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Laser  Beams  and  Resonators 

H. KOGELNIK AND T. LI 

Abstract-This paper is a  review of the  theory of laser beams and 
resonators. It is meant to be tutorial in nature  and  useful in scope. No 
attempt is made to be exhaustive in the  treatment.  Rather,  emphasis is 
placed on  formulations  and  derivations  which  lead to basic understand- 
ing and on  results which bear practical  significance. 

T 
1. INTRODUCTION 

HE COHERENT radiation generated by lasers or 
masers operating in the optical or infrared wave- 
length regions  usually appears as  a beam whose 

transverse extent is large compared to the wavelength. 
The resonant properties of such a beam  in the resonator 
structure, its propagation characteristics in  free  space, and 
its interaction behavior  with various optical elements and 
devices  have been studied extensively in recent  years. 
This paper is a review of the theory of laser beams and 
resonators. Emphasis is placed on formulations and 
derivations which  lead to basic understanding and on 
results which are of practical value. 

Historically, the subject of laser resonators had its 
origin when  Dicke [ 1 1, Prokhorov [2], and Schawlow and 
Townes [3] independently proposed to use the Fabry- 
Perot interferometer as a laser resonator. The modes in 
such a structure, as determined by diffraction effects, 
were first calculated by Fox and Li [4]. Boyd and Gordon 
[ 5 ] ,  and Boyd and Kogelnik  [6]  developed a theory for 
resonators with spherical mirrors and approximated the 
modes by  wave beams. The concept of electromagnetic 
wave  beams  was also introduced by Goubau and Schwe- 
ring [7], who  investigated the properties of sequences of 
lenses for the guided transmission of electromagnetic 
waves. Another treatment of  wave beams  was  given by 
Pierce [8]. The behavior of Gaussian laser  beams as they 
interact with various optical structures has been  analyzed 
by Goubau [9], Kogelnik [lo], [l 1 1, and others. 

The present paper summarizes the various theories and 
is  divided into three parts. The first part treats the passage 
of paraxial rays through optical structures and is  based 
on geometrical optics. The second part is an analysis of 
laser beams and resonators, taking into account the wave 
nature of the beams but ignoring diffraction effects due 
to the finite size  of the apertures. The third part  treats the 
resonator modes, taking into account aperture diffrac- 
tion effects.  Whenever applicable, useful results are pre- 
sented in the forms of formulas, tables, charts, and 
graphs. 
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2. PARAXIAL RAY ANALYSIS 
A study of the passage of paraxial rays through optical 

resonators, transmission lines, and similar structures can 
reveal  many important properties of these  systems.  One 
such “geometrical” property is the stability of the struc- 
ture [6], another is the loss of unstable resonators [12]. 
The propagation of paraxial rays through various optical 
structures can be  described by ray transfer matrices. 
Knowledge of these matrices is particularly useful as they 
also describe the propagation of Gaussian beams through 
these structures; this will  be  discussed  in  Section  3. The 
present section describes  briefly  some ray concepts which 
are useful  in understanding laser  beams and resonators, 
and lists the ray matrices of several optical systems of 
interest. A more detailed treatment of ray propagation 
can be found in textbooks [13] and in the literature on 
laser resonators [ 141. 
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Fig. 1. Reference planes of an optical system. 
A typical ray path is indicated. 

2.1 Ray Transfer Matrix 
A paraxial ray in  a given cross section (z=const) of an 

optical system  is characterized by its distance x from the 
optic ( z )  axis and by its angle or slope x’ with  respect to 
that axis. A typical ray path  through an optical structure 
is shown in Fig.  1. The slope x’ of paraxial rays is  assumed 
to be small. The ray path through a given structure de- 
pends on the optical properties of the structure and on the 
input conditions, i.e., the position x 1  and the  slope x; of 
the ray in the input plane of the system. For paraxial rays 
the corresponding output quantities xz and x i  are linearly 
dependent on the input quantities. This is conveniently 
written in the matrix form 
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TABLE I 
RAY  TRANSFER MATRICES OF SIX ELEMENTARY OPTICAL  STRUCTURES 

