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t. Consider the problem minx2X maxi2I fi(x) where X is a 
onvex set, I is a �nite setof indi
es and fi(x)'s are 
ontinuous 
on
ave fun
tions of x. In this arti
le, we study a 
hara
ter-ization of x 2 X at whi
h the minimax value is a
hieved. We also study some appli
ations of the
hara
terization.Key words: Minimax, Steiner trees.1. Introdu
tionMinimax is an important topi
 in optimization. There are two fundamental ideas tosolve minimax problems.The �rst is the sear
h for a basis, tha is, for the problemminx2Xmaxy2Y f(x; y)determine �rst a �nite subset B of X su
h thatminx2Xmaxy2Y f(x; y) = minx2Bmaxy2Y f(x; y)and then sear
h an optimal x� from B in �nitely many steps.The se
ond is the determination of saddle point. A point (x�; y�) is 
alled asaddle point of f(x; y) on the set X � Y if for any x 2 X and y 2 Y ,f(x�; y) � f(x�; y�) � f(x; y�):It follows that for a saddle point (x�; y�),minx2Xmaxy2Y f(x; y) = f(x�; y�) = maxy2Y minx2X f(x; y):These two ideas have resulted two important mathemati
al bran
hes. P. L.Chebyshev is probably the �rst person who made an important 
ontribution to� Support in part by the National S
ien
e Foundation under grant CCR-9208913.



2 DING-ZHU DUthe �rst idea. He dis
overed theory of best approximation. The se
ond idea was ex-tensively studied by Von Neumann. He initiated game theory. Sin
e Von Neumann,many e�orts have been made to �nd various suÆ
ient 
onditions for a point beinga saddle points. This involves a great deal of mathemati
s in
luding �xed pointtheory.While a hudge amount of materials about minimax in the literature exist, wesele
t only a small part in this arti
le. In fa
t, in
luding all subje
ts about minimaxshould be the duty of a book instead of an arti
le. In this arti
le, we will 
ommitourselves only to re
ent developments on the �rst idea.2. Chebyshev TheoremThe original problem 
onsidered by Chebyshev is as follows: Given a list of valuesof some real fun
tion: yk = f(xk); k = 0; : : : ;m;�nd a polynomial p of degree at most n (n < m) whi
h provides the best approxi-mation at these m points, that is, p minimizesmaxk=0;:::;m jyk � p(xk)j:Chebyshev gave a beautiful result about the solution of this problem.First, 
onsider m = n + 1. In this 
ase, the polynomial of the best approx-imation exists and is unique. Chebyshev proved that a polynomial p is the bestapproximation if and only if for some h,(�1)kh + p(xk) = yk; for k = 0; : : : ; n+ 1:Furthermore, h and p 
an be 
onstru
ted expli
itly. This p is 
alled a Chebyshevinterpolating polynomial.For general m, a subset of n+ 2 xk's is 
alled a basis. Ea
h basis � determines aChebyshev interpolating polynomial p� and a valueh(�) = maxxk2� jyk � p�� (xk)j:A basis �� is 
alled an extremal basis ifh(��) = max� h(�)where � is over all bases. Chebyshev showed the following.Theorem 2.1 There exists a unique polynomial of best approximation. A poly-nomial p is the polynomial of best approximation if and only if p is a Chebyshevinterpolating polynomial for some extremal basis.There are other ways to 
hara
terize the extremal basis. In fa
t, Chebyshev alsoproved that �� is an extremal basis if and only ifh(��) = maxk=0;:::;m jyk � p�� (xk)j:



MINIMAX AND ITS APPLICATIONS 3(See [5℄.) For ea
h polynomial p, de�neI(p) = fi j jyi � p(xi)j = maxk=0;:::;m jyk � p(xk)jg:I(p) is maximal if no polynomial q exists su
h that I(p) 6= I(q) and I(p) � I(q).From the se
ond 
hara
terization of the extremal basis, it is not hard to prove thefollowing.Proposition 2.2 �� is an extremal basis if and only if I(p�� ) is maximal.3. Linear ProgrammingChebyshev problem 
an be transformed to a linear programming as follows:min zsubje
t to �z � a0 + a1xk + � � �+ anxnk � yk � zk = 0; : : : ;m:Note that this linear programming has n+2 variables and 2(m+1) 
onstraints. Foran extremal basis ��, p�� would make n+2 
onstraints a
tive (i.e., the equality signholds for those 
onstraints). This means that ea
h extremal basis 
orresponds to afeasible basis of the above linear programming in the following standard form.min zsubje
t to uk � z = a0 + a1xk + � � �+ anxnk � yk = z � vkuk � 0; vk � 0k = 0; : : : ;m:Linear programming are 
losely related to minimax problems. In fa
t, there areseveral ways to transform linear programming to a minimax problem. For example,
onsider a linear programming min 
xsubje
t to Ax = bx � 0and its dual max bTysubje
t to AT y � 
:For any feasible solution x of the original linear programming and any feasible so-lution y of the dual linear programming, 
x � bTy. The equality sign holds only ifthe two feasible solutions are a
tually optimal solutions for the two linear program-ming, respe
tively. This is equivalent to the following minimax problem a
hieves theminimax value 0.min(x;y)max(
x � bT y;�x;Ax� b:b�Ax;ATy � 
):



4 DING-ZHU DU4. Du-Hwang TheoremIn the previous two se
tions, we see already two problem in the following form:minx2X maxi=1;���;m fi(x):Now, we 
onsider it with a little general 
onditions. We assume that X is a polytopeinRn and fi(x)'s are 
ontinuous 
on
ave fun
tions of x. We will extend Chebyshev'sidea to this problem.The simplest 
ase is m = n = 1. As shown in Figure 1, the minimum value of a
on
ave fun
tion f1(x) on the interval [a; b℄ is a
hieved at a or b. For m = 1 and
a bFig. 1. The minimum point of a 
on
ave fun
tion.general n, it is well-known that the minimum value of f1(x) is a
hieved at a vertexof the polytope X. What we are interested in this arti
le is the 
ase m > 1. Ifm > 1 and n = 1, then as shown in Figure 2, g(x) = maxi=1;���;m fi(x) is a pie
ewise
on
ave fun
tion. Thus, the minimum value of g(x) on the interval [a; b℄ is a
hievedat an endpoint of a 
on
ave pie
e.

f1

f2

f3

g(x)Fig. 2. A pie
ewise 
on
ave fun
tion g(x).Similarly, for m > 1, the polytope P 
an be divided into small regions in ea
h ofwhi
h g(x) is 
on
ave. These small regions 
an be de�ned byXi = fx 2 X j fi(x) = g(x)g:
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P 1

