
MINIMAX AND ITS APPLICATIONS: REVISIT THE PROOF OFGILBERT-POLLAK CONJECTUREDING-ZHU DU�Computer Siene DepartmentUniversity of MinnesotaMinneapolis, MN 55455 USAandInstitute of Applied MathematisChinese Aademy of SienesBeijing 100080, PRCAbstrat. Consider the problem minx2X maxi2I fi(x) where X is a onvex set, I is a �nite setof indies and fi(x)'s are ontinuous onave funtions of x. In this artile, we study a harater-ization of x 2 X at whih the minimax value is ahieved. We also study some appliations of theharaterization.Key words: Minimax, Steiner trees.1. IntrodutionMinimax is an important topi in optimization. There are two fundamental ideas tosolve minimax problems.The �rst is the searh for a basis, tha is, for the problemminx2Xmaxy2Y f(x; y)determine �rst a �nite subset B of X suh thatminx2Xmaxy2Y f(x; y) = minx2Bmaxy2Y f(x; y)and then searh an optimal x� from B in �nitely many steps.The seond is the determination of saddle point. A point (x�; y�) is alled asaddle point of f(x; y) on the set X � Y if for any x 2 X and y 2 Y ,f(x�; y) � f(x�; y�) � f(x; y�):It follows that for a saddle point (x�; y�),minx2Xmaxy2Y f(x; y) = f(x�; y�) = maxy2Y minx2X f(x; y):These two ideas have resulted two important mathematial branhes. P. L.Chebyshev is probably the �rst person who made an important ontribution to� Support in part by the National Siene Foundation under grant CCR-9208913.



2 DING-ZHU DUthe �rst idea. He disovered theory of best approximation. The seond idea was ex-tensively studied by Von Neumann. He initiated game theory. Sine Von Neumann,many e�orts have been made to �nd various suÆient onditions for a point beinga saddle points. This involves a great deal of mathematis inluding �xed pointtheory.While a hudge amount of materials about minimax in the literature exist, weselet only a small part in this artile. In fat, inluding all subjets about minimaxshould be the duty of a book instead of an artile. In this artile, we will ommitourselves only to reent developments on the �rst idea.2. Chebyshev TheoremThe original problem onsidered by Chebyshev is as follows: Given a list of valuesof some real funtion: yk = f(xk); k = 0; : : : ;m;�nd a polynomial p of degree at most n (n < m) whih provides the best approxi-mation at these m points, that is, p minimizesmaxk=0;:::;m jyk � p(xk)j:Chebyshev gave a beautiful result about the solution of this problem.First, onsider m = n + 1. In this ase, the polynomial of the best approx-imation exists and is unique. Chebyshev proved that a polynomial p is the bestapproximation if and only if for some h,(�1)kh + p(xk) = yk; for k = 0; : : : ; n+ 1:Furthermore, h and p an be onstruted expliitly. This p is alled a Chebyshevinterpolating polynomial.For general m, a subset of n+ 2 xk's is alled a basis. Eah basis � determines aChebyshev interpolating polynomial p� and a valueh(�) = maxxk2� jyk � p�� (xk)j:A basis �� is alled an extremal basis ifh(��) = max� h(�)where � is over all bases. Chebyshev showed the following.Theorem 2.1 There exists a unique polynomial of best approximation. A poly-nomial p is the polynomial of best approximation if and only if p is a Chebyshevinterpolating polynomial for some extremal basis.There are other ways to haraterize the extremal basis. In fat, Chebyshev alsoproved that �� is an extremal basis if and only ifh(��) = maxk=0;:::;m jyk � p�� (xk)j:



MINIMAX AND ITS APPLICATIONS 3(See [5℄.) For eah polynomial p, de�neI(p) = fi j jyi � p(xi)j = maxk=0;:::;m jyk � p(xk)jg:I(p) is maximal if no polynomial q exists suh that I(p) 6= I(q) and I(p) � I(q).From the seond haraterization of the extremal basis, it is not hard to prove thefollowing.Proposition 2.2 �� is an extremal basis if and only if I(p�� ) is maximal.3. Linear ProgrammingChebyshev problem an be transformed to a linear programming as follows:min zsubjet to �z � a0 + a1xk + � � �+ anxnk � yk � zk = 0; : : : ;m:Note that this linear programming has n+2 variables and 2(m+1) onstraints. Foran extremal basis ��, p�� would make n+2 onstraints ative (i.e., the equality signholds for those onstraints). This means that eah extremal basis orresponds to afeasible basis of the above linear programming in the following standard form.min zsubjet to uk � z = a0 + a1xk + � � �+ anxnk � yk = z � vkuk � 0; vk � 0k = 0; : : : ;m:Linear programming are losely related to minimax problems. In fat, there areseveral ways to transform linear programming to a minimax problem. For example,onsider a linear programming min xsubjet to Ax = bx � 0and its dual max bTysubjet to AT y � :For any feasible solution x of the original linear programming and any feasible so-lution y of the dual linear programming, x � bTy. The equality sign holds only ifthe two feasible solutions are atually optimal solutions for the two linear program-ming, respetively. This is equivalent to the following minimax problem ahieves theminimax value 0.min(x;y)max(x � bT y;�x;Ax� b:b�Ax;ATy � ):



4 DING-ZHU DU4. Du-Hwang TheoremIn the previous two setions, we see already two problem in the following form:minx2X maxi=1;���;m fi(x):Now, we onsider it with a little general onditions. We assume that X is a polytopeinRn and fi(x)'s are ontinuous onave funtions of x. We will extend Chebyshev'sidea to this problem.The simplest ase is m = n = 1. As shown in Figure 1, the minimum value of aonave funtion f1(x) on the interval [a; b℄ is ahieved at a or b. For m = 1 and
a bFig. 1. The minimum point of a onave funtion.general n, it is well-known that the minimum value of f1(x) is ahieved at a vertexof the polytope X. What we are interested in this artile is the ase m > 1. Ifm > 1 and n = 1, then as shown in Figure 2, g(x) = maxi=1;���;m fi(x) is a pieewiseonave funtion. Thus, the minimum value of g(x) on the interval [a; b℄ is ahievedat an endpoint of a onave piee.

