MINIMAX AND ITS APPLICATIONS: REVISIT THE PROOF OF
GILBERT-POLLAK CONJECTURE

DING-ZHU DU*

Computer Science Department
Unaversity of Minnesota
Minneapolis, MN 55455 USA
and

Institute of Applied Mathematics
Chinese Academy of Sciences
Beuing 100080, PRC

Abstract. Consider the problem min, e x max;c; fi(z) where X is a convex set, I is a finite set
of indices and f;(z)’s are continuous concave functions of . In this article, we study a character-
ization of z € X at which the minimax value is achieved. We also study some applications of the
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1. Introduction

Minimax is an important topic in optimization. There are two fundamental ideas to
solve minimax problems.
The first 1s the search for a basis, tha is, for the problem

glel)l(lglgf(x,y)

determine first a finite subset B of X such that

glel)l(lglgf(x,y) = Ixrélgglezgf(x,y)

and then search an optimal z* from B in finitely many steps.
The second is the determination of saddle point. A point (z*,y*) is called a
saddle point of f(x,y) on the set X x Y if forany # € X and y € Y,

@™ y) < f@y7) < flayr).
It follows that for a saddle point (z*, y*),

. e .
gleljr(nyngf(%y) = f(z",y )—Iyngglel;gf(%y)

These two ideas have resulted two important mathematical branches. P. L.
Chebyshev is probably the first person who made an important contribution to
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the first idea. He discovered theory of best approximation. The second 1dea was ex-
tensively studied by Von Neumann. He initiated game theory. Since Von Neumann,
many efforts have been made to find various sufficient conditions for a point being
a saddle points. This involves a great deal of mathematics including fixed point
theory.

While a hudge amount of materials about minimax in the literature exist, we
select only a small part in this article. In fact, including all subjects about minimax
should be the duty of a book instead of an article. In this article, we will commit
ourselves only to recent developments on the first idea.

2. Chebyshev Theorem

The original problem considered by Chebyshev is as follows: Given a list of values
of some real function:

yk:f(xk)a kZOa"'ama
find a polynomial p of degree at most n (n < m) which provides the best approxi-
mation at these m points, that is, p minimizes
k257, 1o = Pkl
Chebyshev gave a beautiful result about the solution of this problem.
First, consider m = n + 1. In this case, the polynomial of the best approx-

imation exists and is unique. Chebyshev proved that a polynomial p is the best
approximation if and only if for some h,

(=) h + play) =y, fork=0,... n+1.

Furthermore, A and p can be constructed explicitly. This p 1s called a Chebyshev
winterpolating polynomial.

For general m, a subset of n 4+ 2 z’s is called a basis. Each basis ¢ determines a
Chebyshev interpolating polynomial p, and a value

h(o) = max |y, — po+ (x1)]-
rLEO
A basis o* 1s called an extremal basis if

h(e™) = maxh(o)

o
where o is over all bases. Chebyshev showed the following.
Theorem 2.1 There exists a unique polynomial of best approximation. A poly-

nomial p 1s the polynomual of best approrimation if and only if p s a Chebyshev
winterpolating polynomial for some extremal basis.

There are other ways to characterize the extremal basis. In fact, Chebyshev also
proved that ¢* is an extremal basis if and only if

h(o™) = L max |y — Poe ()]

yeeey
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(See [5].) For each polynomial p, define
I(p) =i [ lyi —p(ei)] = max |yx —p(ex)[}.

I(p) is mazimal if no polynomial ¢ exists such that I(p) # I(q) and I(p) C I(q).
From the second characterization of the extremal basis, it is not hard to prove the
following.

Proposition 2.2 ¢* is an extremal basis if and only if I(ps+) is mazrimal.

3. Linear Programming
Chebyshev problem can be transformed to a linear programming as follows:
min z
subject to —z <ag+arzp+ - Fanzy —yp < 2
k=0,...,m.
Note that this linear programming has n + 2 variables and 2(m+ 1) constraints. For
an extremal basis 0%, p,+ would make n+ 2 constraints active (i.e., the equality sign
holds for those constraints). This means that each extremal basis corresponds to a
feasible basis of the above linear programming in the following standard form.
min z
subject to wuyp —z=ag+ a1+ -+ anxTp —Yp =2 — v
Uk Z Oa Vi Z 0
k=0,...,m.
Linear programming are closely related to minimax problems. In fact, there are

several ways to transform linear programming to a minimax problem. For example,
consider a linear programming

min  cx
subject to Az = b
x>0
and its dual
max bTy

subject to ATy < c.

