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Quantum Langevin theory for two coupled phase-conjugated electromagnetic waves
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We provide a general macroscopic phenomenological formula of quantum Langevin equations for two coupled
phase-conjugated electromagnetic fields with linear loss (gain) and complex nonlinear coupling coefficient. The
macroscopic phenomenological formula is obtained from the coupling matrix to preserve the field commutation
relations and correlations, which does not require knowing the microscopic details of light-matter interaction
and internal atomic structures. To validate this phenomenological formula, we take spontaneous four-wave
mixing in a double-� four-level atomic system as an example to numerically confirm that our macroscopic
phenomenological result is consistent with that obtained from the microscopic Heisenberg-Langevin theory. We
find that a complex-valued nonlinear coupling coefficient can lead to noises even without linear gain or loss.
Finally, we apply the quantum Langevin equations to study the effects of linear gain and loss, complex phase
mismatching, as well as complex nonlinear coupling coefficient in entangled photon pair (biphoton) generation,
particularly to their temporal quantum correlations.
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I. INTRODUCTION

Quantum Langevin equations is a common approach to
studying an open quantum system involving loss or gain,
where the stochastic coupling between the system and its
environment is molded as a set of Langevin noise operators
[1–5]. For example, in the parametric down-conversion (PDC)
process, a pump laser beam passes through a χ (2) nonlinear
crystal and is down-converted into a pair of phase-conjugated
electromagnetic (EM) waves. In the simplest case with the
perfect phase-matching condition and an undepleted pump
beam, without linear loss or gain, the two phase-conjugated
single-mode fields are governed by the following coupled
equations [6]:

∂

∂z

[
â1

â†
2

]
= M

[
â1

â†
2

]
=

[
0 iκ

−iκ 0

][
â1

â†
2

]
, (1)

where âm and â†
m (m = 1, 2) are the field annihilation and

creation operators, M is the 2 × 2 coupling matrix, and κ is
the (real) nonlinear coupling coefficient. Here we consider
only the forward-wave case with both fields propagating along
the same +z direction. If losses are presented during the
propagation of the two fields, the coupling matrix is

M =
[−α1 iκ
−iκ −α2

]
, (2)
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and their coupled equations become [3,7]

∂

∂z

[
â1

â†
2

]
=

[−α1 iκ

−iκ −α2

][
â1

â†
2

]
+

[√
2α1 f̂1√
2α2 f̂ †

2

]
, (3)

where αm > 0 are the loss (absorption) coefficients, and
f̂m are the associated Langevin noise operators satisfying
[ f̂m(ω, z), f̂ †

n (ω′, z′)] = δmnδ(ω − ω′)δ(z − z′). If there is lin-
ear gain instead of loss, for example, in channel 1, i.e., α1 < 0,
Eq. (3) can be modified by taking

√
2α1 f̂1 → √−2α1 f̂ †

1 . One
can show that these Langevin noise operators are necessary
to preserve the commutation relations during propagation, i.e.
[âm(ω, z), â†

n(ω′, z)] = [âm(ω, 0), â†
n(ω′, 0)] = δmnδ(ω − ω′).

Equation (3) has been widely applied for PDC processes
where the nonlinear coupling coefficient κ is real [3,7–9].
However, in a more general case of coupled phase-conjugated
fields, such as four-wave mixing (FWM) near atomic reso-
nances [10–12], the nonlinear coupling coefficient κ can take
a complex value involving complicated atomic transitions.
In this case, Eq. (3) is not valid and its solution does not
preserve commutation relations of the fields. What are the
general quantum Langevin coupled equations accounting for
the complex nonlinear coupling coefficient?

To answer the question, the common approach is to de-
rive quantum Langevin equations by solving the light-matter
coupled Heisenberg equations, which requires knowing mi-
croscopic details of light-matter interaction such as atomic
populations and transitions [11–13]. The complexity of this
approach increases dramatically as more atomic transitions
are involved and it is extremely difficult for experimental-
ists to follow, particularly in some situations where it is
impossible to obtain full microscopic details. Then our
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FIG. 1. Schematics of two coupled phase-conjugated electro-
magnetic waves: (a) forward-wave configuration, and (b) backward-
wave configuration. κ is the nonlinear coupling coefficient between
the two modes.

reduced question becomes: Is it possible to obtain self-
consistent quantum Langevin coupled equations from the gen-
eral expression of the coupling matrix? We call this the macro-
scopic phenomenological approach. We wish to investigate
Langevin noises induced by a complex nonlinear coupling
coefficient κ .

In this article we provide a general macroscopic phe-
nomenological formula of quantum Langevin equations for
two coupled phase-conjugated fields with linear loss (gain)
and complex nonlinear coupling coefficient, in both forward-
and backward-wave configurations. The macroscopic phe-
nomenological formula is obtained from the coupling matrix
by preserving commutation relations and correlations of the
fields, which does not require knowing the microscopic de-
tails of light-matter interaction and internal atomic structures.
We aim to make it readable and accessible for experimental
researchers in the quantum optics community.

This article is structured as follows. In Sec. II, to ful-
fill the requirement of preserving commutation relations, we
formulate the general macroscopic phenomenological quan-
tum Langevin coupled equations and their solutions from
the coupling matrix, taking into account linear loss (gain)
and complex nonlinear coupling coefficient, in both forward-
and backward-wave configurations. In Sec. III, taking spon-
taneous four-wave mixing (SFWM) in a double-� four-level
atomic system as an example, we derive the coupled Langevin
equations from microscopic light-atom Heisenberg interaction
for this special case. We numerically confirm that the macro-
scopic phenomenological solution in Sec. II agrees well with
the microscopic approach. In Sec. IV, we apply the quan-
tum Langevin theory to study effects of linear gain and loss,
complex phase mismatching, and complex nonlinear coupling
coefficient in entangled photon pair (biphoton) generation,
particularly to their temporal quantum correlations. We con-
clude in Sec. V.

II. QUANTUM LANGEVIN EQUATIONS

Here we consider the two coupled single-mode phase-
conjugated fields in either forward-wave or backward-wave
configuration, as illustrated in Fig. 1. In the forward-wave
configuration [Fig. 1(a)], both fields propagate along the +z
direction through a nonlinear medium with a length L. In the
backward-wave configuration [Fig. 1(b)], the two fields prop-
agate in opposing directions. The field annihilation operators

âm(t, z) can be expressed as

â1(t, z) = 1√
2π

∫
dωâ1(ω, z)ei( ω

c z−ωt ),

â2(t, z) = 1√
2π

∫
dωâ2(ω, z)ei(± ω

c z−ωt ),

(4)

where ± represents that field 2 propagates along the +z or
−z direction, for the forward-wave or backward-wave config-
uration, respectively. The filed operators satisfy the following
commutation relations:

[âm(t, z), â†
n(t ′, z)] = δmnδ(t − t ′),

(5)
[âm(ω, z), â†

n(ω′, z)] = δmnδ(ω − ω′).

In the forward-wave configuration, both fields are input at
z = 0, or â1(0) and â2(0) are the “initial” boundary condi-
tions. The general coupling matrix is [14]

MF =
[−α1 + i 
k

2 iκ
−iκ −α∗

2 − i 
k
2

]
, (6)

where αm = −i ωm
2c χm with χm being linear susceptibility, and


k (real) is the phase mismatching in vacuum. In general, αm

is complex valued, whose real part Re{αm} > 0 represents loss
(or gain for Re{αm} < 0) and imaginary part represents phase
velocity dispersion. The nonlinear coupling coefficient κ can
also be complex valued. In the backward-wave configuration,
the general coupling matrix becomes [12,15]

MB =
[−α1 + i 
k

2 iκ
iκ α∗

2 − i 
k
2

]
, (7)

and the “initial” boundary conditions are â1(0) and â2(L):
field 1 is input at z = 0 and field 2 is input at z = L.

One can show that, under the unitary gauge transformation[
â1

â†
2

]
=

[
eiθ/2 0

0 e−iθ/2

][
â1

â†
2

]
= U

[
â1

â†
2

]
=

[
â1eiθ/2

â†
2e−iθ/2

]
,

(8)
the corresponding coupling matrices become

MF(θ ) = UMFU† =
[
−α1 + i 
k

2 iκeiθ

−iκe−iθ −α∗
2 − i 
k

2

]
(9)

and

MB(θ ) = UMBU† =
[
−α1 + i 
k

2 iκeiθ

iκe−iθ α∗
2 − i 
k

2

]
. (10)

As physics is preserved and unchanged under the above gauge
transformation, we take θ = 0 throughout this article for con-
venience and simplification.

In the presence of linear loss or gain, i.e., Re{αm} �=
0, or complex nonlinear coupling coefficient, κ �= κ∗, the
two-mode coupled equations must include Langevin noise
operators to preserve the commutation relations of the field
operators in Eq. (5). The noise operators should only be
related to Re{αm} and Im{κ}. As κ is real, the coupled equa-
tions in forward-wave configuration should be reduced to the
known Eq. (3). For both forward- and backward-wave con-
figurations in the same nonlinear material, the noise origin
is the same except field 2 propagates along the ±z direction
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for different configurations. With these guidelines, we provide
quantum Langevin equations for the two phase-conjugated
fields from their coupling matrix in the following subsections.

A. Forward-wave configuration

In the forward-wave configuration as shown in Fig. 1(a),
we find that its quantum Langevin coupled equations can be
expressed in the following general form:

∂

∂z

[
â1

â†
2

]
= MF

[
â1

â†
2

]
+ NFR

[
f̂1

f̂ †
2

]
+ NFI

[
f̂ †
1

f̂2

]
, (11)

with the “initial” condition at z = 0:

[âm(ω, 0), â†
n(ω′, 0)] = δmnδ(ω − ω′). (12)

The Langevin noise operators satisfy

[ f̂m(ω, z), f̂ †
n (ω′, z′)] = δmnδ(ω − ω′)δ(z − z′) (13)

and have the following correlations:

〈 f̂ †
m(ω, z) f̂n(ω′, z′)〉 = 0,

〈 f̂m(ω, z) f̂ †
n (ω′, z′)〉 = δmnδ(ω − ω′)δ(z − z′),

〈 f̂m(ω, z) f̂n(ω′, z′)〉 = 〈 f̂ †
m(ω, z) f̂ †

n (ω′, z′)〉 = 0.

(14)

The Langevin noise matrix is given by

NF ≡
√

−(MF + MF
∗) = NFR + iNFI, (15)

where NFR and NFI are the real and imaginary parts of the
matrix NF (i.e., NFmn = NFRmn + iNFImn), respectively. As
indicated in Eq. (14), in this work we make the physical
assumption that the noises fluctuate about a mean value of
zero, i.e., the noise sources are in their ground states, such
that their mean occupation numbers are zero.

