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Single-frame deep-learning super-resolution
microscopy for intracellular dynamics
imaging

Rong Chen1, Xiao Tang2, Yuxuan Zhao3, Zeyu Shen2, Meng Zhang 3,
Yusheng Shen2, Tiantian Li2, Casper Ho Yin Chung 4, Lijuan Zhang5, Ji Wang4,
Binbin Cui1, Peng Fei 3, Yusong Guo 2 , Shengwang Du 1,6,7 &
Shuhuai Yao 1,4

Single-molecule localization microscopy (SMLM) can be used to resolve sub-
cellular structures and achieve a tenfold improvement in spatial resolution
compared to that obtained by conventional fluorescence microscopy. How-
ever, the separation of single-molecule fluorescence events that requires
thousands of frames dramatically increases the image acquisition time and
phototoxicity, impeding the observation of instantaneous intracellular
dynamics. Here we develop a deep-learning based single-frame super-resolu-
tion microscopy (SFSRM) method which utilizes a subpixel edge map and a
multicomponent optimization strategy to guide the neural network to
reconstruct a super-resolution image from a single frame of a diffraction-
limited image. Under a tolerable signal density and an affordable signal-to-
noise ratio, SFSRM enables high-fidelity live-cell imaging with spatiotemporal
resolutions of 30 nm and 10ms, allowing for prolonged monitoring of sub-
cellular dynamics such as interplays between mitochondria and endoplasmic
reticulum, the vesicle transport alongmicrotubules, and the endosome fusion
and fission. Moreover, its adaptability to different microscopes and spectra
makes it a useful tool for various imaging systems.

Live-cell fluorescence imaging, requiring both low phototoxic illumi-
nation and a high imaging speed, is usually performedwith awide-field
(WF) fluorescence microscope1. The spatial resolution of a conven-
tional fluorescence microscope is limited by diffraction and thus
unable to resolve subcellular structures smaller than 200nm. In the
past two decades, various types of super-resolution microscopy sur-
passing the diffraction limit have been developed. For example,
structured illumination microscopy (SIM)2 can be used for live-cell

imaging with low invasiveness; however, it only improves the spatial
resolution of images by a factor ofup to 2. Although advanced SIM3 has
improved the resolution to ~60 nm, multiple frames are still required
to construct a single super-resolution (SR) image. Stimulated emission
depletion (STED) microscopy4 can achieve an ~50nm resolution using
highly intense light pulses, but point-to-point scanning makes STED
too slow for live-cell imaging. Single-molecule localizationmicroscopy
(SMLM)5–8, including photoactivated localization microscopy
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(PALM)6,7 and stochastic optical reconstructionmicroscopy (STORM)5,
further enhances the spatial resolution by a factor of 10 (~20 nm) but
typically requires more than thousands of frames with separated
single-molecule fluorescence events to reconstruct one SR image;
hence, in rare cases, SMLM has been applied to live cells at a second-
scale temporal resolution9–11. To perform time-resolved and non-
invasive super-resolution imaging, numerous advanced labeling
strategies12–14, optical imaging systems15,16, and image reconstruction
methods17–19 have been explored in recent decades. Nonetheless,
inherent tradeoffs among spatial and temporal resolutions, the
achievable signal intensity and cytotoxicity must be made due to the
physical boundaries of optical systems20.

The rapid development of artificial intelligence has led to many
traditional hardware limits being surpassed. Various deep learning
networks have displayed excellent performance in the single-image
super-resolution (SISR) task21–23 which usually transforms a single low-
resolution (LR) photograph to a high-resolution (HR) photograph. The
focus of the SISR task for realistic photographs is to enhance texture
and improve visual quality24,25. In contrast, super-resolution tasks for
microscopic images demand ultrastructure recovery from diffraction-
limited images with high accuracy. Recently, popular neural networks
in computer vision have been modified to enhance the resolution of
microscopic images, for instance, from low magnification to high
magnification26,27, confocal to STED27,28, and total internal reflection
fluorescence (TIRF) or WF to SIM27–29; and also combined with PALM
and STORM to accelerate the localization process of SMLM
reconstruction30 and reduce the number of frames of single-molecule
images required for SMLM reconstruction31,32. However, due to the
large resolution gap between the LR images acquired by WF micro-
scopes and HR images obtained from SMLM reconstructions, multiple
frames of LR images with single-molecule fluorescence events are still
required to reconstruct an SR image. Therefore, the fundamental
problems of multi-frame super-resolution imaging, such as the long
acquisition time and photobleaching-induced phototoxicity in locali-
zationmicroscopy, still hinder its application in the imaging of live-cell
dynamics.

In this work, we first explore the possibility of using a neural
network to directly transform a single diffraction-limited image to an
SR image with a 10-fold higher resolution. By applying an enhanced
super-resolution generative adversarial network (ESRGAN)25, multi-
component loss function, and prior information regulation, we
develop a super-resolution network (SRN) that can resolve a single
diffraction-limited frame to an SR imagewith up to a 10-fold resolution
improvement. Then, we investigate the challenges of implementing
this SRN for real-time live-cell observations where the acquired images
normally have an ultralow signal-to-noise ratio (SNR). By deploying a
signal-enhancement network (SEN) in advance to progressively opti-
mize the image SNR and resolution, we are able to reduce the
requirement on the input SNR for satisfactory reconstruction quality,
thus allowing for high-speed live-cell imaging without sacrificing the
spatial resolution. Taken together, we propose a single-frame super-
resolutionmicroscopy (SFSRM) approach that allows us to reveal time-
resolved intracellular events in live cells, for instance, the vesicle
transport dynamics, the endosome fusion and fission process, and
mitochondria-endoplasmic reticulum interactions. Moreover, we
demonstrate that the well-trained SFSRM networks can be used in
various imaging systems without further training, making super-
resolution imaging possible for laboratories lacking training datasets.

Results
SFSRM based on joint-optimization-enhanced deep learning
networks
The central goal of the deep-learning-based microscopic image SR
tasks is to reconstruct the high-frequency structures with high accu-
racy from LR images. Therefore, in pursuit of high fidelity, the mostly

used loss functions in microscopic image restoration are mean abso-
lute error (MAE) loss, mean square error (MSE) loss, and structural
similarity (SSIM) loss. These loss functions which focus on pixel-wise
differences between the network output and the GT image can achieve
a high peak signal-to-noise ratio and SSIM index, but suffer from
oversmoothed reconstruction result and loss of high-frequency
details24 (Supplementary Fig. 1). By contrast, perceptual loss and
adversarial loss25, which have been extensively utilized in photograph
SR tasks to restore the high-frequency details, are regarded inap-
propriate for microscopic image restoration because undesirable
artifacts can be induced24.

To achieve high-frequency detail reconstruction, here we inves-
tigated the possibility of using perceptual loss and adversarial loss for
microscopic image restoration. We propose a multi-component loss
function containing (i) the combination of multi-scale structure simi-
larity loss and mean absolute error loss, noted as MS-SSIM-L1 loss, to
improve thepixel-wise reconstruction accuracy, (ii) theperceptual loss
to generate high-frequency structures, (iii) the adversarial loss from a
U-net discriminator to provide pixel-wise feedback to the generator
about whether the reconstructed image is true or fake, (iv) the fre-
quency loss to suppress the high-frequency artifacts (Fig. 1a). To
quantitatively assess the functionality of the proposed loss function,
we simulated randomly distributed polymer lines in the GT images
with a pixel size of 10 nm. The GT images were then blurred by a
Gaussian kernel of 200-nm full-width-half-maximum (FWHM) size to
generate the corresponding LR images. The result shows that the
multi-component loss has notably improved the fine-structure recon-
struction capability of the network compared to the conventional
pixel-wise loss and effectively suppressed the artifacts in the original
ESRGAN (Supplementary Fig. 2). We repeated the experiments on 30
images and constantly found that the network trained with the multi-
component loss was able to restore fine structures from blurred LR
images and achieved anMS-SSIM indexof ~0.98with respect to theGT,
manifesting the capability of the network to transform a single
diffraction-limited image to an SR image with a 10-fold resolution
increase under the noise-free condition.

Unfortunately, the reconstruction quality quickly degrades if the
image is corrupted by noise (Supplementary Fig. 3, without the edge
map), which is reasonable since single-image super-resolution
restoration is already an ill-posed problem, and noise will add further
complexity to this task. Determining how to improve the reconstruc-
tion accuracy of noisy images remains a critical task. Here, we integrate
theprior information (edgemap) fromanLR image into thenetwork to
aid in the reconstruction. Although edge priors have been considered
in realistic photograph restoration33, edge detection operators that are
well suited for realistic photographs cannot be directly applied to
microscopic images since the diffraction effect is not considered. As
shown in Supplementary Fig. 4a, the edges extracted from the
microscopic LR image by these operators fail to indicate the high-
resolution structures in the GT image. Instead, we extracted a subpixel
edge map from a microscopic image based on the radial symmetry of
imaged fluorophores (Supplementary Fig. 4b) which has been utilized
in super-resolution microscopy methods34–36. Inspired by Gustafsson
et al.34, who analyzed the temporal cumulates in the radialitymaps of a
sequence of images to reconstruct one SR image, we computed the
edge map from a single LR image (Supplementary Fig. 4c) and used it
as an additional input to the network, which is proven to effectively
improve the fine-structure reconstruction accuracy of the network
from the noisy LR image (Supplementary Fig. 3, with the edge map).

