −T ≤ t + a ≤ T

−1
8a3π2T

[
3a2π2 + 6T 2 − 3π2 (t − T )2 + 6T

(
T cos π(a−t)

T + aπ sin π(a−t)
T

)]
−T ≤ t − a ≤ T ≤ t + a

0 t − a ≤ t + a ≤ −T ≤ T
0 −T ≤ T ≤ t − a ≤ t + a

Note that this is only really 5 different regions: for any given values of a and T , either case 1 can occur or
case 2 can, but not both, determined entirely by whether a or T is bigger.

In the limit as T approaches 0, we obtain for each respective case:

undefined a < T → 0
f (t) |t| < a
undefined t → −a
undefined t → a
0 t < −a
0 t > a

For much the same reasons as in the previous section, cases 3 and 4 are undefined. Case 1 oscillates close
to the limit. But nevertheless we have that g(t) approaches a Dirac delta once again.
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If we instead take the limit as a approaches 0, we obtain:

g′(t) |t| < T
undefined T < a→ 0
0 t → −T
0 t → T
0 t < −T
0 t > T

In case 2, the limit is only defined along a particular path, and is infinite otherwise. Regardless of whether
the limit in cases 3 and 4 exists or not, those are just individual points, so, like before, they do not matter
much. In this case, we have f (t) → δ′(t), the unit doublet. The action is to take the derivative of the
function it is convolved with.

If time to write: here’s a proof (I think?) that the limit is, in fact, 0 in case 3; case 4 should be
similar. Because f (t) and g(t) are centered at zero, and no other (unnamed) constants are meaningful, we
can, without loss of generality, take T = 1. (To justify this in a different way, scale t and a by whatever
quantity you had to use to get T down to 1.) Now change variables such that t = −T + r

π
√

2
cos

(
θ + π

4

)
and a = r

π
√

2
sin

(
θ + π

4

)
. Choosing θ ∈

[
0, π2

]
, r > 0 will allow us to let (t + T, a) approach the origin, with

t + T bounded by ±a, in line with the constraints defining case 3. Then we have for the new result in this
interval (up to a constant factor):

csc3
(
θ + π

4

)
2r3
√

2

[
2 − 2 cos (r cos θ) + r2 sin θ cos θ − r sin (r cos θ) (cos θ + sin θ)

]
Now it is not sufficient simply to take the limit as r approaches zero, because θ must be allowed to vary

arbitrarily as a function of r as that limit is taken: if any θ(r) failed to reach the same limit, the limit would
not exist. In other words, that naı̈ve approach would always take a radial line into the origin, which is
insufficiently general. Now we wish to test the idea that the limit is zero. For small enough r, this quantity
is nonnegative for all θ, so we need to find the θ that maximizes it for every r. This happens to simply
occur when θ = 0, independently of r, provided r is small enough: this gives an upper bound. Then, for
any maximum error from zero, we merely need to show we can find an r0 such that for all positive r < r0,
this quantity will be ≤ the target error. Looking at θ = 0 as our upper bound, we obtain:

2 − 2 cos r − r sin r
r3

But this is a monotonically-increasing odd-symmetric function about the origin for small r, so it is
invertible and we can solve for such an r0, and so the limit converges in case 3.
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