f1

f2

f3

g(x)Fig. 2. A pieewise onave funtion g(x).Similarly, for m > 1, the polytope P an be divided into small regions in eah ofwhih g(x) is onave. These small regions an be de�ned byXi = fx 2 X j fi(x) = g(x)g:
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P 1

P 2

P 3

P 4
P 5Fig. 3. g-verties.However, they may not be onvex. Thus, where the minimum value of g(x) an beahieved is not so easy to see. Du and Hwang [10℄ found that the minimum value ofg(x) an still be ahieved at a vertex of small regions where the vertex is de�ned inthe following way.Let us �rst give a new de�nition for the vertex of a polytope. Consider thepolytope X = fx j aTj x � bj; j = 1; � � � ; kg. Denote J(x) = fj j aTj x = bjg. A pointx in X is a vertex if J(x) is maximal, i.e., there does not exist y 2 X suh that J(x)is a proper subset of J(y). This de�nition is di�erent from the traditional one: x isa vertex if x = 12y+ 12z for y, z 2 X implies x = y = z. However, they are equivalentfor polytopes.Now, a point x in X is alled a g-vertex if J(x) [M (x) is maximal whereM (x) = fi0 j fi(x) = g(x)g:Theorem 4.1 (Du and Hwang [11℄) The minimum value of g(x) is ahieved ata g-vertex.Proof. Let x� be a minimum point for g(x). Sine all fi(x) are ontinuous, there isa neighborhood V of x� suh that for any x 2 V , M (x) � M (x�). Let Y = fx 2 X jaTj x = bj for j 2 J(x�)g. Then x� is a relative interior point of Y , that is, for anyx 2 Y and for suÆiently small number �, x� + �(x� � x) 2 Y . Consider a g-vertexx̂ suh that M (x�) [ J(x�) � M (x̂) [ J(x̂), i.e., M (x�) � M (x̂) and J(x�) � J(x̂).The latter inlusion implies that x̂ 2 Y . We will show that x̂ is also a minimumpoint. Therefore, the theorem is proved.For ontradition, suppose that x̂ is not a minimum point. Choose a positive �suÆiently small suh thatx(�) = x� + �(x� � x̂) 2 V \ Y:Thus, M (x(�)) � M (x�) � M (x̂). Consider an index i 2 M (x(�)). Sine x� is aminimum point of g(x), we havefi(x�) < fi(x̂); and fi(x�) � fi(x(�)):



6 DING-ZHU DUNote that x� = �1 + �x̂+ 11 + �x(�):By the onavity of fi(x),fi(x�) � �1 + �fi(x̂) + 11 + �fi(x(�)) > fi(x�);a ontradition. 2Let us make some remarks on this minimax theorem.Remark 1. A funtion f is pseudo-onave in a region if for any x and y in theregion and for any � 2 [0; 1℄,f(�x + (1 � �)y) � min(f(x); f(y)):The pseudo-onavity is learly weaker than the onavity. In the theorem, theonavity of fi an be replaed by the pseudo-onavity. For this replaement, theproof needs to be modi�ed as follows: Choose a minimum point x� with maximalJ(x) and a point x̂ in Y with M (x�) � M (x̂). Find the existene of V as above. Bythe pseudo-onavity of fi(x),fi(x�) � min(fi(x̂); fi(x(�)) � fi(x�);for i 2 M (x(�)), x(�) = x� + �(x̂ � x�) 2 Y \ V and � > 0. It follows that forx(�) 2 Y \ V , x(�) is a minimum point. Note that all minimum points form alosed set. There exists the maximum value �� suh that x(��) is a minimum point.Clearly, x(��) annot be a relative interior point of Y . (Otherwise, by the aboveargument, we an obtain a larger � suh that x(�) is a minimumpoint.) Thus, J(x�)is a proper subset of J(x(��)), ontraditing the hoie of x�. We state the result ofthis remark in the following.Theorem 4.2 Let g(x) = maxi2I fi(x) where fi's are ontinuous pseudo-onavefuntions and I is a �nite set of indies. Then the minimum value of g(x) over apolytope is ahieved at a g-vertex.Remark 2. An interior point x of X is a g-vertex i�M (x) is maximal. In general,for any g-vertex, there exists an extreme subset Y of X suh that M (x) is maximalover Y . A point x in X is alled a ritial point if there exists an extreme set Y suhthat M (x) is maximal over Y . Thus, every g-vertex is a ritial point. However, theinverse is false. For example, in Figure 3, the interior boundary of X2 onsists ofritial points whih are not g-verties.Remark 3. A similar result holds for the following minimax problem:minx maxx2I(x) fi(x)where I(x) is a �nite index set varying as x varies. The following is a useful form.The proof is similar to the proof of Theorem 4.1 (Figure 4).
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x*

x( λ)
V

^̂xFig. 4. I(x) is de�ned on a subset of XTheorem 4.3 Let g(x) = maxi2I fi(x) where fi's are ontinuous and pseudo-onavefuntions in the interior of a onvex region X and I(x) is a �nite index set de�nedon a ompat subset X0 of X. Denote M (x) = fi 2 I(x) j fi(x) = g(x)g. Supposethat for any x 2 X, there exists a neighborhood of x suh that for any point y in theneighborhood, M (y) � M (x). If the minimum value of g(x) over X is ahieved atan interior point of X 0, then this minimum value is ahieved at a ritial point, i.e.,a point with maximal M (x) over X 0. Moreover, if x is an interior minimum pointin X 0 and M (x) � M (y) for some y 2 X 0, then y is a minimum point.Remark 4. Du and Pardalos [13℄ proved that the �nite index set I in Theorem 1an be replaed by a ompat set. Their theorem an be stated as follows.Theorem 4.4 Let f(x; y) be a ontinuous funtion on X � I where X is a polytopein Rm and I is a ompat set in Rn. Let g(x) = maxy2Y f(x; y). If f(x; y) isonave with respet to x, then the minimum value of g(x) over X is ahieved atsome ritial point.The proof of this theorem is also the same as the proof of Theorem 4.1 exeptthat the existene of the neighborhood V needs to be derived from the ompatnessof I and the existene of x̂ needs to be derived by Zorn's lemma.5. Geometri InequalitiesTheorem 4.1 was �rst used in a proof of the following geometri inequality.Theorem 5.1 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respetively. Let per(4ABC) denote the perimeter of the triangleABC. Thenper(4DEF ) � min(per(4AEF ); per(4BFD); per(4CDE)):