P 2

P 3

P 4
P 5Fig. 3. g-verti
es.However, they may not be 
onvex. Thus, where the minimum value of g(x) 
an bea
hieved is not so easy to see. Du and Hwang [10℄ found that the minimum value ofg(x) 
an still be a
hieved at a vertex of small regions where the vertex is de�ned inthe following way.Let us �rst give a new de�nition for the vertex of a polytope. Consider thepolytope X = fx j aTj x � bj; j = 1; � � � ; kg. Denote J(x) = fj j aTj x = bjg. A pointx in X is a vertex if J(x) is maximal, i.e., there does not exist y 2 X su
h that J(x)is a proper subset of J(y). This de�nition is di�erent from the traditional one: x isa vertex if x = 12y+ 12z for y, z 2 X implies x = y = z. However, they are equivalentfor polytopes.Now, a point x in X is 
alled a g-vertex if J(x) [M (x) is maximal whereM (x) = fi0 j fi(x) = g(x)g:Theorem 4.1 (Du and Hwang [11℄) The minimum value of g(x) is a
hieved ata g-vertex.Proof. Let x� be a minimum point for g(x). Sin
e all fi(x) are 
ontinuous, there isa neighborhood V of x� su
h that for any x 2 V , M (x) � M (x�). Let Y = fx 2 X jaTj x = bj for j 2 J(x�)g. Then x� is a relative interior point of Y , that is, for anyx 2 Y and for suÆ
iently small number �, x� + �(x� � x) 2 Y . Consider a g-vertexx̂ su
h that M (x�) [ J(x�) � M (x̂) [ J(x̂), i.e., M (x�) � M (x̂) and J(x�) � J(x̂).The latter in
lusion implies that x̂ 2 Y . We will show that x̂ is also a minimumpoint. Therefore, the theorem is proved.For 
ontradi
tion, suppose that x̂ is not a minimum point. Choose a positive �suÆ
iently small su
h thatx(�) = x� + �(x� � x̂) 2 V \ Y:Thus, M (x(�)) � M (x�) � M (x̂). Consider an index i 2 M (x(�)). Sin
e x� is aminimum point of g(x), we havefi(x�) < fi(x̂); and fi(x�) � fi(x(�)):



6 DING-ZHU DUNote that x� = �1 + �x̂+ 11 + �x(�):By the 
on
avity of fi(x),fi(x�) � �1 + �fi(x̂) + 11 + �fi(x(�)) > fi(x�);a 
ontradi
tion. 2Let us make some remarks on this minimax theorem.Remark 1. A fun
tion f is pseudo-
on
ave in a region if for any x and y in theregion and for any � 2 [0; 1℄,f(�x + (1 � �)y) � min(f(x); f(y)):The pseudo-
on
avity is 
learly weaker than the 
on
avity. In the theorem, the
on
avity of fi 
an be repla
ed by the pseudo-
on
avity. For this repla
ement, theproof needs to be modi�ed as follows: Choose a minimum point x� with maximalJ(x) and a point x̂ in Y with M (x�) � M (x̂). Find the existen
e of V as above. Bythe pseudo-
on
avity of fi(x),fi(x�) � min(fi(x̂); fi(x(�)) � fi(x�);for i 2 M (x(�)), x(�) = x� + �(x̂ � x�) 2 Y \ V and � > 0. It follows that forx(�) 2 Y \ V , x(�) is a minimum point. Note that all minimum points form a
losed set. There exists the maximum value �� su
h that x(��) is a minimum point.Clearly, x(��) 
annot be a relative interior point of Y . (Otherwise, by the aboveargument, we 
an obtain a larger � su
h that x(�) is a minimumpoint.) Thus, J(x�)is a proper subset of J(x(��)), 
ontradi
ting the 
hoi
e of x�. We state the result ofthis remark in the following.Theorem 4.2 Let g(x) = maxi2I fi(x) where fi's are 
ontinuous pseudo-
on
avefun
tions and I is a �nite set of indi
es. Then the minimum value of g(x) over apolytope is a
hieved at a g-vertex.Remark 2. An interior point x of X is a g-vertex i�M (x) is maximal. In general,for any g-vertex, there exists an extreme subset Y of X su
h that M (x) is maximalover Y . A point x in X is 
alled a 
riti
al point if there exists an extreme set Y su
hthat M (x) is maximal over Y . Thus, every g-vertex is a 
riti
al point. However, theinverse is false. For example, in Figure 3, the interior boundary of X2 
onsists of
riti
al points whi
h are not g-verti
es.Remark 3. A similar result holds for the following minimax problem:minx maxx2I(x) fi(x)where I(x) is a �nite index set varying as x varies. The following is a useful form.The proof is similar to the proof of Theorem 4.1 (Figure 4).



MINIMAX AND ITS APPLICATIONS 7
x*

x( λ)
V

^̂xFig. 4. I(x) is de�ned on a subset of XTheorem 4.3 Let g(x) = maxi2I fi(x) where fi's are 
ontinuous and pseudo-
on
avefun
tions in the interior of a 
onvex region X and I(x) is a �nite index set de�nedon a 
ompa
t subset X0 of X. Denote M (x) = fi 2 I(x) j fi(x) = g(x)g. Supposethat for any x 2 X, there exists a neighborhood of x su
h that for any point y in theneighborhood, M (y) � M (x). If the minimum value of g(x) over X is a
hieved atan interior point of X 0, then this minimum value is a
hieved at a 
riti
al point, i.e.,a point with maximal M (x) over X 0. Moreover, if x is an interior minimum pointin X 0 and M (x) � M (y) for some y 2 X 0, then y is a minimum point.Remark 4. Du and Pardalos [13℄ proved that the �nite index set I in Theorem 1
an be repla
ed by a 
ompa
t set. Their theorem 
an be stated as follows.Theorem 4.4 Let f(x; y) be a 
ontinuous fun
tion on X � I where X is a polytopein Rm and I is a 
ompa
t set in Rn. Let g(x) = maxy2Y f(x; y). If f(x; y) is
on
ave with respe
t to x, then the minimum value of g(x) over X is a
hieved atsome 
riti
al point.The proof of this theorem is also the same as the proof of Theorem 4.1 ex
eptthat the existen
e of the neighborhood V needs to be derived from the 
ompa
tnessof I and the existen
e of x̂ needs to be derived by Zorn's lemma.5. Geometri
 InequalitiesTheorem 4.1 was �rst used in a proof of the following geometri
 inequality.Theorem 5.1 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respe
tively. Let per(4ABC) denote the perimeter of the triangleABC. Thenper(4DEF ) � min(per(4AEF ); per(4BFD); per(4CDE)):



8 DING-ZHU DUThis inequality was proposed by Debrummer in 1956 and by Oppenhein in 1960.It was appeared in Ameri
an Mathemati
s Monthly as the 4964th problem in 1961.During 1961-1967, it obtained several proofs given by Dresel [?℄, Breus
h [?℄, Croft[?℄, Zalgaller [?℄, and Szekers [?℄. Using Theorem 2.1, Du [?℄ gave a new proof. Thisproof is not the simplest one. However, it is more general. In fa
t, it is suitable forsimilar inequalities. We introdu
e this proof as follows.Proof of Theorem 5.1. Let us �x DEF and vary ABC. Consider the followingfun
tion f(A;B;C) = min(per(4AEF ); per(4BFD); per(4CDE)):As shown in Figure 5, A varies in the area WA bounded by EF and extensions ofDE and DF . Similarly, B and C varies in areas WB and WC , respe
tively. De�ne
D

