1

Erik Jonsson School of Engineering and Computer Science

Transient DC Circuits

- Lab #4 examines <u>inductors</u> and <u>capacitors</u> and their influence on DC circuits.
- As R is the symbol for a resistor, C and L are the symbols for capacitors and inductors.
- Capacitors and inductors are the other two passive circuits components.
- In a circuit with capacitors and inductors (and normally, also resistors), turning a DC power source on or off causes a brief, non-linear behavior of current in the circuit.
- Such circuits (usually referred to as RL, RC, or RLC circuits) are of great interest in electrical engineering, as is their transient behavior.

Capacitor (C)

Inductor (L)

Erik Jonsson School of Engineering and Computer Science

The Capacitor

- A capacitor consists of two conducting surfaces separated by a dielectric, or insulator.
- A capacitor stores electric charge when current flows due to an applied voltage, just as a water tank stores water.
- The capacitor develops an equal and opposite voltage as it collects charge.
- When the voltage on the capacitor = the applied voltage, <u>current flow ceases</u>.
- Charge <u>cannot cross</u> the dielectric barrier of a capacitor.
- Voltage cannot appear instantaneously across a capacitor.

Water Tower

Erik Jonsson School of Engineering and Computer Science

The Inductor

- The inductor has the property of <u>electrical inertia</u>.
- Physical inertia is the property of mass that resists a change in motion (acceleration). If at rest, <u>an object resists</u> <u>moving</u>; if moving, <u>it resists a change in</u> <u>speed</u>.
- <u>Similarly, an inductor resists a change in</u> <u>current</u>. If no current flows, it resists the start of current. If current is flowing, it resists a change in current.
- Just as a voltage cannot instantaneously appear across a capacitor, <u>current cannot</u> <u>flow instantaneously in an inductor</u>.

A massive truck would have high resistance to rapid acceleration or braking.

Erik Jonsson School of Engineering and Computer Science

Exponential Behavior

- Exponential behavior is mathematical behavior such that one of the variables is an exponent.
- Some functions have an exponential behavior that involves *e*, the base of natural logarithms.
- Some exponential behavior is <u>asymptotic</u>; it approaches a value but never reaches it. Such a behavior is exhibited in the equation to the right.
- DC transient circuit behavior is characterized by this mathematical description.

Erik Jonsson School of Engineering and Computer Science

Behavior of an RC Circuit

- Asymptotic, transient behavior is exhibited in an RC circuit.
- When the switch is closed, current flows into the capacitor.
- Current flow ceases when charge collected on the capacitor produces a voltage equal and opposite to V.
- An equation describing the behavior is shown; it is both <u>exponential</u> and <u>asymptotic</u>.

Erik Jonsson School of Engineering and Computer Science

The Time Constant τ

- In the equation shown, as time passes, $v_c(t) \rightarrow V$, as the value of $e^{-t/RC} \rightarrow 0$.
- In the equation, the value RC is called τ .
- Clearly, as τ grows smaller, transient behavior disappears much faster.
- Since τ determines how quickly the transient response of the circuit dies, it is called the <u>time constant</u>.
- Note: For $R = 1000 \Omega$, $C = 0.05 \mu$ F, then $\tau \approx 0.00005$ sec. <u>Transient effects last a</u> <u>very short time</u>.

circuit is sometimes referred to as "the RC time constant."

Erik Jonsson School of Engineering and Computer Science

A Transient RL Circuit

- We also see <u>asymptotic</u>, <u>transient</u> behavior in an RL circuit.
- When the switch is closed, current flow is inhibited as the inductor develops <u>an opposite voltage to the</u> <u>one applied</u>.
- Current slowly begins to flow, as the inductor voltage falls toward 0.
- As the transient effect dies, current flow approaches *V/R*.
- An equation describing the behavior is shown.

$$v_L(t) = Ve^{-(t/[L/R])} = Ve^{-(R/L)t}$$

© N. B. Dodge 01/12

Erik Jonsson School of Engineering and Computer Science

τ in an RL Circuit

- The <u>time constant τ in an *RL* circuit is defined as $\tau = L/R$.</u>
- In the equation shown, as time passes, $v_L(t) \rightarrow 0$, as the value of $e^{-t/L/R} = e^{-(R/L)t} \rightarrow 0$.
- As τ grows smaller, transient behavior disappears much faster, as in the *RC* case.

$$v_L(t) = Ve^{-(t/[L/R])} = Ve^{-(R/L)t}$$

The time constant in an RL circuit is often referred to as "the RL time constant."

Erik Jonsson School of Engineering and Computer Science

Odd Behavior of an RLC Circuit

- A circuit with *R*, *L*, and *C* can exhibit oscillatory behavior if the components are chosen properly.
- For many values of *R-L-C*, there will be no oscillation.
- The expression that describes this behavior is shown at right.
- The parameter ω_d is the radian frequency ($\omega_d = 2\pi f$, f the frequency in Hz), which depends on the values of R and C.
- *α* is the damping factor, which determines the rate at which the oscillation dies out.

Erik Jonsson School of Engineering and Computer Science

Behavioral Parameters in the RLC Circuit

- In the formula for $v_c(t)$, the radian frequency of oscillation, $\omega v_c(t) = V(1 - [\cos \omega_d t]e^{-\alpha t})$ depends on *R*, *L*, and *C*.
- Note that in general, the smaller *L* and *C*, the higher frequency the oscillation. Also, if *R* is too large the quantity under the square root is negative, which means there is no oscillation.
- Note that α is very similar to τ. In fact the value of α is exactly ½ the value of τ for an *RL* circuit.

Using the Signal Generator as a "DC Power Source"

- For our RC transient circuit, as mentioned on a previous slide, $\tau = RC \approx 1000 \times 0.05 \ 10^{-6} = 0.00005$ seconds, or 50µsec. Then $10 \ \tau = \frac{1}{2}$ msec.
- That is a <u>very short time</u>.
- <u>We will need to use the oscilloscope to observe transient behavior</u>.
- It is not very convenient to try to rapidly turn the DC power supply on and off to evoke the transient signals we want to watch.
- Instead, why not use the signal generator square wave pattern as a "rapidly switching DC power source?"
- One hitch: the normal square wave pattern is equally above and below 0V. We need a varying voltage level from 0 to a positive voltage (say 5V).
- Solution: The signal generator will let us "dial in" a DC level to algebraically add to the AC voltage. Thus, dial in +2.5 V to a 5 V p-p AC signal to get a voltage that varies 0-5 VDC.

Erik Jonsson School of Engineering and Computer Science

Adding a DC Level to an AC Signal

• Dialing in an offset: Press the "offset" soft button (A) and use the dial (B) to add in the desired DC level.

Erik Jonsson School of Engineering and Computer Science

Review of the Oscilloscope

Important controls: Cursor on (A), cursor control (B, C), autoscale (D), manual sweep (E), trigger (F), manual sensitivity (G).

Erik Jonsson School of Engineering and Computer Science

Oscilloscope (2)

- We will be using the oscilloscope to view transient signals as shown.
- Note that the oscilloscope must be switched to "DC coupling" to register the DC signal value; otherwise it is stripped away and ignored.
- Use controls mentioned on the previous slide to get the right voltage sensitivity and time base to view the transient signals as shown.

