
  

EE 1202 Experiment #5 – Inductors and Capacitors in AC Circuits 
and Phase Relationships 

 
 
1. Introduction and Goal:  Capacitors and inductors in AC circuits are studied.  

Reactance, impedance, and phase relationships of AC voltage and current 
are defined.  Frequency-dependence of inductor and capacitor impedance is 
introduced.  Phase relationships of AC voltage and current are defined.   

2. Equipment List:  The following instruments and components are required:   
• Multimeter, HP 34401A.   
• Signal Generator, HP 33220A.   
• Oscilloscope, Agilent 54622D.   
• RCL Meter, Fluke PM6303A.   
• Electronic prototyping board.   

• Resistor, 5%, ¼ Watt:  16 Ω (1).  
• Capacitor, 10 µF (2).   
• Inductor, 10 mH (2).   
• Oscilloscope, banana plug, and 

coaxial leads.   
3. Experimental Theory:  Capacitors and inductors change the voltage-current 

relationship in AC circuits.  Since most single-frequency AC circuits have a 
sinusoidal voltage and current, exercises in Experiment 5 use sinusoidal AC 
voltages.  Note that in an RLC AC, current frequency will be identical to the 
voltage, although the current waveform will be different.   
3.1. “Imaginary” Numbers, the Complex Plane, and Transforms:    

3.1.1. Definition of j:  As 1−  is not a real number, EE’s normally define 
1j = + − .   Physicists and mathematicians use i ( 1)= − −  for this 

same purpose, so ( )j i= − , but that will not affect our theory.   
3.1.2. EE problem solutions often include imaginary numbers.  It is 

useful to consider real and imaginary numbers as existing in a two 
dimensional space, one axis of which is a real-number axis, and the 
other of which is the “imaginary” axis.   

3.1.3. In the complex plane (Fig. 1), real numbers (–7 , 10) lie on the x-
axis, imaginary numbers (–3j, 42j) on the y-axis.  Complex numbers 
(2 + 6j, –43 – 17j) lie off-axis.   
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3.1.4. Transforms:  Transforms allow moving a problem from a 
coordinate system or domain where it is difficult to solve to one 
where it is easier to solve (Fig. 2).   

3.1.5. Simpler equations in the transform domain make the problem 
easier to solve than in the original domain.  We can transfer 
sinusoidal, single-frequency AC circuit problems to a domain 
where we can use algebra to solve them rather than calculus.  
Solving problems in algebra is always easier than calculus!   

 
 
 
 
 
 
 
 
 
 
3.1.6. The catch:  We need transforms (formulas) to the new domain.  

Then “inverse transforms” are required to return the solution to 
the time domain, where it is useful.   

3.2. A New Domain:  In the phasor or frequency (ω) domain, sinusoidal AC 
circuit problems are easier to solve.  Note:  2 fω π= ,  f the frequency 
in Hertz (thus ω is in radians/sec).    

3.2.1. Transforms:  Skipping the derivation (it will come later), we 
simply list frequency domain transforms.  Note that AC voltage 
is usually expressed as ( ) cos( )pv t V tω= , (Vp  = peak voltage).     

3.2.2. Euler’s formula: cos   sinjxe x j x± = ± .  Cosine is the real part of 
the function and sine is the imaginary part.  Thus,cos   Re  { }jxx e=  
and sin Im  { }jxx e= ,where Re = “real part,” and Im = “imaginary 
part.”  Using the cosine function to represent sinusoidal AC voltage, 
then: ( )( )   cos( )   Re{ } j t

p pv t V t V e ωω= = .   
3.3. Transforms to the Frequency Domain:  Some circuit elements have 

a different representation in the frequency or ω domain.   
 Element  Time Domain ω Domain Transform 
Sinusoidal AC Voltage ( ) Re{ } j t

pV e ω  V p 

Resistance R R 
Inductance L jωL 
Capacitance C 1/jωC 

More Difficult 
Solution Domain Domain Where Solution 

is Simpler 

Transform 

Inverse 
Transform 

    Fig. 2.  Problem solving 
via transforms.   
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3.4. Comments:   
3.4.1. Resistors transform dirctly to the frequency domain.   
3.4.2. Inductance → inductive impedance in the ω domain (that is, 

L LZ j L jXω= = ).   |ZL| is the inductive reactance (symbolized as XL), 
or |ZL| = LX Lω= .  