EF

A*

B* C*Fig. 5. WA, WB and WC .X = 8<:(A;B;C) 2WA �WB �WC ������ B;D;C are 
olinear,C;E;A are 
olinear,A;F;B are 
olinear 9=; :We want to prove that for (A;B;C) 2 X,f(A;B;C) � per(4DEF ): (1)Note that three points (x1; y1), (x2; y2) and (x3; y3) are 
ollinear if and only if������ x1 y1 1x2 y2 1x3 y3 1 ������ = 0:



MINIMAX AND ITS APPLICATIONS 9Thus, X is a polyhedran of dimension three, whi
h is an unbounded region. Toobtain a polytope, 
onsider 4A�B�C� with D, E, F as its middle points of threeedges (see Figure 5). Let �WA be the bounded part obtained from 
utting WA by aline `A parallel to EF . If `A is suÆ
iently far away from EF , then A� is an interiorpoint of �WA. Similarly, we 
an de�ne polygons �WB and �WC . Suppose that thepolytope �X is obtained from the de�nition of X by using �WA� �WB � �WC to repla
eWA �WB �WC . Clearly, to prove (1), it suÆ
es to prove that for every �X,max(A;B;C)2 �X f(A;B;C) = per(4DEF ): (2)Note that per(4AEF ), per(4BFD) and per(4CDE) are 
onvex fun
tions withrespe
t to (A;B;C). By Theorem 4.1, the maximum value of f(A;B;C) over �X isa
hieved at a g-vertex. If this g-vertex is an interior point of �X , then it must be(A�; B�; C�). In this 
ase, (2) holds. If this g-vertex (A;B;C) is on the boundaryof �X , then at least one of A, B and C is on the boundary of �WA or �WB or �WC .Without loss of generality, assume that A is on the boundary of �WA. If A is onEF or the extensions of DE and DF , then one of per(4AEF ), per(4BFD) andper(4CDE) equals twi
e the length of an edge of 4DEF whi
h is smaller thanper(4DEF ). Thus, this A must be on `A. When `A is suÆ
iently far from EF ,BF and CE are almost parallel. In the limiting 
ase that BF and CE are parallel,either B lies in4B�DF and is di�erent fromB� or C lies in4C�ED and is di�erentfrom C� (Figure 6). Thus, either per(4BDF ) < per(4B�DF ) = per(4DEF ) orper(4CED) < per(4DEF ). Therefore, in this 
ase (2) also holds when `A movessuÆ
iently far from 4A�B�C�. 2
A*

B* C*

D

EF

B

CFig. 6. BF and CE are almost parallel.Note that the area of 4AEF 
an be 
omputed by the following formula:S4AEF = 12 ������ xA yA 1xE yE 1xF yF 1 ������



10 DING-ZHU DUwhi
h a linear fun
tion with respe
t to A where xA and yB are 
oordinates of A.Thus, a similar argument yields the following.Theorem 5.2 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respe
tively. Thenmax(S4AEF ; S4BFD; S4CDE) � S4DEF � min(S4AEF ; S4BFD; S4CDE):Sin
e S4AEF is linear and per(4AEF ) is 
onvex with respe
t to A, the ratioper(4AEF )=S4AEF is psuedo-
onvex in A. Note thatper(4AEF )=S4AEF = 2=r4AEFwhere r4AEF is the radius of the 
ir
le ins
ribed 4AEF . Therefore, the aboveargument also yields the following.Theorem 5.3 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respe
tively. Thenmax(r4AEF ; r4BFD; r4CDE) � r4DEF :6. Approximation Performan
eMany optimization problems are NP-hard. So, their optimal solutions are unlikely
omputed in polynomial time. For these problems, polynomial-time approximationsare useful. One way to design a polynomial-time approximation is as follows: putsome restri
tion on feasible solutions so that the optimal solution under this re-stri
tion 
an be 
omputed in polynomial time and use this optimal solution for therestri
ted problem to approximate the optimal solution for the original problem.To be expli
it, 
onsider the problemmink2K �k(x)whi
h is NP-hard. Let I � K su
h thatmini2I �i(x)
an be 
omputed in polynomial time. Now, we use the se
ond one to do an approx-imation of the �rst one. Usually, the performan
e of approximation is measured bythe following ratio: � = minx mink2K �k(x)mini2I �i(x) :Clearly, the larger is this ratio, the better is the approximation. Proving the lowerbound of this ratio 
an be transformed to a minimax problem. In fa
t, suppose thatwe want to prove � � �0. Then it suÆ
es to prove that for any x,mink2K �k(x) � �0mini2I �i(x):



MINIMAX AND ITS APPLICATIONS 11This is equivalent to that for any x and k 2 K,�k(x) � �0mini2I �i(x) � 0;that is, maxi2I (�k(x)� �0�i(x)) � 0:Thus, it suÆ
es to prove that for any k 2 K,minx maxi2I (�k(x)� �0�i(x)) � 0:For example, let us 
onsider the Steiner tree problem.The Steiner tree problem is a 
lassi
 intra
table problem with many appli
ationsin the design of 
omputer 
ir
uits, long-distan
e telephone lines, or mail routing, et
.Given a set P of points in a metri
 spa
e, the problem is to �nd a shortest networkinter
onne
ting the points in the set. The optimal solution of this problem is 
alledthe Steiner minimum tree on the point set P . The Steiner minimum tree may havesome verti
es not in P . Su
h verti
es are 
alled Steiner points while the verti
es inP are 
alled regular points.A spanning tree on P is a tree inter
onne
ting all points in P under restri
tionthat all edges are between the points in P . In the other words, no Steiner point isallowed to exist. The minimum spanning tree is the shortest spanning tree. Whilethe Steiner minimum tree problem is intra
table, the minimum spanning tree 
an be
omputed pretty fast. Thus, we 
an use the minimum spanning tree to approximatethe Steiner minimum tree. In this 
ase, the approximation performan
e ratio is
alled the Steiner ratio.The topology of a tree is the adja
ent relation or the adja
ent matrix of thetree. Let t(P ) denote the minimum tree with topology t on the point set P . Let`(t(P )) denote the length of the tree t(P ). Suppose that all topologies of treesinter
onne
ting P form a set K and all topologies of spanning trees on P form a setI. Then the Steiner minimum tree and the minimum spanning tree problems 
anbe represented respe
tively as follows:mint2K `(t(P )) and mins2I `(s(P )):The lengths of the Steiner minimum tree and the minimum spanning tree on thepoint set P are denoted respe
tively by LS (P ) and LM (P ). From the above analysis,to prove a lower bound �0 for the Steiner ratio, it suÆ
es to prove that for any t 2 KminP maxs2I [`(t(P ))� �0`(s(P ))℄ � 0:A topology t in K is full if every regular point is a leaf. If a regular point is nota leaf, then this topology 
an be de
omposed at this point into two or more subtreetopologies. In this way, every topology t in K 
an be de
omposed into edge-disjointfull topologies t1, � � �, th respe
tively inter
onne
ting subsets P1, � � �, Ph of P . Notethat the union of minimum spanning trees for P1, � � �, Ph is a spanning tree for P .Thus, 8k `(tk(Pk)) � �0LM (Pi) =) `(t(P )) � p32 LM (P ):