8 DING-ZHU DUThis inequality was proposed by Debrummer in 1956 and by Oppenhein in 1960.It was appeared in Amerian Mathematis Monthly as the 4964th problem in 1961.During 1961-1967, it obtained several proofs given by Dresel [?℄, Breush [?℄, Croft[?℄, Zalgaller [?℄, and Szekers [?℄. Using Theorem 2.1, Du [?℄ gave a new proof. Thisproof is not the simplest one. However, it is more general. In fat, it is suitable forsimilar inequalities. We introdue this proof as follows.Proof of Theorem 5.1. Let us �x DEF and vary ABC. Consider the followingfuntion f(A;B;C) = min(per(4AEF ); per(4BFD); per(4CDE)):As shown in Figure 5, A varies in the area WA bounded by EF and extensions ofDE and DF . Similarly, B and C varies in areas WB and WC , respetively. De�ne
D

EF

A*

B* C*Fig. 5. WA, WB and WC .X = 8<:(A;B;C) 2WA �WB �WC ������ B;D;C are olinear,C;E;A are olinear,A;F;B are olinear 9=; :We want to prove that for (A;B;C) 2 X,f(A;B;C) � per(4DEF ): (1)Note that three points (x1; y1), (x2; y2) and (x3; y3) are ollinear if and only if������ x1 y1 1x2 y2 1x3 y3 1 ������ = 0:



MINIMAX AND ITS APPLICATIONS 9Thus, X is a polyhedran of dimension three, whih is an unbounded region. Toobtain a polytope, onsider 4A�B�C� with D, E, F as its middle points of threeedges (see Figure 5). Let �WA be the bounded part obtained from utting WA by aline `A parallel to EF . If `A is suÆiently far away from EF , then A� is an interiorpoint of �WA. Similarly, we an de�ne polygons �WB and �WC . Suppose that thepolytope �X is obtained from the de�nition of X by using �WA� �WB � �WC to replaeWA �WB �WC . Clearly, to prove (1), it suÆes to prove that for every �X,max(A;B;C)2 �X f(A;B;C) = per(4DEF ): (2)Note that per(4AEF ), per(4BFD) and per(4CDE) are onvex funtions withrespet to (A;B;C). By Theorem 4.1, the maximum value of f(A;B;C) over �X isahieved at a g-vertex. If this g-vertex is an interior point of �X , then it must be(A�; B�; C�). In this ase, (2) holds. If this g-vertex (A;B;C) is on the boundaryof �X , then at least one of A, B and C is on the boundary of �WA or �WB or �WC .Without loss of generality, assume that A is on the boundary of �WA. If A is onEF or the extensions of DE and DF , then one of per(4AEF ), per(4BFD) andper(4CDE) equals twie the length of an edge of 4DEF whih is smaller thanper(4DEF ). Thus, this A must be on `A. When `A is suÆiently far from EF ,BF and CE are almost parallel. In the limiting ase that BF and CE are parallel,either B lies in4B�DF and is di�erent fromB� or C lies in4C�ED and is di�erentfrom C� (Figure 6). Thus, either per(4BDF ) < per(4B�DF ) = per(4DEF ) orper(4CED) < per(4DEF ). Therefore, in this ase (2) also holds when `A movessuÆiently far from 4A�B�C�. 2
A*

B* C*

D

EF

B

CFig. 6. BF and CE are almost parallel.Note that the area of 4AEF an be omputed by the following formula:S4AEF = 12 ������ xA yA 1xE yE 1xF yF 1 ������



10 DING-ZHU DUwhih a linear funtion with respet to A where xA and yB are oordinates of A.Thus, a similar argument yields the following.Theorem 5.2 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respetively. Thenmax(S4AEF ; S4BFD; S4CDE) � S4DEF � min(S4AEF ; S4BFD; S4CDE):Sine S4AEF is linear and per(4AEF ) is onvex with respet to A, the ratioper(4AEF )=S4AEF is psuedo-onvex in A. Note thatper(4AEF )=S4AEF = 2=r4AEFwhere r4AEF is the radius of the irle insribed 4AEF . Therefore, the aboveargument also yields the following.Theorem 5.3 Let D, E and F be three points on three edges BC, CA and AB ofa triangle ABC, respetively. Thenmax(r4AEF ; r4BFD; r4CDE) � r4DEF :6. Approximation PerformaneMany optimization problems are NP-hard. So, their optimal solutions are unlikelyomputed in polynomial time. For these problems, polynomial-time approximationsare useful. One way to design a polynomial-time approximation is as follows: putsome restrition on feasible solutions so that the optimal solution under this re-strition an be omputed in polynomial time and use this optimal solution for therestrited problem to approximate the optimal solution for the original problem.To be expliit, onsider the problemmink2K �k(x)whih is NP-hard. Let I � K suh thatmini2I �i(x)an be omputed in polynomial time. Now, we use the seond one to do an approx-imation of the �rst one. Usually, the performane of approximation is measured bythe following ratio: � = minx mink2K �k(x)mini2I �i(x) :Clearly, the larger is this ratio, the better is the approximation. Proving the lowerbound of this ratio an be transformed to a minimax problem. In fat, suppose thatwe want to prove � � �0. Then it suÆes to prove that for any x,mink2K �k(x) � �0mini2I �i(x):