We obtain the solution of Eq. (11) at the output surface
z = L as the following:[

â1(L)

â†
2(L)

]
= eMFL

[
â1(0)

â†
2(0)

]
+

∫ L

0
eMF (L−z)

(
NFR

[
f̂1(z)

f̂ †
2 (z)

]

+NFI

[
f̂ †
1 (z)

f̂2(z)

])
dz. (16)

Defining

eMFL ≡
[

A B
C D

]
, (17)

eMF (L−z) ≡
[

A1(z) B1(z)
C1(z) D1(z)

]
, (18)

we rewrite Eq. (16) as[
â1(L)

â†
2(L)

]
=

[
A B
C D

][
â1(0)

â†
2(0)

]

+
∫ L

0

[
A1(z) B1(z)
C1(z) D1(z)

](
NFR

[
f̂1(z)

f̂ †
2 (z)

]

+ NFI

[
f̂ †
1 (z)

f̂2(z)

])
dz. (19)

We numerically confirm that the solution preserves the com-
mutation relations

[âm(ω, L), â†
n(ω′, L)] = [âm(ω, 0), â†

n(ω′, 0)]

= δmnδ(ω − ω′). (20)

Now we examine some special cases.
Case 1. We first consider the coupling matrix MF in Eq. (6)

where the nonlinear coupling coefficient κ is real and both
modes have losses (Re{αm} � 0). This works for most PDC
processes [3,7]. Under such a condition, we have the follow-
ing diagonalized noise matrix:

NF = NFR =
[√

2Re{α1} 0

0
√

2Re{α2}

]
, (21)

and the coupled Langevin equations

∂

∂z

[
â1

â†
2

]
= MF

[
â1

â†
2

]
+

[√
2Re{α1} f̂1√
2Re{α2} f̂ †

2

]
, (22)

which is the well-known result in literature [3,7].
Case 2. κ is real, mode 1 has linear loss (Re{α1} = α �

0), and mode 2 has linear gain (Re{α2} = −g � 0). The noise
matrix becomes

NF =
[√

2α 0

0 i
√

2g

]
. (23)

We have the following coupled Langevin equations:

∂

∂z

[
â1

â†
2

]
= MF

[
â1

â†
2

]
+

[√
2α f̂1√
2g f̂2

]
. (24)

Case 3. The two modes are perfectly phase-matched
without linear gain or loss: 
k = 0, α1 = α2 = 0, but the
nonlinear coupling coefficient is complex-valued κ = η + iζ .
In this case, the coupled matrix is

MF =
[

0 −ζ + iη
ζ − iη 0

]
. (25)

The noise matrix becomes

NF = �(ζ )
√

ζ

[
1 1

−1 1

]
+ i�(−ζ )

√
−ζ

[
1 1

−1 1

]
, (26)

where �(ζ ) is the Heaviside step function, �(ζ ) = 1 if ζ > 0,
and �(ζ ) = 0 if ζ � 0. The Langevin coupled equations are

∂

∂z

[
â1

â†
2

]
= MF

[
â1

â†
2

]
+ �(ζ )

√
ζ

[
1 1

−1 1

][
f̂1

f̂ †
2

]

+ �(−ζ )
√

−ζ

[
1 1

−1 1

][
f̂ †
1

f̂2

]
.

(27)

Equation (27) shows that a complex-valued nonlinear cou-
pling coefficient also leads to Langevin noises even when
there is no linear gain or loss. This is revealed by this article
for the first time.

Case 4. As κ is real and there is no linear loss or gain (α1 =
α2 = 0), the coupled equations can be written as

i
∂

∂z

[
â1

â†
2

]
=

[
−
k

2 −κ

κ 
k
2

][
â1

â†
2

]
= Ĥ

[
â1

â†
2

]
. (28)
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The effective Hamiltonian Ĥ has anti-parity-time (APT) sym-
metry, which has been demonstrated in FWM in cold atoms
[14,16].

B. Backward-wave configuration

In the back-wave configuration as shown in Fig. 1(b), the
quantum Langevin coupled equations can be expressed in the
following general form:

∂

∂z

[
â1

â†
2

]
= MB

[
â1

â†
2

]
+ NBR

[
f̂1

f̂ †
2

]
+ NBI

[
f̂ †
1

f̂2

]
. (29)

Different from the forward-wave configuration, the “bound-
ary” condition is

[â1(ω, 0), â†
1(ω′, 0)] = [â2(ω, L), â†

2(ω′, L)] = δ(ω − ω′).
(30)

The Langevin noise operators satisfy the same commutation
relations and correlations in Eqs. (13) and (14). The Langevin
noise matrix is given by

NB ≡
[
1 0
0 −1

]√[−MB11 −MB12

MB21 MB22

]
+

[−MB11 −MB12

MB21 MB22

]∗

= NBR + iNBI,

(31)

where NBR and NBI are the real and imaginary parts of the
matrix NB, respectively. One can show that the noise matrix

defined in Eq. (31) has the same origin as that in the forward-
wave configuration in the same nonlinear material:

NB =
[

1 0
0 −1

]
NF. (32)

We note that the choice of noise matrix is not unique. For
example, transformation f̂1 → − f̂1 or/and f̂2 → − f̂2 does
not affect computing any physical observable. We elaborate
on this more in Appendix A.

We obtain the solution of Eq. (29) at z = L as the follow-
ing:[

â1(L)

â†
2(L)

]
= eMBL

[
â1(0)

â†
2(0)

]
+

∫ L

0
eMB(L−z)

(
NBR

[
f̂1(z)

f̂ †
2 (z)

]

+NBI

[
f̂ †
1 (z)

f̂2(z)

])
dz. (33)

We define

eMBL ≡
[

Ā B̄
C̄ D̄

]
, (34)

eMB(L−z) ≡
[

Ā1(z) B̄1(z)
C̄1(z) D̄1(z)

]
. (35)

Different from the forward-wave case, in the backward-wave
configuration, the mode 1 input is at z = 0 and the mode 2
input is at z = L. With known â1(0) and â2(L), we rearrange
Eq. (33) and obtain solutions for â1(L) and â2(0):

[
â1(L)

â†
2(0)

]
=

[
A B

C D

][
â1(0)

â†
2(L)

]
+

[
1 −B

0 −D

] ∫ L

0

[
Ā1(z) B̄1(z)

C̄1(z) D̄1(z)

](
NBR

[
f̂1(z)

f̂ †
2 (z)

]
+ NBI

[
f̂ †
1 (z)

f̂2(z)

])
dz, (36)

where

A = Ā − B̄C̄

D̄
,

B = B̄

D̄
,

C = − C̄

D̄
,

D = 1

D̄
.

(37)

We numerically confirm that Eq. (36) preserves the commuta-
tion relations

[â1(ω, L), â†
1(ω′, L)] = [â1(ω, 0), â†

1(ω′, 0)],

[â2(ω, 0), â†
2(ω′, 0)] = [â2(ω, L), â†

2(ω′, L)].
(38)

Similarly to the forward-wave configuration, we examine
the following four special cases.

Case 1. We assume the nonlinear coupling coefficient κ is
real and both modes have losses (Re{αm} � 0). Under such a
condition, we have the following diagonalized noise matrix:

NB =
[√

2Re{α1} 0

0 −√
2Re{α2}

]
, (39)

and the coupled Langevin equations

∂

∂z

[
â1

â†
2

]
= MB

[
â1

â†
2

]
+

[ √
2Re{α1} f̂1

−√
2Re{α2} f̂ †

2

]
. (40)

Case 2. κ is real, mode 1 has linear loss (Re{α1} = α �
0), and mode 2 has linear gain (Re{α2} = −g � 0). The noise
matrix becomes

NF =
[√

2α 0

0 −i
√

2g

]
. (41)

We have the following coupled Langevin equations:

∂

∂z

[
â1

â†
2

]
= MB

[
â1

â†
2

]
+

[ √
2α f̂1

−√
2g f̂2

]
. (42)

Case 3. The two modes are perfectly phase matched
without linear gain and loss: 
k = 0, α1 = α2 = 0, but the
nonlinear coupling coefficient is complex-valued κ = η + iζ .
In this case, the coupled matrix is

MB =
[

0 −ζ + iη
−ζ + iη 0

]
. (43)
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The noise matrix becomes

NB = �(ζ )
√

ζ

[
1 1
1 −1

]
+ i�(−ζ )

√
−ζ

[
1 1
1 −1

]
. (44)

The Langevin coupled equations are

∂

∂z

[
â1

â†
2

]
= MB

[
â1

â†
2

]
+ �(ζ )

√
ζ

[
1 1

1 −1

][
f̂1

f̂ †
2

]

+ �(−ζ )
√

−ζ

[
1 1

1 −1

][
f̂ †
1

f̂2

]
. (45)

Equation (45) shows that in the backward-wave configuration,
a complex-valued nonlinear coupling coefficient also leads to
Langevin noises even though there is no linear gain or loss.

Case 4. As κ is real and there are equal losses in
both modes (α1 = α2 = α > 0) with perfect phase matching
(
k = 0), the coupled equations can be written as

i
∂

∂z

[
â1

â†
2

]
=

[−iα −κ

−κ iα

][
â1

â†
2

]
= Ĥ

[
â1

â†
2

]
. (46)

Interestingly, the effective Hamiltonian Ĥ here follows parity-
time (PT) symmetry [17,18].

III. MICROSCOPIC ORIGIN OF LANGEVIN NOISES:
SFWM

One could validate the above phenomenological approach
of quantum Langevin coupled equations by confirming the
microscopic origin of the Langevin noises. However, for two
systems with the same quantum Langevin equations, their
microscopic structures may be quite different. Therefore, it
is impossible to sort all microscopic systems. In this section,
we focus on SFWM in a double-� four-level atomic system
[10–12,19,20] with electromagnetically induced transparency
(EIT) [21,22], and show that the phenomenological approach
in the above section agrees with the numerical results from the
microscopic quantum theory of light-atom interaction.

We start from a single-atom picture, considering an EM
wave couples the atomic transition | j〉 and |k〉. The in-
duced single-atom polarization p̂ jk ∝ μ jk σ̂ jk , where μ jk is
the electric dipole moment matrix element, σ̂ jk = | j〉〈k| is a
single-atom transition operator from state |k〉 to | j〉. In the
Heisenberg-Langevin picture, the single-atom transition op-
erator can be expressed as

σ̂ jk = σ̂
(0)
jk +

∑
μν

βμν f̂ (σ )
μν , (47)

where σ̂
(0)
jk = 〈σ̂ jk〉 is the zeroth-order steady-state solution.

The single atom noise operator between atomic transition
|ν〉 → |μ〉 is represented by f̂ (σ )

μν , which satisfies the following
correlations:〈

f̂ (σ )
μν (ω) f̂ (σ )†

μ′ν ′ (ω′)
〉 = 〈

f̂ (σ )
μν (ω) f̂ (σ )

ν ′μ′ (ω′)
〉

= Dμν,ν ′μ′δ(ω − ω′),〈
f̂ (σ )†
μν (ω) f̂ (σ )

μ′ν ′ (ω′)
〉 = 〈

f̂ (σ )
νμ (ω) f̂ (σ )

μ′ν ′ (ω′)
〉

= Dνμ,μ′ν ′δ(ω − ω′),

(48)

where Dμν,ν ′μ′ and Dνμ,μ′ν ′ are diffusion coefficients.