12 DING-ZHU DUIt follows that to prove the lower bound �0 for the Steiner ratio, it suÆ
es to provethat for every full topology t in K,minP maxs2I [`(t(P ))� �0`(s(P ))℄ � 0: (3)7. Gilbert-Pollak Conje
tureIn 1968, Gilbert and Pollak [19℄ 
onje
tured that the Steiner ratio in the Eu
lideanplane is p3=2. Through many e�orts [2, 3, 6, 7, 8, 21, 23℄, this 
onje
ture was�nally proved by Du and Hwang [11, 9, 10℄. Their proof is motivated from thetransformation in Se
tion 6.Note that the Steiner minimum tree in the Eu
lidean plane has the followingproperties.(S1) All leaves are regular points.(S2) Any two edges meet at an angle of at least 120o.(S3) Every Steiner point has degree at least three.A tree satisfying the above three 
onditions and inter
onne
ting all regular points(i.e., all points in P ) is 
alled a Steiner tree. Clearly, in a full Steiner tree, every an-gle equals 120o. Thus, the full Steiner tree 
an be determined by all its edge-lengthsprovided the topology of the tree is �xed. Let us give the following notations.t(x): the full Steiner tree with topology t and edge-lengths (x1; � � � ; x2n�3) (= x).P (t;x): the set of all leaves of the tree t(x).s(t;x): the spanning tree with topology s for the point set P (t;x).Now, (3) 
an be written asminx maxs2I (x1 + � � �+ x2n�3� p32 `(s(t;x)) � 0 (4)where I is the set of spanning tree topologies for the set of n points. Note that forany � > 0, P (t;�x) is similar to P (t;x). Thus, `(s(t;�x)) = �`(s(t;x)). This meansthat among all similar point sets, we need to 
onsider only one. So, it suÆ
es to
onsider x with x1 + � � �+ x2n�3 = 1. De�neft;s(x) = 1� p32 `(s(t;x))and X = fx = (x1; � � � ; x2n�3) j x1 � 0; � � � ; x2n�3 � 0; x1 + � � �+ x2n�1 = 1g:To show (4), it suÆ
es to prove that for every full Steiner tree topology t,minx2Xmaxs2I ft;s(x) � 0:The next lemma shows that ft;s(x) is a 
on
ave fun
tion in x.Lemma 7.1 ft;s(x) is a 
on
ave fun
tion in x.



MINIMAX AND ITS APPLICATIONS 13Proof. It suÆ
es to prove that `(s(t;x)) is a 
onvex fun
tion in x. Let A and Bbe two regular points. We show that the distan
e between A and B, d(A;B) is a
onvex fun
tion of x. Find a path in T whi
h 
onne
ts points A and B. Suppose thepath has k edges with lengths x10 ; :::; xk0 and with dire
tions e1; :::; ek, respe
tively,where e1; :::; ek are unit ve
tors. Then d(A;B) = kx10e1 + � � �+ xk0ekkD. Note thata norm is a 
onvex fun
tion and the part inside the norm is linear with respe
t tox. Thus, d(A;B) is a 
onvex fun
tion with respe
t to x. Finally, we noti
e that thesum of 
onvex fun
tions is also a 
onvex fun
tion. 2By Theorem 4.1, the problem is redu
ed to the problem of �nding the minimaxvalue at 
riti
al points. Note that the transformation between the Steiner ratioproblem and the minimax problem is based on a mapping between sets of n pointsin the Eu
lidean plane and points in the (2n � 3)-dimensional spa
e. Thus, ea
h
riti
al point 
orresponds to a set of n points with a ni
e geometri
 stru
ture, 
alleda 
riti
al stru
ture. Finally, verify the 
onje
ture on the point set with 
riti
alstru
ture.For a te
hni
al reason, we also need to modify Gilbert-Pollak 
onje
ture at thebeginning. This modi�
ation is ne
essary be
ause the 
riti
al stru
ture obtainedabove is not ni
e enough to be able to handle. This modi�
ation will make the
riti
al stru
tion mu
h ni
er. In the next se
tion, we give the proof in details.8. Re�ne the Proof of Du and HwangIn the following, we will re�ne the proof for Gilbert-Pollak 
onje
ture by using The-orem 4.3. We will show how to modify Gilbert-Pollak 
onje
ture, how to determinethe 
riti
al stru
ture and how to verify the 
onje
ture for the point set with 
riti
alstru
ture.8.1. Chara
teristi
 Area and Inner Spanning TreesConsider a full Steiner tree t(x). Two regular points are 
alled adja
ent if one 
an berea
hed from the other by always moving in a 
lo
kwise dire
tion or always movingin a 
ounter
lo
kwise dire
tion. Clearly, ea
h regular point has two other adja
entregular points.Now, 
onsider two adja
ent regular points A and B with the path AS1 � � �SkB
onne
ting them. Note that there is a point Si su
h that A lies inside of everyangle on the path AS1 � � �Si and B lies inside of every angle on the path Si � � �SkB.Thus, 
onne
ting A to S1; :::; Si and B to Si; :::; Sk, we obtain 4AS1S2, 4AS2S3,� � �, 4ASi�1Si, 4ASiB, 4BSiSi+1, ..., 4Bk�1Sk. Pasting these triangle alongtheir edges su
h that every point between them has a neighborhood isometri
 to aneighborhood in the Eu
lidean plane, we obtain a simply 
onne
ted region eitherin the plane or in a multilayer Rimann surfa
e (Figure 7). Call this region a 
ell.Pasting all 
ells along all edges in t(x) results in an area su
h that every point on t(x)has a neighbothood isometri
 to a neighborhood in the Eu
lidean plane. Clearly, thearea is a simply 
onne
ted region in a multilayer Rimann surfa
e. It is not unique(Figure 7(a)(b)). However, they all satisfy the following properties:(R1) Every point has a neighborhood isometri
 to a neighborhood in the Eu-
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 A  A

S 1 S 1

(a) (b)

B B

S i S  i

A
B

S S i  i+1

(c)Fig. 7. Simple 
onne
ted region in multilayer Rimann surfa
e.
lidean plane.(R2) All regular points lie on the boundary.(R3) t(x) lies inside of the area.Those areas are 
alled 
hara
teristi
 area of t(x). We will use C(t;x) to representany one of them.As x varies the 
hara
teristi
 area C(t;x) varies. For some x, t(x) may have self-interse
tion in the Eu
lidean plane but has no self-interse
tion in C(t;x) (see Figure8). Let us allow su
h x together with C(t;x) in our 
onsideration. Let X(t;x)
Fig. 8. A monotone path with and without self-
rossing.