MINIMAX AND ITS APPLICATIONS 11This is equivalent to that for any x and k 2 K,�k(x) � �0mini2I �i(x) � 0;that is, maxi2I (�k(x)� �0�i(x)) � 0:Thus, it suÆes to prove that for any k 2 K,minx maxi2I (�k(x)� �0�i(x)) � 0:For example, let us onsider the Steiner tree problem.The Steiner tree problem is a lassi intratable problem with many appliationsin the design of omputer iruits, long-distane telephone lines, or mail routing, et.Given a set P of points in a metri spae, the problem is to �nd a shortest networkinteronneting the points in the set. The optimal solution of this problem is alledthe Steiner minimum tree on the point set P . The Steiner minimum tree may havesome verties not in P . Suh verties are alled Steiner points while the verties inP are alled regular points.A spanning tree on P is a tree interonneting all points in P under restritionthat all edges are between the points in P . In the other words, no Steiner point isallowed to exist. The minimum spanning tree is the shortest spanning tree. Whilethe Steiner minimum tree problem is intratable, the minimum spanning tree an beomputed pretty fast. Thus, we an use the minimum spanning tree to approximatethe Steiner minimum tree. In this ase, the approximation performane ratio isalled the Steiner ratio.The topology of a tree is the adjaent relation or the adjaent matrix of thetree. Let t(P ) denote the minimum tree with topology t on the point set P . Let`(t(P )) denote the length of the tree t(P ). Suppose that all topologies of treesinteronneting P form a set K and all topologies of spanning trees on P form a setI. Then the Steiner minimum tree and the minimum spanning tree problems anbe represented respetively as follows:mint2K `(t(P )) and mins2I `(s(P )):The lengths of the Steiner minimum tree and the minimum spanning tree on thepoint set P are denoted respetively by LS (P ) and LM (P ). From the above analysis,to prove a lower bound �0 for the Steiner ratio, it suÆes to prove that for any t 2 KminP maxs2I [`(t(P ))� �0`(s(P ))℄ � 0:A topology t in K is full if every regular point is a leaf. If a regular point is nota leaf, then this topology an be deomposed at this point into two or more subtreetopologies. In this way, every topology t in K an be deomposed into edge-disjointfull topologies t1, � � �, th respetively interonneting subsets P1, � � �, Ph of P . Notethat the union of minimum spanning trees for P1, � � �, Ph is a spanning tree for P .Thus, 8k `(tk(Pk)) � �0LM (Pi) =) `(t(P )) � p32 LM (P ):



12 DING-ZHU DUIt follows that to prove the lower bound �0 for the Steiner ratio, it suÆes to provethat for every full topology t in K,minP maxs2I [`(t(P ))� �0`(s(P ))℄ � 0: (3)7. Gilbert-Pollak ConjetureIn 1968, Gilbert and Pollak [19℄ onjetured that the Steiner ratio in the Eulideanplane is p3=2. Through many e�orts [2, 3, 6, 7, 8, 21, 23℄, this onjeture was�nally proved by Du and Hwang [11, 9, 10℄. Their proof is motivated from thetransformation in Setion 6.Note that the Steiner minimum tree in the Eulidean plane has the followingproperties.(S1) All leaves are regular points.(S2) Any two edges meet at an angle of at least 120o.(S3) Every Steiner point has degree at least three.A tree satisfying the above three onditions and interonneting all regular points(i.e., all points in P ) is alled a Steiner tree. Clearly, in a full Steiner tree, every an-gle equals 120o. Thus, the full Steiner tree an be determined by all its edge-lengthsprovided the topology of the tree is �xed. Let us give the following notations.t(x): the full Steiner tree with topology t and edge-lengths (x1; � � � ; x2n�3) (= x).P (t;x): the set of all leaves of the tree t(x).s(t;x): the spanning tree with topology s for the point set P (t;x).Now, (3) an be written asminx maxs2I (x1 + � � �+ x2n�3� p32 `(s(t;x)) � 0 (4)where I is the set of spanning tree topologies for the set of n points. Note that forany � > 0, P (t;�x) is similar to P (t;x). Thus, `(s(t;�x)) = �`(s(t;x)). This meansthat among all similar point sets, we need to onsider only one. So, it suÆes toonsider x with x1 + � � �+ x2n�3 = 1. De�neft;s(x) = 1� p32 `(s(t;x))and X = fx = (x1; � � � ; x2n�3) j x1 � 0; � � � ; x2n�3 � 0; x1 + � � �+ x2n�1 = 1g:To show (4), it suÆes to prove that for every full Steiner tree topology t,minx2Xmaxs2I ft;s(x) � 0:The next lemma shows that ft;s(x) is a onave funtion in x.Lemma 7.1 ft;s(x) is a onave funtion in x.



MINIMAX AND ITS APPLICATIONS 13Proof. It suÆes to prove that `(s(t;x)) is a onvex funtion in x. Let A and Bbe two regular points. We show that the distane between A and B, d(A;B) is aonvex funtion of x. Find a path in T whih onnets points A and B. Suppose thepath has k edges with lengths x10 ; :::; xk0 and with diretions e1; :::; ek, respetively,where e1; :::; ek are unit vetors. Then d(A;B) = kx10e1 + � � �+ xk0ekkD. Note thata norm is a onvex funtion and the part inside the norm is linear with respet tox. Thus, d(A;B) is a onvex funtion with respet to x. Finally, we notie that thesum of onvex funtions is also a onvex funtion. 2By Theorem 4.1, the problem is redued to the problem of �nding the minimaxvalue at ritial points. Note that the transformation between the Steiner ratioproblem and the minimax problem is based on a mapping between sets of n pointsin the Eulidean plane and points in the (2n � 3)-dimensional spae. Thus, eahritial point orresponds to a set of n points with a nie geometri struture, alleda ritial struture. Finally, verify the onjeture on the point set with ritialstruture.For a tehnial reason, we also need to modify Gilbert-Pollak onjeture at thebeginning. This modi�ation is neessary beause the ritial struture obtainedabove is not nie enough to be able to handle. This modi�ation will make theritial strution muh nier. In the next setion, we give the proof in details.8. Re�ne the Proof of Du and HwangIn the following, we will re�ne the proof for Gilbert-Pollak onjeture by using The-orem 4.3. We will show how to modify Gilbert-Pollak onjeture, how to determinethe ritial struture and how to verify the onjeture for the point set with ritialstruture.8.1. Charateristi Area and Inner Spanning TreesConsider a full Steiner tree t(x). Two regular points are alled adjaent if one an bereahed from the other by always moving in a lokwise diretion or always movingin a ounterlokwise diretion. Clearly, eah regular point has two other adjaentregular points.Now, onsider two adjaent regular points A and B with the path AS1 � � �SkBonneting them. Note that there is a point Si suh that A lies inside of everyangle on the path AS1 � � �Si and B lies inside of every angle on the path Si � � �SkB.Thus, onneting A to S1; :::; Si and B to Si; :::; Sk, we obtain 4AS1S2, 4AS2S3,� � �, 4ASi�1Si, 4ASiB, 4BSiSi+1, ..., 4Bk�1Sk. Pasting these triangle alongtheir edges suh that every point between them has a neighborhood isometri to aneighborhood in the Eulidean plane, we obtain a simply onneted region eitherin the plane or in a multilayer Rimann surfae (Figure 7). Call this region a ell.Pasting all ells along all edges in t(x) results in an area suh that every point on t(x)has a neighbothood isometri to a neighborhood in the Eulidean plane. Clearly, thearea is a simply onneted region in a multilayer Rimann surfae. It is not unique(Figure 7(a)(b)). However, they all satisfy the following properties:(R1) Every point has a neighborhood isometri to a neighborhood in the Eu-
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(c)Fig. 7. Simple onneted region in multilayer Rimann surfae.lidean plane.(R2) All regular points lie on the boundary.(R3) t(x) lies inside of the area.Those areas are alled harateristi area of t(x). We will use C(t;x) to representany one of them.As x varies the harateristi area C(t;x) varies. For some x, t(x) may have self-intersetion in the Eulidean plane but has no self-intersetion in C(t;x) (see Figure8). Let us allow suh x together with C(t;x) in our onsideration. Let X(t;x)
Fig. 8. A monotone path with and without self-rossing.