We then wonder to what extent the network can maintain its
performance in the presence of different levels of noise. To test this,
we set the background and noise at a certain level and decreased the
signal intensity to different levels to simulate a set of images with
different SNRs as shown in Supplementary Fig. 5. After comparing the
reconstruction results from inputs with different SNRs by visually
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inspecting the reconstruction quality (Supplementary Fig. 5a) and
quantitatively analyzing the reconstruction accuracy (Supplementary
Fig. 5b), we found that the network has a prerequisite for input SNR at
about 15, which poses a challenge for applications in live-cell imaging
where the signal level could be quite low due to short exposure and
low illuminance. To address this challenge, we tried to improve the
image SNR in advance. There areplenty of networks that could be used
for denoising, such as RCAN28 and CARE37. Because the ESRGAN gen-
erator works well for denoising tasks with registered low-SNR (LSNR)
and high-SNR (HSNR) data when trained with MS-SSIM-L1 loss and
perceptual loss, we adopted another ESRGAN generator as SEN prior
to SRN to progressively optimize the image SNR and resolution, and
thus an SR image can be exquisitely restored from a low-SNR LR image

(Fig. 1b).With the aid of SEN, theminimumSNR requirement of SFSRM
could be extended to SNR of 7 (Supplementary Fig. 5, HSNR-SR),
making it accessible to most live-cell applications (see Supplementary
Note 1 for the SNR estimation in fluorescent imaging).

SFSRM reconstructs a super-resolution image from a single
diffraction-limited image
Considering signal variations in density and intensity during the
fluorescent imaging, we systemically evaluated the resolution and
accuracy of SFSRM in a range of signal density and intensity on
simulation line pairs. As shown in Supplementary Note 2 (Section I), we
investigated the reconstruction accuracy of line-pairs with different
interpair distances between 10 nm and 50 nm at different SNRs and

b
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SEN SRN

t t t

SNR ≥ 7 

Live-cell image
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a LR

Edge map

Multi-component loss function

Super resolution network (SRN)
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Frequency loss
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Fig. 1 | The architecture of SFSRM. a The super-resolution network (SRN) archi-
tecture. The SRN is trainedwith simulated low-resolution (LR) and ground-truth (GT)
image pairs or experimental wide-field (WF) and STORM image pairs obtained from
the STORM microscope. The LR/WF image is preprocessed by a sub-pixel edge-
detector to extract the edge map, and both of them are then fed as inputs to the
network. A multi-component loss function is adopted to train the network. The
multi-component loss function includes the following parts: (i) MS-SSIM-L1 loss
whichmeasures the pixel-wise difference between the SR and GT/STORM images by
multi-scale similarity and mean absolute error; (ii) perceptual loss which measures

the difference between feature maps of SR and GT/STORM images extracted by the
VGG network; (iii) adversarial loss returned by the U-net discriminator which dis-
tinguishes the GT/STORM image from the SR image; (iv) frequency loss which
compares the frequency spectrum difference of the SR and GT/STORM image in a
specified frequency region. b Workflow of SFSRM. To implement SFSRM in high
frame-rate live-cell imaging. The low-SNR (LSNR) image sequence acquired from live
cells first goes through the signal-enhancement network (SEN) to improve signal
intensity (or SNR), and the intermediate result (HSNR image sequence) is input to the
SRN for the reconstruction of the SR image sequence. Scale bar: 1 µm.
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signal densities and regarded the smallest interpair distance that can
be resolved at an accuracy >0.85 as the best achievable resolution of
the network (Supplementary Figs. 6–12). We summarized the achiev-
able resolution of the network at different SNRs and signal densities in
Fig. 2a which indicates that SFSRM can generally separate two lines
that are 30nm apart when the SNR of the LR image is above 7 and the
signal density is <60%.

We further evaluated the network reconstruction accuracy con-
sidering more reconstruction errors such as missing/biased structures
viaHAWKMANanalysis38 whichgives aHAWKMANscore indicating the
overall structural cross-correlationbetween the SR andHR images, and
a confidence map marking the low-confidence structures (Supple-
mentary Note 2, Section II, Supplementary Figs. 13 and 14). We regar-
ded the HAWKMAN score as the reconstruction accuracy of the
network. Figure 2b shows that SFSRMcan achieve an accuracyover 0.9
when the SNR of the LR image is above 7 and signal density is <60%;
while for higher signal density over 60%, the network requires a higher
input SNR to achieve comparable accuracy.

SFSRM reconstructs a super-resolution image from a single
experimental images of fixed cells
We then tried to validate the resolution of SFSRM on experimental
images. DNA origami nanorulers are standard samples that have two
fluorescent markers with a specified mark-to-mark distance. To test
SFSRMonDNAorigaminanorulers,we first simulated dot pairswith an
interpair distance ranging from 20 nm to 50nm randomly distributed
in GT images. TheGT imageswere then blurred by a Gaussian kernel of
a 280-nm FWHM size and followed by applying Poisson noise and
Gaussian noise to get the LR images. The results in Supplementary
Fig. 15 show that SFSRM accurately reconstructs 46%, 80%, 82%, and
84% dot pairs of 20-nm, 30-nm, 40-nm, and 50-nm interpair distances
from the indistinguishable spots in the LR image, the reconstruction
bias within half of the interpair distance is 76%, 99%, 99%, and 99%
respectively, suggesting a reliable highest resolution at ~30 nm, similar
to our observation on the simulated line pairs. We then used the
trained SFSRM network to process the experimental WF images of
DNA origami nanorulers with a 30-nmmark-to-mark distance (Fig. 2c).
SFSRM clearly distinguished two spots and accurately reconstructed
the distance between the two spots which is about 30nm asmeasured
from the STORM image. By contrast, a representative deep-learning-
based super-resolution method called ANNA-PALM31 is only able to
reduce the size of the spot while failing to reconstruct the dot pairs
from the blurred spots in the WF image given the challenging SNR of
the WF image (e.g., SNR ~8).

We then investigated the performance of SFSRM on the
experimental images of subcellular structures. We first validated the
effectiveness of the SFSRM method on experimental images of fixed
microtubules. We collected training data (11 frames of STORM ima-
ges with the correspondingWF images) of fixedmicrotubules stained
with Alexa Fluor 647, and trained the network with different strate-
gies. The results in Supplementary Fig. 16 suggest our approach can
effectively improve the reconstruction resolution and reconstruction
fidelity of fine structure compared to the basic ESRGAN generator
trained with the pixel-wise loss (MS-SSIM-L1 loss). To test network
robustness to different levels of experimental noise. A sequence of
images of different SNRs was obtained and processed by the net-
work. The reconstructed SR images were then compared with the
corresponding STORM image by HAWKMAN analysis. The con-
fidence maps indicate that the reconstruction errors increase as the
SNR decreases (Supplementary Fig. 17, LSNR-SR confidence map).
When only SRN is used, the HAWKMAN score falls below 0.8 for
SNR < 15, indicating a less reliable reconstruction result (Supple-
mentary Fig. 17b, LSNR-SR). By contrast, if SEN is used in combination
with SRN, the input SNR limit can be extended to SNR > 7 (Supple-
mentary Fig. 17b, HSNR-SR).

We compared the performance of SFSRM and ANNA-PALM on
experimental images ofmicrotubules in Fig. 2d. Although ANNA-PALM
successfully reconstructs isolated microtubules, some of the micro-
tubules are merged or lost in the reconstruction results where the
microtubules are densely distributed (Fig. 2d, indicated by white
arrows). In contrast, SFSRM correctly reconstructed most micro-
tubules without losing or merging them even when they are close to
each other. Quantitative assessment of the network reconstruction
fidelity via HAWKMAN analysis demonstrates notably reduced local
errors in the SFSRM reconstruction and on-average higher fidelity of
the SFSRM reconstruction (HAWKMAN score: 0.95 vs. 0.90) (Fig. 2d,
confidencemaps). As depicted by the intensity profiles for the lines in
Fig. 2d, twomicrotubules only 75 nm apart are indistinguishable in the
ANNA-PALM reconstruction and are resolved in the SFSRM recon-
struction result (Fig. 2d, plot), demonstrating a superior fine-structure
reconstruction capability of SFSRM. In addition to our experimental
data, SFSRM also achieves comparable reconstruction results to those
via Deep-STORM30 on the public dataset from the EPFL SMLM chal-
lenge website39 (Supplementary Fig. 18). Unlike Deep-STORM which
requires 300 frames of densely-distributed single-molecule images to
reconstruct an SR image, SFSRM restores the SR image only from a
singleWF image, greatly reducing the photobleaching to the specimen
as well as the data acquisition time. Apart from filaments, the perfor-
mance of SFSRMondiverse subcellular structures is also promising. As
shown in Fig. 2e, SFSRM resolves the ring-shaped clathrin-coated pits
(CCPs) with diameters ranging from 50 nm to 160 nm from the noisy
WF image. The estimated diameters of the CCPs from the SFSRM
reconstructions show good consistency with that measured from the
STORM images (Supplementary Fig. 19).