3.4.3. Capacitance → capacitive impedance in the frequency domain 
as  (1 / ) 1 / /C CZ j X j C j Cω ω= = = − , ( 1 /C CX Z Cω= = ).     

3.4.4. There is no frequency information in the voltage transform:  
( ) cos( )p pv t V t Vω= → .  Note that inductive and capacitive 

impedance do include frequency information.   
3.5. Solving For Currents in the New Domain:  In most EE problems, we 

know voltages and component values (R, L, C).  We generally solve for 
circuit currents, which is easier in the frequency domain.  Note:  V = 
I·R  in the time domain; V = I·Z in the ω domain, where Z = R ± jX.  In 
both domains, voltage is still in Volts and current in Amperes.  
Dimensions of resistance and reactance (both) is Ohms.   

3.5.1. Resistor in AC circuit – solution in the phasor domain:   
 
 
 
 
 
 

 
In Fig. 3, the ω domain voltage transform = 10, and resistance = 
100.   Since V=I·Z in the ω domain, then / / 10 / 100I V Z V R= = =     
=0.1 Amperes.  This answer is converted to the time domain below.   

3.5.2. Inductor in AC circuit (Fig. 4):  In the ω domain, 10 mH → 
jωL = j1000(0.1) = j10; V = 10 Volts.  Then I = V/Z = V/ jωL = 
10/j10 = −j1 Amperes.  (Time domain answer below.)   

   
 
 
 

 
 
3.5.3. Capacitor AC circuit (Fig. 5):  The 100 μF capacitor → 1/ jωC =  

−j/1000(100)(10)−6  = −j/0.1 = −j10 in the ω domain.  Then I = V/Z = 
10/(−j10) = j1 Amperes.  Again, this is the frequency domain answer.    

 
 

Fig. 3.  AC  
Resistor Circuit. 

AC Voltage Source  
=10 cos (1000t) 100 Ω 

Fig. 4.  AC 
Inductor  
Circuit. 

AC Voltage  
Source  
=10 cos (1000t) 

10 mH 
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3.5.4. Resistor and inductor circuit:  In Fig.6, R and L transform to 10 and 

3(1000)(10)(10) 10j L j jω −= = .  Then  / 10 / (10 10)I V Z j= = + =

(rationalizing) 10(10 10) 100 100 0.5 0.5
100 100 200

j j j− −
= = −

+
.    

 
 

 
 
 
 

3.6. Inverse  Transforms: To make solutions from the ω domain useful, 
we must do the reverse (or inverse) transform to the time domain. 

3.6.1. The answers above are in Cartesian coordinates (X ± jY).  These  
X ± jY results would be more useful in polar coordinates ( R θ∠ ).   

3.6.2. From 3.2.2, Euler’s formula: cos sinjxe x j x± = ± .  Or, 
Re   cos sinjx R x Rj x± = ± , R a real constant.  Let cosA x X=  and 

sinAj x jY= .  Then jxRe X jY± = ± .  But jxRe± is R θ∠  in the 
Complex plane.  Then (X ± jY) = (arctan[ / ])j Y XRe± .  The time-domain 
expression for current (as for voltage) is the real part of 

cosj tIe I tω ω± = .  To convert ω-domain current to the time domain: 
• Convert ω-domain current I from X jY±  to polar format:  

(arctan[ / ])j Y XR Reθ ±∠ = , 2 2R X Y= + , arctan[ / ]Y Xθ∠ = ± .   
• Multiply the result by e jωt.   
• Take the real (cosine) part as the time-domain current.   