MINIMAX AND ITS APPLICATIONS 15denote the set of all edge-length vetors y suh that x together with C(t;x) an besmoothly moved to y by varing the edge-lengths of all triangles whih onsist of theharateristi area. Clearly, for any y 2 X(t;x), C(t; y) also has the properties (R1),(R2) and (R3). If none of the triangles in C(t; y) is degenerated, then y must be aninterior point of X(t;x). Thus, for every boundary point y of X(t;x), C(t; y) musthave a degenerated triangle. This means that this triangle has either an angle of180o or an edge of length zero. Look at bak the triangles 4AS1S2, � � �, 4ASkB.In eah of them, every angle other than the angle at A is at most 120o. So, onlythe angle at A may vary to 180o. This fat implies that for a boundary point y ofX(t;x), one of the following two ases has to our:(B1) y has at least one zero-omponent.(B2) t(y) has a regular point lies on the path from the regular point to an adjaentregular point. (For example, in Figure 9, (a) is not in Case (B2) beause the regularpoint and the path whih seem to overlap are in di�erent layers. But, (b) is in Case(B2).)
(a) (b)Fig. 9. (b) is in Case (B2) but (a) is not.A spanning tree on P (t;x) is alled an inner spanning tree with respet to t(x)and a harateristi area C(t;x) if it lies inside of C(t;x). Let I(t;x) denote the setof inner spanning tree topologies. We will prove the following.Theorem 8.1 For every full Steiner tree topology t and any harateristi areaC(t;x), minx2 �Xt maxs2I(t;x) ft;s(x) � 0:Theorem 8.1 is equivalent toLS (P (t;x)) � p32 LN (P (t;x))where LN (P (t;x)) is the length of the minimum inner spanning tree with respet tot(x). Sine LN (P (t;x)) � LM (P (t;x)), Gilbert-Pollak onjeture is a onsequeneof Theorem 8.1.



16 DING-ZHU DUDe�ne gt(x) = maxs2I(t;x) ft;s(x)and M (t;x) = fi 2 I(t;x) j ft;s(x) = gt(x)g:To use Theorem 4.3, we need to prove the following.Lemma 8.2 For every interior point x of �Xt, there is a neighborhood of x suh thatfor any y in the neighborhood, M (t; y) � M (t;x).Proof. First, we show that for any m 2 M (t;x) there exists a neighborhood Uof x suh that for any y 2 U , m is in I(t; y). For ontradition, suppose suha neighborhood does not exist. Then there is a sequene of points yk onvergingto x suh that m 62 I(t; yk). Thus every m(t; yk) has at least one edge not inthe harateristi area C(t; yk). Sine the number of edges is �nite, there exists asubsequene ofm(t; yk) eah of whih ontains an edge not in C(t;x), but these edgesonverge to an edge AB in m(t;x). It is easy to see that AB is on the boundary ofthe area C(t;x) and that A and B are not adjaent. (An edge between two adjaentregular points always lies in the harateristi area.) Sine all verties in an innerspanning tree lie on the boundary of C(t;x), there is a regular point lying in theinterior of the segment AB, ontraditing the minimality of m(t;x).Now, we prove the lemma by ontradition. Suppose that there is a sequene ofpoints yk onverging to x suh that for eah yk, a spanning tree topology mk existssuh that mk 2M (t; yk) nM (t;x). Sine the number of spanning tree topologies is�nite, there is a subsequene of points yk0 with the same mk0 , denoted by m. Wean also assume that this subsequene lies inside of the neighborhood U of x. Thus,for every k0, `(m(t; yk0) � `(m0(t; yk0)) for all m0 2M (t;x) sine M (t;x) � I(t; yk0).Letting k0 ! 1, we obtain that `(m(t;x)) � `(m0(t;x)) for m0 2 M (t;x). Sinem 62M (t;x), m(t;x) must not be an inner spanning tree. It follows that there existsa neighborhood of x suh that for any point y in the neighborhood, m(t; y) is not aninner spanning tree for t(y), ontraditing the existene of the subsequene of pointsyk0 . 2An immediate onsequene of Lemma 8.2 is that gt(x) is ontinuous over interiorof �Xt. Denote F (t) = minx2Xt gt(x). By Theorem 4.3 and Lemmas 7.1 and 8.2,F (t) is ahieved at some ritial point. Choose a full topology t� suh that F (t�) =mint F (t) where t is over all full Steiner tree topologies on n regular points. We proveTheorem 8.1 by ontradition. Suppose that Theorem 8.1 is false, i.e., F (t�) < 0,and that n is the smallest number of regular points suh that F (t�) < 0. From nowon, a point x in �Xt� is alled a minimum point i� gt�(x) = F (t�).Lemma 8.3 Every minimum point is an interior point of �Xt� .Proof. Suppose to the ontrary that there exists a minimumpoint x on the boundaryof �Xt� . First, assume that (B1) ours, that is, t�(x) have some edges vanished. Ifthere is a vanished edge inident to a regular point, then t�(x) an be deomposed