For any feasible solution x of the original linear programming and any feasible so-
lution y of the dual linear programming, cx > b”y. The equality sign holds only if
the two feasible solutions are actually optimal solutions for the two linear program-
ming, respectively. This is equivalent to the following minimax problem achieves the
minimax value 0.

{nil; max(ce — by, —x, Ax — b.b — Ax, ATy — ¢).
ey
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4. Du-Hwang Theorem

In the previous two sections, we see already two problem in the following form:

R, )
Now, we consider it with a little general conditions. We assume that X 1s a polytope
in R™ and f;(z)’s are continuous concave functions of . We will extend Chebyshev’s
idea to this problem.
The simplest case is m = n = 1. As shown in Figure 1, the minimum value of a
concave function fi(z) on the interval [a, b] is achieved at a or . For m = 1 and

© |- _____
ol________

Fig. 1. The minimum point of a concave function.

general n, it is well-known that the minimum value of fi(x) is achieved at a vertex
of the polytope X. What we are interested in this article is the case m > 1. If
m > 1 and n = 1, then as shown in Figure 2, g(2) = maxj=1,....m fi(x) is a piecewise
concave function. Thus, the minimum value of g(z) on the interval [a, b] is achieved
at an endpoint of a concave piece.

Fig. 2. A piecewise concave function g(z).

Similarly, for m > 1, the polytope P can be divided into small regions in each of
which g(z) is concave. These small regions can be defined by

X, ={ee X | filz) =g(x)}.
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Fig. 3. g-vertices.

However, they may not be convex. Thus, where the minimum value of g(x) can be
achieved is not so easy to see. Du and Hwang [10] found that the minimum value of
g(z) can still be achieved at a verter of small regions where the vertex is defined in
the following way.

Let us first give a new definition for the vertex of a polytope. Consider the
polytope X = {z | a]Tx >b;,j=1---,k}. Denote J(x) = {j | a]Tx =b;}. A point
zin X is a vertex if J(z) is maximal, i.e., there does not exist y € X such that J(x)
is a proper subset of J(y). This definition is different from the traditional one: » is
a vertex if . = %y—l— %z for y, z € X implies © = y = z. However, they are equivalent
for polytopes.

Now, a point # in X is called a g-vertex if J(z) U M (x) is maximal where

M(z) ={i"| fi(x) = g(x)}.

Theorem 4.1 (Du and Hwang [11]) The minimum value of g(x) is achieved at
a g-vertex.

Proof. Let 2* be a minimum point for g(z). Since all f;(x) are continuous, there is
a neighborhood V' of #™ such that for any z € V, M(2) C M(z*). Let Y = {x € X |
a]Tx =b; for j € J(x*)}. Then z* is a relative interior point of Y, that is, for any
z €Y and for sufficiently small number A, * + A(2* — z) € Y. Consider a g-vertex
& such that M(2*) U J(z*) C M(2)U J(2), i.e., M(2*) C M(2) and J(z*) C J(&).
The latter inclusion implies that & € Y. We will show that z is also a minimum
point. Therefore, the theorem 1s proved.

For contradiction, suppose that # is not a minimum point. Choose a positive A

sufficiently small such that
s M) ="+ A=z*—2)evVny.

Thus, M (z(A)) C M(x*) C M(z). Consider an index ¢ € M (x()A)). Since z* is a
minimum point of g(x), we have

fie®) < fi(z), and  fi(x") < fi(x(})).
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Note that

By the concavity of f;(z),

* A 5 *
fi(z™) > H_—/\fi(l‘) + H_—/\fz’(l‘(/\)) > fi(z"),

a contradiction. O

Let us make some remarks on this minimax theorem.
Remark 1. A function f is pseudo-concave in a region if for any # and y in the
region and for any A € [0, 1],

Oz + (1= XA)y) > min(f(x), f(y))-

The pseudo-concavity is clearly weaker than the concavity. In the theorem, the
concavity of f; can be replaced by the pseudo-concavity. For this replacement, the
proof needs to be modified as follows: Choose a minimum point #* with maximal
J(x) and a point z in Y with M (2*) C M (&). Find the existence of V' as above. By
the pseudo-concavity of f;(z),

fi(2™) > min(fi (@), fi(x(A)) > filz"),
for i € M(z(N), x(A) = 2* + A& —2*) € YNV and A > 0. Tt follows that for

z(A) € YNV, z(A) is a minimum point. Note that all minimum points form a
closed set. There exists the maximum value A* such that z(A*) is a minimum point.
Clearly, (A*) cannot be a relative interior point of Y. (Otherwise, by the above
argument, we can obtain a larger A such that #()) is a minimum point.) Thus, J(z*)
is a proper subset of J(x(A*)), contradicting the choice of #*. We state the result of
this remark in the following.