3.7. Inverse transforms of solutions in 3.6:   
3.7.1. In 3.5.1, phasor current ( PI ) = 0.1.  Following rules of 3.6.2,  

( ) Re{0.1 } 0.1Re{cos( ) sin( )} 0.1cos1000j ti t e t j t tω ω ω= = + =
Amperes.  Thus, voltage and current are cosine functions  They 
rise and fall together, or are “in phase” (Fig. 7).    

 
 
 
 
 

AC Voltage  
Source  
=10 cos (1000t) 

Fig. 6.  AC Inductor-
Resistor Circuit. 
 

10 mH 

10 Ω 

AC Voltage  
Source  
=10 cos (1000t) 

100 μF 
Fig. 5.  AC 
Capacitor  
Circuit. 
 

10 0 10
2

0

2

1.5 cos x( )

cos x( )

Fig. 7.  AC Voltage 
and Current in a 
Resistor.  Note V 
and I in-phase.   

Voltage 
 
 
Current 
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3.7.2. From 3.5.2, 901 1 90 (1) j

PI j e−= − = ∠ − = .  From 3.6.2, multiply by 
j te ω  and take the real part (remembering that x y x ye e e += )

90 ( 90)( ) Re{ 1 } 1Re{ } Re{ } cos(1000 90)j t j j t j ti t j e e e e tω ω ω− −= − = = = − A.   
3.7.3. The result is sinusoidal current with a peak value of 1 ampere, with 

an associated phase angle.  That is, it oscillates at the same radian 
frequency of 1000 rad/sec, but is not in lock-step with the voltage.  Its 
oscillation is 90 degrees behind the voltage, as shown in the graph 
below (Fig. 8).  This “phase angle” is constant.  Current is always 
exactly 90 degrees behind the voltage, a significant characteristic of 
inductors in sinusoidal AC circuits.   

 
 
 
 
 
 
 
 
 

3.7.4. In the formula for the current, 10cos(1000 90)t − , the 1000t 
term is in radians; the phase angle is in degrees.  This odd 
mismatch of different angular expressions is simply the “way it 
has been done” for a long time by EE’s, so get used to it.  To 
calculate the value of the cosine at some time t, you must either 
convert the first term to degrees, or the last to radians!   

3.7.5. From 3.5.3, 1PI j= .  Using the inverse transform formula, 
90 ( 90)( ) Re{ 1 } 1Re{ } 1Re{ } cos(1000 90)j t j j t j ti t j e e e e tω ω ω += = = = +  A.  

Here, the sinusoidal current leads the voltage by 90 degrees (Fig. 
9), reaching a maximum or minimum 90 degrees before the 
voltage, a significant characteristic of capacitors in AC circuits.     

 
 
 
 
 
 
 
 
3.7.6. From 3.5.4 (Fig. 6), converting the Cartesian result 0.5 0.5I j= − : 

450.5 0.5 0.5 45 0.707 45 0.707 jI j e− °= − = ∠ − ° = ∠ − ° = .   Converting 

10 0 10
1

0

1

cos x( )

cos x
π

2
−





Fig. 8.  AC Voltage 
and Current in an 
Inductor.   Note 
that I Lags V by 
90°.   
 

Voltage 

Current 

cos x( )

cos x
π

2
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1

Fig. 9.  AC Voltage 
and Current in a 
Capacitor.  Note 
that I leads V by 
90°.   

Voltage 

Current 
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to the time domain:  45 ( 45 )( ) Re{ (0.707 )} 0.707 Re( )j t j ti t e e eω ω− ° − °= =
0.707cos(1000 45 )t= − ° . Here, the phase angle θ  = – 45°; current 

lags voltage inductively, but less than without the resistor.  In an  RC 
circuit, current would lead voltage, but by less than 90°.   

3.7.7. Note:  In the ω domain, Kirchhoff’s voltage and current laws still 
hold, and series or parallel impedances behave just as series and 
parallel resistors in AC or DC circuits.  The only difference is that 
impedances can be complex numbers. 

