Two Circuit problems

- Lab 8 presents a pair of circuit design problems which are designed to test the knowledge you have gained in EE 1202 laboratory experiments.
- Problem 1 is a simple resistor-based voltage divider, capable of providing a voltage of any value lower than the supply voltage.
- Problem 2 deals with reducing the power factor in an AC circuit - a way of reducing the current drawn in an AC circuit that has inductive circuit elements.

Erik Jonsson School of Engineering and
Computer Science

Resistive Voltage Divider

- A resistive voltage divider produces a DC voltage that is a fraction F of the input voltage.
- In the diagram, assuming that the load resistor R_{L} is not yet connected, then with input voltage $V, I=V\left(R_{1}+R_{2}\right)$.
- Since the output voltage V_{o} (voltage across R_{2}) $=I R_{2}$, then: $V_{o}=I R_{2}=\left(V \cdot R_{2}\right) /\left(R_{1}+R_{2}\right)$.
- If R_{1} and R_{2} are chosen so that $R_{2} /\left(R_{1}+R_{2}\right)$ represents the fraction F, then V_{o} is the desired voltage.

Voltage Divider Analysis

- With R_{L} not connected, then we can choose R_{1} and R_{2} so that $\left(V \cdot R_{2}\right) /\left(R_{1}+R_{2}\right)$ represents the fractional voltage desired.
- For example, with $V=10 \mathrm{VDC}$, and the desired voltage $\approx 3 \mathrm{~V}$ (generally a range is specified), then $R_{2} /\left(R_{1}+R_{2}\right)=0.3$. Then choose $R_{2}=100 \Omega$ and $R_{1}=200$ Ω. Then $R_{2} /\left(R_{1}+R_{2}\right)=100 / 300=0.33$, which is acceptably close to the desired voltage.

- With some restrictions to be discussed later, the divider as constructed would provide the desired voltage.

Adding the Load Resistor

- Now assume that R_{L} is connected to the divider circuit (which, after all, is the purpose of the divider). The resistance below R_{1} is the parallel resistance of R_{2} and R_{L}. From previous labs we know that the parallel resistance of $R_{L}+R_{2}$ is $R_{L} R_{2} /\left(R_{L}+R_{2}\right)$.
- This new resistance in the $R_{1}-R_{2}$, circuit will change the value of V_{o}.
- We must therefore recalculate the value of the output resistance to determine the effect on $\boldsymbol{V}_{\boldsymbol{o}}$.

Adding the Load Resistor (2)

- The new value of $R_{L} R_{2} /\left(R_{L}+R_{2}\right)$ can greatly affect the value of V_{o}.
- For example, for $V=10 \mathrm{~V}, R_{1}=200 \Omega$, and $R_{2}=100 \Omega$, assume that R_{L} is 10Ω, and the desired $V_{o}=$ about 3 V . Then the parallel combination of R_{L} and R_{2} is: $10(100) /(10+100)=1000 / 110 \approx 9$, and V_{o} $=10 \mathrm{~V}(9 /[200+9]) \approx 0.4$ volt, far outside the desired voltage.
- It is clear that V_{o} is greatly influenced by the load, R_{L}. What the above equations say is that the voltage divider resistors must be chosen with the value of R_{L} in mind.

Erik Jonsson School of Engineering and
Computer Science

Adding the Load Resistor (3)

- A voltage divider is usually specified with a range of output voltage V_{o}.
- The range of R_{L} is also normally specified. For example, say that the range of R_{L} is $50 \mathrm{~K}-100 \mathrm{~K} \Omega$, and that the desired output voltage is $3 \mathrm{~V}, \pm$ 10%, with an input voltage of 10 V .
- This means that V_{o} can be 2.7-3.3V and meet the voltage divider "spec."
- We can now specify the range of resistance values of the divider with
 respect to the desired performance.
- Note that the value of the lower resistance, with R_{L} in place, is
$R_{L} R_{2} /\left(R_{L}+R_{2}\right)$.