We further benchmarked the performance of SFSRM on more
subcellular structures including mitochondrial outer membrane,
endoplasmic reticulum (ER), epidermal growth factor receptor (EGFR)
protein, and nuclear pore complex proteins post a 2.5-fold expansion
(Fig. 3a). The reconstruction fidelity ismeasured by theMS-SSIM index
of the SR imageswith respect to the STORM images, and the resolution
is measured by decorrelation analysis40. SFSRM achieves in general an
MS-SSIM scoreover0.8 (Fig. 3b) and resolutions of different structures
ranging from 15 nm to 40 nm, consistent with those obtained from the
corresponding STORM images (Fig. 3c). In addition to the SR recon-
struction of diverse organelles, SFSRM also demonstrates remarkable
robustness to changes in imaging conditions including different ima-
ging systems (Fig. 3d) and different spectra (Fig. 3e). Therefore, it
serves as a versatile tool to transform different types of LR images to
their SR counterparts by overcoming the limitations of SRmicroscopy
such as requiring fluorophore blinking, long acquisition time, and high
illuminance.

SFSRM enables live-cell SR imaging at millisecond temporal
resolution
Benefiting from its capability of reconstructing an SR image from a
low-SNR LR image, SFSRM achieves SR imaging of ER in live cells at low
illuminance (e.g., 15W/cm2) (Fig. 4a), which allows long-term obser-
vation of ER dynamics for over 5000 frames without an apparent
shrinking of the ER network or bleaching of fluorescent signals (Sup-
plementary Movie 1). We assessed the reconstruction fidelity via
resolution-scaled error analysis41 and network ensemble disagreement
(see more details about disagreement analysis in Supplementary
Note 2 (Section II). The resolution-scaled error analysis measures a
resolution-scaled error and a resolution-scaled Pearson coefficient to
indicate the correlation between the SR andWF images based on their
intensity distribution. As shown in the error maps in Fig. 4b, no sig-
nificant artifacts were found. Instead, we observed some errors in the
upper corner of the errormapswhich gradually fade out. Thismight be
caused by the non-linear mapping between the SR images and the WF
images since STORM images which are regarded as the GT images of
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the network cannot preserve the intensity information in the WF
images. In contrast to the error maps which indicates the apparent
errors occurring in the upper corner, the disagreement maps suggest
that some abnormally thin ER tubules in the reconstruction images
could be problematic (Fig. 4b, disagreement map; Supplemen-
tary Fig. 20).

The enhancements in both spatial and temporal resolutions can
promote the visualization of mitochondrial dynamics in live cells
(Fig. 4c). The SR imaging of mitochondria at 100Hz reveals frequent
“kiss-and-run” interactions between mitochondria at the millisecond
scale, which are indistinguishable in the LR time-lapse images (Fig. 4d
and Supplementary Movie 2). Because of the high local signal density
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nanoruler. The STORM image is obtained from 20,000 frames of single-molecule
images. SFSRM and ANNA-PALM images are the reconstruction results from theWF
image via SFSRM and ANNA-PALM network respectively. Both SFSRM and ANNA-
PALMnetworks and trainedwith the same simulation dataset. Bottom row: Intensity
profiles along the lines indicated by the blue dashed lines in the images in the

middle row. The measured FWHM PSF size in the WF image is ~300 nm, and the
measured distances between the two spots in the STORM and SFSRM images are
30nm. d Validation of the SFSRM’s performance on experimental images of
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maps of the SFSRM and ANNA-PALM reconstruction measured by HAWKMAN
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in cyan. Top right: Zoom-in comparison of theWF, STORM, SFSRM, andANNAPALM
images. The white arrows indicate where the microtubules are missed in the
ANNAPALM reconstruction. Bottom right: Intensity profiles along the lines indi-
cated by the white dashed lines in the images in the middle row. e Representative
SFSRM reconstruction results of clathrin-coated pits (CCPs) of different sizes. Scale
bar: 1 µm (c, d), 200 nm (e, zoom-in view in c), 500 nm (zoom-in view in d).
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in mitochondria, it is necessary to check whether the observed fusion
and fission events are true mitochondrial interactions or reconstruc-
tion artifacts. Therefore we investigated the network reconstruction
consistency of the image sequence. We used the network to recon-
struct a sequence of WF images of mitochondria in fixed cells and
analyzed the consistency of the SR image sequence by calculating the
pixel-wise agreement score (Supplementary Fig. 21a). Comparing the
agreement map with the STORM image, no obvious reconstruction
errors are detectable at the junctions where the mitochondrial con-
nections are solid (Supplementary Fig. 21b, solid connections). How-
ever, reconstruction errors occur at junctions with ambiguous

connections, which can further induce artificial fusion/fission events.
Fortunately, these junctions can be detected by the agreement map
(Supplementary Fig. 21b, ambiguous connections). This suggests that
we can use the agreement map to detect the problematic junctions in
the SR images. However, it is not feasible to acquire multiple WF
images of the same sample to calculate the agreement map in live-cell
imaging. Hence we used the five adjacent frames in the SR time-lapse
images to check the temporal consistency (Supplementary Fig. 22a),
which helps to filter out structures with low agreement scores in the
five adjacent frames. From the filtered SR time-lapse images, we
observed a higher transient fission and fusion frequency in the SR
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Fig. 3 | SFSRMapplies to different subcellular structures, imaging systems, and
spectra. a First row: representative WF images of mitochondria labeled with the
mitochondrial membrane, endoplasmic reticulum (ER), EGFR protein after the
EGF endocytosis, clathrin-coated pits after the EGF endocytosis, and expanded
nuclear pore complex protein Nup133 (The specimen was expanded for 2.5 times
with expansion microscopy after immunostaining). Second row: STORM images.
Third row: corresponding SR images inferred from the WF images by SFSRM.
b The reconstruction fidelity of SFSRM on different cellular structures measured
by multi-scale structure similarity (MS-SSIM) index between the SFSRM and the
corresponding STORM images. c The comparison of resolution (measured by
decorrelation analysis) of SFSRM and the corresponding STORM images on dif-
ferent cellular structures. The error bars in b and c represent reconstruction
experiments repeated on 25 images. All boxplots are drawn from the 25th to 75th
percentile with the horizontal bar at the median and the whiskers extending to
the minima and maxima. d The reconstruction results of WF images obtained

from different imaging systems via SFSRM. The first column shows raw images
obtained from a Zeiss Elyra 7 and the Zeiss sp8 confocal microscopes. Both WF
images are processed by the SFSRM network to get the SR images in the second
column. The SR images are compared with the STORM images and the differences
are marked in the corresponding confidence maps in the third column. e The
reconstruction results of WF images of microtubules separately labeled by dyes
of different spectra. First column: WF images acquired from microtubules
immunostained by Alexa Fluor 488, 568, and 647 separately. Second column:
STORM images. Third column: SR images restored by the SFSRM network trained
with images of microtubules stained by Alexa Fluor 647. Fourth column: con-
fidence maps indicate the reconstruction errors in each SR image. The recon-
struction results of the 488 and 568 channels have slightly lower HAWKMAN
scores compared to that of the 647 channels, which might be caused by the
inferior qualities of STORM images in the two channels. Scale bar, 2 µm (a, d, e),
1 µm (zoom-in view in a, d, e).
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image sequence compared to those observed from the LR image
sequence (Fig. 4f). Besides, the mitochondrial morphological changes
can also bemore precisely quantified with the aid of SFSRM. Figure 4e
indicates the mitochondria undergo diverse morphological changes;
however, these changes can barely be detected in the LR time-lapse
images (Supplementary Movie 2). Clear tracking of the mitochondrial
morphological changes enabled by SFSRM improves the segmentation
accuracy and discloses a more rapid mitochondrial area change
(Fig. 4g) that might be associated with the transient fusion which is
reported to enhance the functional stability and plasticity of
mitochondria42.