3.8. Summary:  The steps in solving a steady-state AC circuit problem:   
• Translate circuit parameters into the ω or frequency domain.   
• Solve the problem, achieving a solution of the form X jY± .    
• Convert this solution to an R θ∠ format and thence to jRe θ± form.   
• Multiply by j te ω .   
• The real (cosine) part of the result is the time-domain current, i(t).   

4. Pre-Work:  Prior to the lab, study this outline and complete the worksheet.   
5. Experimental Procedure:  Make sure that you have all the parts required.   

5.1. V-I Relationship in an AC RL Circuit:  We first study an RL circuit.   
5.1.1. Construct a series RL circuit as in Fig. 6 above, using a 10 mH 

inductor and a 16 Ω resistor.  Measure and record the resistor and 
inductor values using the DMM and the LC meter.  Connect 
oscilloscope channel one across both elements, and channel two 
across the resistor (which should be closer to the black leads [Fig. 
10]).  Connect signal generator and DMM across both resistor and 
inductor (Fig. 10), set to 5 Vp-p, 1000 Hz, checking with oscilloscope.  
Use DMM as a check of the RMS voltage of the signal generator.   

5.1.2. Channel 1 is the “reference,” as it shows the overall circuit voltage.   
5.1.3. Make sure traces are about the same size.  Use “Autoscale,” then 

adjust manually as needed.  Overlap the traces, which will help the 
measurements below.  Since the resistor value is real  (no reactance), 
voltage across it is a direct measure of the current – both magnitude 
and phase (see oscilloscope traces in Fig. 11).   
 
 
 
 
 
 
 
 
 

Signal  
generator  
leads DMM 

leads 

Channel 
#2 probe 

Channel  
#1 probe 

Fig. 10.  AC RL Circuit 
Measurement Set-up.   
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5.1.4. Measure peak-to-peak voltage (Vpp) across the resistor, using the 

cursors.  Then Vp = Vpp /2; peak current = Ip = Vp/R = Vpp/2R.   
5.1.5. Using time cursors, measure time difference between Ip and Vp 

(see above).  This “∆t ” will determine the phase angle.   
5.2. Examining V-I Relationship in an AC RC Circuit:  Replace inductor 

with a 10 µF capacitor to create an RC circuit (measure the exact value 
and record).  Leave 16 Ω resistor in place (see Fig. 12).   

5.2.1. Make sure both traces are still visible (adjust channel 2 sensitivity 
if necessary; continue to let traces overlap).  Channel 1 (input 
voltage) is the reference; channel 2 shows resistor voltage.  Again, 
resistor voltage shows current magnitude and phase (Fig 13).   

5.2.2. Using the cursors, measure Vpp on both channels.  Peak-to-peak 
resistor voltage can be converted to peak current as above.   

5.2.3. Using vertical cursors, measure “∆t” between current and voltage 
peaks.  “∆t ”will be used to calculate the current phase angle.    
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Signal generator 
          leads DMM leads 

Channel #2 
probe 

Channel #1 
probe 

Fig. 12.  AC RC Circuit 
Measurement Set-up.   
 

“Current” Voltage 

Fig. 13.  AC RC Circuit Oscilloscope 
Traces.  The “current” trace is really 
resistor voltage, but in phase with the 
current.   
 

“Current” Voltage 
Fig. 11.  AC RL Circuit 
Oscilloscope Traces.  
The “current” trace is 
really resistor voltage, 
but it is in phase with 
the current.     
 

Δt (difference in time 
between current and 
voltage peaks) 
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6. Laboratory Area Cleanup:  Return parts kit to the cabinet.  Make sure 
work area is clean.    

7. Writing the Laboratory Report:  In your report, do the following:   
7.1. Since i(t) cos( )pI tω θ= ±  from 3.8, construct expressions for i(t) in the 

RL and RC circuits of 5.1 and 5.2, using the given circuit values.   
7.2. You developed an equation in Worksheet #5 for i(t) using the 

experimental data gathered in 5.1 and 5.2.  From your measurements, 
write an expression for i(t) in each case.   

