EE 1202 Experiment \#8 - Circuit Design Problems

1. Introduction and Goal: Designing circuits is a large part of electrical engineering. After learning some basic circuit principles, it is time to try your hand at two designs. This exercise offers an opportunity to rate your progress in mastering the fundamentals covered in EE 1202.
2. Equipment List: The following instruments and components are required:

- Bench instruments, as req.
- Prototyping board.
- Resistors, 5\%, $1 / 4$ Watt: $\mathbf{1 6 \Omega}$, $20 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$, and others.
- Inductor, 10 mH , (1).
- Capacitors, $10 \mu \mathrm{~F}, 1 \mu \mathrm{~F}$.
- Connecting leads.
- Student's calculator.

3. Experimental Theory: Today's design problems are (1) a resistive voltage divider and (2) a reactance reduction circuit. The theory required for the two exercises is covered below.
3.1.A DC Voltage Divider: Passive voltage dividers (voltage dividers without amplifiers or active elements such as transistors) are not used extensively, but can be useful where (1) a small amount of power is required at a different voltage than is available, or (2) cost constraints are high, since a resistor voltage divider is simple and inexpensive.

Fig. 1. Schematic of Voltage Divider Circuit.
3.1.1. Fig. 1 above shows such a voltage divider. Say the voltage requirement is 0.3 V . The output voltage is $I \cdot R_{2} ; I=V /\left(R_{1}+R_{2}\right)$ (assuming R_{L}, as shown in Fig.1, is not yet connected). If 70% of the voltage drop is in the upper $\left(R_{1}\right)$ resistor, the desired output voltage will be 0.3 V . Since total resistance R_{T} of the two resistors is $R_{1}+R_{2}$, then to get $0.3 V$ across the smaller resistor, we need $R_{1}=$ $0.7 R_{T}$, and $R_{2}=0.3 R_{T}$. Clearly, if R_{2} is 30% of the total resistance, then the voltage drop on R_{2} is 0.3 V . That is, $\left(R_{2} /\left[R_{1}+R_{2}\right]\right)=0.3$.
Clearly, a voltage divider cannot increase a voltage.
3.1.2. From Experiment 2, the parallel resistance of two resistors is less than either. When the load resistor is connected, the voltage drop across R_{2} is no longer 0.3 V , but a lower voltage (since the parallel
resistance of R_{2} and R_{L} is less than that of R_{2}).
3.1.3. The desired voltage is much lower for $R_{L} \leq R_{2}$. In Fig. 2, for example, what if R_{1} is $70 \Omega, R_{2}$ is 30Ω, and R_{L} is 1Ω ? Then without the load, the voltage across R_{2} is $0.3 \mathrm{~V}, V$ the input voltage. But connect R_{2} and R_{L} in parallel, and we know that the combined resistance will be less than 1Ω ! The voltage across R_{L} will be \approx $\mathbf{1 . 5 \%}$ of V, or $\sim \mathbf{2 \%}$ of the input voltage. The divider is useless.
3.1.4. The size of R_{L} is clearly important to the design. The divider must be designed so that with R_{L} in place, output voltage of the divider is in the desired range. This ability to maintain correct voltage under load is called "voltage regulation."
3.1.5. Thus a resistive voltage divider design has two specifications: First, an output voltage range is specified, (e.g., 0.45 V to $0.55 \mathrm{~V}, \mathrm{~V}$ the input voltage). Second, a resistance range for R_{L} is specified. If a load resistor is >> R_{2} the parallel resistance of R_{2} and R_{L} is $\approx R_{2}$).