In a continuous medium with atomic number density n,
the noises from different atoms are uncorrelated. We have the
spatially averaged atomic operator

ˆ̄σ jk ≡ σ̂
(0)
jk + 1√

nA

∑
μν

βμν
ˆ̄f (σ )
μν , (49)

where A is the single-mode cross-section area, and the
spatially averaged atomic noise operators ˆ̄f (σ )

μν satisfy the fol-
lowing modified correlations:〈 ˆ̄f (σ )

μν (ω, z) ˆ̄f (σ )†
μ′ν ′ (ω′, z′)

〉 = 〈 ˆ̄f (σ )
μν (ω, z) ˆ̄f (σ )

ν ′μ′ (ω′, z′)
〉

= Dμν,ν ′μ′δ(ω − ω′)δ(z − z′),〈 ˆ̄f (σ )†
μν (ω, z) ˆ̄f (σ )

μ′ν ′ (ω′, z′)
〉 = 〈 ˆ̄f (σ )

νμ (ω, z) ˆ̄f (σ )
μ′ν ′ (ω′, z′)

〉
= Dνμ,μ′ν ′δ(ω − ω′)δ(z − z′),

(50)

where the diffusion coefficients are the same as those from the
single-atom picture.

The electric field and polarization are described as

Ê(t, z) = 1
2 [Ê (+)(t, z) + Ê (−)(t, z)],

P̂(t, z) = 1
2 [P̂(+)(t, z) + P̂(−)(t, z)],

(51)

where Ê (+), P̂(+) and Ê (−), P̂(−) are positive and negative
frequency parts. We take the following Fourier transform:

Ê (+)(t, z) = 1√
2π

∫
dωÊ (ω, z)ei(± ω

c z−ωt ),

P̂(+)(t, z) = 1√
2π

∫
dωP̂(ω, z)ei(± ω

c z−ωt ),

(52)

where Ê (ω, z), P̂(ω, z) are complex amplitudes in the fre-
quency domain. The Maxwell equation under slowly varying
envelope approximation (SVEA) can be written as

± ∂Ê (ω, z)

∂z
= i

2
ωηP̂(ω, z), (53)

where ± represents for propagation direction along ±z, and
free space impedance η = 1/(cε0) = 377 Ohm, with c being
the speed of light in vacuum, and ε0 the vacuum permittivity.
With quantized electric field

Ê (ω, z) =
√

2h̄ω

cε0A
â(ω, z) (54)

and

P̂(ω, z) = 2nμ jk ˆ̄σ jk (ω, z), (55)

we obtain the Langevin equation for the EM field in the atomic
medium

± ∂ â(ω, z)

∂z
= i nAg jk ˆ̄σ jk (ω, z)

= i nAg jk σ̂
(0)
jk (ω, z) + ˆ̄F (ω, z),

(56)

where

gjk = μ jk

√
ω jk

2cε0 h̄A
,
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Δ(a) (b)
|3⟩

|4⟩

FIG. 2. Spontaneous four-wave mixing (SFWM) in a double-�
four-level cold atomic medium. (a) Backward-wave geometry of
SFWM optical configuration. Driven by counterpropagating pump
(Ep) and coupling (Ec) beams, phase-matched backward Stokes (âs)
and anti-Stokes (âas) are spontaneously generated from a laser-
cooled atomic medium. (b) Atomic energy-level diagram. The pump
(ωp) laser is detuned with 
p from transition |1〉 → |4〉, and the
coupling (ωc) laser is on-resonant with transition |2〉 → |3〉. Stokes
(ωs) photons are spontaneously generated from transition |4〉 → |2〉,
and anti-Stokes (ωas) photons from transition |3〉 → |1〉. � = ωas −
ω13 is the anti-Stokes photon frequency detuning from transition
|1〉 → |3〉.

ˆ̄F (ω, z) = i
√

nAgjk

∑
μν

βμν
ˆ̄f (σ )
μν (ω, z)

= iμ jk

√
nω jk

2cε0 h̄

∑
μν

βμν
ˆ̄f (σ )
μν (ω, z). (57)

Here g jk = g∗
k j is single-photon-atom coupling strength.

Now we turn to the backward-wave SFWM in a double-
� four-level atomic system as illustrated in Fig. 2. In the
presence of a counterpropagating pump (Ep, ωp) and cou-
pling (Ec, ωc) laser beams, phase-matched Stokes (ωs) and
anti-Stokes (ωas) are spontaneously generated and propagate
through the medium in opposing directions. In the rotat-

ing reference frame, the interaction Hamiltonian for a single
atom is

V̂ = − h̄(g31âasσ̂31 + g13â†
asσ̂13) − h̄(g42âsσ̂42 + g24â†

s σ̂24)

− 1
2 h̄(�cσ̂32 + �∗

c σ̂23) − 1
2 h̄(�pσ̂41 + �∗

pσ̂14)

− h̄
pσ̂44 − h̄�σ̂33 − h̄�σ̂22, (58)

where �c = μ32Ec/h̄ is coupling Rabi frequency. The cou-
pling laser is on-resonant with transition |2〉 → |3〉. �p =
μ41Ep/h̄ is the pump Rabi frequency. The pump laser is far
detuned from the transition |1〉 → |4〉 with 
p = ωp − ω14

so that the atomic population mainly occupies the ground
state |1〉. We take this ground-state approximation through this
section. With continuous-wave pump and coupling driving
fields, the energy conservation leads to ωas + ωs = ωc + ωp.
Here � = ωas − ω13 is the anti-Stokes frequency detuning
and thus the Stokes frequency detuning is ωs − ωs0 = −� .

The atomic evolution is governed by the following
Heisenberg-Langevin equation [11]:

∂

∂t
σ̂ jk = i

h̄
[V̂ , σ̂ jk] − γ jk σ̂ jk + rA

jk + f̂ (σ )
jk , (59)

where γ jk = γk j (nonzero only as j �= k) are dephasing rates,
and rA

jk (nonzero only as j = k) are the population transfer re-
sulting from spontaneous emission decay. The full equation of
motion can be found in Appendix B. The diffusion coefficients
D jk, j′k′ can be obtained through the Einstein relation

D jk, j′k′ = ∂

∂t
〈σ̂ jk σ̂ j′k′ 〉

− 〈Â jk σ̂ j′k′ 〉 − 〈σ̂ jk Â j′k′ 〉, (60)

where Â jk = ∂
∂t σ̂ jk − f̂ (σ )

jk . For the SFWM governed
by Eq. (59), we have [11,12]

⎡
⎢⎢⎣
D12,21 D12,24

D42,21 D42,24

D12,31 D12,34

D42,31 D42,34

D13,21 D13,24

D43,21 D43,24

D13,31 D13,34

D43,31 D43,34

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

2γ12〈σ̂11〉 + �31〈σ̂33〉 + �41〈σ̂44〉 γ12〈σ̂14〉 0 0
γ12〈σ̂41〉 0 0 0

0 0 �3〈σ̂11〉 + �31〈σ̂33〉 + �41〈σ̂44〉 �3〈σ̂14〉
0 0 �3〈σ̂41〉 �3〈σ̂44〉

⎤
⎥⎥⎦, (61)

⎡
⎢⎢⎣
D21,12 D21,42

D24,12 D24,42

D21,13 D21,43

D24,13 D24,43

D31,12 D31,42

D34,12 D34,42

D31,13 D31,43

D34,13 D34,43

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

2γ12〈σ̂22〉 + �32〈σ̂33〉 + �42〈σ̂44〉 0 γ12〈σ̂23〉 0
0 �4〈σ̂22〉 + �32〈σ̂33〉 + �42〈σ̂44〉 0 �4〈σ̂23〉

γ12〈σ̂32〉 0 0 0
0 �4〈σ̂32〉 0 �4〈σ̂33〉

⎤
⎥⎥⎦. (62)
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Solving Eq. (59) under the ground-state approxima-
tion 〈σ̂11〉 ∼= 1 with weak pump excitation 
p � {�p, �4},
we get the single-atom steady-state solutions (with μν =
12, 13, 42, 43)

σ̂13 = σ̂
(0)
13 +

∑
μν

βas
μν f̂ (σ )

μν ,

σ̂42 = σ̂
(0)
42 +

∑
μν

βs
μν f̂ (σ )

μν ,
(63)

where

σ̂
(0)
13 = 4(� + iγ12)

T (� )
g31âas

+ �c�p

T (� )(
p + iγ14)
g24â†

s ,

σ̂
(0)
42 = (� + iγ13)

T (� )

|�p|2
(
p − iγ24)

1

(
p + iγ14)
g24â†

s

+ �∗
p�

∗
c

T (� )(
p − iγ24)
g31âas, (64)

βas
12 = i2�c

T (� )
,

βas
13 = − i4(� + iγ12)

T (� )
,

βas
42 = − i�c�p

T (� )(
p − iγ24)
,

βas
43 = i2�p(� + iγ12)

T (� )(
p − iγ34)
,

βs
12 = i2(� + iγ13)

T (� )

�∗
p

(
p − iγ24)
,

βs
13 = − i�∗

p�
∗
c

T (� )(
p − iγ24)
,

βs
42 = − i

(
p − iγ24)
,

βs
43 = − i�∗

c

2(
p − iγ24)(
p − iγ34)
, (65)

where T (� ) ≡ |�c|2 − 4(� + iγ13)(� + iγ12). We then ob-
tain the ensemble spatially averaged atomic operators for
generating anti-Stokes and Stokes fields from Eq. (49),

ˆ̄σ 13 = σ̂
(0)
13 + 1√

nA

∑
μν

βas
μν

ˆ̄f
(σ )

μν ,

ˆ̄σ 42 = σ̂
(0)
42 + 1√

nA

∑
μν

βs
μν

ˆ̄f
(σ )

μν .