7.3. Compare the i(t) expressions developed in 7.1 and 7.2.  Discuss any 
discrepancies.   

7.4. Discovery Exercise #1 (space for answers is on Experiment #5 Data 
Sheet):   

7.4.1. Given an inductor L, the ω-domain impedance is LZ j Lω= .  If 
frequency domain series impedances add directly, develop a 
formula for the equivalent inductance of two series inductors.  
Remember that if LZ j Lω= , then /LL Z jω= .      

7.4.2. From this result, generalize a formula for total inductance of n 
series inductors.   

7.5. Discovery Exercise #2 (space for answers is on Experiment #5 Data 
Sheet):   

7.5.1. For a capacitor C, the ω-domain impedance is 1 /CZ j Cω= .  
Since frequency domain series impedances add directly, develop a 
formula for the capacitance of two series capacitors.  Remember 
that if 1 /CZ j Cω= , then 1 / CC j Zω= .   

7.5.2. From this result, generalize a formula for total capacitance of n 
series capacitors  What is surprising about this answer?   

7.6. Based on 7.4 and 7.5 above, what is your “best guess” about the 
equivalent inductance of parallel inductors and parallel capacitors?   

7.7. Given a series RLC circuit (inductor, capacitor, and resistor in series) 
with impedances as follows:  100 ,  100 ,  100C LZ j Z j R= − Ω = Ω = Ω .  
What is the total impedance of the circuit?  What is the current phase 
angle?  What is surprising about this?   
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Experiment #5 Data Sheet 
 
 

1. Measured value of 16Ω resistor:  _________  10 mH inductor:  __________ 
 
2. RL Circuit measurements:   

2.1. Measured peak-peak (p-p) voltage on 16Ω resistor:  __________ 
 

2.2. P-p resistor current (A):  ________ and peak current (A):   __________ 
  

2.3. Time delta (μsec) between current and voltage peaks:  __________ 
 

2.4. Time-domain expression for i(t), based on measures above: __________ 
 

2.5. Calculated expression for i(t), based on measured R and L: __________ 
 

2.6. List your ideas for discrepancies, if any:    _________________________ 
 

________________________________________________________________ 
 
________________________________________________________________ 
 

3. Measured value of 10 µF capacitor:        __________ 
 

4. RC Circuit measurements:  
4.1. Measured peak-peak voltage on 16Ω resistor:   __________ 

   
4.2. Peak-to-peak current (A):  _______  and peak current (A):  __________  

 
4.3. Time delta (μsec) between current and voltage peaks:  __________ 

 
4.4. Time-domain expression for i(t), based on measures above: __________ 

 
4.5. Calculated expression for i(t), based on measured R and C: __________ 

 
4.6. List your ideas for discrepancies, if any:  _________________________ 

 
________________________________________________________________ 
 
________________________________________________________________ 



EE 1102 Laboratory:  Introduction to Experimental Techniques    Experiment #5 
 

 10 

Experiment #5 Data Sheet, Page 2 
 
 

5. Discovery Exercise #1: 
5.1. Impedance of two series inductors ( 1 2LTotalZ j L j Lω ω= + ):  __________ 

  
5.2. Calculated equivalent inductance ( /Total LTotalL Z jω= ): __________ 

 
5.3. Equivalent value of two inductors of value L in series: __________ 

 
5.4. From 5.2 and 5.3, general formula for equivalent value of any number 

of series inductances:   
 
_____________________________________________________________ 
 
_____________________________________________________________ 

6. Discovery Exercise #2:   
6.1. Impedance of two series capacitors ( 1 2[1 / ] [1 / ]CTotalZ j C j Cω ω= + ):   

          
          __________ 

  
6.2. Calculated equivalent capacitance ( 1 /Total CTotalC j Zω= ): __________ 

 
6.3. Equivalent value of two capacitances of value C in series: __________ 

 
6.4. From 6.2 and 6.3, general formula for equivalent value of any number 

of series capacitances:   
 
_____________________________________________________________ 
 
_____________________________________________________________ 
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Experiment #5 Worksheet 
 

Note:  Experiment #5 is generally the most challenging exercise in EE 1202.   
Please read Experiment #5 carefully at least twice and then take your time on 
the exercises below to make sure that you understand the theoretical material.   