Real-time SFSRM imaging has also revealed some dynamics of
microtubules that were unexplored in previous studies. Compared to

the wide-field imaging result, the tangled microtubule’s network is
more clearly resolved in the SR image with various morphologies such
as bending, crossing, andbundles (Fig. 4h, SR; SupplementaryMovie 3,
part I). Besides, deformation dynamics of microtubules, such as
bending (Supplementary Fig. 23a and SupplementaryMovie 3, part II),
growth and shrink instability (Supplementary Fig. 23c and Supple-
mentaryMovie 3, part II), are recorded at high temporal resolution (10-
ms intervals), which allows us to capture high-frequency fluctuations
including the time-varying bending (Supplementary Fig. 23b; 100Hz)
and the random-walk growth trajectory (Supplementary Fig. 23d;
100Hz). These results suggest that the intracellular dynamics at the
millisecond scale may be greatly underestimated at a low sampling
frequency (Supplementary Figs. 23b,d; 2 Hz). Moreover, we also
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noticed the intracellular transverse fluctuation of microtubules from
the temporal-coded image of the SR image sequence, which is unde-
tectable in the LR counterpart (Fig. 4j). We observed the transverse
position of the microtubule varies in an ~600nm range (Fig. 4k and
Supplementary Movie 3, part III), which are composed of displace-
ments ranging from −100 nm to 100 nm at 50ms intervals (Fig. 4l), far
larger than the system drift (<10 nm in 50 s; Supplementary Fig. 24a).
To figure out whether these displacements are true microtubule
vibrations or noise-induced reconstruction misplacements, fixed
microtubules were imaged at different illumination intensities to get
time-lapse images at different SNRs. The statistical results in Supple-
mentary Fig. 24b indicate that only less than 18% of microtubules
present noise-induced reconstruction misplacements and these mis-
placements are within the ±25 nm range when SNR is >7. However, in
the SFSRM reconstructed live-cell image sequences, we observed ~46%
displacements in the ±25 nm range and ~18% displacements in
±25 ~ 100 nm. Besides, we also observed that the microtubule can
rapidly move towards one direction in a short time as shown in Sup-
plementary Fig. 24c and the distributions of the displacements shift
toward that direction correspondingly, suggesting that true micro-
tubule fluctuations rather than random reconstructionmisplacements
were present in our SFSRM live-cell imaging. The rapid and random
fluctuations of microtubules could further cause the local micro-
tubule’s network morphology changes such as bundle instability
(Fig. 4i), which may be involved in multiple cellular functions, such as
organizing and maintaining cell shape43, promoting cilia movement44,
and modulating cargo transport45.

SFSRM reveals the millisecond dynamics of cargo trafficking in
live cells
Intracellular transport plays an essential role in maintaining cellular
functions. Many cellular processes rely on the transport system to
deliver proteins or organelles to a specific functional location. External
cargos such as viruses and nanoparticles also utilize the transport
system to deliver their genomes or drugs to specific compartments for
function46. Considering that the cytoplasm of eukaryotic cells is highly
crowded and dynamic, how cargo is delivered across the cytoplasm to
specific positions remains largely unclear. Previous studies have
reported thatmicrotubules serve as highways todeliver cargobetween
the perinuclear region and the cell periphery in rapid and directed
motions involving motor proteins47. Recently, facilitated by single-
particle tracking techniques48,49, mounting dynamic behaviors during
the cargo transport process, e.g., back-and-forth movement, rotation,
pause, and switching direction, have been discovered, suggesting that
rapid and directed motions are frequently interrupted. Some in vitro
studies have suggested that the intersections of the microtubules are
likely to interfere with cargo transport and form tethering points for
cargo45. Single-particle tracking combined with confocal microscopy
or STORM microscopy has also been employed to investigate vesicle

behavior at microtubule intersections in live cells48–50. However, con-
focal microscopy fails to provide a high-resolution microtubule map,
while STORM requires the sequential imaging of vesicles and micro-
tubules. In addition, to register the vesicle trajectory along micro-
tubules in STORM images, microtubule dynamics are stabilized by
paclitaxel and nocodazole during live-cell imaging50. The lack of real-
time high-resolution microtubule imaging has impeded the further
exploration of cargo-microtubule interactions. Hence, the underlying
mechanism of the complicated dynamics of vesicular trafficking along
microtubules remains largely unknown.

Here, benefiting from the high spatiotemporal resolution offered
by SFSRM, we can simultaneously monitor the cargo and microtubule
dynamics, thereby investigating how the observed microtubule
dynamics could affect cargo transport. As a demonstration, we imaged
the intracellular transport of the endocytic trafficking of epidermal
growth factor (EGF) protein in live cells. The internalization of EGFwas
recorded with dual-channel SFSRM (Fig. 5a and Supplementary
Movie 4, part I). High-spatiotemporal-resolution videometry reveals
the vesicle transport details, from which we noticed that slight fluc-
tuations of a single microtubule do not interrupt the directed trans-
port of vesicles, but the motions of the vesicles along the fluctuating
microtubules are significantly more dynamic than expected. Figure 5b
illustrates three examples of vesicle transport dynamics: (I) moving
back and forth along a microtubule, (II) moving around a microtubule
along a sinusoidal-like trajectory (Supplementary Fig. 25), and (III)
colliding with other vesicles and then changing direction (Supple-
mentary Movie 4, part II). These subtle and fast random walks are
undetectable at low spatial (Fig. 5c) or temporal (Fig. 5d) resolutions
(SupplementaryMovie 4, part II), which implies that vesiclemovement
is scale-dependent. At the millisecond scale, thermal diffusion is
dominant (Fig. 5e, 100Hz, α =0.25), and at the second scale, directed
transport dominates (Fig. 5e, 100Hz, α = 1.2)51. At inadequate imaging
speeds, these diffusive motions would have been missed, as mani-
fested by the distinct trajectories derived by the images taken at 2Hz
and 100Hz shown in the MSD plot (Fig. 5e, 2 Hz vs. 100Hz). Conse-
quently, the actual instantaneous velocity of vesicles during transport,
which is ~4 µm/s (Fig. 5f, 100Hz), would have been substantially
underestimated (estimated as ~0.5 µm/s in Fig. 5f at 2 Hz, which is in
accordance with a previous report49).

In addition to these subtle diffusive motions, we also observed
nondirected transport, which has been reported in previous studies
using single-particle tracking (SPT) but not fully explained49,52.
Compared to SPT, our SFSRM can not only precisely determine the
vesicle positions following its moving trajectory (Supplementary
Fig. 26), but also resolve the vesicle morphology and orientation,
thus enabling the study of the interaction of vesicles with their sur-
roundings in a dynamic process. From the dual-channel video via
SFSRM (Supplementary Movie 4), we observed some microtubule
dynamics that might contribute to nondirected vesicle transport. For

Fig. 4 | SFSRM enables noninvasive super-resolution imaging in live cells at
millisecond temporal resolution for thousands of frames. a Representative WF
and SFSRM images of endoplasmic reticulum in live Beas2B cells transfected with
EGFP-Sec61β. b Time-lapse images of endoplasmic reticulum in live cells imaged
with 15W/cm2 intensity illumination for 5000 frames. First row: representative raw
low-SNR images. Second row: the corresponding SFSRM reconstructions from the
low-SNR images. Third row: Errormaps of SFSRM reconstructions compared to the
raw low-SNR images. The reconstruction errors are analyzed by SQUIRREL analysis,
which gives an error map to indicate the possible local errors. Fourth row: dis-
agreement maps measured by ensemble disagreement method, in which the
regions with high disagreement score could be less trustworthy. c Representative
WF and SFSRM images of mitochondria in live Beas2B cells transfected with
Tom20-mcherry. d Comparison of the WF and corresponding SFSRM time-lapse
images showing a mitochondrial “kiss-and-run” process. e Comparison of the
mitochondrial segmentation results from the WF and SFSRM images. The target

mitochondria in the segmentation results are marked in magenta while the other
mitochondria are marked in white. f Comparison of the counted transient fusion
andfission rates in the SFSRMandWF sequences. Boxplots are drawn from the 25th
to 75th percentilewith the horizontal bar at themedian and thewhiskers extending
to the minima and maxima. Fusion and fission rates in 10 s were analyzed.
g Comparison of measured mitochondrial area variation of the target mitochon-
drion in the SFSRM and WF sequences. h Representative WF and SFSRM images of
microtubules in Beas2B cells expressing mEmerald-ensconsin. i Microtubule bun-
dle instability caused by inconsonant fluctuations ofmicrotubules. jComparison of
the WF and SFSRM images of the microtubules. The temporal-color-coded images,
which are themaximumprojected images of the time-lapseWF/SFSRM imageswith
each frame rendered with different colors, indicate the microtubule transverse
movement over time. k The transverse positions of a single microtubule over time
recorded at 20Hz. l Histogram of microtubule transverse displacement at a 50-ms
interval. Scale bar, 2μm (a–c, e, h), 500 nm (d, i, j).
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Fig. 5 | Dual-color real-time SFSRM imaging reveals the microtubule-vesicle
interactions. a Representative dual-channel image of microtubules (green) and
vesicles (magenta) in Beas2B cells after Epidermal Growth Factor (EGF) protein
endocytosis. b Examples of vesicle transport dynamics. First row:moving back and
forth along a microtubule; Second row: moving around a microtubule along a
sinusoidal-like trajectory; Third row: colliding with another vesicle. c Comparison
of the dual-color LR and SR images. The trajectory in SR image shows the motions
of vesicle along microtubule at millisecond scale. d Comparison of trajectories
recorded at 2Hz and 100Hz. e Mean-squared displacement (MSD) analysis of tra-
jectories in d. MSD reflects the mean-squared-distance (Δr2 (τ)) of the vesicle tra-
veled in a certain lag time τ, which typically follows the power-law trend 〈Δr2 (τ)
〉∝τα. α indicates the characteristic of the motion. A smaller α indicates a more
random or diffusive motion while a larger α indicates a more directed motion.
f Statistical comparison of vesicle instantaneous velocity recorded at 2Hz and