(66)

For simplicity, we define âas(�, z) ≡ âas(ωas0 + �, z) and
âs(�, z) ≡ âs(ωs0 − �, z). Following the procedures in
Eqs. (56) and (57),

∂ âas(�, z)

∂z
= i nAg13 ˆ̄σ 13(�, z),

∂ â†
s (�, z)

∂z
= i nAg42 ˆ̄σ 42(�, z),

(67)

we get coupled equations for the counterpropagating anti-
Stokes (propagating along +z) and Stokes (propagating along
−z) fields in the backward-wave configuration,

∂

∂z

[
âas

â†
s

]
=

[−αas + i 
k
2 iκas

iκs α∗
s − i 
k

2

][
âas

â†
s

]
+

[
ˆ̄Fas

− ˆ̄F †
s

]
,

(68)

where

ˆ̄Fas = ig13

√
nA

[
βas

12
ˆ̄f (σ )
12 + βas

13
ˆ̄f (σ )
13 + βas

42
ˆ̄f (σ )
42 + βas

43
ˆ̄f (σ )
43

]
,

ˆ̄F †
s = −ig42

√
nA

[
βs

12
ˆ̄f (σ )
12 + βs

13
ˆ̄f (σ )
13 + βs

42
ˆ̄f (σ )
42 + βs

43
ˆ̄f (σ )
43

]
,

(69)

and

αas = −i
ωas

2c
χas,

αs = −i
ωs

2c
χs,

κas =
√

ωasωs

2c
χ (3)

as EpEc,

κs =
√

ωsωas

2c
χ (3)∗

s E∗
p E∗

c ,

χas = 4n|μ13|2
ε0 h̄

(� + iγ12)

T (� )
,

χs = n|μ24|2
ε0 h̄

(� − iγ13)

T ∗(� )

|�p|2

2

p + γ 2
14

,

χ (3)
as = nμ13μ32μ24μ41

ε0 h̄3

1

T (� )

1

(
p + iγ14)
,

χ (3)
s = nμ13μ32μ24μ41

ε0 h̄3

1

T ∗(� )

1

(
p + iγ14)
. (70)

The expressions for βas
μν and βs

μν are listed in Eqs. (65).


k = (ωas − ωs)/c − (kc + kp) · ẑ is the phase mismatching
in vacuum. Here the complex αas represents the EIT loss
and phase dispersion. α∗

s is the Raman gain and dispersion
along the −z propagation direction. One can show that the
nonlinear coupling coefficients can be expressed as κas = κeiθ

and κs = κe−iθ , where

κ =
√

ωasωs

2c

nμ13μ24

ε0 h̄

∣∣∣∣ �p�c


p + iγ14

∣∣∣∣ 1

T (� )
, (71)

and θ is the phase of �p�c/(
p + iγ14). As a result, κas

and κs fulfill the gauge transformation discussed in Sec. II.
Therefore, to be consistent with the treatment in Sec. II, we
rewrite Eq. (68) to

∂

∂z

[
âas

â†
s

]
= MB

[
âas

â†
s

]
+

[
F̂as

−F̂ †
s

]
, (72)
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FIG. 3. Comparison of commutation relations between the macroscopic (Macro, blue solid lines) and microscopic (Micro, red dashed
lines) approaches in the group delay regime: (a) [âas(L), â†

as(L)], (b) [âas(L), â†
as(L)] − δ(� − � ′), (c) [âs(0), â†

s (0)], and (d) [âs(0), â†
s (0)] −

δ(� − � ′). The results with no Langevin noise operators (NLN) are shown as black dotted lines in (a) and (c).

where

MB =
[−αas + i 
k

2 iκ
iκ α∗

s − i 
k
2

]
,

F̂as = ˆ̄Fase
−iθ/2,

F̂ †
s = ˆ̄F †

s eiθ/2. (73)

Similarly, we rewrite the SFWM quantum Langevin equa-
tions in the forward-wave configuration in Appendix C.

We now turn to compare Eq. (72) with Eq. (29) from the
phenomenological approach in Sec. II, where we take mode
1 as anti-Stokes and mode 2 as Stokes in the backward-wave
configuration. From Eq. (29), we have

F̂as = NBR11 f̂1 + NBI11 f̂ †
1 + NBI12 f̂2 + NBR12 f̂ †

2 ,

F̂ †
s = −NBR21 f̂1 − NBI21 f̂ †

1 − NBI22 f̂2 − NBR22 f̂ †
2 .

(74)

Therefore, we obtain F̂as and F̂ †
s from two different ap-

proaches: Eq. (69) from the microscopic photon-atom inter-
action, and Eq. (74) from the macroscopic phenomenological
approach. Although we remark that the atomic noise opera-
tors ˆ̄f (σ )

μν are different from the field noise operators f̂m, the
correlations of F̂as and F̂s uniquely determine the system per-
formance. While we find it difficult to analytically prove the
two approaches are equivalent, we could numerically compute
and compare the commutation relations and correlations of
âas, â†

as, âs, and â†
s .

We consider here the backward-wave SFWM
in laser-cooled 85Rb atoms with relevant atomic

energy levels being |1〉 = |5 2S1/2, F = 2〉, |2〉 =
|5 2S1/2, F = 3〉, |3〉 = |5 2P1/2, F = 3〉, and |4〉 =
|5 2P3/2, F = 3〉. The decay and dephasing rates
for corresponding energy levels are �3 = �4 =
2π × 6 MHz, �31 = 5

9�3, �32 = 4
9�3, �41 = 4

9�4, �42 =
5
9�4, γ13 = γ23 = γ14 = γ24 = 2π × 3 MHz, and γ12 = 2π ×
0.03 MHz. With vacuum inputs in both Stokes
(z = L) and anti-Stokes (z = 0) modes, we have
〈âas(�, 0)â†

as(�
′, 0)〉 = 〈âs(�, L)â†

s (� ′, L)〉 = δ(� − � ′)
and 〈â†

as(�, 0)âas(� ′, 0)〉= 〈â†
s (�, L)âs(� ′, L)〉= 0. There

is also no correlation between Stokes and anti-Stokes fields at
their inputs.

We numerically compute SFWM in two different regimes
to confirm the consistency between the macroscopic and mi-
croscopic theories: (i) The first is the group delay regime,
where the SFWM spectrum bandwidth is determined by
the EIT slow-light induced phase mismatching [10]. The
working parameters are �p = 2π × 1.2 MHz, �c = 2π ×
12 MHz, and 
p = 2π × 500 MHz. The cold atomic medium
with length L = 2 cm has density n = 5.1 × 1016 m−3, cor-
responding to an atomic optical depth OD = 80 on the
anti-Stokes resonance transition. (ii) The second is the Rabi
oscillation regime, where biphoton correlation reveals single-
atom dynamics [10]. The working parameters are �p = 2π ×
1.2 MHz, �c = 2π × 24 MHz, and 
p = ωp − ω14 = 2π ×
500 MHz. The cold atomic medium with length L = 0.2 cm
has density n = 6.4 × 1014 m−3, corresponding to OD = 0.1.
In both cases, we take 
k = 127 rad/m.

The numerical results in the group delay regime are plot-
ted in Figs. 3–5. The commutation relations [âas(L), â†

as(L)]
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FIG. 4. Four real correlations of Stokes and anti-Stokes fields in the group delay regime: (a) 〈âas(L)â†
as(L)〉, (b) 〈â†

as(L)âas(L)〉, (c)
〈âs(0)â†

s (0)〉, and (d) 〈â†
s (0)âs(0)〉. The macroscopic (Macro) and microscopic (Micro) approaches are shown as blue solid and red dashed

lines, respectively.

and [âs(0), â†
s (0)] are shown in Fig. 3. Macroscopic and mi-

croscopic approaches agree well with each other [Figs. 3(a)
and 3(c)], with negligible relative small difference <1.0 ×
10−6 [Figs. 3(b) and 3(d)]. As expected, the macro-
scopic phenomenological results give perfect flat lines at
[âas (L,� ),â†

as (L,� ′ )]
δ(�−� ′ ) = [âs (0,� ),â†

s (0,� ′ )]
δ(�−� ′ ) = 1, which is the starting

point of Sec. II. The microscopic results of field commuta-
tions are consistent with the macroscopic approach, but with
<1.0 × 10−6 deviation at some spectra points. As we under-
stand, these small spectra discrepancies may be caused by
the ground-state and zeroth-order approximations we take for
solving the microscopic Heisenberg-Langevin equations (59).
If the Langevin noise operators are not taken into account,
as shown in the black dotted curves in Figs. 3(a) and 3(c),
the anti-Stokes commutation relation is not preserved and
displays the EIT transmission spectrum, while the Stokes
commutation relation still approximately holds due to the
negligible gain or loss in the Stokes channel under the ground-
state approximation.

Figure 4 displays four real-valued correlations of Stokes
and anti-Stokes fields: (a) 〈âas(L)â†

as(L)〉, (b) 〈â†
as(L)âas(L)〉,

(c) 〈âs(0)â†
s (0)〉, and (d) 〈â†

s (0)âs(0)〉. Figure 5 shows the
twelve (six pairs) complex-valued correlations of Stokes
and anti-Stokes fields: (a) 〈âas(L)âas(L)〉 = 〈â†

as(L)â†
as(L)〉∗,

(b) 〈âas(L)âs(0)〉 = 〈â†
s (0)â†

as(L)〉∗, (c) 〈âas(L)â†
s (0)〉 =

〈âs(0)â†
as(L)〉∗, (d) 〈â†

as(L)âs(0)〉 = 〈â†
s (0)âas(L)〉∗, (e)

〈âs(0)âas(L)〉 = 〈â†
as(L)â†

s (0)〉∗, and (f) 〈âs(0)âs(0)〉 =
〈â†

s (0)â†
s (0)〉∗. The macroscopic solutions agree well with

those obtained from the microscopic approach.

The numerical results in the Rabi oscillation regime are
plotted in Figs. 6–8. The macroscopic phenomenological
results also agree remarkably well with those from the mi-
croscopic theory.

In the microscopic Langevin-Heisenberg theory, the Stokes
and anti-Stokes Langevin noise operators in Eq. (69) are
expressed as a linear summation of atomic noise operators
whose correlations are defined in Eq. (48). On the other side,
in the macroscopic phenomenological approach [Eq. (74)],
they are obtained from the noise matrix in Eq. (31) [or
Eq. (15) for the forward-wave configuration] and two-mode
field noise operators whose correlations follow Eq. (14). Al-
though Eq. (69) (with atomic transition noise operators) and
Eq. (74) (with two-mode optical field noise operators) appear
different, their numerical results of correlations show a re-
markable agreement with each other in Figs. 3–8. We attribute
this to the fact that in both microscopic and macroscopic
theories the two fields share the same coupling matrix, and
both satisfy the bosonic commutation relations. Under these
constraints, their physical observable and outputs should be
uniquely determined, though the choice of noise matrix in
the macroscopic phenomenological formula is not unique, for
example, as elaborated on in Appendix A. It is extremely
challenging to directly drive the noisematrix in Eqs. (15)
and (31) from the microscopic Heisenberg-Langevin theory,
because (1) the microscopic Heisenberg-Langevin theory has
a huge computational complexity (see Sec. III), (2) for two
systems with the same coupling matrix, their microscopic
structures may be quite different, and (3) the choice of noise
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FIG. 5. Twelve complex correlations of Stokes and anti-Stokes fields in the group delay regime: (a) 〈âas(L)âas(L)〉 = 〈â†
as(L)â†

as(L)〉∗,
(b) 〈âas(L)âs(0)〉 = 〈â†

s (0)â†
as(L)〉∗, (c) 〈âas(L)â†

s (0)〉 = 〈âs(0)â†
as(L)〉∗, (d) 〈â†

as(L)âs(0)〉 = 〈â†
s (0)âas(L)〉∗, (e) 〈âs(0)âas(L)〉 = 〈â†

as(L)â†
s (0)〉∗,

and (f) 〈âs(0)âs(0)〉 = 〈â†
s (0)â†

s (0)〉∗. The macroscopic (Macro) and microscopic (Micro) approaches are shown as blue solid and red dashed
lines, respectively.

matrix in the macroscopic phenomenological formula is not
unique. For these reasons, we take numerical confirmation for
the correlations which are relevant to the physical observables.
However, we do confirm that when the nonlinear coupling
coefficient is real, Eqs. (15) and (31) are indeed reduced to
the known results in literature (See Cases 1 and 2 in Secs. II A
and II B).