 
1. In what quadrant of the complex plane are these numbers located? 

 
−12+j7 __________________ −10−j50 __________________ 

 
8−j2 __________________ 1+j100 __________________ 

2. Rationalize the complex numbers below (answer in the space provided): 
 

26/(6−j4) __________________ (8−j8)/(2+j2)    __________________ 
3. Inductor and capacitor impedances are given as: L LZ j L jX  ω= =  and 

C C Z 1 / j C j / C jXω ω= = − = − .  Assume you have a 10μF capacitor and a 
10mH inductor.  Calculate the reactances of these components at the 
following frequencies and list in the space provided:   
  
1 MHz (1,000,000 Hz):   XL _______________Ω   XC _______________ Ω 

 
50KHz (50,000 Hz):   XL _______________ Ω  XC _______________ Ω 

 
0Hz:        XL _______________ Ω  XC _______________ Ω 

4. Different items in the time domain transform in different ways to the ω 
domain: 1,  ,  /R R L j L C j Cω ω→ → → , ( 2 fω π= , ( ) cosv t V t Vω= → ).  Given 
a circuit with ( ) 10cos1000v t t= , R=100Ω, L=10mH, and C=10μF, calculate the 
values in the ω domain of:   
 
voltage    __________    resistance    __________   
 
inductive impedance __________   capacitive impedance __________   

5. After transforming voltage and circuit to the ω domain, find the current by 
dividing voltage by impedance.  This usually results in a complex number.  To 
convert back to the time-domain, which is the answer sought, do four things:   
• Rationalize the complex number; the result is an X ± jY representation.   
• Convert complex number to polar-coordinates, then power-of-e format..   
• Multiply the current in power-of-e form by j te ω .   
• Take the real part to get the time-domain current representation.   
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Experiment #5 Worksheet (Page 2) 
 
 

6. Based on the procedure in 5 above, convert the following ω domain currents 
back into the time domain (assume ω = 1000): 

 
I = 10+j10      _____________  I = −8+j4      _____________   

 
7. If ( ) 10cos10000 ,  100 ,  100v t t R C Fµ= = Ω = , find ( )i t .   
 

________________________________________________________________ 
8. In 5.1 and 5.2 you will take measurements of the voltage across a resistor 

(which is a measure of the current in the resistor) and the phase angle between 
voltage and current, measured in μsec.  With these measurements you can 
determine the current as a function of time, that is ( ) cos( ),  P Pi t I t Iω θ= +  the 
peak AC current and θ the phase angel in degrees.  IP and θ are found as 
follows:   

8.1. Peak current = / 2RP P
P

VI
R
−= , where RP PV − is the peak-to-peak voltage 

across the resistor that you measure, and R is the resistor in the circuit.   
8.2. The phase angle θ is defined by the following equation:  

( 2 1) secphase  in degrees (360 ) (360 )
1000 sec 1000
t t tµθ

µ
− ∆

= ∠ = ° = ° .  In the phase 

angle equation, the time difference ( 2 1)t t t∆ = −  is your measured time 
between the voltage and current peaks, 1000 μsec is the period of the 
1000Hz AC sinusoidal signal, and 360° is the period of a cosine.  You will 
use this equation to calculate θ in section 8.2 of your experiment.   

9. As an exercise to become familiar with the calculations in 8 above, compute the 
current in an AC capacitor circuit if the peak-to-peak voltage across a 100Ω 
resistor is 20V, the time measurements are 2 300 sect µ=  and 1 100 sect µ= , and 
the frequency of the AC sinusoidal voltage is 1000 Hz.  Remember:  ω = 2πf.   
 
 
( )i t =   

_______________________________________________________________  
 

 


	10 mH
	100 μF
	10 mH
	10 Ω