MINIMAX AND ITS APPLICATIONS 17into several edge-disjoint smaller Steiner trees. Sine every smaller Steiner tree hasfewer regular points, we an apply Theorem 8.1 to them. Note that a union of innerspanning trees for the smaller Steiner trees is an inner spanning tree for t�(x). We�nd a ontradition to F (t�) < 0 by summing all inequalities. So, every vanishededge is between two Steiner points. In this ase, we an �nd a topology t satisfyingthe following onditions (Figure 10).(1) Two regular points are adjaent in t i� they are adjaent in t�.(t is alled aompanion of t� when t satis�es this ondition.)(2) There is a tree T interonneting the n points in P (t�;x), with the topologyt and with length less than `(t�(x)).
A i+1

Ai
A i

A i+1

A i

A i+1

A i

A i+1Fig. 10. A ompanion.To do so, let us �rst note thatIf the Steiner tree of topology t for P (t;x) exists, then there exists a parametervetor y suh that P (t; y) = P (t�;x). Let h = 1=`(t(y)). Sine `(t(y)) � `(T ) <`(t�(x)) = 1, h > 1. Note that t(hy) is similar to t(y). Heneft;s(hy) = 1� (p3=2)`(s(t;hy))= 1� (p3=2)h`(s(t;hy))= 1� (p3=2)h`(s(t�;x))< gt�(x)= F (t�)where s is a minimumspanning tree topology for the point sets P (t;hy) and P (t�; x).Sine hy 2 �Xt, we have F (t) � gt(hy) < F (t�), ontraditing the minimality ofF (t�).If the Steiner tree of topology t for P (t�;x) does not exist, then we annot usethe above argument diretly sine gt(y) is unde�ned. (Remember that F (t�) is theminimum over all full Steiner topologies. So even though T is a shorter tree, there isno ontradition to the minimality of F (t�).) Now, we onsider any tree of topologyt. Suh a tree an be determined by edge lengths and angles at every Steiner point.Write the lengths into a length vetor y and the angles into an angle vetor �.Denote suh a tree by t(y; �). Two regular points is said to be adjaent in t(y; �) ifin a Steiner tree of topology t, the orresponding two regular points are adjaent.Construting the harateristi area for t(y; �) by onneting every pair of adjaentregular points, we an de�ne an inner spanning tree and a minimum inner spanning



18 DING-ZHU DUtree for t(y; �) in a similar way. Let LN (t; y; �) denote the length of a minimuminnerspanning tree for t(y; �). We an also show the ontinuity of LN (t; y; �). Restritall angles to be between 0o and 360o and the sum of any three angles at the sameSteiner point to equal 360o. Let Yt be the set of vetors (y; �) with the desribedrestritions on � and the restritions P yi = 1 and y � 0. Then Yt is ompat. So,the funtion h de�ned by ht(y; �) = 1 � (p3=2)Lt(y; �) reahes its minimum in Yt.We denote this minimum value by H(t). By an argument similar to that in the lastparagraph, we an prove that H(t) < F (t�). Thus, H(t) < F (t).Suppose that ht(y; �) = H(t). If all omponents of � equal 120o, then t(y; �) =t(y) and y 2 �Xt. Thus, F (t) � ht(y; �) = H(t), a ontradition. Therefore, � musthave a omponent less than 120o. Note that for an angle that is less than 120o int(y; �), at least one edge of the angle must be vanished, for otherwise, we an shortenthe tree without hanging the topology. Thus, t(y; �) ontains vanished edges. Ifthere exists a vanished edge inident to a regular point, we deompose h(y; �) and�nd a full topology t0 with fewer regular points suh that H(t0) < 0. If there existsa vanished edge between two Steiner points, then we an �nd a new ompanion t0 oft suh that H(t0) < H(t). Repeating the above argument, we will obtain in�nitelymany full topologies with at most n regular points, ontraditing the �niteness ofthe number of topologies. Therefore, (B1) annot our.Now, assume that (B2) ours. So, t(x) (in its harateristi area) has a regularpoint touhing an edge or another regular point. In the former ase, we an deom-pose t(x) at the touhing point to obtain two trees eah with less than n regularpoints. In the latter ase, we an redue the number of regular points by one. Ineither ase, an ontradition is ahieved by an argument similar to the one used atthe beginning of this proof. 28.2. Critial StrutureIn this subsetion, we want to determine the geometri struture of P (t�; x) for everyinterior minimum point x in �Xt� . For simpliity of notation, we use t for t� in thissubsetion and the next subsetion.Let �(t;x) denote the union of minimum inner spanning trees for P (t;x). Let us�rst show some properties of �(t;x).Lemma 8.4 Two minimum inner spanning trees an never ross, i.e., edges meetonly at verties.Proof. Suppose that AB and CD are two edges rossing at the point E (Figure11) and they belong to two minimum inner spanning trees T and T 0, respetively.Without loss of generality, assume that EA is the shortest one among the foursegments EA, EB, EC and ED. Removing the edge CD from the tree T 0, theremaider has two onneted omponents ontaining C and D, respetively. Withoutloss of generality, assume that A and C are in the same omponent. Note that`(AD) < `(EA) + `(ED) � `(CD). If AD lies in the harateristi area, thenonneting the two omponents by AD results in a shorter inner spanning tree,ontraditing the minimality of T 0. If AD does not lie in the harateristi area,there must exist some regular points lying inside of the triangle EAD. Consider
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A

B

C

D

EFig. 11. AB and CD ross eah other.the onvex hull of those regular points and two points A and D. The boundary ofthe onvex hull other than the edge AD must lie in the harateristi area. Thisboundary ontains a path from A to D. In this path there exists two adjaentverties whih belong to di�erent onneted omponents of T 0 n fCDg. Connetingtwo suh adjaent verties also results in an inner spanning tree shorter than T 0, aontradition. 2Lemma 8.5 Every polygon of �(t;x) has at least 2 equal longest edges.Proof. Suppose to the ontrary that �(t;x) has a polygon Q with the unique longestedge e. Let m be the minimum inner spanning tree ontaining e. For every edgee0 of Q not in m, the union of m and e0 ontains a yle. If this yle ontainse, then (m n feg) [ fe0g is an inner spanning tree shorter than m, a ontradition.Thus, suh a yle does not ontain e. Hene, for every e0 in Q not in m, m hasa path onneting two endpoints of e0. These paths and e form a yle in m, aontradition. 2Lemma 8.6 Let A, B and C be three regular points. Suppose that all three edgesAB, BC and CA lie in C(t;x). If the edge AB is in �(t;x), then`(AB) � max(`(AC); `(BC)):Moreover, if AB is in �(t;x) and`(AB) � max(`(AC); `(BC));then either BC or CA is in �(t;x) and also has the same length as AB.Proof. To prove the �rst half, for ontradition, suppose that`(AB) > max(`(AC); `(BC)):