We note that although the noise field correlations from
Eqs. (69) and (74) agree well with each other, there are
small numerical differences at some spectral points as
shown in Figs. 3–8. These neglectable discrepancies are not
from fundamental physics, but rather from the approxima-
tions taken during derivation. For instance, the ground-state
approximation and lowest-order perturbation are used in de-
riving the microscope noises and the coupling matrix. As a

result, in the microscopic Heisenberg-Langevin theory, al-
though the underlying microscopic quantum mechanics
ensures the preservation of commutation relations, the com-
putation numerical results may be slightly away from the
exact values due to these approximations. In the macroscopic
phenomenological treatment, we “force” the commutation re-
lations to hold. As a result, some adjustment is added to the
Langevin noise operators to compensate the approximation-
induced error in the coupling matrix. These resulted differ-
ences are small and neglectable as long as the coupling matrix
describes closely its true system, as shown in Figs. 3–8.

In this work, it is assumed that the noise sources are in
their ground states such that their mean occupation numbers
are zero, as indicated in Eq. (14). If this condition is not
met, our macroscopic phenomenological quantum Langevin
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lines) approaches in the damped Rabi oscillation regime: (a) [âas(L), â†

as(L)], (b) [âas(L), â†
as(L)] − δ(� − � ′), (c) [âs(0), â†

s (0)], and (d)
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s (0)] − δ(� − � ′). The results with no Langevin noise operators (“NLN”) are shown as black dotted lines in (a) and (c).
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(c) 〈âs(0)â†

s (0)〉, and (d) 〈â†
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lines, respectively.
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s (0)〉 = 〈âs(0)â†
as(L)〉∗, (d) 〈â†

as(L)âs(0)〉 = 〈â†
s (0)âas(L)〉∗, (e)

〈âs(0)âas(L)〉 = 〈â†
as(L)â†

s (0)〉∗, and (f) 〈âs(0)âs(0)〉 = 〈â†
s (0)â†

s (0)〉∗. The macroscopic (Macro) and microscopic (Micro) approaches
are shown as blue solid and red dashed lines, respectively.

equations may not be applicable and require adjustment. We
find that the complex nonlinear coupling coefficient arises
from near-resonance interaction between light and atomic
transitions. Although in this work we focus on SFWM in
a double-� atomic system, we anticipate the same physics
applies to other multiple-wave mixing processes, such as two-
level [23], three-level [24–26], and diamond-shape four-level
systems [27,28].

IV. BIPHOTON GENERATION

We now turn to apply the quantum Langevin theory
to study time-frequency entangled photon pair (biphoton)

generation through the spontaneous four-wave mixing
process, especially in a variety of situations involving gain,
loss, and/or complex nonlinear coupling coefficient. We
consider continuous-wave pumping whose time-translation
symmetry leads to frequency anticorrelation ω1 + ω2 =
constant between the paired photons. In the spontaneous
four-wave mixing process, both input states are vacuum:
〈â†

1(�, 0)â1(� ′, 0)〉 = 〈â†
2(�, 0)â2(� ′, 0)〉 = 0, 〈â1(� ′, 0)

â†
1(�, 0)〉 = 〈â2(� ′, 0)â†

2(�, 0)〉 = δ(� − � ′) for the
forward-wave configuration, and 〈â†

1(�, 0)â1(� ′, 0)〉 =
〈â†

2(�, L)â2(� ′, L)〉 = 0, 〈â1(�, 0)â†
1(� ′, 0)〉 = 〈â2(�, L)

â†
2(� ′, L)〉 = δ(� − � ′) for the backward-wave configura-

tion. From Eq. (4), with ω1 = ω10 + � and ω2 = ω20 − � ,
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we have

â1(t, z1) = eiω10( z1
c −t )

√
2π

∫
d� â1(�, z1)ei� ( z1

c −t )e−i 
k
2 z1 ,

â2(t, z2) = eiω20(± z2
c −t )

√
2π

∫
d� â2(�, z2)e−i� (± z2

c −t )e−i 
k
2 z2 ,

(75)

where ± represents the forward-wave (+) or backward-wave
(−) configuration, and z = z1 and z = z2 are the output
positions of channels 1 and 2, respectively. For the forward-
wave configuration, z1 = z2 = L. For the backward-wave
configuration, z1 = L and z2 = 0. The phase mismatch-
ing in vacuum 
k = (ωas ± ωs)/c − (kc + kp) · ẑ � (ωas0 ±
ωs0)/c − (kc + kp) · ẑ is nearly a constant. The vacuum time
delay zi/c constants are usually very small in usual experi-
mental conditions, so from now on we ignore these constants
for simplification and rewrite the above equations to (other-
wise one just needs to make a time translation t → t − zi/c)

â1(t, z1) = e−iω10t

√
2π

∫
d� â1(�, z1)e−i� t ,

â2(t, z2) = e−iω20t

√
2π

∫
d� â2(�, z2)ei� t .

(76)

The photon rate in channel m can be computed from

Rm ≡ 〈â†
m(t, zm)âm(t, zm)〉

= 1

2π

∫∫ ∞

−∞
d�d� ′e−i� t ei� ′t 〈â†

m(� ′, zm)âm(�, zm)〉.
(77)

Here we are particularly interested in the two-photon Glauber
correlation in the time domain, which can be computed from
the following two different orders:

G(2)
2,1(t2, t1) ≡ 〈â†

1(t1, z1)â†
2(t2, z2)â2(t2, z2)â1(t1, z1)〉

= |〈â2(t2, z2)â1(t1, z1)〉|2

+ |〈â†
2(t2, z2)â1(t1, z1)〉|2 + R1R2, (78)

G(2)
1,2(t1, t2) ≡ 〈â†

2(t2, z2)â†
1(t1, z1)â1(t1, z1)â2(t2, z2)〉

= |〈â1(t1, z1)â2(t2, z2)〉|2

+ |〈â†
2(t2, z2)â1(t1, z1)〉|2 + R1R2, (79)

where we have applied the Gaussian moment theorem [29,30]
to decompose the fourth-order field correlations to the sum of
the products of second-order field correlations (see Supple-
mental Material [31] for the detailed verification). The first
term in Eqs. (78) and (79) can be expressed as |�2,1(t2, t1)|2
and |�1,2(t1, t2)|2, where

�2,1(t2, t1) = 〈â2(t2, z2)â1(t1, z1)〉
= e−iω20t2 e−iω10t1ψ2,1(t1 − t2), (80)

�1,2(t1, t2) = 〈â1(t1, z1)â2(t2, z2)〉
= e−iω20t2 e−iω10t1ψ1,2(t1 − t2) (81)

are the two-photon wave functions with the relative parts

ψ2,1(t1 − t2)

= 1

2π

∫∫
d�d� ′〈â2(� ′, z2)â1(�, z1)〉e−i� (t1−t2 ),

(82)

ψ1,2(t1 − t2)

= 1

2π

∫∫
d�d� ′〈â1(�, z1)â2(� ′, z2)〉e−i� (t1−t2 ).

(83)

One can show that the second term in Eqs. (78) and (79)
is zero if the nonlinear coupling coefficient is real-valued,
and it is usually very small as compared to other terms. The
third term in Eqs. (78) and (79) is the accidental coincidence
counts. The two-photon wave function and Glauber correla-
tion satisfy the following exchange symmetry:

ψ21(t1 − t2) = ψ2,1(t1 − t2) = ψ1,2(t1 − t2),

�21(t2, t1) = �2,1(t2, t1) = �1,2(t1, t2),

G(2)
21 (t2, t1) = G(2)

2,1(t2, t1) = G(2)
1,2(t1, t2).

(84)

The normalized two-photon correlation is defined as

g(2)
21 (t2, t1) ≡ G(2)

21 (t2, t1)

R1R2
. (85)

As the system has time-translation symmetry with
continuous-wave pumping, G(2)

21 (t2, t1) = G(2)
21 (t1 − t2)

depends only on the relative time t1 − t2.

A. Loss and gain

To simplify and unify the descriptions for accounting
for both forward- and backward-wave cases, we define
“input-output” fields: â1,in ≡ â1(0), â2,in ≡ â2(0), â1,out ≡
â1(L), and â2,out ≡ â2(L) for the forward-wave case; â1,in ≡
â1(0), â2,in ≡ â2(L), â1,out ≡ â1(L), and â2,out ≡ â2(0) for the
backward-wave case. In this subsection, we aim to investigate
the roles of loss and gain in biphoton generation, consider-
ing linear loss in mode 1 (Re{α1} = α � 0) and linear gain
(Re{α2} = −g � 0) in mode 2. We also assume κ is real, or
its contribution to Langevin noises is much smaller than the
linear gain and loss, i.e., Im{κ} � {α, g}. In this case, for
forward- and backward-wave configurations, the noise matrix
is reduced to

NF,B =
[√

2α 0

0 ±i
√

2g

]
. (86)

Hence, the output fields in Eqs. (19) and (36) can be rewritten
as[

â1,out

â†
2,out

]
=

[
A B

C D

][
â1,in

â†
2,in

]
+

∫ L

0

[
X11 X12

X21 X22

][
f̂1(z)

f̂2(z)

]
dz,

(87)
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where Xmn are combined coefficients. We further rewrite
Eq. (87) as

â1,out = Aâ1,in + Bâ†
2,in +

∫ L

0
[X11 f̂1(z) + X12 f̂2(z)],

â2,out = C∗â†
1,in + D∗â2,in +

∫ L

0
[X ∗

21 f̂ †
1 (z) + X ∗

22 f̂ †
2 (z)].

(88)

As shown in Eq. (84), there are two different orders [〈: â2â1 :〉
or 〈: â1â2 :〉] to compute the two-photon wave function and
Glauber correlation. Although these two orders are equivalent,
the numerical computation complexity may be significantly
different. Computing the biphoton wave function in Eq. (83)
in the order 〈: â1â2 :〉 involves nonzero noise field correlations
〈 f̂m f̂ †

m〉, while in the order 〈: â2â1 :〉 [Eq. (82)] these noise field
correlations disappear because of 〈 f̂ †

m f̂m〉 = 0. These field cor-
relations in the frequency domain can be expressed as

〈â2out (�
′)â1out (� )〉 = δ(� − � ′)[BD∗], (89)

〈â1out (� )â2out (�
′)〉

= δ(� − � ′)
[

AC∗ +
∫ L

0
dz(X11X ∗

21 + X12X ∗
22)

]
. (90)

Therefore, we obtain the biphoton wave function following
the order 〈: â2â1 :〉

ψ21(τ ) =
∫∫

d�d� ′〈â2,out (�
′)â1,out (� )〉e−i�τ

=
∫

d�BD∗e−i�τ , (91)

where τ = t1 − t2. If following the order 〈: â1â2 :〉, we have

ψ12(τ ) =
∫∫

d�d� ′〈â1,out (� )â2,out (�
′)〉e−i�τ

=
∫

d�

[
AC∗ +

∫ L

0
dz(X11X ∗

21 + X12X ∗
22)

]
e−i�τ .