MINIMAX AND ITS APPLICATIONS 15denote the set of all edge-length ve
tors y su
h that x together with C(t;x) 
an besmoothly moved to y by varing the edge-lengths of all triangles whi
h 
onsist of the
hara
teristi
 area. Clearly, for any y 2 X(t;x), C(t; y) also has the properties (R1),(R2) and (R3). If none of the triangles in C(t; y) is degenerated, then y must be aninterior point of X(t;x). Thus, for every boundary point y of X(t;x), C(t; y) musthave a degenerated triangle. This means that this triangle has either an angle of180o or an edge of length zero. Look at ba
k the triangles 4AS1S2, � � �, 4ASkB.In ea
h of them, every angle other than the angle at A is at most 120o. So, onlythe angle at A may vary to 180o. This fa
t implies that for a boundary point y ofX(t;x), one of the following two 
ases has to o

ur:(B1) y has at least one zero-
omponent.(B2) t(y) has a regular point lies on the path from the regular point to an adja
entregular point. (For example, in Figure 9, (a) is not in Case (B2) be
ause the regularpoint and the path whi
h seem to overlap are in di�erent layers. But, (b) is in Case(B2).)
(a) (b)Fig. 9. (b) is in Case (B2) but (a) is not.A spanning tree on P (t;x) is 
alled an inner spanning tree with respe
t to t(x)and a 
hara
teristi
 area C(t;x) if it lies inside of C(t;x). Let I(t;x) denote the setof inner spanning tree topologies. We will prove the following.Theorem 8.1 For every full Steiner tree topology t and any 
hara
teristi
 areaC(t;x), minx2 �Xt maxs2I(t;x) ft;s(x) � 0:Theorem 8.1 is equivalent toLS (P (t;x)) � p32 LN (P (t;x))where LN (P (t;x)) is the length of the minimum inner spanning tree with respe
t tot(x). Sin
e LN (P (t;x)) � LM (P (t;x)), Gilbert-Pollak 
onje
ture is a 
onsequen
eof Theorem 8.1.



16 DING-ZHU DUDe�ne gt(x) = maxs2I(t;x) ft;s(x)and M (t;x) = fi 2 I(t;x) j ft;s(x) = gt(x)g:To use Theorem 4.3, we need to prove the following.Lemma 8.2 For every interior point x of �Xt, there is a neighborhood of x su
h thatfor any y in the neighborhood, M (t; y) � M (t;x).Proof. First, we show that for any m 2 M (t;x) there exists a neighborhood Uof x su
h that for any y 2 U , m is in I(t; y). For 
ontradi
tion, suppose su
ha neighborhood does not exist. Then there is a sequen
e of points yk 
onvergingto x su
h that m 62 I(t; yk). Thus every m(t; yk) has at least one edge not inthe 
hara
teristi
 area C(t; yk). Sin
e the number of edges is �nite, there exists asubsequen
e ofm(t; yk) ea
h of whi
h 
ontains an edge not in C(t;x), but these edges
onverge to an edge AB in m(t;x). It is easy to see that AB is on the boundary ofthe area C(t;x) and that A and B are not adja
ent. (An edge between two adja
entregular points always lies in the 
hara
teristi
 area.) Sin
e all verti
es in an innerspanning tree lie on the boundary of C(t;x), there is a regular point lying in theinterior of the segment AB, 
ontradi
ting the minimality of m(t;x).Now, we prove the lemma by 
ontradi
tion. Suppose that there is a sequen
e ofpoints yk 
onverging to x su
h that for ea
h yk, a spanning tree topology mk existssu
h that mk 2M (t; yk) nM (t;x). Sin
e the number of spanning tree topologies is�nite, there is a subsequen
e of points yk0 with the same mk0 , denoted by m. We
an also assume that this subsequen
e lies inside of the neighborhood U of x. Thus,for every k0, `(m(t; yk0) � `(m0(t; yk0)) for all m0 2M (t;x) sin
e M (t;x) � I(t; yk0).Letting k0 ! 1, we obtain that `(m(t;x)) � `(m0(t;x)) for m0 2 M (t;x). Sin
em 62M (t;x), m(t;x) must not be an inner spanning tree. It follows that there existsa neighborhood of x su
h that for any point y in the neighborhood, m(t; y) is not aninner spanning tree for t(y), 
ontradi
ting the existen
e of the subsequen
e of pointsyk0 . 2An immediate 
onsequen
e of Lemma 8.2 is that gt(x) is 
ontinuous over interiorof �Xt. Denote F (t) = minx2Xt gt(x). By Theorem 4.3 and Lemmas 7.1 and 8.2,F (t) is a
hieved at some 
riti
al point. Choose a full topology t� su
h that F (t�) =mint F (t) where t is over all full Steiner tree topologies on n regular points. We proveTheorem 8.1 by 
ontradi
tion. Suppose that Theorem 8.1 is false, i.e., F (t�) < 0,and that n is the smallest number of regular points su
h that F (t�) < 0. From nowon, a point x in �Xt� is 
alled a minimum point i� gt�(x) = F (t�).Lemma 8.3 Every minimum point is an interior point of �Xt� .Proof. Suppose to the 
ontrary that there exists a minimumpoint x on the boundaryof �Xt� . First, assume that (B1) o

urs, that is, t�(x) have some edges vanished. Ifthere is a vanished edge in
ident to a regular point, then t�(x) 
an be de
omposed



MINIMAX AND ITS APPLICATIONS 17into several edge-disjoint smaller Steiner trees. Sin
e every smaller Steiner tree hasfewer regular points, we 
an apply Theorem 8.1 to them. Note that a union of innerspanning trees for the smaller Steiner trees is an inner spanning tree for t�(x). We�nd a 
ontradi
tion to F (t�) < 0 by summing all inequalities. So, every vanishededge is between two Steiner points. In this 
ase, we 
an �nd a topology t satisfyingthe following 
onditions (Figure 10).(1) Two regular points are adja
ent in t i� they are adja
ent in t�.(t is 
alled a
ompanion of t� when t satis�es this 
ondition.)(2) There is a tree T inter
onne
ting the n points in P (t�;x), with the topologyt and with length less than `(t�(x)).
A i+1

Ai
A i

A i+1

A i

A i+1

A i

A i+1Fig. 10. A 
ompanion.To do so, let us �rst note thatIf the Steiner tree of topology t for P (t;x) exists, then there exists a parameterve
tor y su
h that P (t; y) = P (t�;x). Let h = 1=`(t(y)). Sin
e `(t(y)) � `(T ) <`(t�(x)) = 1, h > 1. Note that t(hy) is similar to t(y). Hen
eft;s(hy) = 1� (p3=2)`(s(t;hy))= 1� (p3=2)h`(s(t;hy))= 1� (p3=2)h`(s(t�;x))< gt�(x)= F (t�)where s is a minimumspanning tree topology for the point sets P (t;hy) and P (t�; x).Sin
e hy 2 �Xt, we have F (t) � gt(hy) < F (t�), 
ontradi
ting the minimality ofF (t�).If the Steiner tree of topology t for P (t�;x) does not exist, then we 
annot usethe above argument dire
tly sin
e gt(y) is unde�ned. (Remember that F (t�) is theminimum over all full Steiner topologies. So even though T is a shorter tree, there isno 
ontradi
tion to the minimality of F (t�).) Now, we 
onsider any tree of topologyt. Su
h a tree 
an be determined by edge lengths and angles at every Steiner point.Write the lengths into a length ve
tor y and the angles into an angle ve
tor �.Denote su
h a tree by t(y; �). Two regular points is said to be adja
ent in t(y; �) ifin a Steiner tree of topology t, the 
orresponding two regular points are adja
ent.Constru
ting the 
hara
teristi
 area for t(y; �) by 
onne
ting every pair of adja
entregular points, we 
an de�ne an inner spanning tree and a minimum inner spanning



