Digital Logic Circuits

- Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers.
- Boolean algebra is very simple, having only three basic functions, AND, OR, and NOT.
- These basic functions can be combined in many ways to provide all the functions required in the central processor of a digital computer.
- Digital circuits operate by performing Boolean operations on binary numbers (more about binary numbers in EE 2310).

First Boolean Function: NOT

- NOT is the simplest logical function: 1 input and 1 output.
- NOT is defined as follows: "The output f of NOT, given an input a, is the complement or opposite of the input." Or : $f=\bar{a}$
- Since NOT can have only a 0 or 1 input, the output of NOT is the reverse, or complement, of the input.
- If the input of NOT is 1 , the output is 0 .
- If the input of NOT is 0 , the output is 1 .
- The NOT function is called inversion, and the digital circuit which inverts is an inverter. The electronic circuit symbol for NOT is:

The Truth Table

- The inverter input/output relationship, with one input and output, is easy to show.
- For complex functions, an I/O table is helpful.
- We call this a truth table, since it indicates the 1 ("true") outputs, although it normally shows outputs for all input combinations.
- We will demonstrate some Boolean functions using truth tables.

Second Boolean Function: AND

- AND has two or more inputs.
- The truth table for a two-input AND with inputs a and b is shown in the chart.
- AND is defined as follows: a AND $b=1$ if and only if (iff) $a=1$ and $b=1$.
- Mathematically, we represent "a AND b" as $a \cdot b$ (an unfortunate choice).
- AND may have more than two inputs, i. e.: a AND b AND c AND d.
- The electronic circuit symbols for 2- and 4-input ANDs are shown at the right.
- Regardless of the number of inputs, the output of AND is 1 iff all inputs are 1 .
AND Truth Table

\mathbf{a}	\mathbf{b}	\mathbf{a} AND b
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

2-Input AND

4-Input AND

Third Boolean Function: OR

- OR has two or more inputs.
- The OR truth table for two inputs a, b is shown in the adjacent chart.
- OR is defined as follows: a OR $b=1$ if either a or b or both a and $b=1$.
- Mathematically, we represent " a OR b "
OR Truth Table

\mathbf{a}	\mathbf{b}	a O R b
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
1	0	1
1	1	1

- OR may have more than two inputs, i. e.: a OR b OR c OR d.

2-Input OR $\left.\begin{array}{l}a \\ b\end{array}\right) \quad-a+b$

- The electronic circuit symbols for 2- and 4 - input ORs are shown at the right.
- Regardless of the number of inputs, the output of $O R$ is 0 iff all inputs are 0 .

Logic "1" and "0"

- Electronic circuits don't manipulate logic 1 and 0 literally.
- In digital circuits, the values " 1 " and " 0 " are levels of voltage, and the logic circuits that we use are technically "inverting amplifiers with saturated outputs."
- In the circuits we will use, logic 0 is 0 volts, and logic 1 is 5 volts.

Making More Complex Boolean Functions

- The three Boolean functions discussed above can be used to form more complex functions.
- ANY computer function can be performed using combinations of AND, OR, and NOT.
- To simplify the definition of combinational logic (the logic of the computer CPU), any logic function can be composed of a level of AND gates followed by a single OR gate.
- There are a few other ways to form Boolean circuits, but we will cover only this one method in Lab 3.

Uniqueness of AND

- The uniqueness of the AND function is that the output of AND is 0 except when EVERY input = 1.

- In the $\mathbf{4}$ gates to the right, \underline{a} SINGLE 0 input into each gate forces the output to 0 .
- The output of AND is 1 only when ALL inputs = 1 (8input gate to right).

The "Any 1" Quality of OR

- The output of $\mathrm{OR}=1$ if ANY input = 1.
- OR outputs a 0 iff ALL inputs $=0$.
- We can use the ability of OR to "pass" any 1 and the unique 1- outputs of the AND to create Boolean functions.

The University of Texas at Dallas

Digital Design

- In circuit design, inputs and outputs are defined by a "spec."
- Since computer circuits use only binary numbers, inputs are always 0 and 1 , and the output is always 0 and 1 .
- The engineer designs the circuit between input and output by:
- Making a truth table to represent the input/output relationship.
- Defining a Boolean expression that satisfies the truth table.
- Constructing a circuit that represents the Boolean function.