3.1.6. In Fig. 2, assume the desired output voltage is $\mathbf{0 . 3} \mathrm{V}, \pm \mathbf{1 0 \%}$. Then regardless of the values for R_{L}, the output voltage must be between $0.27 V$ to 0.33 V . Then R_{1} and R_{2} are chosen so that with the largest R_{L} in place (the largest parallel resistance of R_{2} and R_{L}), the output voltage of the divider must $\leq 0.33 \mathrm{~V}$. For the smallest R_{L}, (resulting in the lowest parallel resistance), the voltage must be $\geq 0.27 \mathrm{~V}$.
3.1.7. Parallel resistance for R_{2} and $R_{L}: \frac{1}{R_{P}}=\frac{1}{R_{2}}+\frac{1}{R_{L}}=\frac{R_{L}+R_{2}}{R_{L} \cdot R_{2}}$, or $R_{P}=\frac{R_{L} \cdot R_{2}}{R_{L}+R_{2}}$. With R_{P} defined, for the output voltage to be in the required range, then:
3.1.8. $\frac{\boldsymbol{R}_{\text {PMAX }}}{\boldsymbol{R}_{1}+\boldsymbol{R}_{P M A X}}=\frac{\frac{\boldsymbol{R}_{L M A X} \cdot \boldsymbol{R}_{2}}{\boldsymbol{R}_{\text {LMAX }}+\boldsymbol{R}_{2}}}{\boldsymbol{R}_{1}+\frac{\boldsymbol{R}_{\text {LMAX }} \cdot \boldsymbol{R}_{2}}{\boldsymbol{R}_{\text {LMAX }}+\boldsymbol{R}_{2}}} \leq 0.33 ; \frac{\boldsymbol{R}_{\text {PMIN }}}{\boldsymbol{R}_{1}+\boldsymbol{R}_{\text {PMIN }}}=\frac{\frac{\boldsymbol{R}_{\text {LMIN }} \cdot \boldsymbol{R}_{2}}{\boldsymbol{R}_{\text {LMIN }}+\boldsymbol{R}_{2}}}{\boldsymbol{R}_{1}+\frac{\boldsymbol{R}_{\text {LMIN }} \cdot \boldsymbol{R}_{2}}{\boldsymbol{R}_{\text {LMIN }}+\boldsymbol{R}_{2}}} \geq 0.27$
3.1.9. Rather than trying to solve for R_{1} and R_{2} in the inequalities above, the following steps make it easy to choose these resistors:
3.1.9.1. Determine the range of \boldsymbol{R}_{L}.
3.1.9.2. For $R_{\text {LMIN }}$ (low end of R_{L}), choose R_{2} such that $R_{\text {LMIN }} \geq 10 R_{2}$.
3.1.9.3. Now choose R_{1} so that $\left(R_{2} /\left(R_{1}+R_{2}\right) \cdot V=\right.$ desired voltage.
3.1.9.4. Example: Input voltage $=10 \mathrm{~V}$., desired voltage $=3 \mathrm{~V}$. $\pm 10 \%$ (or $2.7-3.3 \mathrm{~V}$.), and range of $R_{L}=10-50 \mathrm{~K} \Omega$. Then, with $R_{\text {LMIN }}=10 \mathrm{~K} \Omega$, using 3.1.9.2 above, choose $R_{2}=1 \mathrm{~K}$. Then $R_{1}=$ 2333Ω. There are no standard resistors of that value, but there is a 2.2 K standard value, which should be close enough. The result: $R_{2}=1 \mathrm{~K}$, and $R_{1}=2.2 \mathrm{~K}$.
3.1.9.5. To check this result, with the minimum load resistor value of 10 K , the parallel resistance of R_{2} and $R_{L} \approx 909 \Omega$. This would give a minimum voltage of $(909 /[2200+909]) \cdot(10 \mathrm{~V}) \approx 2.9 \mathrm{~V}$, which is above the minimum allowable of 2.7 V . With the maximum load $=50 \mathrm{~K}$, the parallel resistance of \boldsymbol{R}_{2} and $\boldsymbol{R}_{L} \approx$ 980Ω. The maximum voltage is then $(980 /[2200+980]) \cdot(10 \mathrm{~V}$.$) ,$ $\approx 3.1 \mathrm{~V}$, well below the maximum 3.3 V .
3.1.10. \quad A last note: R_{1} and R_{2} must not only satisfy the equation in 3.1.9.2, but also not dissipate so much power that they burn up. That is, we would not want to use 2.2Ω and 1Ω resistors above instead of the 2.2 K and $1 \mathrm{~K} \Omega$ resistors, if they were low-power resistors such as those in most of our experiments, because they would quickly burn up. Remember to choose reasonable resistor values since, in your lab problem, you will be using $1 / 4 \mathrm{~W}$ resistors.
3.1.11. \quad For the resistors chosen above? Remembering that $I=V / R$, the current in our divider with $V=10 \mathrm{~V}$ would be $10 /(1000+2200) \approx$ 0.003 A , or 3 mA . Since power in a resistor $=I^{2} R$, then the power in the two resistors is $(\mathbf{0 . 0 0 3}) \cdot(\mathbf{3 2 0 0})=0.026$ Watts, well within the capacity of the two $1 / 4 \mathrm{~W}$ resistors.
3.2.Bringing Current and Voltage Into Phase in an AC Circuit: In an inductive AC circuit (ref. Exp. \#5), current lags voltage by some phase angle. For $|j \omega L| \gg R$, the phase angle can $\boldsymbol{\rightarrow} \mathbf{9 0}^{\circ}$ for . Most companies use many AC motors (in air conditioners, on assembly lines, etc.), and electric motors work by virtue of inductive coils. Thus large industries present an inductive load to the power company.
3.3.This inductive load draws current. Inductive current is "imaginary" mathematically, but it is real insofar as the power company demands
that it be paid for! For a large AC power user, reducing inductive load (making the AC voltage and current as close to in-phase as possible) will reduce the power bill. The common name for reducing the phase angle is "making the power factor one." The "power factor" is $\cos \theta, \theta$ the voltage/current phase angle in an AC circuit. If the power factor $=$ 1 , then the phase angle $=0(\cos 0=1)$, and there is no reactive current. 3.3.1. In Fig. 3, the sinusoidal signal generator voltage is $v(t)=V \cos \omega t$.