100Hz. g Examples of microtubule dynamics resulting in nondirected transport of
vesicles. First row: an example showing transverse movements of a microtubule
deliver the vesicle to a nearbymicrotubule. Second row: example showing random
fluctuations of surroundingmicrotubules facilitate the vesicle to switch to different
microtubules. h The statistical comparison of the instantaneous velocity of the
directed/nondirected transport and their representative trajectories. An image
sequence containing 800 frames of images was used to analyze the instantaneous
velocity. i Vesicle transport dynamics at different types of microtubule intersec-
tions. j The statistical comparison of the dwell time at different types of intersec-
tions and their percentages in cells (pie chart). 43 intersections were analyzed.
Boxplots are drawn from the 25th to 75th percentile with the horizontal bar at the
median and the whiskers extending to theminima andmaxima. Scale bar, 2 µm (a);
200 nm (b); 1 µm (c); 500nm (g, i).
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example, the transverse movement of a microtubule can transfer the
vesicles attached to it to a nearby microtubule (Fig. 5g, first row, and
the fluctuations in the surrounding microtubules can cause vesicles
to switch among different microtubules (Fig. 5g, second row),
resulting in nondirected transport (Supplementary Movie 4, part III).
We compared the instantaneous velocities of directed transport and
nondirected transport in Fig. 5h and found that nondirected move-
ments have an ~2-fold higher average instantaneous velocity and a
four-fold broader range of distribution than directed movements,
indicating that these displacements are likely related to microtubule
fluctuations rather thanmotor-drivenmovement. This observation is
in good agreement with the results of a previous study by Gianna-
kakou et al.53, who reported that the suppression of microtubule
dynamics enhanced nuclear-targeted cargo P53 accumulation near
the cell nucleus. More interestingly, the movement of vesicles can in
turn contribute to the microtubule morphology change (Supple-
mentary Fig. 27).

Since microtubules are densely distributed, aside from provid-
ing tracks for vesicles, they also form intersections that may inter-
rupt vesicle transport. Previous studies have shown that vesicles may
pass, pause, switch, or reverse at an intersection45,50. In our experi-
ments, we noticed that all vesicles eventually passed the observed
intersections; however, the dwell time varied greatly and largely
depended on the complexity of the intersection. To further quantify
how the complexity of the intersection would affect the vesicle
transport, we first assessed the accuracy of our network in recon-
structing the microtubule network morphology. As shown in Sup-
plementary Fig. 28, we quantitatively analyzed the reconstruction
errors which may affect the identification of intersections, for
example, reconstructing an artificial microtubule (false positive
error) or missing a microtubule (false negative error) (Supplemen-
tary Fig. 28b), false positive or negative intersections, or wrong
microtubule number at the intersection (Supplementary Fig. 28c), as
a function of signal density. As expected, the false rate increases as
the signal gets dense. To ensure the reconstruction error rate is
smaller than 15% (corresponding to a HAWKMAN score >0.8), we
select regions with signal density <50% for the following analysis. The
intersections in the selected regions are classified into three groups
based on the number of microtubules at each intersection (Fig. 5i).
For the simplest intersections of two microtubules, the vesicle can
easily pass through it by climbing over one microtubule, usually
within two seconds; and the microtubule vibration is unlikely to
interrupt vesicle transport. For intersections with 3–5 microtubules,
the vesicles tended to interfere with the dynamics of nearby micro-
tubules. Thus, if the surroundingmicrotubules fluctuate severely, the
vesicles are hindered, and the time needed to pass through these
intersections ranged from several to ten seconds. For intersections
involving more than 5 microtubules tethered together, the vesicles
were most likely to be trapped at the intersection until the fluctua-
tions of the surrounding microtubules became coordinated and the
stellate intersection loosened. However, coordinated fluctuations
and intersection loosening are highly uncertain, and such processes
may take tens of seconds to minutes Supplementary Movie 4, part
IV). A statistical comparison of the dwell time at different kinds of
intersections is shown in Fig. 5j. Generally, the more complex the
intersection is, the longer the resulting dwell time. For intersections
involving more than 5 microtubules, the dwell time could be longer
than oneminute. Fortunately, this kind of intersection only accounts
for ~9% of all intersections in a cell, whereas more than half of the
intersections consist of only 3–5 microtubules (Fig. 5j, pie chart).

SFSRM is robust to different imaging systems and different
samples
In the above demonstration, we used a Zeiss Elyra 7microscope as the
live-cell imaging system.Here, we demonstrate that SFSRM can also be

applied in different live-cell imaging systems without retraining the
networks. We validated the robustness of our network based on a
commercial confocal microscope (Confocal sp8, Zeiss). Compared to
that used for WF imaging, a confocal microscope requires a longer
time (2.5 s/frame) to obtain a dual-channel image due to the point
scanning strategy used. Here, we recorded the EGF receptor (EGFR)
protein transport dynamics at 0.4Hz for over 10min after EGF treat-
ment (Supplementary Movie 5, part I). Long-term observation allows
us to discover some long-time-scale phenomena. For example, as
shown in Fig. 6a, the EGFR protein gradually accumulates in endo-
somes, which appear as ring structures in the image. We noticed that
the microtubules tended to generate local grids to trap the endo-
somes, as shown in the zoomed-in view in Fig. 6a. These traps will
actively participate in the transport (Fig. 6b) and fusion processes of
the endosomes (Fig. 6c), and the morphology of these grids will
dynamically change in response to the endosome shape (Supple-
mentary Movie 5, part II).

SFSRM can be also applied in monitoring different live-cell
dynamic processes involving various subcellular structures. For
example, Fig. 7a shows the colocalization of clathrin protein and EGFR
protein after EGF treatment, indicating the role of clathrin protein
during EGF endocytosis. In addition to mediating the endocytosis
process of EGF by generating ring-shaped CCPs (Supplementary
Fig. 29; Supplementary Movie 6), clathrin protein is also recruited to
endosomes that are larger than endocytic vesicles (Fig. 7b). During the
fusion processof two adjacent endosomes, the membranes of endo-
somes that are uncoated with clathrin fused with each other. After the
two endosomes are fully-fused, the extra clathrin protein is released
from the fused endosomes (Supplementary Movie 6). The function of
the clathrin protein on endosomes has been reported in cargo
sorting54. After being delivered to the early endosomes, some of the
endocytic EGFR will be sorted to tubular structures to be retrieved
back to the cell surface55. As demonstrated in Fig. 7c, we detected that
the endocytic EGFR in endosomes was sorted to the tubular mem-
branes on endosomes and then vesicles enriched with EGFR were
generated via the fission of tubular membranes (Supplementary
Movie 6).

Besides, SRSFM also reveals the intensive contact between mito-
chondria and endoplasmic reticulum (ER) (Fig. 7d and Supplementary
Movie 7) such as mitochondrial fission at the ER-mitochondria contact
site56 (Fig. 7e),mitochondrial growth, and branch along the ER tubules,
as well as the ER tubule hitchhiking on a moving mitochondria57

(Supplementary Fig. 30 and Supplementary Movie 7). These subtle yet
fast interplays between different organelles, which could happen
within a second, can be revealed by SFSRM, manifesting the high
spatiotemporal resolution of SFSRM will make vital contributions to
biological sciences involving live-cell dynamic processes.