20 DING-ZHU DURemovalAB from the minimum spanning tree results in two onneted omponentsontaining A and B, respetively. C is in one of the omponents. Thus, adding ACor BC would result in a spanning tree shorter than the minimum spanning tree, aontradition.The seond half an be proved in a similar way. 2Note that the harateristi area of t(x) is bounded by a polygon of n edges.Partitioning the area into n � 2 triangles by adding n � 3 edges, we will obtain anetwork with n verties and 2n�3 edges. This network will be alled a triangulationof C(t;x). Let us �rst ignore the full Steiner tree t(x) and onsider the relationshipbetween the vertex set and the length of edges. Note that in the previous disussion,when we say that a set P of points is given, we really mean that the distane betweenevery two points in the set is given, that is, relative positions between those pointshave been given. With this understanding, we make the following observations.(1) The vertex set (i.e., the set of regular points, P (t;x)) an be determined by2n� 3 edge lengths of the network.(2) The 2n�3 edge-lengths are independent variables, that is, the network ouldvary by hanging any edge-length and �xing all others as long as in eah triangle,the triangular inequality is preserved.Note that every �(t;x) an be embedded in a triangulation of C(t;x). Thus, alledges in �(t;x) are independent.A �(t;x) is said to have a ritial struture if �(t;x) partitions C(t;x) into n� 2equilateral triangles. Suh a struture has the property that any perturbation wouldhange the set of topologies of minimum inner spanning tree. The following lemmashows that every minimum point has �(t;x) with a ritial struture.Fig. 12. A ritial struture.Lemma 8.7 If x� is a minimum point, then �(t;x�) divides C(t;x�) into 2n � 3equilateral triangles (Figure 12).Proof. First, let us embed �(t;x�) into a triangulation of C(t;x�). If the lemma isfalse then one of the following must our:(a) There is an edge in the triangulation whih does not belong to �(t;x�).(b) No edge in the triangulation does not belong to �(t;x�). But, �(t;x�) has anonequilateral triangle.We will show that in eah ase, the number of minimum spanning trees an beinreased, i.e., we an �nd another minimum point y suh that M (t;x�) � M (t; y)and M (t;x�) 6=M (t; y).



MINIMAX AND ITS APPLICATIONS 21First, assume that (a) ours. Let `0 be the length of the logest edge whih is inthe triangulation but is not in �(t;x�). We shrink all longest edges and keep otheredge-lengths until a new minimum spanning tree is produed. Let `00 be the lengthof the longest edge at the last minute during the shrinking. Note that the triangularinequality is always preserved in every triangle if shrinking happens to all logestedges in the triangle or shrinking happens to the shortest edge in an isoseles. Thelatter is guaranteed by Lemma 8.6. Thus, during the shrinking from `0 to `00, we donot need to worry about the ondition on the triangular inequality.Now, for eah ` 2 [`0; `00℄, denote by �P (`) the orresponding set of regular points.Then P (`0) = P (t;x�). Consider the set L of all ` 2 [`0; `00℄ satisfying the onditionthat there is a minimum point y in �Xt suh that �P (`) = P (t; y). Sine `0 2 L, L isnonempty. Moreover, L is a losed set sine all minimum points form a losed set.Now, onsider the minimal element `� of L. We may assume `� > `00 for if `� = `00,then y meets the requirement already. Suppose �P (`�) = P (t; y). Then for anym 2 M (t;x�), `(m(t; y)) = `(m(t;x�)). Sine both x� and y are minimum points,we have gt(x�) = gt(y), that is, the length of a minimum inner spanning tree forP (t;x�) equals that for P (t; y). Hene M (t;x�) � M (t; y). However, x is a ritialpoint. Thus, M (t;x�) = M (t; y). By Lemma 8.3, y is an interior point of �Xt. Thismeans that there exists a neighborhood of `� suh that for ` in it, the Steiner treeof topology t exists for the point set �P (`). Thus, there exists `00 < ` < `� suh that�P (`) = P (t; z) for some vetor z (not-neessarily in �Xt but hz 2 �Xt for some h > 0).Sine `(m(t;x)) is ontinuous with respet to x, there is a neighborhood of y suhthat for every point y0 in the neighborhood, M (t; y0) � M (t; y). So, ` an be hosento make z satisfy M (t; z) � M (t; y), too. Note that M (t;x�) = M (t; y) and forevery m 2M (t;x�), `(m(t; z)) = `(m(t;x�)). It follows that for every m 2M (t;x�),m(t; z) is a minimum inner spanning tree for P (t; z). Thus, M (t; z) = M (t;x�) andgt(x�) = gt(z). Suppose hz 2 X where h is a positive number. By the seond halfof Theorem 4.3, gt(x�) = gt(hz) = hgt(z). So, h = 1, i.e., z 2 X. Hene, z is aminimum point, ontraditing the minimality of `�.In ase (b), we an give a similar proof by inreasing the length of all shortestedges in �(t;x�). 28.3. Hexagonal TreesIn this subsetion, we prove gt(x�) � 0 where x� is a minimumpoint. To do this, webegin with studying a di�erent kind of trees. A tree in C(t;x�) is alled a hexagonaltree if every edge of the tree is parallel to some edge in �(t;x�). The shortesthexagonal tree interonneting the point set P is alled a minimum hexagonal treeon P . Let Lh(P ) denote the length of the minimum hexagonal tree on P . Thefollowing relation was disovered by Weng [25℄.Lemma 8.8 Ls(P ) � (p3=2)Lh(P )Proof. First, we note that if a triangle ABC has the angle at A not less than 120o,then `(BC) � (p3=2)(`(AB) + `(AC)). Now, eah edge of a Steiner minimum treean be replaed by two edges meeting at an angle of 120o and parallel to the given