Theorem 4.2 Let g(x) = max;es fi(x) where f;’s are continuous pseudo-concave
funetions and I is a finite set of indices. Then the minimum value of g(x) over a
polytope is achieved at a g-verter.

Remark 2. An interior point x of X is a g-vertex iff M () is maximal. In general,
for any g-vertex, there exists an extreme subset ¥ of X such that M (z) is maximal
over Y. A point x in X is called a critical point if there exists an extreme set Y such
that M () is maximal over Y. Thus, every g-vertex is a critical point. However, the
inverse is false. For example, in Figure 3, the interior boundary of X consists of
critical points which are not g-vertices.

Remark 3. A similar result holds for the following minimax problem:

e fi )

where I(z) is a finite index set varying as x varies. The following is a useful form.
The proof is similar to the proof of Theorem 4.1 (Figure 4).
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\%

Fig. 4. (=) is defined on a subset of X

Theorem 4.3 Let g(x) = max;er fi(x) where f;’s are continuous and pseudo-concave
functions in the interior of a conver region X and I(x) is a finite index set defined
on a compact subset X' of X. Denote M(z) = {i € I(z) | fi(x) = g(x)}. Suppose
that for any x € X, there exists a neighborhood of x such that for any point y in the
neighborhood, M (y) C M (x). If the minimum value of g(x) over X is achieved at
an intertor point of X', then this minimum value is achieved at a critical point, i.e.,
a point with mazimal M (z) over X'. Moreover, if x is an interior minimum point
in X' and M(x) C M (y) for some y € X', then y is a minimum point.

Remark 4. Du and Pardalos [13] proved that the finite index set I in Theorem 1
can be replaced by a compact set. Their theorem can be stated as follows.

Theorem 4.4 Let f(x,y) be a continuous function on X x I where X is a polytope
in R™ and I is a compact set in R®. Let g(x) = maxyey f(z,y). If flz,y) is
concave with respect to x, then the minimum value of g(x) over X is achieved at
some critical point.

The proof of this theorem is also the same as the proof of Theorem 4.1 except
that the existence of the neighborhood V' needs to be derived from the compactness
of I and the existence of # needs to be derived by Zorn’s lemma.

5. Geometric Inequalities
Theorem 4.1 was first used in a proof of the following geometric inequality.

Theorem 5.1 Let D, E and F be three points on three edges BC', C'A and AB of
a triangle ABC, respectively. Let per(AABC) denote the perimeter of the triangle
ABC. Then

per(ADEF) > min(per(AAEF), per(ABF D), per(ACDE)).
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This inequality was proposed by Debrummer in 1956 and by Oppenhein in 1960.
It was appeared in American Mathematics Monthly as the 4964'" problem in 1961.
During 1961-1967, it obtained several proofs given by Dresel [?], Breusch [?], Croft
[?], Zalgaller [?], and Szekers [?]. Using Theorem 2.1, Du [?] gave a new proof. This
proof is not the simplest one. However, it is more general. In fact, it is suitable for
similar inequalities. We introduce this proof as follows.
Proof of Theorem 5.1. Let us fix DEF and vary ABC. Consider the following
function

f(A, B,C) = min(per(AAEF), per(ABF D), per(ACDE)).

As shown in Figure b, A varies in the area W4 bounded by FF and extensions of
DFE and DF. Similarly, B and C varies in areas Wy and W, respectively. Define

A*

Fig. 5. VVA7 WB and Wc.