Establish inputs and outputs	Construct Truth Table	Define Boolean expression in SOP or POS form	Design digital circuit based on Boolean expression

Creating a Computer ("Boolean") Function

- A "spec" for a function \boldsymbol{f} of two variables x and y is that $f=1$ when x and y are different, and 0 otherwise.
- The truth table charts \boldsymbol{f} per the "spec."
- How can we describe this behavior with a Boolean expression?
- For the first 1, we can create an AND function: $\bar{x} \cdot y$. Note that this expression is 1 ONLY when $x=0, y=1$.
- For the second 1, we create $x \cdot y$, which

x	y	f
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Function (2)

- First 1 AND function: $x \cdot y$.
- Second 1 AND function: $x \cdot y$.
- The two Boolean AND functions each describe one of the two conditions in which f is 1 .
- How do we create a Boolean function that describes BOTH conditions of $f=1$?
- Recall that any 1 is passed through OR.
- Then if we send both ones through a single OR, its output will match the

$x \cdot y x \cdot y$ specified performance of f.

Boolean Function (3)

- We OR the two AND functions:

$$
f=x \cdot y+x \cdot y
$$

- We now have a complete description (Boolean expression) for the function f.
- Since we know what AND and OR circuits look like, we can build a digital circuit that produces \boldsymbol{f}.

Building Boolean Functions

- As we have just seen, if we have Boolean functions that result from a truth table and "spec," we can convert the Boolean functions to computer circuits.
- Consider these functions:

$$
\begin{aligned}
& a+b+c=f \\
& a+\bar{b}=f \\
& (a \cdot b)+c=f
\end{aligned}
$$

1:

2:

3:

Quick Exercise

- Designing a circuit from the Boolean expressions:

$$
\begin{aligned}
& (a \cdot b)+(c \cdot d)=f \\
& \bar{a}+(b \cdot c)+d=f
\end{aligned}
$$

Design: "Spec" to Truth Table to Circuit

- Say you have the following "design spec" for function f :
- There are three inputs x, y, and z, to a digital circuit.
- The circuits must have an output of 1 when $y=z=1$ and $x=0$; and when $x=z=1$ and y $=0$.
- Design the circuit using AND, OR, and NOT gates.

x	y	z	$f(x, y, z)$	AND's
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$f=\bar{x} y z$
1	0	0	0	
1	0	1	1	$f=x \overline{y z}$
1	1	0	0	
1	1	1	0	

The truth table above shows the desired output:
$f=1$ when $x=0, y, z=1$,
$f=1$ when $y=0, x, z=1$.

Getting the Boolean Function

- We can create a Boolean function for each of the two " 1 " conditions:
- Inverting x and ANDing it with y and z creates a 1 for the first condition.
- Inverting y and ANDing it with x and z creates the other 1.
- Notice that each AND function produces a 1 ONLY for that combination of variables.
- According to the definition of OR, any 1 goes through that gate.

$\underline{\mathrm{x}}$	\underline{y}	$\underline{\mathrm{z}}$	$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$	AND's
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$f=\bar{x} y z$
1	0	0	0	
1	0	1	1	$f=x \overline{y z}$
1	1	0	0	
1	1	1	0	

This is a 1 ONLY for $(\mathbf{0}, \mathbf{1}, \mathbf{1})$

This is a 1 ONLY for (1,0,1)

- Therefore OR the two AND functions together to get a function that is $\mathbf{1}$ for both cases!

Boolean Function and Circuit

The University of Texas at Dallas

Lab Instrument: IDL-800

- Key parts:
- LED indicators
- Circuit board
- +5V power
- Momentary 0-1 switches
- 0-1 input switches

Digital Circuit Kit

- The digital circuit kits are also used in EE 2310.
- You will only be using AND, OR, and NOT circuits (see below).
- NEVER replace a bad or broken circuit in the kit. Give to the TA to be replaced.

- ALWAYS put up the kit when you are done.

Plugging in a Digital IC and Wiring Up a Circuit

- Remember: The circuit is ALWAYS plugged in so that it spans a channel in the circuit board.
- Therefore a wire plugged into any of the parallel holes into which a chip leg is plugged is connected to that leg of the chip.

Digital IC Circuit Diagrams

74 LS XXX Chip Outline

SN 74LS04 Hex inverter gate

SN 74LS08 Quad 2 -input AND gate

SN 74LS32 Quad 2-input OR gate

- You will be using the 74LS04, 74LS08, and 74LS32 digital integrated circuits.
- The diagram above (also in your manual) shows the outline of the chip, with power/ground inputs.
- The three chip schematics show how the circuits in each chip connect to the input pins.