22 DING-ZHU DUdiretions. Therefore, the lemma holds. 2A point on a hexagonal tree but not in P is alled a juntion if the point isinident to at least three lines. A hexagonal tree for n points is said to be full if allregular points are leaves. Any hexagonal tree an be deomposed into a union ofedge-disjoint smaller full hexagonal trees. Suh a smaller full hexagonal tree will besaid to be a full omponent of the hexagonal tree.In the hexagonal tree, an edge is referred to as a path between two verties(regular points or juntions). Thus, an edge an ontain several straight segments.An edge is alled a straight edge if it ontains only one straight segment, and isalled a nonstraight edge otherwise. Any two segments adjaent to eah other in annonstraight edge meet at an angle of 120o sine if they meet at an angle of 60o thenwe an shorten the edge easily.In any minimum hexagonal tree T , an edge with more than two straight seg-ments an be replaed by an edge with at most two segment. To see this, onsidera nonstraight edge e in a minimum hexagonal tree T . Suppose A and B are twoendpoints of e. Then all shortest hexagonal paths from A to B form a parallelogram(see Figure 13). This parallelogram must lie in C(t;x�). For otherwise, the part of
A

B

eFig. 13. The parallelogram.this parallelogram whih is inside of C(t;x�) must ontain a piee of the boundaryof C(t;x�). This boundary has to have at least two onseutive segments in the dif-ferent diretions in order to pass through the parallelogram without rossing e. Theommon endpoint of the two segment is a regular point lying in the parallelogram.Consider all suh regular points and all shortest hexagonal paths from A to B inC(t;x�). One of the paths must pass through one of the regular points, say C (seeFigure 13). Replae e by this path and delete an edge inident to C. This wouldresult in a shorter hexagonal tree, ontraditing the minimality of T . Now, sine theparallelogram lies in C(t;x�), we an use a path with at most two straight segmentsto replae e.From now on, we make the onvention that any edge in a minimumhexagonal hasat most two straight segment. In addition, when we talk about an edge of a juntion,its �rst segment is the segment inident to the juntion. The other segment, if itexists, is the seond segment of the edge. Note that the juntions as shown inFigure 14 an result in a shorter tree. Thus, those kinds of juntions annot existin a minimum hexagonal tree.Let T be a minimum hexagonal tree for the point set P with the maximumnumber of full omponents.
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(a) (b)Fig. 14. Juntions like these annot exist.Lemma 8.9 T an be hosen to have the properties that every juntion of degreethree in T has at most one nonstraight edge.Proof. First, onsider a juntion of degree three has two nonstraight edges. Thenthese two edges have segments in the same diretion. Flip the edges if neessary toline up these two segments, then the seond segments of these two edges as well asthe �rst segment of the third edge are three segments eah lying ompletely on oneside of the line just onstruted. Therefore one side has the majority of the threesegments and we an move the line to derease the number of nonstraight edges (seeFigure 15).For a juntion of degree more than three, the proof is similar (see Figure 15). 2Now, we omplete our proof for Theorem 8.1 by proving the following lemma.Lemma 8.10 Let T be a minimum hexagonal tree for the point set P with themaximum number of full hexagonal subtrees and the property in Lemma 8.9. ThenT is a minimum inner spanning tree.Proof. Suppose that the lemma is false. Then T has a full omponent T 0 with atleast one juntion. Suppose that T 0 interonnets a subset P 0 of P . Clearly, T 0 hasa juntion J adjaent to two regular points A and B. (Otherwise, T 0 ontains ayle.)Let us �rst onsider the ase that both edges AJ and JB are straight. If AJand JB are in di�erent diretions then J is a regular point. Hene, they are in thesame diretion. Let C be the third vertex adjaent to J . First, we an assume thatJC is straight for if JC is not straight, we an replae it by a straight edge withoutinreasing the length and the number of full omponents (Figure 16 (a)).Sine C being a regular point implies J being a regular point, we see that C is ajuntion. We will show that one of the following ours:(a) J is a regular point.(b) C an be moved further away from J .Sine the latter movement annot last forever, J is a regular point whih ontraditsthe de�nition of the juntion.
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Fig. 15. Derease the number of nonstraight edges.
A BJ

C

(a)

A J B

C D

(b)Fig. 16. (a) inreases the number of full omponents; (b) shortens T 0.Let l be a line through C, parallel to AB. If C has a straight edge overlapping l onthe right of C, then we go from C along the edges of T 0 to the left as far as possible.Suppose that we end at a point D. Then `(CD) < `(JB) for if `(CD) � `(JB),then JC an be moved to the right until J and B are idential so that the numberof full omponents is inreased. Sine `(CD) < `(JB), D annot be a regularpoint. For otherwise, we an move JC to touh D whih inreases the number offull omponents. D annot be a juntion, neither. In fat, for otherwise, T 0 anbe shorten (Figure 16 (b)). Thus, D is a orner of a nonstraight edge. A similar



MINIMAX AND ITS APPLICATIONS 25situation happens to the left hand side of C. Now, we an move C further awayfrom J as shown in Figure 17. If C has no edge with segment overlapping l, thenC an also be moved further away from J . This movement annot happen forever.Finally, C beomes a regular point. It follows that J is a regular point.
A J B

C D C

A J B

D

A J B

CFig. 17. C is moved further away from J .Seondly, we onsider the ase that AJ is a straight edge and JB is a nonstraightedge with a segment in the same diretion as AJ . Flip JB, if neessary, to line upthe two �rst segments of AJ and JB. Let BD be the �rst segment of JB. ThenD must be a regular point. If D is not idential to B, then we an shorten T bydeleting an edge inident to D. If D is idential to B, then we go bak to the �rstase.Thirdly, if AJ is a straight edge and JB is a nonstraight edge without a segmentin the same diretion as AJ , then J an be moved either to A or to a regular point(Figure 18) whih inreases the number of full omponents.
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B

J
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BFig. 18. J is moved to a regular point.Sine other ases are symmetri to the above three, the lemma is proved. 2By Lemmas 8.8 and 8.10, for any minimum point x�,LS (P (t;x�)) � p32 LN (P (t;x�))that is, gt(x�) � 0:It follows that F (t) � 0, ontraditing the assumption that F (t) < 0. (Please notethat this t is the t� in Setion 8.1.) Therefore, Theorem 8.1 is proved.
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