18 DING-ZHU DUtree for t(y; �) in a similar way. Let LN (t; y; �) denote the length of a minimuminnerspanning tree for t(y; �). We 
an also show the 
ontinuity of LN (t; y; �). Restri
tall angles to be between 0o and 360o and the sum of any three angles at the sameSteiner point to equal 360o. Let Yt be the set of ve
tors (y; �) with the des
ribedrestri
tions on � and the restri
tions P yi = 1 and y � 0. Then Yt is 
ompa
t. So,the fun
tion h de�ned by ht(y; �) = 1 � (p3=2)Lt(y; �) rea
hes its minimum in Yt.We denote this minimum value by H(t). By an argument similar to that in the lastparagraph, we 
an prove that H(t) < F (t�). Thus, H(t) < F (t).Suppose that ht(y; �) = H(t). If all 
omponents of � equal 120o, then t(y; �) =t(y) and y 2 �Xt. Thus, F (t) � ht(y; �) = H(t), a 
ontradi
tion. Therefore, � musthave a 
omponent less than 120o. Note that for an angle that is less than 120o int(y; �), at least one edge of the angle must be vanished, for otherwise, we 
an shortenthe tree without 
hanging the topology. Thus, t(y; �) 
ontains vanished edges. Ifthere exists a vanished edge in
ident to a regular point, we de
ompose h(y; �) and�nd a full topology t0 with fewer regular points su
h that H(t0) < 0. If there existsa vanished edge between two Steiner points, then we 
an �nd a new 
ompanion t0 oft su
h that H(t0) < H(t). Repeating the above argument, we will obtain in�nitelymany full topologies with at most n regular points, 
ontradi
ting the �niteness ofthe number of topologies. Therefore, (B1) 
annot o

ur.Now, assume that (B2) o

urs. So, t(x) (in its 
hara
teristi
 area) has a regularpoint tou
hing an edge or another regular point. In the former 
ase, we 
an de
om-pose t(x) at the tou
hing point to obtain two trees ea
h with less than n regularpoints. In the latter 
ase, we 
an redu
e the number of regular points by one. Ineither 
ase, an 
ontradi
tion is a
hieved by an argument similar to the one used atthe beginning of this proof. 28.2. Criti
al Stru
tureIn this subse
tion, we want to determine the geometri
 stru
ture of P (t�; x) for everyinterior minimum point x in �Xt� . For simpli
ity of notation, we use t for t� in thissubse
tion and the next subse
tion.Let �(t;x) denote the union of minimum inner spanning trees for P (t;x). Let us�rst show some properties of �(t;x).Lemma 8.4 Two minimum inner spanning trees 
an never 
ross, i.e., edges meetonly at verti
es.Proof. Suppose that AB and CD are two edges 
rossing at the point E (Figure11) and they belong to two minimum inner spanning trees T and T 0, respe
tively.Without loss of generality, assume that EA is the shortest one among the foursegments EA, EB, EC and ED. Removing the edge CD from the tree T 0, theremaider has two 
onne
ted 
omponents 
ontaining C and D, respe
tively. Withoutloss of generality, assume that A and C are in the same 
omponent. Note that`(AD) < `(EA) + `(ED) � `(CD). If AD lies in the 
hara
teristi
 area, then
onne
ting the two 
omponents by AD results in a shorter inner spanning tree,
ontradi
ting the minimality of T 0. If AD does not lie in the 
hara
teristi
 area,there must exist some regular points lying inside of the triangle EAD. Consider
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A

B

C

D

EFig. 11. AB and CD 
ross ea
h other.the 
onvex hull of those regular points and two points A and D. The boundary ofthe 
onvex hull other than the edge AD must lie in the 
hara
teristi
 area. Thisboundary 
ontains a path from A to D. In this path there exists two adja
entverti
es whi
h belong to di�erent 
onne
ted 
omponents of T 0 n fCDg. Conne
tingtwo su
h adja
ent verti
es also results in an inner spanning tree shorter than T 0, a
ontradi
tion. 2Lemma 8.5 Every polygon of �(t;x) has at least 2 equal longest edges.Proof. Suppose to the 
ontrary that �(t;x) has a polygon Q with the unique longestedge e. Let m be the minimum inner spanning tree 
ontaining e. For every edgee0 of Q not in m, the union of m and e0 
ontains a 
y
le. If this 
y
le 
ontainse, then (m n feg) [ fe0g is an inner spanning tree shorter than m, a 
ontradi
tion.Thus, su
h a 
y
le does not 
ontain e. Hen
e, for every e0 in Q not in m, m hasa path 
onne
ting two endpoints of e0. These paths and e form a 
y
le in m, a
ontradi
tion. 2Lemma 8.6 Let A, B and C be three regular points. Suppose that all three edgesAB, BC and CA lie in C(t;x). If the edge AB is in �(t;x), then`(AB) � max(`(AC); `(BC)):Moreover, if AB is in �(t;x) and`(AB) � max(`(AC); `(BC));then either BC or CA is in �(t;x) and also has the same length as AB.Proof. To prove the �rst half, for 
ontradi
tion, suppose that`(AB) > max(`(AC); `(BC)):



20 DING-ZHU DURemovalAB from the minimum spanning tree results in two 
onne
ted 
omponents
ontaining A and B, respe
tively. C is in one of the 
omponents. Thus, adding ACor BC would result in a spanning tree shorter than the minimum spanning tree, a
ontradi
tion.The se
ond half 
an be proved in a similar way. 2Note that the 
hara
teristi
 area of t(x) is bounded by a polygon of n edges.Partitioning the area into n � 2 triangles by adding n � 3 edges, we will obtain anetwork with n verti
es and 2n�3 edges. This network will be 
alled a triangulationof C(t;x). Let us �rst ignore the full Steiner tree t(x) and 
onsider the relationshipbetween the vertex set and the length of edges. Note that in the previous dis
ussion,when we say that a set P of points is given, we really mean that the distan
e betweenevery two points in the set is given, that is, relative positions between those pointshave been given. With this understanding, we make the following observations.(1) The vertex set (i.e., the set of regular points, P (t;x)) 
an be determined by2n� 3 edge lengths of the network.(2) The 2n�3 edge-lengths are independent variables, that is, the network 
ouldvary by 
hanging any edge-length and �xing all others as long as in ea
h triangle,the triangular inequality is preserved.Note that every �(t;x) 
an be embedded in a triangulation of C(t;x). Thus, alledges in �(t;x) are independent.A �(t;x) is said to have a 
riti
al stru
ture if �(t;x) partitions C(t;x) into n� 2equilateral triangles. Su
h a stru
ture has the property that any perturbation would
hange the set of topologies of minimum inner spanning tree. The following lemmashows that every minimum point has �(t;x) with a 
riti
al stru
ture.Fig. 12. A 
riti
al stru
ture.Lemma 8.7 If x� is a minimum point, then �(t;x�) divides C(t;x�) into 2n � 3equilateral triangles (Figure 12).Proof. First, let us embed �(t;x�) into a triangulation of C(t;x�). If the lemma isfalse then one of the following must o

ur:(a) There is an edge in the triangulation whi
h does not belong to �(t;x�).(b) No edge in the triangulation does not belong to �(t;x�). But, �(t;x�) has anonequilateral triangle.We will show that in ea
h 
ase, the number of minimum spanning trees 
an bein
reased, i.e., we 
an �nd another minimum point y su
h that M (t;x�) � M (t; y)and M (t;x�) 6=M (t; y).