OPTICAL  SYSTEM 

I f 1  

1 2  

I 2 

1 2 

RAY  TRANSFER  MATRIX 

1 d 

0 I 

I 0 

I --  1 
f 

1 d 

-- d r ' -T  

I I +z d 1 - 1  d dz dl +L d,d, 
fl f 2  fl f, f, f2  f2 flf2 

I d/n 

0 1 

where the slopes are measured  positive as indicated in the 
figure. The ABCD matrix is called the ray transfer matrix. 
Its determinant is  generally unity 

A D  - B C  = 1. (2) 

The matrix elements are related tb the focal length f of 
the system and to the location of the principal planes by 

1 
f = --  

C 

D - 1  
hl = ___ 

C 

A - 1  
hz = ___ 

C 

(3) 

where hl and hz are the distances of the principal planes 
from the input and output planes as shown in Fig. 1. 

In Table I there are listed the ray transfer matrices of 
six elementary optical structures. The matrix of No. 1 
describes the ray transfer over a distance d. No. 2 de- 
scribes the transfer of rays through a thin lens of focal 
lengthf. Here the input and output planes are immediately 
to the left and right of the lens. No. 3 is a combination 
of the fist two. It governs rays passing  first  over a dis- 
tance d and then through a thin lens. If the sequence is 
reversed the diagonal elements are interchanged. The 
matrix of No. 4 describes the rays passing through two 
structures of the No. 3 type. It is obtained by matrix 
multiplication. The ray transfer matrix for a lenslike 
medium of length d is  given in No. 5.  In this medium the 
refractive  index  varies quadratically with the distance r 
from the optic axis. 

n = no - +n2r2. (4) 

An index variation of this kind can occur in laser crystals 
and in gas  lenses. The matrix of a dielectric material of 
index n and length d is  given in No. 6. The matrix is 
referred to the surrounding medium of index 1 and is 
computed by means of  Snell's law. Comparison with No. 
1 shows that for paraxial rays the effective distance is 
shortened  by the optically denser material, while, as is 
well known, the "optical distance" is lengthened. 

2.2 Periodic Sequences 
Light rays that bounce back and forth between the 

spherical mirrors of a laser resonator experience a periodic 
focusing action. The effect on the rays is the same as in a 
periodic sequence of lenses  [15]  which can be used as an 
optical transmission line. A periodic sequence of identical 
optical systems is schematically  indicated in Fig. 2. A 
single  element of the sequence  is characterized by its 
ABCD matrix. The ray transfer through n consecutive 
elements of the sequence is described  by the nth power 
of this matrix. This can be evaluated by means of Sylves- 
ter's theorem 

A B *  1 

IC Dl - s in@ 
-- 

(5 )  

A sin nO - sin(n - l)@ B sin n@ 
C sin& D sin nO - sin(n - l)@ 
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where 

cos 0 = + ( A  + 0). 
Periodic  sequences can be classified 

unstable. Sequences are stable when 
obeys the inequality 

as either stable or 
the trace (A+D)  

-1 < $ ( A  + 0) < 1. (7) 

Inspection of ( 5 )  shows that rays passing through a stable 
sequence are periodically  refocused. For unstable sys- 
tems, the trigonometric functions in that  equation be- 
come  hyperbolic functions, which indicates that  the rays 
become more and more dispersed  the further they pass 
through the sequence. 

I I 

Fig. 2. Periodic  sequence of identical  systems, 
each  characterized  by its ABCD matrix. 