B, D, are colinear,
X =1 (A B,C)eWs xWp x We | C,E, A are colinear,

A, F, B are colinear
We want to prove that for (A4, B,C) € X,
f(A, B,C) < per(ADEF). (1)
Note that three points (#1,y1), (22,y2) and (z3, y3) are collinear if and only if

zy oy 1
o Y2 1 :0
3 y3 1
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Thus, X is a polyhedran of dimension three, which is an unbounded region. To
obtain a polytope, consider AA*B*C™* with D, E, F as its middle points of three
edges (see Figure 5). Let W4 be the bounded part obtained from cutting W by a
line £4 parallel to EF. If £4 is sufficiently far away from EFF, then A* is an interior
point of W,4. Similarly, we can define polygons Wy and W¢. Suppose that the
polytope X is obtained from the definition of X by using W4 x Wx x W¢ to replace
Wa x Wg x We. Clearly, to prove (1), it suffices to prove that for every X,

max _ f(A, B,C) = per(ADEF). (2)
(A,B,C)eX

Note that per(AAEF), per(ABFD) and per(ACDE) are convex functions with
respect to (A, B, C). By Theorem 4.1, the maximum value of f(A, B,C) over X is
achieved at a g-vertex. If this g-vertex is an interior point of X, then it must be
(A*, B*,C*). In this case, (2) holds. If this g-vertex (A, B, (') is on the boundary
of X, then at least one of A, B and C' is on the boundary of W4 or Wy or We¢.
Without loss of generality, assume that A is on the boundary of W,4. If A is on
EF or the extensions of DE and DF, then one of per(AAEF), per(ABFD) and
per(ACDE) equals twice the length of an edge of ADEF which is smaller than
per(ADEF). Thus, this A must be on £4. When ¢4 is sufficiently far from EF,
BF and C'E are almost parallel. In the limiting case that BF and C'E are parallel,
either B lies in AB* DF and is different from B* or C' lies in AC* /D and is different
from C* (Figure 6). Thus, either per(ABDF) < per(AB*DF) = per(ADEF) or
per(ACED) < per(ADEF). Therefore, in this case (2) also holds when ¢4 moves
sufficiently far from AA*B*C*. O

B

Fig. 6. BF and CE are almost parallel.

Note that the area of AAFEF can be computed by the following formula:

ra ya 1
Spapr =z |2 Y 1
rr yr 1
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which a linear function with respect to A where x4 and yp are coordinates of A.
Thus, a similar argument yields the following.

Theorem 5.2 Let D, E and F be three points on three edges BC', C'A and AB of
a triangle ABC', respectively. Then

max(Saarr, SaBrp, Sacpe) > Saper > min(Saarer, Sarrp, Sacpr).

Since Saapr is linear and per(AAEF) is convex with respect to A, the ratio
per(AAEF)/Saagr is psuedo-convex in A. Note that

per(AAEF)/Saapr = 2/TAAEF

where raagp 1s the radius of the circle inscribed AAEF. Therefore, the above
argument also yields the following.

Theorem 5.3 Let D, E and F be three points on three edges BC', C'A and AB of
a triangle ABC', respectively. Then

max(rAAEF, "ABFD, TACDE) > "TADEF-

6. Approximation Performance

Many optimization problems are NP-hard. So, their optimal solutions are unlikely

computed in polynomial time. For these problems, polynomial-time approximations

are useful. One way to design a polynomial-time approximation is as follows: put

some restriction on feasible solutions so that the optimal solution under this re-

striction can be computed in polynomial time and use this optimal solution for the

restricted problem to approximate the optimal solution for the original problem.
To be explicit, consider the problem

iy

which is NP-hard. Let I C K such that

min éi(x)

can be computed in polynomial time. Now, we use the second one to do an approx-
imation of the first one. Usually, the performance of approximation is measured by
the following ratio:

o . HlinkeK qf)k (l‘)

p=min ———————=

¢ minges ¢i(x)
Clearly, the larger is this ratio, the better i1s the approximation. Proving the lower
bound of this ratio can be transformed to a minimax problem. In fact, suppose that
we want to prove p > pg. Then it suffices to prove that for any z,

min ¢z () > po min ¢;(x).



MINIMAX AND ITS APPLICATIONS 11

This is equivalent to that for any # and k € K,
¢r(#) = pomiin i (x) > 0,

that is,
max(gx (x) = podi(2)) 2 0.

Thus, 1t suffices to prove that for any k& € K,
minmax(¢y (z) — podi(x)) 2 0.

For example, let us consider the Steiner tree problem.