MINIMAX AND ITS APPLICATIONS 21First, assume that (a) o

urs. Let `0 be the length of the logest edge whi
h is inthe triangulation but is not in �(t;x�). We shrink all longest edges and keep otheredge-lengths until a new minimum spanning tree is produ
ed. Let `00 be the lengthof the longest edge at the last minute during the shrinking. Note that the triangularinequality is always preserved in every triangle if shrinking happens to all logestedges in the triangle or shrinking happens to the shortest edge in an isos
eles. Thelatter is guaranteed by Lemma 8.6. Thus, during the shrinking from `0 to `00, we donot need to worry about the 
ondition on the triangular inequality.Now, for ea
h ` 2 [`0; `00℄, denote by �P (`) the 
orresponding set of regular points.Then P (`0) = P (t;x�). Consider the set L of all ` 2 [`0; `00℄ satisfying the 
onditionthat there is a minimum point y in �Xt su
h that �P (`) = P (t; y). Sin
e `0 2 L, L isnonempty. Moreover, L is a 
losed set sin
e all minimum points form a 
losed set.Now, 
onsider the minimal element `� of L. We may assume `� > `00 for if `� = `00,then y meets the requirement already. Suppose �P (`�) = P (t; y). Then for anym 2 M (t;x�), `(m(t; y)) = `(m(t;x�)). Sin
e both x� and y are minimum points,we have gt(x�) = gt(y), that is, the length of a minimum inner spanning tree forP (t;x�) equals that for P (t; y). Hen
e M (t;x�) � M (t; y). However, x is a 
riti
alpoint. Thus, M (t;x�) = M (t; y). By Lemma 8.3, y is an interior point of �Xt. Thismeans that there exists a neighborhood of `� su
h that for ` in it, the Steiner treeof topology t exists for the point set �P (`). Thus, there exists `00 < ` < `� su
h that�P (`) = P (t; z) for some ve
tor z (not-ne
essarily in �Xt but hz 2 �Xt for some h > 0).Sin
e `(m(t;x)) is 
ontinuous with respe
t to x, there is a neighborhood of y su
hthat for every point y0 in the neighborhood, M (t; y0) � M (t; y). So, ` 
an be 
hosento make z satisfy M (t; z) � M (t; y), too. Note that M (t;x�) = M (t; y) and forevery m 2M (t;x�), `(m(t; z)) = `(m(t;x�)). It follows that for every m 2M (t;x�),m(t; z) is a minimum inner spanning tree for P (t; z). Thus, M (t; z) = M (t;x�) andgt(x�) = gt(z). Suppose hz 2 X where h is a positive number. By the se
ond halfof Theorem 4.3, gt(x�) = gt(hz) = hgt(z). So, h = 1, i.e., z 2 X. Hen
e, z is aminimum point, 
ontradi
ting the minimality of `�.In 
ase (b), we 
an give a similar proof by in
reasing the length of all shortestedges in �(t;x�). 28.3. Hexagonal TreesIn this subse
tion, we prove gt(x�) � 0 where x� is a minimumpoint. To do this, webegin with studying a di�erent kind of trees. A tree in C(t;x�) is 
alled a hexagonaltree if every edge of the tree is parallel to some edge in �(t;x�). The shortesthexagonal tree inter
onne
ting the point set P is 
alled a minimum hexagonal treeon P . Let Lh(P ) denote the length of the minimum hexagonal tree on P . Thefollowing relation was dis
overed by Weng [25℄.Lemma 8.8 Ls(P ) � (p3=2)Lh(P )Proof. First, we note that if a triangle ABC has the angle at A not less than 120o,then `(BC) � (p3=2)(`(AB) + `(AC)). Now, ea
h edge of a Steiner minimum tree
an be repla
ed by two edges meeting at an angle of 120o and parallel to the given



22 DING-ZHU DUdire
tions. Therefore, the lemma holds. 2A point on a hexagonal tree but not in P is 
alled a jun
tion if the point isin
ident to at least three lines. A hexagonal tree for n points is said to be full if allregular points are leaves. Any hexagonal tree 
an be de
omposed into a union ofedge-disjoint smaller full hexagonal trees. Su
h a smaller full hexagonal tree will besaid to be a full 
omponent of the hexagonal tree.In the hexagonal tree, an edge is referred to as a path between two verti
es(regular points or jun
tions). Thus, an edge 
an 
ontain several straight segments.An edge is 
alled a straight edge if it 
ontains only one straight segment, and is
alled a nonstraight edge otherwise. Any two segments adja
ent to ea
h other in annonstraight edge meet at an angle of 120o sin
e if they meet at an angle of 60o thenwe 
an shorten the edge easily.In any minimum hexagonal tree T , an edge with more than two straight seg-ments 
an be repla
ed by an edge with at most two segment. To see this, 
onsidera nonstraight edge e in a minimum hexagonal tree T . Suppose A and B are twoendpoints of e. Then all shortest hexagonal paths from A to B form a parallelogram(see Figure 13). This parallelogram must lie in C(t;x�). For otherwise, the part of
A

B

eFig. 13. The parallelogram.this parallelogram whi
h is inside of C(t;x�) must 
ontain a pie
e of the boundaryof C(t;x�). This boundary has to have at least two 
onse
utive segments in the dif-ferent dire
tions in order to pass through the parallelogram without 
rossing e. The
ommon endpoint of the two segment is a regular point lying in the parallelogram.Consider all su
h regular points and all shortest hexagonal paths from A to B inC(t;x�). One of the paths must pass through one of the regular points, say C (seeFigure 13). Repla
e e by this path and delete an edge in
ident to C. This wouldresult in a shorter hexagonal tree, 
ontradi
ting the minimality of T . Now, sin
e theparallelogram lies in C(t;x�), we 
an use a path with at most two straight segmentsto repla
e e.From now on, we make the 
onvention that any edge in a minimumhexagonal hasat most two straight segment. In addition, when we talk about an edge of a jun
tion,its �rst segment is the segment in
ident to the jun
tion. The other segment, if itexists, is the se
ond segment of the edge. Note that the jun
tions as shown inFigure 14 
an result in a shorter tree. Thus, those kinds of jun
tions 
annot existin a minimum hexagonal tree.Let T be a minimum hexagonal tree for the point set P with the maximumnumber of full 
omponents.
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(a) (b)Fig. 14. Jun
tions like these 
annot exist.Lemma 8.9 T 
an be 
hosen to have the properties that every jun
tion of degreethree in T has at most one nonstraight edge.Proof. First, 
onsider a jun
tion of degree three has two nonstraight edges. Thenthese two edges have segments in the same dire
tion. Flip the edges if ne
essary toline up these two segments, then the se
ond segments of these two edges as well asthe �rst segment of the third edge are three segments ea
h lying 
ompletely on oneside of the line just 
onstru
ted. Therefore one side has the majority of the threesegments and we 
an move the line to de
rease the number of nonstraight edges (seeFigure 15).For a jun
tion of degree more than three, the proof is similar (see Figure 15). 2Now, we 
omplete our proof for Theorem 8.1 by proving the following lemma.Lemma 8.10 Let T be a minimum hexagonal tree for the point set P with themaximum number of full hexagonal subtrees and the property in Lemma 8.9. ThenT is a minimum inner spanning tree.Proof. Suppose that the lemma is false. Then T has a full 
omponent T 0 with atleast one jun
tion. Suppose that T 0 inter
onne
ts a subset P 0 of P . Clearly, T 0 hasa jun
tion J adja
ent to two regular points A and B. (Otherwise, T 0 
ontains a
y
le.)Let us �rst 
onsider the 
ase that both edges AJ and JB are straight. If AJand JB are in di�erent dire
tions then J is a regular point. Hen
e, they are in thesame dire
tion. Let C be the third vertex adja
ent to J . First, we 
an assume thatJC is straight for if JC is not straight, we 
an repla
e it by a straight edge withoutin
reasing the length and the number of full 
omponents (Figure 16 (a)).Sin
e C being a regular point implies J being a regular point, we see that C is ajun
tion. We will show that one of the following o