2.3 Stability of Laser Resonators 
A laser resonator with spherical mirrors of unequal 

curvature is a typical example of a periodic  sequence that 
can be either stable or unstable [6 ] .  In Fig. 3 such a 
resonator is  shown together with its dual, which  is a 
sequence of lenses. The ray paths through the two struc- 
tures are the same,  except that the ray pattern is folded in 
the resonator and unfolded in the lens  sequence. The focal 
lengths fl and f 2  of the lenses are the same as the focal 
lengths of the mirrors, i.e.,  they are determined by the 
radii of curvature R1 and R2 of the mirrors cfi= R, /2 ,  
f 2 =  R2/2) .  The lens spacings are the same as the mirror 
spacing d. One can choose, as an element of the peri- 
odic sequence, a spacing  followed  by one lens plus another 
spacing  followed  by the second  lens. The ABCD matrix 
of such an element  is  given in No. 4 of Table I. From this 
one can obtain the trace, and write the stability condition 
(7) in the form 

o <  1--  ( 
To show  graphically  which  type of resonator is stable 

and which is unstable, it is useful to plot a stability dia- 
gram on which each resonator type is  represented  by a 
point. This is shown in Fig. 4 where the parameters d / R l  
and d / R 2  are drawn as the coordinate axes; unstable 
systems are represented  by points in the shaded areas. 
Various resonator types, as characterized by the relative 
positions of the centers of curvature of the mirrors, are 
indicated in the appropriate regions of the diagram. Also 
entered as alternate coordinate axes are the parameters gl 
and g2 which  play an important role in the diffraction 
theory of resonators (see Section 4). 

f2 f2 

R t  = 2 f j  , R ~ = 2 f 2  

Fig. 3. Spherical-mirror  resonator  and the 
equivalent  sequence of lenses. 

Fig. 4. Stability  diagram.  Unstable  resonator 
systems  lie in shaded regions. 

3. WAVE ANALYSIS OF BEAMS AND RESONATORS 

In this section the wave nature of laser  beams is taken 
into account, but diffraction effects due to the finite size 
of apertures are neglected. The latter will be  discussed in 
Section 4. The results derived here are applicable to 
optical systems  with “large apertures,” i.e.,  with apertures 
that intercept only a negligible portion of the beam power. 
A theory of light beams or “beam waves” of this kind was 
first  given  by  Boyd and Gordon [ 5 ]  and by Goubau and 
Schwering [7]. The present discussion  follows an analysis 
given in [ 1 1 1. 
3.1 Approximate Solution of the Wave Equation 

Laser beams are similar in many respects to plane 
waves;  however, their intensity distributions are not uni- 
form, but  are concentrated near the axis of propagation 
and their phase fronts are slightly curved. A field com- 
ponent or potential u of the coherent light satisfies the 
scalar wave equation 

V2u + k2u = 0 (9) 

where k = 2r/X is the propagation constant in the medium. 
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For light traveling in the z direction one writes 

u = $b, Y, 2) e x P ( - M  ( 10) 

where $ is a slowly  varying  complex function which 
represents the differences  between a laser  beam and a 
plane wave,  namely: a nonuniform intensity distribu- 
tion, expansion of the beam  with  distance of propagation, 
curvature of the phase front, and other differences dis- 
cussed  below. By inserting  (10) into (9) one obtains 

where  it has been  assumed that $ varies so slowly  with z 
that its  second  derivative &/az2 can be  neglected. 

The differential equation (1 1) for $ has a form  similar 
to the time dependent Schriidinger equation. It is  easy to 
see that 

is a solution of (1 l), where 

T2 = x2 + y2. ( 13) 

The  parameter P(z) represents a complex  phase  shift  which 
is  associated  with the propagation of the light  beam, and 
q(z) is a complex  beam parameter which  describes the 
Gaussian variation in beam  intensity  with the distance r 
from the optic axis, as well as the curvature of the phase 
front which  is  spherical  near the axis.  After insertion of 
(12) into (1 1) and  comparing  terms of equal powers  in r 
one obtains the relations 

q’ = 1 ( 14) 

and 

j p ’ =  -- 
(2 

(15) 

where the prime indicates differentiation with  respect to z .  
The integration of  (14)  yields 

q 2  = q1 + z (16) 

which relates the beam parameter q2 in  one plane (output 
plane) to the parameter q1 in a second  plane (input plane) 
separated from the first  by a distance z.  