Resistive Divider Example

- The desired circuit is shown per "spec."
- The lowest value for V_{o} is with the lowest value of R_{L} in place.
- Thus, $V_{\text {oMIN }}=I \cdot\left[R_{L M I N} R_{2} /\left(R_{L M I N}+R_{2}\right)\right]$, where $I=\mathrm{V} /\left\{R_{1}+\left[R_{\text {LMIN }} R_{2} /\left(R_{\text {LMIN }}+R_{2}\right)\right]\right\}$.
- We want $V_{\text {oMIN }} \geq 2.7 \mathrm{~V}$.
- The highest value for V_{o} is with the highest value of R_{L} in place.
- Then $V_{\text {oMAX }}=I \cdot\left[R_{L M A X} R_{2} /\left(R_{L M A X}+R_{2}\right)\right]$, where $I=\mathbf{V} /\left\{\boldsymbol{R}_{1}+\left[\boldsymbol{R}_{\text {LMAX }} \boldsymbol{R}_{2} /\left(\boldsymbol{R}_{\text {LMAX }}+\boldsymbol{R}_{2}\right)\right]\right\}$.
- We want $V_{\text {oMAX }} \leq 3.3 \mathrm{~V}$.
- We have only to solve the two inequalities above to determine R_{1} and R_{2} !

Finding the Correct Resisters

- There is an easier way to find R_{1} and R_{2} !
- It turns out that a simple "rule of thumb" for a voltage divider is that \boldsymbol{R}_{2} should be $\leq 0.1 R_{\text {LMIN. }}$. That is, choose R_{2} such that $R_{\text {LMIN }} \geq 10 R_{2}$.
- In our example, $\boldsymbol{R}_{\text {LMIN }}=50 \mathrm{~K} \Omega$. Then we can choose $R_{2} \approx 5 \mathrm{~K} \Omega$.
- Now, $R_{2} \approx 0.3\left(R_{1}+R_{2}\right)$. Solving for $R_{1}, R_{1} \approx(0.7 / 0.3) R_{2} \approx 2.3 R_{2}$.

- $\quad \mathrm{Or}, \mathrm{R}_{1} \approx 11.7 \mathrm{~K} \Omega$.

Finding the Correct Resisters (2)

- We now have specified $R_{2} \approx 5 \mathrm{~K} \Omega$, and $R_{1} \approx 11.7 \mathrm{~K} \Omega$.
- We will be using $5 \% 1 / 4-\mathrm{W}$ resistors as usual. These only come in standard values. The nearest standard values are 5.1 K and 12 K . So, choose $R_{2}=5.1$ $\mathrm{K} \Omega$, and $R_{1}=12 \mathrm{~K} \Omega$.
- We now need to check that the chosen values allow us to meet the minimum and maximum output voltages with
 the minimum and maximum load resistances in place.

Finding the Correct Resisters (2)

- According to our "spec," $V_{\text {oMIN }}=2.7 \mathrm{~V}$.
- The parallel resistance of $\boldsymbol{R}_{\text {LMIN }}$ and \boldsymbol{R}_{2} is $(5100 \cdot 50000) /(5100+50000)=4628 \Omega$.
- Then $V_{\text {oMIN }}=10[4628 /(4628+12000)]=$ 2.78V. Check!
- The "spec," states that $V_{o M A X}=3.3 \mathrm{~V}$.
- The parallel resistance of $\boldsymbol{R}_{\text {LMAX }}$ and \boldsymbol{R}_{2} (10V) is $(5100 \cdot 100000) /(5100+100000)=$ 4852Ω.
- Then $V_{\text {oMAX }}=10[4852 /(4852+12000)]=$
 2.88 V . Check!
- Our voltage divider, with the resistor values as shown, satisfies the "spec."

Erik Jonsson School of Engineering and

Limiting Voltage Divider Power Dissipation

- A further concern with our voltage divider: power dissipated in the two resistors.
- One might be tempted to make R_{1} and R_{2} very small to allow for a wider range of $\boldsymbol{R}_{\mathrm{L}}$.
- Consider the absurd situation where we choose $R_{1}=12 \Omega$ and $R_{2}=5.1 \Omega$. Then the $50-100 \mathrm{~K}$ range of R_{L} is inconsequential. However, consider the power in the divider resistors:

- $\quad I \approx 10 /(12+5.1) \approx 0.6$ A. Since the $D C$ power in a resistor $=I \cdot V=I^{2} R$, then R_{1} power $=(0.6)^{2} \cdot 12 \approx 4 \mathrm{~W} . \mathrm{A}^{1 / 4}$ resistor would probably explode!