(92)

One can show that the second term in Eqs. (78) and (79) is
zero in this loss-gain configuration. The single-channel pho-
ton rates can be obtained as

R1 = 1

2π

∫
|B|2d�,

R2 = 1

2π

∫ [
|C|2 +

∫ L

0
dz(|X21|2 + |X22|2)

]
d�.

(93)

It is interesting to remark that, in the loss-gain config-
uration, the biphoton field correlation following the order
〈: âgainâloss :〉 does not involve noise field correlations as
shown in Eqs. (89) and (91), which dramatically reduces the
computation complexity. On the other side, taking the order
〈: âlossâgain :〉 must include noise field correlations as shown
in Eqs. (90) and (92). This may be understood in the heralded
photon picture [32]: When a photon in a lossy channel is
detected (annihilated) by a detector, we can always ensure
there is its partner (or paired) photon in another channel; On
the other side, when a photon is detected in a gain channel
which produces multiple photons, we cannot always ensure

0
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FIG. 9. Two-photon Glauber correlation in time domain in the
group delay regime: (a) G(2)

s,as(τ ) and (b) G(2)
as,s(τ ). The simulation

conditions are the same as those in Figs. 3–5. NLN: no Langevin
noise included.

it has a partner photon in another channel. The exchange
symmetry can only be preserved by taking into account the
Langevin noises.

In the SFWM described in Sec. III, the anti-Stokes photons
experience finite EIT loss due to the ground state dephasing
(γ12 �= 0), and the Stokes photons propagate with negligi-
ble but small Raman gain. Figure 9 displays the two-photon
Glauber correlation in the group delay regime with the same
parameters as those in Figs. 3–5. As shown in Fig. 9(a)
and 9(b), both macroscopic and microscopic approaches with
Langevin noises give consistent results. As expected, the com-
putation of G(2)

s,as(τ ) (following the order 〈: âsâas :〉) without
Langevin noise operators (black dotted line: NLN) agrees
with the exact results obtained from both macroscopic (blue
solid line) and microscopic (red dashed line) approaches,
shown in Fig. 9(a). On the contrary, the computation of
G(2)

as,s(τ ) (following the order 〈: âasâs :〉) without Langevin
noise operators deviates significantly from the exact results,
as shown in Fig. 9(b).

B. Complex phase mismatching

Different from the Heisenberg picture where the evolution
of field operators is governed by their Langevin coupled equa-
tions, Ref. [10] provides a perturbation theory to describe the
biphoton state in the interaction picture. The solution from
the Heisenberg-Langevin theory may contain correlations of
more than two photons, while the perturbation theory focuses
only on the two-photon state by ignoring higher-order terms.
These two treatments are expected to give the same results in
the limit of small parameter gain. Although the perturbation
theory in the interaction picture provides a much clear physics
picture of the two-photon state, treating loss and gain requires
a proper justification. In the perturbation theory, linear loss
and gain are included in the complex phase mismatching
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k̃(� ) [10]. For the SFWM described in Sec. III, Ref. [10]
derives the biphoton relative wave function with perturbation
theory as

ψ (τ ) = iL

2π

∫
d�κ (� )�(� )e−i�τ , (94)

where the longitudinal detuning function is

�(� ) = sinc

(

k̃L

2

)
ei(kas+ks )L. (95)

There is a statement in Ref. [10]: “It is found that to be
consistent with the Heisenberg–Langevin theory in the low-
gain limit, the argument in � should be replaced by 
k̃ =
(kas + k∗

s − kc − kp) · ẑ, where k∗
s is the conjugate of ks.” For

the SFWM in the double-� four-level atomic system, there
is small Raman gain in the Stokes channel. What happens
if there is loss in the Stokes channel? Should we take k∗

s

or ks in the complex phase mismatching 
k̃(� )? Although
Ref. [10] takes k∗

s for Stokes photons with gain, it is not clear
whether it still holds for the case with loss. In this subsection,
we not only provide a justification for the above statement in
Ref. [10] from the quantum Langevin theory by taking small
parametric gain approximation, but also extend the complex
phase mismatching to the case with loss in the Stokes channel.

We take the same backward-wave configuration in
Ref. [10]. We assume anti-Stokes photons in mode 1 are
lossless with EIT and there is gain (or loss) in Stokes mode
2. The small parametric gain fulfills |κ| � {α, g}.

In the backward-wave configuration, using Eqs. (7), (34),
and (37), we obtain analytical expressions of A, B,C, and
D as

A =
√

q2 − 4κ2e−(α1−α∗
2 )L/2

qsinh
(

L
2

√
q2 − 4κ2

) +
√

q2 − 4κ2cosh
(

L
2

√
q2 − 4κ2

) ,

B = 2iκ

q +
√

q2 − 4κ2coth
(

L
2

√
q2 − 4κ2

) ,

C = −2iκ

q +
√

q2 − 4κ2coth
(

L
2

√
q2 − 4κ2

) ,

D =
√

q2 − 4κ2e(α1−α∗
2 )L/2

qsinh
(

L
2

√
q2 − 4κ2

) +
√

q2 − 4κ2cosh
(

L
2

√
q2 − 4κ2

) ,

(96)

where q ≡ α1 + α∗
2 − i
k. In the small parametric gain ap-

proximation, we have

√
q2 − 4κ2 ≈ q

= α1 + α∗
2 − i
k = −i(
k1 − 
k2

∗ + 
k)

(97)

and

α1 − α∗
2 = −i(
k1 + 
k2

∗), (98)

where 
km = ωm
2c χm is the wave-number difference from that

in vacuum. Hence, we simplify A, B,C, and D to

A = exp[i
k1L]exp

[
i
kL

2

]
,

B = iκLsinc

[
(
k1 − 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 + 
k)L

2

]
,

C = −iκLsinc

[
(
k1 − 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 + 
k)L

2

]
,

D = exp[−i
k∗
2 L]exp

[
i
kL

2

]
.

(99)

We first look at the case with gain in the Stokes (mode 2).
As discussed in Sec. IV A, we take the order 〈: â2â1 :〉

ψ21(τ ) =
∫∫

d�d� ′〈â2,out (�
′)â1,out (� )〉e−i�τ

=
∫

d�BD∗e−i�τ ,

(100)

where

BD∗ = iκLsinc

[
(
k1 − 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 + 2
k2)L

2

]
. (101)

Comparing Eqs. (100) and (101) with Eqs. (94) and
(95), particularly for the argument in the sinc func-
tion, we have 
k̃ = 
k1 − 
k∗

2 + 
k = k1 − k∗
2 − kc +

kp = kas − k∗
s − kc + kp, which is consistent with the state-

ment in Ref. [10].
We now look at the case with loss in the Stokes (mode 2).

We take the order 〈: â1â2 :〉 and have

ψ12(τ ) =
∫∫

d�d� ′〈â1,out (� )â2,out (�
′)〉e−i�τ

=
∫

d�AC∗e−i�τ , (102)

where

AC∗ = iκ∗Lsinc

[
(
k∗

1 − 
k2 + 
k)L

2

]

× exp

[
i(2
k1 − 
k∗

1 + 
k2)L

2

]
. (103)

Comparing Eqs. (102) and (103) with Eqs. (94) and
(95), we have 
k̃ = 
k∗

1 − 
k2 + 
k = k1 − k2 − kc +
kp = kas − ks − kc + kp, which is different from the case with
gain. Here we have taken k1 � k∗

1 for lossless mode 1.
Although our discussion is based on the backward-wave

configuration, the conclusion can be extended to the forward-
wave configuration, which is derived in detail in Appendix D.
Therefore, in the case with gain in the Stokes mode 2, the
complex phase mismatching is 
k̃ = (kas + k∗

s − kc − kp) · ẑ.
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In the case with loss in the Stokes mode 2, the complex phase
mismatching becomes 
k̃ = (kas + ks − kc − kp) · ẑ.

C. Complex nonlinear coupling coefficient and Rabi oscillation

As illustrated in Fig. 2, we can understand the SFWM
process in the following picture. After a Stokes and anti-
Stokes photon pair is born from a single atom following
the atomic transitions [Fig. 2(b)], the paired photons then
propagate through the medium [Fig. 2(a)]. As the photon
pair can be generated at any atom inside the medium, the
overall two-photon wave function (or probability amplitude)
is a superposition of all possible such generation-propagation
two-photon Feynman paths. Following this picture, when the
propagation effect can be ignored, the biphoton state reveals
the single-atom dynamics, which is connected to the nonlinear
coupling coefficient. In the following, we consider SFWM in
the limit of small optical depth (OD) where the linear prop-
agation effect is small and show how the complex spectrum
of nonlinear coupling coefficient reveals single-atom Rabi
oscillation.

We rewrite the nonlinear coupling coefficient in Eq. (71) as

κ (� ) = J

[
1

(� − �e/2 + iγe)
− 1

(� + �e/2 + iγe)

]
,

(104)

where

J = −
√

ωasωsnμ13μ24

8cε0 h̄�e

∣∣∣∣ �p�c


p + iγ14

∣∣∣∣. (105)

Here �e =
√

|�c|2 − (γ13 − γ12)2 is the effective coupling
Rabi frequency, and γe = (γ12 + γ13)/2 is the effective de-
phasing rate. Obviously, the nonlinear coupling coefficient
κ (� ) has a complex spectrum, with two resonances sepa-
rated by the effective coupling Rabi frequency �e. In the
ground-state approximation with major atomic population in
state |1〉, the undepleted pump laser beam is far detuned from
the transition |1〉 → |4〉 and its excitation is weak such that
we can take χs � 0. On the other side, from Eq. (70) we have
the complex linear susceptibility for anti-Stokes photons

χas(� ) = −n|μ13|2
ε0 h̄

(� + iγ12)

(� − �e/2 + iγe)(� + �e/2 + iγe)
.

(106)

Although the anti-Stokes photon absorption at � = 0 is sup-
pressed by the EIT effect, there are two absorption resonances
appearing at � = ±�e/2 which coincide with the two res-
onances of nonlinear coupling coefficient in Eq. (104). We
take the pump laser with weak intensity (∝ |�p|2) and large
detuning (
p) such that Re{αas(� = ±�e/2)}> Im{κ (� =
±�e/2)}, which are usually satisfied in the ground state
condition. As the propagation effect is small and the phase
matching is not important, the paired photons are mostly
generated from the two resonances (� = ±�e/2) of the non-
linear coupling coefficient.