Discussion
We developed an SFSRM method for single-frame SR reconstruction
from the LR images acquired from live cells with up to 10-fold reso-
lution improvement. We have demonstrated that SFSRM restores
subtle structures from LR images owing to the adoption of multi-
component loss and shows superior robustness to the corruption of
noise with the assistance of the edge map. Besides, by employing a
dual subnet framework that progressively improves the image SNR
and resolution, the single-frame image conversion of SFSRM circum-
vents the possible tradeoffs among the spatial resolution, imaging
speed, and light dose in the SR microscopies and allows long-term SR
imaging in live cells without inducing noticeable photodamage to the
cells. The coupling of SFSRM with different live-cell imaging systems
improves the spatiotemporal resolution of fluorescence microscopes
with a limited photon budget, thus serving as a powerful tool com-
bining merits of the super-resolution microscopy and real-time live-
cell imaging.
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Nonetheless, as with all other learning-based methods, SFSRM
faces the accuracy concern. Although it achieves an on-average
higher accuracy than previous methods (Fig. 2 and Supplementary
Figs. 16 and 18), SFSRM still has local reconstruction errors. There-
fore, we have performed careful inspections of SFSRM reconstruc-
tions comparing to their corresponding GT images on the fixed
samples based on multiple metrics including reconstruction bias,
MS-SSIM, and HAWKMAN score. From our observations, the recon-
struction accuracy of SFSRM shows dependency on the SNR and
signal density of the input image (Supplementary Note 2, Supple-
mentary Figs. 5, 7–14, 17). It achieves a generally satisfactory accu-
racy (mean reconstruction bias <1 pixel, HAWKMAN score >0.8,
error rate <0.15) when the input SNR is >7 and the signal density
is ≤0.5. While in live-cell applications where the GT images are
inaccessible, we have tried assessments based on the similarity with
the LR images (Fig. 4b) and the reconstruction uncertainty analysis
of noise ensemble images of the same sample, network ensembles,
and adjacent frames in live-cell imaging (Supplementary Note 2 and
Supplementary Figs. 20–22). Considering SFSRM is robust enough
for different spectra and imaging systems (Fig. 3d, e), webelieveour
prior validation of SFSRM on different SNRs, signal densities, and
structures on fixed samples, combined with the quality check
methods in live-cell imaging, can make it a practical tool in live-cell
super-resolution imaging. In addition to these on-average accuracy
evaluations, we also suggest custom-designed evaluations for spe-
cific applications. For example, when we were investigating the
microtubule’s transversal fluctuations, we validated the pixel-level
reconstruction consistency of SFSRM under different SNRs on the
fixed cells in advance (Supplementary Fig. 24); and when we were
studying the influence of the microtubule intersections on the
vesicletransport,wequantifiedtheprecisionofSFSRMfordetecting
thecorrectnumberofmicrotubulesateach intersectionbeforehand
(Supplementary Fig. 28).

The implementations of SFSRM with common fluorescent
microscopes have allowed high-frequency transverse vibration of
microtubules and surprisingly dynamic behaviors of vesicles such as
diffusive motions along microtubules, swinging on microtubules, and
switching between microtubules to be clearly resolved. Many of these
processes, which have not been seen before, enhance our under-
standing of the real intracellular transport environment. Moreover,
other subcellular processes revealed by SFSRM such as clathrin-
endosome colocalization and ER-mitochondria interactions, suggest
the potential of SFSRM in promoting the investigation of subcellular
processes that necessitate interpreting temporal dynamics in the
context of ultrastructural information, which may open doors to dis-
coveries in live-cell imaging involving organelle dynamics58 and
interactions59.

Overall, we consider SFSRM a useful alternative to traditional SR
microscopies in challenging conditions such as low illuminance, short
acquisition time, ormulti-channel SR imaging. Its success lies in theuse
of adequate training data obtained for advanced SR microscopies.
Considering these high-cost SR imaging systems are not ubiquitous in
most biological laboratories, we hope SFSRMcanmake themost of the
available SR datasets and serve more researchers. Nevertheless, in a
realistic experimental setting, the risks that structural features pre-
sented in the experimental images do not match the training dataset
range cannot be precluded. For example, the curvatures of the
microtubules or the diameters of the clathrin-coated-pits are outside
the curvature/diameter range of the training dataset, or cruder mis-
match such as the network trained by endoplasmic reticulum being
used to process the images of microtubules. From our observation in
Supplementary Note 3 (Supplementary Figs. 31–33) and Supplemen-
tary Fig. 34, the SFSRM network is not able to handle such scenarios. A
convenient way to address this problem is to fine-tune the trained
network using matched training dataset, which helps the network
quickly adjust to a different structure feature space.
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Fig. 6 | SFSRM imaging allows long-time-scale observation. a SFSRM recon-
struction of a confocal image of microtubules (green) and EGFR-carrying vesicles
(magenta) in Beas2B cells. Inset: an endosome accumulated with EGFR proteins is

trapped in a localmicrotubule grid.b Example of the transportprocess of a trapped
endosome. c Example of the fusion process of trapped endosomes. Scale bar, 5 µm
(a), 500 nm for insets; 1 µm (b, c).
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Beyond our approach, our observation that the network can
reconstruct the SR image from a 10-fold blurred LR image without any
difficultywhile reconstructing a noise-corrupted imagewill needmuch
more effort such as the edge map assistance and the multicomponent
loss function, suggests improving the SNR of the network input and
introducing prior regulations (e.g. total variation prior60, sparse
prior61) are useful strategies to improve the reconstruction quality and
could be further investigated to improve the performance of other
networks.

Methods
SFSRM network
Network architecture. The networks of our SFSRM, including the SEN
and SRN, are based on the ESRGAN generator25, which includes 23
residual-in-residual denseblocks used tomap low-resolution images to
super-resolution images. By inheriting the basic architecture of
SRGAN24, this network performs most computations in the LR feature
space, hence reducing complexity and achieving high stability without

requiring batch normalization (BN) layers25. The original ESRGAN is
designed for a single RGB image. When it was applied to a grayscale
image, we found that the network will easily crash at the beginning of
or during the training process if weduplicate the grayscale image three
times to generate a fake RGB input. Therefore, we adopted a single-
channel ESRGAN generator. To incorporate the prior information
provided by the edge map, we added another input channel to the
network. The input LR image and the corresponding edge map are
initially concatenated to generate a two-channel input to the gen-
erator. Similarly, duplicated grayscale images are used as fake RGB
inputs to the well-trained VGG network62 for feature map extraction.

Loss functions. To generate high-resolution details while maintaining
high fidelity, the network is trained with a multicomponent loss
function, as follows:
(1) Content loss evaluates the L1-normdistancebetween anestimated

SR image G xð Þ and a GT image y. L1-norm loss focuses on pixel
differences, thus allowing the network to quickly converge but

Fig. 7 | Dual-color real-time SFSRM imaging reveals subcellular dynamics of
diverse organelles. a Representative dual-channel image of EGFR protein (green)
and clathrin protein (magenta) in Beas2B cells expressing EGFR-EGFP and Halo-
clathrin. b Example of the fusion process of two clathrin-coated endosomes.

c Exampleof theendosomefissionprocess.dRepresentativedual-channel imageof
ER (green) and mitochondria (magenta) from cells expressing Tomm20-mCherry,
EGFP-Sec61β. e Example of the mitochondrial fission at the ER-mito contact site.
White arrows indicate the ER-mito contact site. Scale bar, 2 µm (a, d), 1 µm (b, c, e).
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often resulting in a blurred image.

L1 = ∣∣G xð Þ � y∣∣ ð1Þ
MS-SSIM measures the structural similarity of SR and GT images
based on luminance, contrast, and structure at different scales.
The computation of MS-SSIM is detailed in the assessment
metrics section. Here, we focus on the construction of the loss
function. MS-SSIM loss is defined as:

LMS�SSIM = 1�MS� SSIM G xð Þ,yð Þ ð2Þ
Content loss is a hybrid of MS-SSIM loss and L1-norm loss and is
noted as MS-SSIM-L1 loss:

LMS�SSIM�L1 =α � LMS�SSIM + ð1� αÞ � L1 ð3Þ

where α is used to balance the contributions of MS-SSIM loss and
L1-norm loss and is empirically set as α =0:8463.
(2) Perceptual loss LPercep is used to measure feature distance differ-

ences in the estimated SR image and corresponding GT image.
Features are extracted by a VGG network62 pretrained formaterial
recognition and that is good at texture extraction.

LPercep = ∣∣F GðxÞð Þ � FðyÞ∣∣ ð4Þ

where F represents the feature extraction network.
(3) Adversarial loss estimates the probability that the discriminator

input x is real or fake. Here we use U-net as the discriminator,
which has an encoder and a decoder. The discriminator is trained
to provide both global and pixelwise decisions on whether the
input image is real or fake64. Specifically, an input real image y or
fake imageGðxÞwill befirst gradually convolved by the encoder to
one pixel to get a global decision on whether this image is real or
fake, then the input will be gradually deconvolved by the decoder
to its original size to get a per-pixel decision on whether this pixel
is real or fake. The encoder and decoder are trained by the
following losses:

Lenc = � E logDenc yð Þ� �� E logð1� Denc GðxÞð ÞÞ� � ð5Þ

Ldec = � E
X
i,j

log Ddec yð Þ� �
i,j

" #
� E

X
i,j

logð1� Ddec GðxÞð Þ� �
i,jÞ

" #

ð6Þ

whereDenc �ð Þ is the encoder decision of the whole input and Ddec �ð Þ� �
i,j

is the decoder decision at pixel i, jð Þ; E[·] represents taking the average
for all data in the minibatch. The discriminator is trained by both
encoder loss and decoder loss.

LD = Lenc + Ldec ð7Þ
Correspondingly, the discriminator feedback to the generator,
i.e., the adversarial loss is formulated as

LAdv = � E½logDenc GðxÞð Þ� � E
X
i,j

log Ddec GðxÞð Þ� �
i,j

" #
ð8Þ

(4) Frequency loss compares the frequency difference between an
estimated SR and the original GT image:

LFreq = ∣∣FFT GðxÞð Þ � FFTðyÞ∣∣ ð9Þ

where FFT is the fast Fourier transformation function.We compared all
frequency components when the GT images do not contain noise and

75% of frequency components when the GT images contain noise, for
experimental images as well as some simulation images.