Erik Jonsson School of Engineering and Computer Science

Choosing Resistors to Eliminate Power Problems

- In order to assure that the voltage divider resistors do not use too much power, they should be chosen with an eye to the current in \boldsymbol{R}_{1}.
- Clearly R_{1} will dissipate more power than R_{2} for a given current I.
- In general, the way to structure the divider is to choose $R_{2} \leq 0.1 R_{\text {LMIN }}$.
- Then calculate I for the case of $\boldsymbol{R}_{\text {LMIN }}$ (as shown on slide 7). Now, $I^{2} \cdot R_{1}$ gives the power dissipation in R_{1}. It should
 be $<1 / 4$ watt. If so, the voltage divider resistors are protected.
- Then, assuming the divider meets the voltage specs, it is complete.

Reducing the $V=I$ Phase Angle

- All industries use AC motors (air conditioners, assembly line motors, etc.).
- Electric motors work due to inductive coils.
- Thus large industries present an inductive load to the power company, and the resulting inductive current increases the current drawn from the power company.
- Inductive current is "imaginary" mathematically, but the power company still charges for it.
- For a major power user, reducing inductive load (making AC voltage and current as close to in-phase as possible) reduces the power bill.
- The common name for reducing the phase angle is "making the power factor one." The "power factor" is the cosine of the phase angle between the voltage and current in an AC circuit.
- If the power factor is 1 , then the phase angle is $0(\cos 0=1)$, and there is no reactive current.

Erik Jonsson School of Engineering and Computer Science

Reminder of RL AC Circuit Analysis

- In an $R L$ circuit with a sinusoidal AC voltage applied, current lags the voltage by phase angle $\boldsymbol{\theta}$.
- From Lab 5, the ω-domain current is $I=V_{p} /(R+j \omega L)$, where V_{p} is the maximum AC voltage amplitude.
- I is a complex number in the ω-domain, with the imaginary part due to the
 inductive impedance, $\boldsymbol{j} \omega L$. If the inductive impedance in the circuit was reduced to 0 , all inductive current would cease and the overall current magnitude would decrease.

Inductive Current is NOT "Imaginary"

- Inductive current is mathematically
imaginary, but physically real; it can be observed and measured. It requires additional current be generated by the power company, and it is carried by a transmission line into the circuit.

- Removing inductive current from
the circuit would reduce the
amount of current that is supplied to the circuit.

Making the "Power Factor" 1

- Inductive current is of the form $I_{M A X} \cos \theta$ in the time domain. The angle θ is defined as $\arctan (X / R)$, where R is the circuit resistance and X is the total circuit reactance.
- In AC circuits, the smaller θ, the more efficiently power is utilized.
- Reduce the phase angle to 0 and the circuit impedance is resistive; voltage and current are "in phase" and no reactive current exists.
- Since θ is 0 , the so-called "power factor," $\cos \theta$, is 1 . This "power factor" is a measure of efficient power usage in AC circuits.

Adding Capacitance

- In a sinusoidal AC circuit, inductors and capacitors produce impedances of opposite signs.
- It stands to reason that if a circuit is highly inductive, drawing a significant of reactive current, then adding capacitance to the circuit will reduce the total reactance and hence
 the reactive current.
- In the circuit at right, the inductive impedance is $j \omega L$, and the capacitive impedance is $1 / j \omega C=-j / \omega C$.

Erik Jonsson School of Engineering and Computer Science

Adding Capacitance (2)

- If one wishes to make the AC current solely resistive, then adding negative capacitive impedance equal to the positive inductive impedance should make the circuit impedance purely resistive.
- Then we want $|j \omega L|=|-j / \omega C|$, or $\omega L=1 / \omega C$.

- You can solve this equation with respect C in terms of L, given the AC frequency of the circuit.
- Do so as a part of your pre-lab assignment.

Erik Jonsson School of Engineering and Computer Science

Your Lab Assignment

- Design a voltage divider that meets the specification in your lab text. When it is completed, demonstrate its operation to the TA on duty, and have the TA sign your data sheet to validate that it works.
- Calculate the capacitance required to reduce the phase angle to 0 (or make the power factor 1) in the circuit specified in the lab text. Again, have the TA sign and validate that your phase reduction circuit works properly.
- There is no lab report for Experiment \#8. Turn your data sheet into the instructor in the next EE 1202 class that shows your calculations and has the TA signature validations. At that point your EE 1202 labs are completed!