3.3.2. Experiment 5 demonstrated that V and I are not in phase in this circuit; current lags voltage. Can we reduce the phase angle to 0 ?
3.3.3. Remember: Inductive impedance $=Z_{L}=j X_{L}=j \omega L ; Z_{L}$ is always a positive, imaginary value. Capacitive impedance $=Z_{C}=-j X_{C}=$ $-j / \omega C ; Z_{C}$ is always a negative, imaginary number.
3.3.4. Since inductive and capacitive impedances are imaginary and of opposite sign, adding capacitive reactance of the same magnitude as the inductive reactance in a circuit would result in zero reactance and therefore no reactive current. In Worksheet \#8 you will develop a formula to make circuit reactance $=0$.
3.3.5. When adding capacitance to an inductive circuit, it may be necessary to use several capacitors to achieve desired capacitance. We saw in Experiment 5 that capacitors in series add reciprocally and inferentially, capacitors in parallel add directly.
3.3.6. For example, paralleling three $1-\mu \mathrm{F}$ capacitors $=3 \mu \mathrm{~F} ; 5 \mu \mathrm{~F}$ results from two series $10 \mu \mathrm{~F}$ capacitors. In Fig. 4, a correctly chosen capacitor could bring the power factor to $1(\theta=0)$.
3.3.7. For companies with a heavy inductive load, adding a capacitor bank can significantly reduce their electrical power bill.

4. Pre-Work: Prior to the lab, study this outline and review capacitive and inductive impedance. Complete formula derivations in Worksheet \#8.
5. Design Problems: Design the circuits, as required, in 5.1 and 5.2 , below. 5.1.A DC Voltage Divider Circuit: Design a voltage divider as follows: 5.1.1. Input voltage is 10 VDC ; desired output of $4 \mathrm{VDC}, \pm 0.3 \mathrm{~V}$. Use $1 / 4-$ Watt resistors. Remember not to exceed the power rating of the resistor. The load range is $\mathbf{2 0 - 1 0 0} \mathrm{K} \Omega$. Over this range, output voltage must be (3.7-4.3 V). That is, at $20 \mathrm{~K} \Omega$ load, output voltage must be $\geq 3.7 \mathrm{~V}$, and at $100 \mathrm{~K} \Omega$ load, output voltage must be $\leq 4.3 \mathrm{~V}$.
5.1.2. Construct the voltage divider on your prototype board. Demonstrate that output stays "in spec" over the range of R_{L}.
5.1.3. Enter required data in your data sheet.
5.2.An AC "Phase Compensated" Circuit:
5.2.1. Using a 10 mH inductor and a 16Ω resistor, make a circuit as shown in Fig. 3, above. Measure L and R_{L} on the LC meter.
5.2.2. Using the signal generator and oscilloscope channel 1 , set the voltage across the series $R L$ circuit at 5 V pp at 1000 Hz , sinusoidal.
5.2.3. Use oscilloscope channel 2 to measure the 16Ω resister voltage (which will be in phase with the current, as in Experiment \#5), to measure the current phase angle.
5.2.4. Using the formula from worksheet \#8, calculate capacitive reactance equal to the inductive reactance (based on measured inductance), then convert to capacitance.
5.2.5. Use capacitors from the parts kit in the proper combination to achieve the desired capacitance. Remember the parallel and series capacitance formulas. Due to circuit parameters not taken into account (such as wire lead resistance, etc.), some experimentation with series and parallel capacitors may be necessary. Combine capacitors in series and parallel to create the desired value, e.g., two $1 \mu \mathrm{~F}$ series caps $=0.5 \mu \mathrm{~F}$, or two parallel $1 \mu \mathrm{~F}$ caps $=2 \mu \mathrm{~F}$.
5.2.6. For each trial capacitance, check phase angle, as in Experiment \#5. It may take some extra capacitance to get $\theta=0$.
5.2.7. When the $V-I$ phase match is correct, demonstrate to the TA.
6. Laboratory Area Cleanup: When work is complete, clean up as usual.
7. Writing the Laboratory Report: There is no report for Experiment 8. Have the TA initial your data sheet. Turn in your Experiment \#8 data sheet the next EE 1202 class period.