When using the ESRGAN as SEN for signal enhancement, the
network only uses LR images as single-channel inputs. The training of
the SEN includes two steps:
(1) Training with MS-SSIM-L1 loss for ~100,000 minibatch iterations

at a 3 × 10−4 learning rate

LG = LMS�SSIM�L1 ð10Þ
(2) Training with MS-SSIM-L1 loss and perceptual loss for 20,000 to

50,000 minibatch iterations at a 1 × 10−4 learning rate.

LG = LMS�SSIM�L1 + δ � Lpercep ð11Þ

where δ is the coefficient to balance different loss components and we
empirically set δ =0:1.

When using the ESRGAN as SRN for super-resolution restoration,
the network uses both LR images and edge maps as inputs. The
training process also includes two stages. The first stage uses the same
loss function as the SEN, and the second stage uses the following loss
function with a 5 × 10−5 learning rate for ~10,000 minibatch iterations.

LG = LMS�SSIM�L1 + δ � LPercep +β � LAdv + γ � LFreq ð12Þ
In our experiments, we empirically set δ, β, γ and to δ =0:1,

β=0:001, and γ =0:01, respectively.

Assessment metrics. Multiscale structure similarity (MS-SSIM)65

quantifies the similarity of two images and is an improvement of
SSIM66, which assesses the similarity between two images, x and y,
basedon three factors: luminance l x, yð Þ, contrast c x, yð Þ, and structure
s x,yð Þ.

l x,yð Þ= 2uxuy +C1

ux
2uy

2 +C1
ð13Þ

c x,yð Þ= 2σxσy +C2

σx
2σy

2 +C2
ð14Þ

s x,yð Þ= 2σxy +C3

σxσy +C3
ð15Þ

whereux,uy represent the average of x, y; σx,σy represent the variance
of x,y; C1, C2 and C3 are small constants given by C1 = ðK1LÞ2,
C2 = ðK2LÞ2, and C3 =C2=2. Here L is the dynamic range of pixel values,
and K1 and K2 are two scalar constants.

The general form of SSIM is defined as:

SSIM x, yð Þ= l x, yð Þ� �α c x, yð Þ½ �β s x, yð Þ½ �γ ð16Þ

whereα,β, and γ areparameters used todefine the relative importance
of the three components and are set to 1 in most cases66.

MS-SSIM is calculated by iteratively applying low-pass filters,
down sampling the filtered image result by a factor M and then cal-
culating the SSIM index of the scaled images. The overall MS-SSIM
evaluation is based on combining the measurements at different
scales:

MS� SSIM x, yð Þ= l x, yð Þ� �αjM :
YM
j = 1

cj x, yð Þ
h iβj

sj x, yð Þ
h iγj ð17Þ

where αj, βj, and γj are used to adjust the relative importance of dif-
ferent components65.
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HAWKMAN analysis38 assesses the similarity of two images based
on their structures rather than their intensity, making it suitable for
SMLM images whose intensity is not linearly related to the labeling
density. In HAWKMAN analysis, two images are first normalized and
blurredbyGaussian kernels with successive sizes up to a user-specified
maximum, and the blurred images are then normalized by the max-
imum intensity of one. Next, the images are binarised based on the
local threshold to extract the feature signals. The obtained images are
regarded as sharpening images. The sharpening images are further
blurred and flattened, re-binarised at a higher threshold, and then
skeletonized to get skeletonized images. The skeletonized images are
re-blurred with a Gaussian kernel of FWHM equal to the original scale
to get the structure images. Finally, the cross-correlations of the
sharpening images and the structure images are calculated to yield a
confidence score of the test image (here we note asHAWKMAN score).
And a confidencemap is produced and a local confidence score below
0.85 indicates that the structures are less trustable.

HAWKMAN score =
1
2
min 1,

PCCsharp

0:85

 !
+
1
2
min 1,

PCCstr

0:85

� �
ð18Þ

where PCCsharp and PCCstr are the Pearson correlation coefficients for
the sharpening and structure images.

Signal density is computed from a GT image by first conducting
binarization for the image to extract the signal-containing pixels and
then calculating the ratio of the number of signal-containing pixels to
the total number of pixels in the image.

signal density =
Pixelsignal
Pixeltotal

ð19Þ

Simulation image generation. For the simulation of polymer lines,
simulated polymer chains in a 10 × 10 µm2 region were generated in
MATLAB. The polymer density was set to 50 polymers per image to
mimic a densely distributed microtubule network. The GT image was
created by fitting the fluorophore positions to an image with a pixel
size of 10 nm and convolved with a Gaussian kernel of a 20-nm FWHM
size. For the GT image, no noise and a uniform background were used.
Similar to the process of generating the GT image, the corresponding
LR image was generated by fitting the fluorophore positions to images
with a pixel size of 100 nm and then performing convolution with a
Gaussian kernel of a 200-nm FWHM size. In addition to the back-
ground, Poisson noise and read noise were added to the LR image.

For the simulation of dot pairs and line pairs, simulated line/dot
pairs with a distance randomly decided in the range of 10 nm/20nm to
50 nm, and randomly distributed in a 10 × 10 µm2 region were first
generated. The GT image was created by fitting the signal positions to
an image with a pixel size of 10 nm and convolved with a Gaussian
kernel of a 20-nm FWHM size. The GT images were then blurred by a
Gaussian kernel of a 280-nm FWHM size and followed by applying
Poisson noise and Gaussian noise to get the LR images.

Sample preparation
Cell culture and transfection. The Beas2B cell line was bought from
ATCC (CRL-9609) and was grown in Dulbecco’s Modified Eagle Med-
ium (DMEM) (Gibco) supplemented with 10% fetal bovine serum
(Gibco) and 1% penicillin/streptomycin at 37 °C. The plasmid con-
structs used in this study included EGFR-mCherry, EGFR-EGFP (the
cDNA encoding human EGFR were ordered from BGI (Beijing, China).
The plasmids Str-KDEL_SBP-mCherry-EGFR and Str-KDEL_SBP-EGFP-
EGFR were generated by standard molecular cloning procedures. The
N-terminus of SBP-EGFP tag, SBP-mCherry tag are followed by a signal
sequence derived from IL-267), Tomm20-EGFP (artificially constructed
basedonEGFP-N1 backbone), 3XmEmerald-ensconsin (a gift fromProf.
Dong Li (University of Chinese Academy of Sciences), Tomm20-

mCherry (artificially constructed based on mCherry-N1 backbone),
EGFP-Sec61β and Halo-clathrin (gifts from Prof. Yuhui Zhang (Huaz-
hong University of Science and Technology)). The day before trans-
fection, cells were seeded into the wells of a 24-well plate with 500μL
culture medium. The indicated plasmid was transfected into cells by
the Lipofectamine LTX (Invitrogen) according to the standard proto-
col. The cells were digested with 0.25% trypsin (Thermo Fisher Scien-
tific) 6–8 h after transfection, seeded onto confocal dishes, and
cultured at 37 °C with 5% CO2 for another 24 h.

Staining organelles in fixed cells. For labeling microtubules in fixed
cells, Beas2B cells cultured on coverslips after 24 h were stained
according to the approach in68. Briefly, cells were first washed with
cytoskeleton buffer (CB buffer: 10mM MES of pH 6.1, 150mM NaCl,
5mM EGTA, 5mM D-glucose, and 5mM MgCl2) three times, prefixed
with 0.6% paraformaldehyde with 0.1% glutaraldehyde and 0.25% Tri-
ton in CB buffer for 1min. Then, cells were fixed with 4% paraf-
ormaldehyde and 0.2% glutaraldehyde in CB buffer for 15min. After
washing three times with 1× PBS, cells were incubated for 10min in
0.1% NaBH4 to reduce background fluorescence due to glutar-
aldehyde, and another washing step with PBS was performed. To
quench reactive cross-linkers, cells were incubated in 10mM Tris for
10min, followed by 2 washes with PBS. Then, cells were permeabilized
in 5% BSA and 0.05% Triton X-100, diluted in PBS for 15min, and then
incubatedwith 1:500mouse anti-α-tubulin antibody (Sigma, T6199) for
1 h, followed by three washes with PBS. Cells were then incubated with
1:500Alexa Fluor 647 goat anti-mouse IgG (Invitrogen, A-21236) for 1 h.
Finally, the cells were washed with PBS three times.