In the forward-wave configuration, with the coupling
matrix

MF =
[−αas + i 
k

2 iκ
−iκ −i 
k

2

]
, (107)

and short medium length L satisfying |MFL| � 1, we have
approximately[

A B
C D

]
= eMFL ∼= 1 + MFL

=
[

1 − αasL + i 
k
2 L iκL

−iκL 1 − i 
k
2 L

]
. (108)

As discussed in Sec. IV A, the biphoton field correlation
following the order 〈: âsâas :〉 does not need to count the
Langevin noise operators:

〈âs(�
′, L)âas(�, L)〉 = BD∗δ(� − � ′)

= iκL

(
1 + i


k

2
L

)
δ(� − � ′)

∼= iκ (� )Lδ(� − � ′), (109)

where we have neglected higher-order terms O(L2). From
Eq. (82), we have the relative biphoton wave function

ψs−as(τ ) = iL

2π

∫
d�κ (� )e−i�τ , (110)

which is the Fourier transform of the nonlinear coupling coef-
ficient with τ = tas − ts. Substituting Eq. (104) into Eq. (110),
we obtain

ψs−as(τ ) = LJe−γeτ [e−i�eτ/2 − ei�eτ/2]�(τ )

= −2iLJe−γeτ sin

(
�eτ

2

)
�(τ ), (111)

where �(τ ) is the Heaviside function. Equation (111) shows
a damped Rabi oscillation, resulting from the beating between
biphotons generated from the two resonances at � = ±�e/2.
The Heaviside function shows that the anti-Stokes photon is
always generated after its paired Stokes photon following the
time order of atomic transitions |1〉 → |4〉 → |2〉 → |3〉 →
|1〉 in an SFWM cycle, shown in Fig. 2(b).

In the backward-wave configuration, the coupling matrix
becomes

MB =
[−αas + i 
k

2 iκ
iκ −i 
k

2

]
. (112)

With |MBL| � 1 we have[
Ā B̄
C̄ D̄

]
= eMBL ∼= 1 + MBL

=
[

1 − αasL + i 
k
2 L iκL

iκL 1 − i 
k
2 L

]
(113)

and [
A B
C D

]
=

[
1 − αasL + i 
k

2 L iκL
−iκL 1 + i 
k

2 L

]
, (114)
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FIG. 10. Two-photon Glauber correlation in time domain
in the damped Rabi oscillation regime: (a) G(2)

s,as(τ ) and (b) G(2)
as,s(τ ).

The simulation conditions are the same as those in Figs. 6–8. (c) The
analytic solution for the biphoton waveform |ψs−as(τ )|2. NLN: no
Langevin noise included.

where we have neglect higher-order terms O(L2). Similarly,
we have

〈âs(�
′, 0)âas(�, L)〉 ∼= iκ (� )Lδ(� − � ′), (115)

which is the same as Eq. (109) of the forward-wave configura-
tion. Therefore, we obtain Rabi oscillations in both forward-
and backward-wave configurations. Equation (111) is identi-
cal to the result derived from the perturbation theory in the
interaction picture [10].

Figure 10 displays the two-photon Glauber correlation in
the damped Rabi oscillation regime with the same parame-
ters as those in Figs. 6–8. As illustrated in Figs. 10(a) and
10(b), both macroscopic and microscopic approaches with
Langevin noises give consistent results. As expected, the com-
putation of G(2)

s,as(τ ) (following the order 〈: âsâas :〉) without
Langevin noise operators (dot points) agrees with the exact
results obtained from both microscopic (red dashed line) and
macroscopic (blue solid line) approaches, shown in Fig. 10(a).
On the contrary, the computation of G(2)

as,s(τ ) (following the or-
der 〈: âasâs :〉) without Langevin noise operators (dot points:
NLN) deviates significantly from the exact results and violates
the causality, as shown in Fig. 10(b). Figure 10(c) shows the
results from the analytic solution in Eq. (111), which agree
well with the exact results in Figs. 10(a) and 10(b).

It is interesting to examine a system without gain and loss
whose Langevin noises are purely contributed by the complex

nonlinear coupling coefficient. In this case, the above approxi-
mation and conclusion do not hold. Let us now consider case 3
with the forward-wave configuration in Sec. II A, where α1 =
α2 = 
k = 0 and κ = η + iζ . As shown in Sec. II A, the
noise matrix is different as ζ is positive or negative. We first
consider ζ > 0, where the Langevin coupled equations (27)
become

∂

∂z

[
â1

â†
2

]
=

[
0 iκ

−iκ 0

][
â1

â†
2

]
+

√
ζ

[
1 1

−1 1

][
f̂1

f̂ †
2

]
. (116)

Under the condition |MFL| � 1, we solve Eq. (116) to the first
order of L and have

â1(L) ∼= â1(0) + iκLâ†
2(0) +

√
ζ

∫ L

0
dz( f̂1 + f̂ †

2 ),

â2(L) ∼= â2(0) + iκ∗Lâ†
1(0) +

√
ζ

∫ L

0
dz(− f̂ †

1 + f̂2).

(117)

The two-photon field correlations are

〈â1(L)â2(L)〉 = 〈â2(L)â1(L)〉 ∼= i

2
(κ + κ∗)Lδ(� − � ′).

(118)
As ζ < 0, the Langevin coupled equations (27) become

∂

∂z

[
â1

â†
2

]
=

[
0 iκ

−iκ 0

][
â1

â†
2

]
+

√
−ζ

[
1 1

−1 1

][
f̂ †
1

f̂2

]
. (119)

Under the condition |MFL| � 1, we solve Eq. (119) to the first
order of L and have

â1(L) ∼= â1(0) + iκLâ†
2(0) +

√
−ζ

∫ L

0
dz( f̂ †

1 + f̂2),

â2(L) ∼= â2(0) + iκ∗Lâ†
1(0) +

√
−ζ

∫ L

0
dz(− f̂1 + f̂ †

2 ).

(120)
The two-photon field correlations are

〈â1(L)â2(L)〉 = 〈â2(L)â1(L)〉 ∼= i

2
(k + k∗)Lδ(� − � ′),

(121)

which is the same as Eq. (118). The biphoton relative wave
function is

ψ21(τ ) = ψ∗
21(−τ ) = iL

2π

∫
d�

1

2
(k + k∗)e−i�τ . (122)

One can prove that under the same limit |MBL| � 1, the
backward-wave configuration gives the same two-photon field
correlation [Eqs. (118) and (121)] and temporal wave function
[Eq. (122)]. Equation (122) suggests the biphoton temporal
wave function has time reversal symmetry when there is no
linear gain and loss.

V. CONCLUSION

In summary, we provide a macroscopic phenomeno-
logical formula of quantum Langevin equations for two
coupled phase-conjugated fields with linear loss (gain) and
complex nonlinear coupling coefficient, in both forward-
and backward-wave configurations. The macroscopic phe-
nomenological formula, obtained from the coupling matrix
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and the requirement of preserving commutation relations of
field operators during propagation, does not require knowing
microscopic details of light-matter interaction and internal
atomic structures. To validate this phenomenological formula,
we take SFWM in a double-� four-level atomic system as
an example to numerically confirm that our macroscopic phe-
nomenological result is consistent with that obtained from
microscopic Heisenberg-Langevin theory. As compared to the
complicated microscopic theory which varies from system to
system, the macroscopic coupled equations are much more
friendly to experimentalists. We apply the quantum Langevin
equations to study the effects of gain and/or loss as well as
complex nonlinear coupling coefficient in biphoton genera-
tion, particularly to the temporal quantum correlations. We
show that the computation complexity can be dramatically
reduced by taking a proper order of field operators based on
loss and gain. Making a comparison between the quantum

Langevin theory (in the Heisenberg picture) and the per-
turbation theory (in the interaction picture [10]), we extend
the expression of complex phase mismatching to account for
loss and gain. At last, we reveal Rabi oscillation in SFWM
biphoton temporal correlation when the propagation effect is
small. Although in this article we focus on biphoton gener-
ation from the spontaneous parametric process, the quantum
Langevin coupled equations can also be used to study two-
mode squeezing, parametric oscillation, and other quantum
light state generation.
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APPENDIX A: NOISE MATRIX IN BACKWARD-WAVE CONFIGURATION

In the macroscopic quantum Langevin equations, the requirement of preserving commutation relations allows multiple
choices of the noise matrix. For example, f̂1 → − f̂1 or/and f̂2 → − f̂2 do not affect any computation results of physical
observables involving pairs of Langevin noise operators. As an example, here we provide several equivalent noise matrices
for backward-wave configuration:

NB1 ≡
[

1 0
0 −1

]√[−MB11 −MB12

MB21 MB22

]
+

[−MB11 −MB12

MB21 MB22

]∗

=
[

1 0
0 −1

]
NF,

NB2 ≡ NB1

[
1 0
0 −1

]

=
√[−MB11 MB12

−MB21 MB22

]
+

[−MB11 MB12

−MB21 MB22

]∗
,

NB3 ≡ NB1

[−1 0
0 1

]
,

NB4 ≡ NB1

[−1 0
0 −1

]
= −NB1. (A1)

We take the first choice NB1 in the main text [see Eq. (31) in Sec. II B] so that it is consistent with the microscopic treatment in
Sec. III.

APPENDIX B: HEISENBERG-LANGEVIN EQUATIONS OF SFWM

The full Heisenberg equation of motion can be written as

˙̂S = i(ÔŜ − ŜÔ) + Ĝ + F̂, (B1)

where

Ŝ =

⎡
⎢⎢⎣

σ̂11 σ̂12 σ̂13 σ̂14

σ̂21 σ̂22 σ̂23 σ̂24

σ̂31 σ̂32 σ̂33 σ̂34

σ̂41 σ̂42 σ̂43 σ̂44

⎤
⎥⎥⎦, (B2)

Ô = −

⎡
⎢⎢⎣

0 0 g31âas �p/2
0 � �c/2 g42âs

g13â∗
as �∗

c/2 � 0
�∗

p/2 g24â∗
s 0 
p

⎤
⎥⎥⎦, (B3)
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Ĝ =

⎡
⎢⎢⎣

�31σ̂33 + �41σ̂44 −γ12σ̂12 −γ13σ̂13 −γ14σ̂14

−γ12σ̂21 �32σ̂33 + �42σ̂44 −γ23σ̂23 −γ24σ̂24

−γ13σ̂31 −γ23σ̂32 −�3σ̂33 −γ34σ̂34

−γ14σ̂41 −γ24σ̂42 −γ34σ̂43 −�4σ̂44

⎤
⎥⎥⎦, (B4)

F̂ =

⎡
⎢⎢⎢⎢⎣

f̂ (σ )
11 f̂ (σ )

12 f̂ (σ )
13 f̂ (σ )

14

f̂ (σ )
21 f̂ (σ )

22 f̂ (σ )
23 f̂ (σ )

24

f̂ (σ )
31 f̂ (σ )

32 f̂ (σ )
33 f̂ (σ )

34

f̂ (σ )
41 f̂ (σ )

42 f̂ (σ )
43 f̂ (σ )

44

⎤
⎥⎥⎥⎥⎦. (B5)

�m = �m1 + �m2 is the total spontaneous decay rate of excited state |m〉, where m = 3 or 4, and �m j is the decay rate from state
|m〉 to | j〉. For the two hyperfine ground states, there are �1 = �2 = 0. For cold atoms with only spontaneous emission decay,
the dephasing rates γ jk ( j �= k) between states |k〉 and | j〉 are γ13 = γ23 = �3/2, γ14 = γ24 = �4/2, γ34 = (�3 + �4)/2. γ12 is
the dephasing rate between two hyperfine ground states |1〉 and |2〉.