3.2  Propagation  Laws for the Fundamental  Mode 
A coherent light  beam  with a Gaussian intensity pro- 

file as obtained above  is not the only solution of (1 l), 
but is perhaps the most important one. This beam  is  often 
called the “fundamental mode” as compared to  the higher 
order modes to be  discussed later. Because  of its impor- 
tance it is  discussed  here in greater detail. 

For convenience one introduces two real beam param- 
eters R and w related to the complex parameter q by 

I‘ 

I r 

Fig. 5. Amplitude distribution of the fundamental beam. 

When (17)  is  inserted in (12) the physical  meaning of these 
two parameters becomes  clear.  One  sees that R(z) is the 
radius of curvature of the wavefront that intersects the 
axis at z ,  and ~ ( z )  is a measure of the decrease of the 
field amplitude E with the distance from the axis. This 
decrease  is Gaussian in form, as indicated in Fig. 5 ,  and 
w is the distance at which the amplitude is l/e times that 
on the axis. Note  that the intensity distribution is Gaus- 
sian in every  beam cross section,  and that the width of 
that  Gaussian intensity  profile  changes along the axis. 
The  parameter w is often called the beam radius or “spot 
size,”  and 2w, the beam diameter. 

The  Gaussian beam contracts to a minimum diameter 
2w0 at the beam  waist  where the phase front is  plane. If 
one  measures z from this waist, the expansion  laws  for 
the beam  assume a simple form. The complex  beam 
parameter at the waist  is  purely  imaginary 

. r n o 2  
q o  =.I- x 

and a distance z away from the waist the parameter is 

After  combining  (19) and (17) one equates the real  and 
imaginary parts to obtain 

and 

R(z) = z [ 1 + ( 3 2 ] .  

Figure 6 shows the expansion of the beam  according to 
(20). The beam contour ufz )  is a hyperbola  with  asymp- 
totes inclined to the axis at  an angle 

x 
r n o  

e = - .  (22) 

This is the far-field diffraction angle of the fundamental 
mode. 

Dividing  (21)  by  (20), one obtains the useful relation 
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/PHASE FRONT 

Fig. 6. Contour of a Gaussian beam. 

which can be  used to express wo and z in  terms of w and R : 

wo2 = w2 1 [ 1 + (;?‘I 
z = R /  [l +($)‘I. 

To calculate the complex  phase  shift a distance z away 
from the waist, one inserts (19) into (15) to get 

P ’ = - - -  j j _ -  (26) 
Q + j (WO2/V 

Integration of (26) yields the result 

~ P ( z )  = ln[l - ~ ( X Z / W ~ Z ) ]  

= I n d l  + ( X Z / W O ~ ) ~  - j arc tan(hz/xwo2). (27) 

The real part of P represents a phase  shift  difference CP be- 
tween the Gaussian beam and an ideal plane wave,  while 
the imaginary part  produces an amplitude factor WO/W 

which  gives the expected  intensity  decrease on the axis due 
to the expansion of the beam. With these results for the 
fundamental  Gaussian beam, (10) can be written in the 
fonn 

U(T,  2 )  = - 
wo 
W 

where 

9 = arc tan(Xz/mo2). (29) 

It will  be  seen in Section 3.5 that  Gaussian beams  of  this 
kind are produced by many  lasers that oscillate in the 
fundamental mode. 

3.3 Higher Order  Modes 
In the preceding  section  only one solution of (1 1) was 

discussed,  i.e., a light  beam  with the property that its 
intensity  profile in every  beam cross section  is  given  by 
the same function, namely, a Gaussian. The width of this 
Gaussian distribution changes as the beam propagates 
along its axis. There are other solutions of (1  1) with sim- 

ilar properties, and they are discussed in this section. 
These solutions form a complete and  orthogonal set  of 
functions and are called the “modes of propagation.” 
Every arbitrary distribution of monochromatic light can 
be expanded in  terms of these  modes.  Because  of  space 
limitations the derivation of these  modes can only  be 
sketched  here. 