For labeling EGFR and CCP in fixed cells, Beas2B cells were cul-
tured on coverslips after 24 h and treated with 5 ng/ml EGF in the
culture medium for 3min. Then, cells were incubated with 0.25% Tri-
ton, and0.1%Glutaraldehyde inPEMbuffer (80mmPIPES, 5mmEGTA,
2mmMgCl2, pH 6.8) for 30 s. Next, cells were fixed with 0.25% Triton,
and 0.5% GA in PEM for 10min. After washing three times with 1× PBS,
cells were incubated for 7minwith 0.1% NaBH4. After another washing
step, cells were incubatedwith blocking buffer (5% normal goat serum,
0.05% Triton X-100 in PBS) for 1 h which increased to 3 h for labeling
clathrin69. Then cells were incubated overnight with primary anti-
bodies (1:200 Anti-EGFR antibody (R-1) (SCBT, sc-101) for EGFR and
1:200 anti-clathrin heavy chain antibody (Abcam, ab2731) for clathrin)
in blocking buffer. After incubation with primary antibodies, the cov-
erslips were rinsed using the blocking buffer (3 × 10min). Then, cells
were incubated with 1:500 corresponding secondary antibodies in the
blocking buffer for 1 h.

For labeling ER and mitochondria in fixed cells, Beas2B cells were
transfected with EGFP-Sec61β, Tomm20-EGFP. After being transfected
for 24 h, cells were first fixed with 3% paraformaldehyde and 0.1%
glutaraldehyde in PBS for 10min, then incubated with 0.1% NaBH4 for
7min. After a washing step with PBS, cells were blocked with blocking
buffer (5% normal goat serum, 0.05%Triton X-100 in PBS) for 1 h. Then
cells were incubated with 1:500 anti-GFP primary antibody (Pro-
teintech, 50430-2-AP) in the blocking buffer for 1 h and then incubated
with the secondary antibody in the blocking buffer for another hour.

For labeling nuclear pore complex in fixed cells, Beas2B cells were
fixed with 4% paraformaldehyde in PBS for 10min, then incubated with
0.2% Triton X-100 for 10min, next blocked with blocking buffer (2.5%
BSA and 0.1% Triton X-100 in PBS) for 15min. After that cells were
incubatedwith 1:100anti-Nup133antibody (Sigma-Aldrich,HPA059767)
in blocking buffer at 4 °C for 12 h, and then washed four times for
30min with PBS. Next, cells were incubated with 1:500 goat anti-rabbit
Alexa Fluor 647 (Sigma-Aldrich, SAB4600184) in the blocking buffer for
2–3 h. Finally, cells were anchored with MA-NHS (Sigma-Aldrich,
730300) for 1 h. Then a gelation solution of monomers was cast across
the sample and polymerized at 37 °C for 2 h. The gelation solution was
prepared according to the previous method70. Next, cells were
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homogenized by proteinase K (New England Biolabs, #P8107) at 50 °C
for 2 h. After homogenization, the gel was expanded with ddH2O.

For single-molecule imaging, we used the standard photoswitch-
ing buffer that contained 50mM Tris of pH 7.5, 10mM NaCl, 0.5mg/
mL glucoseoxidase, 40μg/mLcatalase, 10% (w/v) glucose, and 1% (v/v)
β-mercaptoethanol.

Labeling organelles in live cells. For labeling microtubules and EGF
in live cells, Beas2B cells were transfected with 3XmEmerald-
ensconsin plasmid. After 24 h post-transfection, cells were incu-
bated with Qdot 655 (ThermoFisher, Q10123MP) conjugated EGF
(5 ng/ml) in the culture medium for 30min at 37 °C with 5% CO2.
Then, the EGF solution is replaced by the culture medium for the
following live-cell imaging.

For labelingmicrotubules and EGFR in live cells, Beas2B cells were
co-transfected with plasmids encoding 3XmEmerald-ensconsin and
EGFR-mCherry. After 24 h post-transfection, cells were prepared for
live-cell imaging.

For labeling clathrin and EGFR in live cells, Beas2B cells were co-
transfected with plasmids encoding Halo-clathrin and EGFR-EGFP and
cultured for 24 h. Then cells were incubated with Halo-SiR in the cul-
ture medium at 37 °C for 1 h. After washing three times with the pre-
warmed culture medium, cells were incubated with EGF (5 ng/ml) in
the culture medium for 3min at 37 °C with 5% CO2 to induce endo-
cytosis. Then, the EGF solutionwas replacedby the culturemedium for
the following live-cell imaging.

For labeling ER and mitochondria in live cells, Beas2B cells were
transfected with Tomm20-mCherry, EGFP-Sec61β plasmids, and cul-
tured for 24 h. After 24 h post-transfection, cells were prepared for
live-cell imaging.

Experimental data acquisition
Data acquisition from fixed cells. The experimental training data for
fixed cells were obtained from a home-built super-resolution localiza-
tion microscope71 based on an inverted microscope (Nikon Ti Eclipse)
equipped with a 100× 1.49 NA TIRF objective (Nikon Apo TIRF). Exci-
tation was provided by a 500mW 656 nm laser (CNI, MRL-N-
656.5–5500mW), and images were acquired by EMCCD (Andor, IXon-
Ultra) with a 16μm pixel size. When performing single-molecule ima-
ging, a 1.5× telescopewas used, resulting in a 106 nmeffective pixel size.
For training data acquisition, a WF image of every field of view was first
acquired at low illuminance, and then the laser intensity was increased
to themaximum toobtain single-molecule images. For super-resolution
imaging, an optimal focus system and a home-built drift-correction
system were used to correct system drift71. The software was provided
by NanoBioImaging Ltd. The frame rate was set to 30 frames
per second, and 20,000 frames were acquired per super-
resolution image.

Data acquisition from live cells. The live-cell data were acquired from
different systems, and the image’s effective pixel size was adjusted to
~100nm. Specifically, the data shown in Figs. 4, 5, 7, and the corre-
sponding supplementary figures were acquired from a commercial
Zeiss Elyra 7 microscope in HILO mode with a 60×/1.46 oil objective.
For a FOV size of 25.6 × 25.6 µm2, we recorded dual-color live-cell
images at 100Hz with 15W/cm2 illuminance for 5000 time points
(Figs. 4, 5, and 7, and the corresponding supplementaryfigures) except
for the data in Fig. 7a which is recorded at 0.5Hz for 200 time points
and Supplementary Fig. 29 which is recorded at 1 Hz and for 250 time
points. And for whole-cell imaging with a FOV size of 60 × 50 µm2, due
to the data transmission limitation of the system, we used a 20Hz
imaging speed for 5000 timepoint recordings (Fig. 5a); in this process,
the illumination intensity was reduced to 3W/cm2. The data in Fig. 6
was acquired with a Zeiss SP8 confocal microscope at 3W/cm2

illuminance with a 63×/1.4 oil objective. We recorded 300 time points
at 0.4Hz for a FOV of 51.2 × 51.2 µm2.

Image processing. The single-molecule image sequences were ana-
lyzed with the ThunderSTORM72 plug-in in FIJI. The super-resolution
reconstructed images were obtained at 5× magnification for images
of microtubules and 10× magnification for vesicle images. To gen-
erate the training data, the LR images were processed by a custom
code to extract the edge map. To generate the training pairs of LR
images, edge maps, and GT images, the LR images and edge maps
were interpolated at a scale of 1.25× based on bicubic interpolation.
The intensity of all images was normalized to the range of 0–255.
Then, the images were split into small blocks of size 256 × 256 to
correspond to the size of the GT images (64 × 64 for LR images and
edge maps). Finally, ~1000 training pairs were used to train the
network for the simulated polymer images; ~300 training pairs were
used to train the network for the experimental images of micro-
tubules; ~600 training pairs were used to train the network for the
experimental vesicle images.

Statistics and reproducibility
Except for network ensembles, all networks for different simulation/
subcellular structures mentioned in this work were trained once
per set of hyper-parameters and input dataset. For network inference
results, using the samenetworkparameters, repetitionof the inference
on the same input should always produce identical results.

Experiments on DNA origami (Fig. 2c) were repeated on 2 WF
images of 256× 256 pixels. Experiments for testing the effectiveness
on experimental images were performed on 50 WF images of 64 × 64
pixels (Supplementary Fig. 16). Experiments for network performance
evaluation on different subcellular structures in fixed cells were
repeated 4 WF images of 256 × 256 pixels (Figs. 2d, e and 3a, and
Supplementary Fig. 19). Experiments for testing the network robust-
ness to different microscopies and fluorescent dyes were performed
on 4WF images of 256× 256 pixels (Fig. 3d, e) Experiments on live-cell
imaging were performed on 2 ~ 3 similar image sequences containing
2000–5000 frames (Figs. 4, 5, and 7, Supplementary Figs. 29 and 30)
or 300 frames. All the simulation images were randomly generated. All
the experimental images for the same experiment were acquired
under the same experimental condition. No data were excluded from
the analyses. Similar results were observed for the multiple incidences
examined.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source images generated in this study are publicly accessible at
https://doi.org/10.5281/zenodo.7805563. The source data supporting
the findings in this study are provided with this paper. Source data are
provided with this paper.

Code availability
The codes of the SFSRM network, trained models, as well as some
example images for testing is publicly available at https://github.com/
crrayna/SFSRM.
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