APPENDIX C: MICROSCOPIC SFWM QUANTUM
LANGEVIN EQUATIONS IN FORWARD-WAVE

CONFIGURATION

Although Sec. III focuses on numerical confirmation of
backward-wave SFWM, we remark that it may be helpful
for general readers to write the SFWM quantum Langevin
equations in the forward-wave configuration as well.

In the forward-wave configuration with both Stokes and
anti-Stokes fields propagating along the +z direction, the cou-
pled Langevin equations become

∂

∂z

[
âas

â†
s

]
= MF

[
âas

â†
s

]
+

[
F̂as

F̂ †
s

]
, (C1)

where

MF =
[−αas + i 
k

2 iκ
−iκ −α∗

s − i 
k
2

]
, (C2)

with 
k = (ωas + ωs)/c − (kc + kp) · ẑ. The noise operators
F̂as and F̂ †

s , defined in Eq. (69), originate from microscopic
atom-light interaction. To compare Eq. (C1) with Eq. (11)
from the phenomenological approach in Sec. II, we take mode
1 as anti-Stokes and mode 2 as Stokes in the forward-wave
configuration. From Eq. (11), we can also obtain F̂as and F̂ †

s
from the noise matrix:

F̂as = NFR11 f̂1 + NFI11 f̂ †
1 + NFI12 f̂2 + NFR12 f̂ †

2 ,

F̂ †
s = NFR21 f̂1 + NFI21 f̂ †

1 + NFI22 f̂2 + NFR22 f̂ †
2 .

(C3)

APPENDIX D: COMPLEX PHASE MISMATCHING
IN FORWARD-WAVE CONFIGURATION

In the forward-wave configuration, similar to the
backward-wave configuration in Sec. IV B, we assume
anti-Stokes photons in mode 1 are lossless with EIT and
there is gain (or loss) in Stokes mode 2. The small parametric
gain fulfills |κ| � {α, g}. Using Eqs. (6) and (17), we obtain
analytical expressions of A, B,C, and D as

A =
√

q2 + 4κ2cosh
(

L
2

√
q2 + 4κ2

) − qsinh
(

L
2

√
q2 + 4κ2

)
√

q2 + 4κ2e(α1+α∗
2 )L/2

,

B = 2iκsinh
(

L
2

√
q2 + 4κ2

)
√

q2 + 4κ2e(α1+α∗
2 )L/2

,

C = −2iκsinh
(

L
2

√
q2 + 4κ2

)
√

q2 + 4κ2e(α1+α∗
2 )L/2

,

D =
√

q2 + 4κ2cosh
(

L
2

√
q2 + 4κ2

) + qsinh
(

L
2

√
q2 + 4κ2

)
√

q2 + 4κ2e(α1+α∗
2 )L/2

,

(D1)

where q ≡ α1 − α∗
2 − i
k. In the small parametric gain ap-

proximation, we have

√
q2 − 4κ2 ≈ q

= α1 − α∗
2 − i
k = −i(
k1 + 
k∗

2 + 
k)
(D2)

and

α1 + α∗
2 = −i(
k1 − 
k∗

2 ), (D3)

where 
km = ωm
2c χm is the wave-number difference from that

in vacuum. Hence, we simplify A, B,C, and D to

A = exp[i
k1L]exp

[
i
kL

2

]
,

B = iκLsinc

[
(
k1 + 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 )L

2

]
,

C = −iκLsinc

[
(
k1 + 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 )L

2

]
,

D = exp[−i
k∗
2 L]exp

[−i
kL

2

]
. (D4)
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We first look at the case with gain in the Stokes (mode 2).
As discussed in Sec. IV A, we take the order 〈: â2â1 :〉

ψ21(τ ) =
∫∫

d�d� ′〈â2,out (�
′)â1,out (� )〉e−i�τ

=
∫

d�BD∗e−i�τ ,

(D5)

where

BD∗ = iκLsinc

[
(
k1 + 
k∗

2 + 
k)L

2

]

× exp

[
i(
k1 − 
k∗

2 + 2
k2 + 
k)L

2

]
. (D6)

Comparing Eqs. (D5) and (D6) with Eqs. (94) and
(95), particularly for the argument in the sinc func-
tion, we have 
k̃ = 
k1 + 
k∗

2 + 
k = k1 + k∗
2 − kc −

kp = kas + k∗
s − kc − kp, which is consistent with the state-

ment in Ref. [10].

We now look at the case with loss in the Stokes (mode 2).
We take the order 〈: â1â2 :〉 and have

ψ12(τ ) =
∫∫

d�d� ′〈â1,out (� )â2,out (�
′)〉e−i�τ

=
∫

d�AC∗e−i�τ ,

(D7)

where

AC∗ = iκ∗Lsinc

[
(
k∗

1 + 
k2 + 
k)L

2

]

× exp

[
i(2
k1 − 
k∗

1 + 
k2 + 
k)L

2

]
. (D8)

Comparing Eqs. (D7) and (D8) with Eqs. (94) and
(95), we have 
k̃ = 
k∗

1 + 
k2 + 
k = k1 + k2 − kc +
kp = kas + ks − kc − kp, which is different from the case with
gain. Here we have taken k1 � k∗

1 for lossless mode 1. There-
fore, in the case with loss in the Stokes mode 2, the complex
phase mismatching becomes 
k̃ = (kas + ks − kc − kp) · ẑ.

[1] C. W. Gardiner and M. J. Collett, Input and output in damped
quantum systems: Quantum stochastic differential equations
and the master equation, Phys. Rev. A 31, 3761 (1985).

[2] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[3] Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics
(Wiley, New York, 1999).

[4] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics (Springer Science & Busi-
ness Media, Berlin, 2004).

[5] R. Benguria and M. Kac, Quantum Langevin Equation, Phys.
Rev. Lett. 46, 1 (1981).

[6] R. W. Boyd, Nonlinear Optics (Academic, New York, 2020).
[7] S. Shwartz, R. N. Coffee, J. M. Feldkamp, Y. Feng, J. B.

Hastings, G. Y. Yin, and S. E. Harris, X-Ray Parametric Down-
Conversion in the Langevin Regime, Phys. Rev. Lett. 109,
013602 (2012).

[8] U. A. Javid and Q. Lin, Quantum correlations from dynamically
modulated optical nonlinear interactions, Phys. Rev. A 100,
043811 (2019).

[9] G. Shafiee, D. V. Strekalov, A. Otterpohl, F. Sedlmeir, G.
Schunk, U. Vogl, H. G. L. Schwefel, G. Leuchs, and C.
Marquardt, Nonlinear power dependence of the spectral prop-
erties of an optical parametric oscillator below threshold in the
quantum regime, New J. Phys. 22, 073045 (2020).

[10] S. Du, J. Wen, and M. H. Rubin, Narrowband biphoton genera-
tion near atomic resonance, J. Opt. Soc. Am. B 25, C98 (2008).

[11] P. Kolchin, Electromagnetically-induced-transparency-based
paired photon generation, Phys. Rev. A 75, 033814 (2007).

[12] L. Zhao, Y. Su, and S. Du, Narrowband biphoton generation in
the group delay regime, Phys. Rev. A 93, 033815 (2016).

[13] C. H. Raymond Ooi, Q. Sun, M. S. Zubairy, and M. O. Scully,
Correlation of photon pairs from the double Raman amplifier:
Generalized analytical quantum Langevin theory, Phys. Rev. A
75, 013820 (2007).

[14] Y. Jiang, Y. Mei, Y. Zuo, Y. Zhai, J. Li, J. Wen, and S. Du, Anti-
Parity-Time Symmetric Optical Four-Wave Mixing in Cold
Atoms, Phys. Rev. Lett. 123, 193604 (2019).

[15] Y. Mei, X. Guo, L. Zhao, and S. Du, Mirrorless Optical Para-
metric Oscillation with Tunable Threshold in Cold Atoms,
Phys. Rev. Lett. 119, 150406 (2017).

[16] X.-W. Luo, C. Zhang, and S. Du, Quantum Squeezing and
Sensing with Pseudo-Anti-Parity-Time Symmetry, Phys. Rev.
Lett. 128, 173602 (2022).

[17] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998).

[18] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).
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[20] V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris,
Generation of Paired Photons with Controllable Waveforms,
Phys. Rev. Lett. 94, 183601 (2005).

[21] S. E. Harris, Electromagnetically induced transparency, Phys.
Today 50, 36 (1997).

[22] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[23] S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, Four-Wave Mixing
and Biphoton Generation in a Two-Level System, Phys. Rev.
Lett. 98, 053601 (2007).

[24] P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris,
Generation of Narrow-Bandwidth Paired Photons: Use of a
Single Driving Laser, Phys. Rev. Lett. 97, 113602 (2006).

[25] S. Du, E. Oh, J. Wen, and M. H. Rubin, Four-wave mixing in
three-level systems: Interference and entanglement, Phys. Rev.
A 76, 013803 (2007).

[26] H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L.
Wong, and S. Du, Generation of Narrow-Band Hyperentangled

053703-20

https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevLett.46.1
https://doi.org/10.1103/PhysRevLett.109.013602
https://doi.org/10.1103/PhysRevA.100.043811
https://doi.org/10.1088/1367-2630/ab9a87
https://doi.org/10.1364/JOSAB.25.000C98
https://doi.org/10.1103/PhysRevA.75.033814
https://doi.org/10.1103/PhysRevA.93.033815
https://doi.org/10.1103/PhysRevA.75.013820
https://doi.org/10.1103/PhysRevLett.123.193604
https://doi.org/10.1103/PhysRevLett.119.150406
https://doi.org/10.1103/PhysRevLett.128.173602
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevLett.93.183601
https://doi.org/10.1103/PhysRevLett.94.183601
https://doi.org/10.1063/1.881806
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/PhysRevLett.98.053601
https://doi.org/10.1103/PhysRevLett.97.113602
https://doi.org/10.1103/PhysRevA.76.013803


QUANTUM LANGEVIN THEORY FOR TWO COUPLED … PHYSICAL REVIEW A 107, 053703 (2023)

Nondegenerate Paired Photons, Phys. Rev. Lett. 106, 033601
(2011).

[27] R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L.
Rolston, Four-wave mixing in the diamond configura-
tion in an atomic vapor, Phys. Rev. A 79, 033814
(2009).

[28] D. J. Whiting, R. S. Mathew, J. Keaveney, C. S. Adams, and
I. G. Hughes, Four-wave mixing in a non-degenerate four-level
diamond configuration in the hyperfine Paschen-Back regime,
J. Mod. Opt. 65, 713 (2018).

[29] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[30] W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.107.053703 for the detailed verification of
Eqs. (78) and (79).

[32] S. Du, Quantum-state purity of heralded single photons pro-
duced from frequency-anticorrelated biphotons, Phys. Rev. A
92, 043836 (2015).

053703-21

https://doi.org/10.1103/PhysRevLett.106.033601
https://doi.org/10.1103/PhysRevA.79.033814
https://doi.org/10.1080/09500340.2017.1377308
http://link.aps.org/supplemental/10.1103/PhysRevA.107.053703
https://doi.org/10.1103/PhysRevA.92.043836