a) Modes in Cartesian  Coordinates: For a system  with 
a rectangular (x,  y ,  z)  geometry one can try a solution for 
(1 1) of the  form 

where g is a function of x and z, and h is a function of y 
and z. For real g and h this postulates mode  beams  whose 
intensity patterns scale according to the width 2w(z) of a 
Gaussian beam. After inserting this trial solution into 
(1 1) one arrives at differential equations for g and h of the 
form 

d2Hm dHm 
dx2 dx 
-- 2x - + 2mH, = 0. (31) 

This is the differential equation for the Hermite poly- 
nomial Hm(x) of order m. Equation (1 1) is  satisfied if 

where m and n are the (transverse)  mode  numbers. Note 
that  the same pattern scaling parameter w(z) applies to 
modes of all orders. 

Some Hermite polynomials of  low order are 

H , ( x )  = 1 

H , ( x )  = x 
H,(x)  = 4x2 - 2 
H ~ ( z )  = 8x3 - 122. (33) 

Expression (28) can be  used as a mathematical descrip- 
tion of higher order light  beams, if one inserts the product 
g . h  as a factor on the right-hand side. The intensity pat- 
tern in a cross section of a higher order beam  is, thus, de- 
scribed  by the product of Hermite  and  Gaussian functions. 
Photographs of such  mode patterns are shown in Fig. 7. 
They  were  produced as modes of oscillation in a gas  laser 
oscillator [16]. Note  that the number of zeros in a mode 
pattern is equal to  the  corresponding mode number,  and 
that  the area occupied  by a mode  increases  with the mode 
number. 

The  parameter R(z) in (28) is the same for all modes, 
implying that the phase-front curvature is the same and 
changes in  the same  way  for  modes of all orders. The 
phase  shift a, however,  is a function of the mode  numbers. 
One obtains 

@(m, n; z )  = (m + n + 1) arc tan(k/mo2).  (34) 
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Modes,  Phase  Shifts,  and  Losses of Flat-Roof 
Open  Resonators 

P. F. CHECCACCI,  ANNA CONSORTINI, AND ANNAMARIA SCHEGGI 

Abstract-TIE integral equation of a “tlat-roof  resonator” is 
solved by the Fox and Li method  of  iteration io a number of particular cases. 

Mode patterns, phase shifts, and power losses are  derived. A good 
overall  agreement is found with the  approximate  theory  previously 
developed  by  Toraldo di Francia. 

Some experimental tests carried out on a microwave  model  give a 
further  confirmation  of  the  theoretical  predictions. 

A 
I. INTRODUCTION 

PARTICULAR type of open resonator terminated 
by  roof  reflectors  with  very  small  angles, the so- 
called  “flat-roof resonator” (Fig. l) was  recently 

described  by Toraldo  di  Francia [l]. 
The  mathematical  approach consisted in considering 

the solutions of the wave equation (for the electric or 
magnetic  field)  in the two  halves of a complete “diamond 
cavity”  whose normal cross  section  is  shown  in  Fig. 2, 
ignoring the fact that the reflectors are finite. 

The two halfcavities were  referred to cylindrical co- 
ordinates centered at G and H, respectively,  and solutions 
were  given in terms of high-order  cylindrical  waves. The 
field  in the two halfcavities was  matched  over the median 
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Fig. 1. The flat-roof resonator. 

Fig. 2. The diamond cavity. 

plane BE by  simply requiring that this plane  coincide 
with a node  or an antinode. Obviously the CY angle of the 
roof  must be so small that the curvature of the nodal or 
antinodal surfaces can be  neglected. Due to the high order 
of the cylindrical  waves, the field in the central region of 
the cavity approaches the form of a standing wave be- 
tween the two roof  reflectors,  while  it  decays so rapidly 
from the central region  toward the vertices G and H, 
that the absence of the complete metal walls  of the dia- 
mond  outside the resonator will  have  very little impor- 
tance. This treatment, although approximate, allowed the 
author  to  understand how the resonator actually  worked 