Experiment \# 8 Data Sheet

Note: Complete this data sheet, have the lab TA sign it, and turn it in to verify that you completed Lab 8.

Problem 1 (Voltage Divider):

1. Remember to estimate power dissipated in your voltage divider. Power dissipated is: $P=I \cdot V=I^{2} R$. As your resistors are $1 / 4$ Watt, calculate power dissipation in each to assure that they will not be damaged.
2. Estimated values for \qquad
\boldsymbol{R}_{2} :
\boldsymbol{R}_{2} :
3. Measured values of
R_{1} : \qquad
4. Measured values of $20 \mathrm{~K} \Omega$ \qquad and $100 \mathrm{~K} \Omega$ \qquad test load resistors.
5. Minimum load voltage ($20 \mathrm{~K} \Omega$ resistor in place): (must be $\geq 3.7 \mathrm{~V}$.).
6. Maximum load voltage ($100 \mathrm{~K} \Omega$ resistor in place): (must be $\leq 4.3 \mathrm{~V}$.).

Problem 2 (Capacitor Bank):

7. Formula you developed for capacitance to offset inductance: \qquad
8. 10 mH inductor measured inductance: \qquad resistance: \qquad
9. Measured value of nominal 16Ω resistor :
10. Measured value of peak-to-peak voltage of $\sim 1000 \mathrm{~Hz}$ signal: \qquad
11.Calculated inductive reactance:
11. Desired capacitance to offset inductive reactance in 11: (calculated from formula developed in worksheet).
12. Measured value of capacitors used to reduce phase angle to $\mathbf{0}$ degrees (power factor $=1$); use as many spaces as needed:
\qquad , \qquad , \qquad , \qquad , \qquad , \qquad
14.Total value of capacitance used (remember to add parallel and series capacitances correctly!)

Experiment \#8 Worksheet

1. What is the resistance of $3-10 \mathrm{~K} \Omega$ resistors:

In series? \qquad In parallel?
2. Given the voltage divider circuit shown, with input voltage of $20 \mathrm{~V}, R_{1}=$ $1 \mathrm{~K} \Omega$ and $R_{2}=3 \mathrm{~K} \Omega$, and $R_{L}=20 \mathrm{~K} \Omega$. Output voltage across R_{2} should be $15 \mathrm{~V}, \pm 0.1 \mathrm{~V}$. Can this voltage divider meet the specification as shown?

3. In the circuit below, if the inductive and capacitive impedances have the same magnitude, since they are opposite in sign, they will cancel each other out, and there will be no imaginary current in the circuit. That is, if we have: $1 / j \omega C=-j \omega L$, then net reactance $=0$. Based on this equation, solve for a value C in terms of L and ω, which will cancel the inductive impedance of L. You will use this formula in Experiment 8.

4. In the circuit above, if L is 20 mH , find C such that $|j \omega L|=|1 / j \omega C|$, if the radian frequency ω of the circuit is $1000 \mathrm{rad} / \mathrm{sec}$.
$C=$ \qquad
5. In the circuit above, if the signal frequency is 60 Hz , what must C be to ensure that the circuit reactance is zero, given the same L ?
$C=$ \qquad