urs:(a) J is a regular point.(b) C 
an be moved further away from J .Sin
e the latter movement 
annot last forever, J is a regular point whi
h 
ontradi
tsthe de�nition of the jun
tion.
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Fig. 15. De
rease the number of nonstraight edges.
A BJ

C

(a)

A J B

C D

(b)Fig. 16. (a) in
reases the number of full 
omponents; (b) shortens T 0.Let l be a line through C, parallel to AB. If C has a straight edge overlapping l onthe right of C, then we go from C along the edges of T 0 to the left as far as possible.Suppose that we end at a point D. Then `(CD) < `(JB) for if `(CD) � `(JB),then JC 
an be moved to the right until J and B are identi
al so that the numberof full 
omponents is in
reased. Sin
e `(CD) < `(JB), D 
annot be a regularpoint. For otherwise, we 
an move JC to tou
h D whi
h in
reases the number offull 
omponents. D 
annot be a jun
tion, neither. In fa
t, for otherwise, T 0 
anbe shorten (Figure 16 (b)). Thus, D is a 
orner of a nonstraight edge. A similar



MINIMAX AND ITS APPLICATIONS 25situation happens to the left hand side of C. Now, we 
an move C further awayfrom J as shown in Figure 17. If C has no edge with segment overlapping l, thenC 
an also be moved further away from J . This movement 
annot happen forever.Finally, C be
omes a regular point. It follows that J is a regular point.
A J B

C D C

A J B

D

A J B

CFig. 17. C is moved further away from J .Se
ondly, we 
onsider the 
ase that AJ is a straight edge and JB is a nonstraightedge with a segment in the same dire
tion as AJ . Flip JB, if ne
essary, to line upthe two �rst segments of AJ and JB. Let BD be the �rst segment of JB. ThenD must be a regular point. If D is not identi
al to B, then we 
an shorten T bydeleting an edge in
ident to D. If D is identi
al to B, then we go ba
k to the �rst
ase.Thirdly, if AJ is a straight edge and JB is a nonstraight edge without a segmentin the same dire
tion as AJ , then J 
an be moved either to A or to a regular point(Figure 18) whi
h in
reases the number of full 
omponents.
A

B

J

A

B

J

A

J

BFig. 18. J is moved to a regular point.Sin
e other 
ases are symmetri
 to the above three, the lemma is proved. 2By Lemmas 8.8 and 8.10, for any minimum point x�,LS (P (t;x�)) � p32 LN (P (t;x�))that is, gt(x�) � 0:It follows that F (t) � 0, 
ontradi
ting the assumption that F (t) < 0. (Please notethat this t is the t� in Se
tion 8.1.) Therefore, Theorem 8.1 is proved.
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ussionGao, Du and Graham [?℄ proved that in any normed plane, the Steiner ratio is atleast 2=3. Their proof is also based on a minimax theorem in Se
tion 4.Graham and Hwang [19℄ 
onje
tured that the Steiner ratio in n-dimensional re
ti-linear spa
e is n=(2n�1). The Graham-Hwang's 
onje
ture 
an be easily transferredto a minimax problem meeting the 
ondition requested by Theorem 1. For exam-ple, 
hoose lengths of all straight segments of an inter
onne
ting tree as parameters.When the graph stru
ture of the tree is �xed, the set of original points 
an be deter-mined by su
h segments-lengths, the total length of the tree is a linear fun
tion andthe length of a spanning tree is also a linear fun
tion. Hen
e, their linear 
ombina-tion is a linear fun
tion whi
h is 
ertainly 
on
ave. However, it is hard to determinethe 
riti
al stru
ture a

ording to this transformation. To explain the diÆ
ulty, wenoti
e that in general the 
riti
al points 
ould exist in both the boundary and in-terior of the polytope (see Theorem 1). In the proof of Gilbert-Pollak 
onje
ture,a 
ru
ial fa
t is that only interior 
riti
al points need to be 
onsidered in a 
ontra-di
tion argument. The 
riti
al stru
ture of interior 
riti
al points are relatively easyto be determined. However, for the 
urrent transformation for the Graham-Hwang
onje
ture, we have to 
onsider some 
riti
al points on the boundary. It requires anew te
hnique, either determine 
riti
al stru
ture for su
h 
riti
al points or eliminatethem from our 
onsideration.Pratt [21℄ 
onsider the problem of determining the Steiner ratio on a sphere. Hebelieve that the Steiner ratio on a sphere should also be p32 and proved that it is atmost p32 . The diÆ
ulty for solving Pratt's problem is at the job (1). In fa
t, if thetransformation in the proof of Gilbert-Pollak 
onje
ture 
an meet the 
ondition insome minimax theorem similar to Theorem 1, then the rest proof 
an also be movedfrom there.The k-Steiner ratio in a metri
 spa
e is the largest lower bound for the ratiobetween the lengths of the Steiner minimum tree and the minimum k-size Steinertree for the same given set of points where the minimum k-size Steiner tree (k-sizeST) is the minimum length network inter
onne
ting the given points and satisfyingthe 
ondition that splitting the tree at ea
h given point of degree more than oneresults subtrees of given points at most k. (The minimum 2-size Steiner tree is infa
t the minimumspanning tree.) The signi�
an
e of determining the k-Steiner ratiois stem from the study of polynomial-time heuristi
s for the Steiner minimum tree[1, 14, 23℄. Du, Zhang, and Feng [14℄ 
onje
tured that in the Eu
lidean plane, the3-Steiner ratio is (1+p3)p2=(1+p2+p3). The proof of this 
onje
ture is blo
kedat the diÆ
ulty on 
hara
terizing the 
riti
al stru
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