The Steiner tree problem is a classic intractable problem with many applications
in the design of computer circuits, long-distance telephone lines, or mail routing, etc.
Given a set P of points in a metric space, the problem is to find a shortest network
interconnecting the points in the set. The optimal solution of this problem is called
the Steiner minimum tree on the point set P. The Steiner minimum tree may have
some vertices not in P. Such vertices are called Steiner points while the vertices in
P are called regular points.

A spanning tree on P is a tree interconnecting all points in P under restriction
that all edges are between the points in P. In the other words, no Steiner point is
allowed to exist. The minimum spanning tree is the shortest spanning tree. While
the Steiner minimum tree problem is intractable, the minimum spanning tree can be
computed pretty fast. Thus, we can use the minimum spanning tree to approximate
the Steiner minimum tree. In this case, the approximation performance ratio is
called the Steiner ratio.

The topology of a tree is the adjacent relation or the adjacent matrix of the
tree. Let ¢(P) denote the minimum tree with topology ¢ on the point set P. Let
£(t(P)) denote the length of the tree ¢(P). Suppose that all topologies of trees
interconnecting P form a set A and all topologies of spanning trees on P form a set
I. Then the Steiner minimum tree and the minimum spanning tree problems can
be represented respectively as follows:

{Iél}l{lﬁ(t(P)) and Iglel}lg(S(P)).
The lengths of the Steiner minimum tree and the minimum spanning tree on the
point set P are denoted respectively by Lg(P) and Ly (P). From the above analysis,
to prove a lower bound py for the Steiner ratio, it suffices to prove that for any ¢t € K
minmax[{(t(P)) — pot(s(P))] > 0.
P sel

A topology t in K is full if every regular point is a leaf. If a regular point is not
a leaf, then this topology can be decomposed at this point into two or more subtree
topologies. In this way, every topology ¢ in K can be decomposed into edge-disjoint

full topologies t1, - - -, t}, respectively interconnecting subsets Py, --- P of P. Note
that the union of minimum spanning trees for P;, - -, Pj is a spanning tree for P.
Thus,

Ve (0 (P) 2 poLar (P) = (1PY) 2 DL (P).
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It follows that to prove the lower bound py for the Steiner ratio, it suffices to prove
that for every full topology ¢ in K,

minmax[£(t(P)) — pol(s(P))] = 0. (3)

7. Gilbert-Pollak Conjecture

In 1968, Gilbert and Pollak [19] conjectured that the Steiner ratio in the Euclidean
plane is v/3/2. Through many efforts [2, 3, 6, 7, 8, 21, 23], this conjecture was
finally proved by Du and Hwang [11, 9, 10]. Their proof is motivated from the
transformation in Section 6.

Note that the Steiner minimum tree in the Euclidean plane has the following
properties.

(S1) All leaves are regular points.

(52) Any two edges meet at an angle of at least 120°.

(S3) Every Steiner point has degree at least three.

A tree satisfying the above three conditions and interconnecting all regular points
(i.e., all points in P) is called a Steiner tree. Clearly, in a full Steiner tree, every an-
gle equals 120°. Thus, the full Steiner tree can be determined by all its edge-lengths
provided the topology of the tree is fixed. Let us give the following notations.

t(x): the full Steiner tree with topology ¢ and edge-lengths (21, - -, #2n_3) (= ).
P(t; z): the set of all leaves of the tree #(z).
s(t;x): the spanning tree with topology s for the point set P(¢; ).

Now, (3) can be written as

minmax(zy + -+ a3 — ?ﬁ(s(t; z)) >0 (4)

T sel

where [ 1s the set of spanning tree topologies for the set of n points. Note that for
any o > 0, P(t; o) is similar to P(t; 2). Thus, £(s(t; ax)) = af(s(t; x)). This means
that among all similar point sets, we need to consider only one. So, it suffices to
consider ¢ with 1 + - -+ x9,_3 = 1. Define

frs(z)=1- ?ﬁ(s(t; z))

and
X=A{z= (21, ,®m-3) |1 >0, x2p_3> 0,21+ -+ x2p_1 = 1}.
To show (4), it suffices to prove that for every full Steiner tree topology ¢,

min max xz) > 0.
reX sel ft,s( )_

The next lemma shows that f; ;(x) is a concave function in z.

Lemma 7.1 f; ((2) is a concave function in z.
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Proof. Tt suffices to prove that £(s(t;z)) is a convex function in #. Let A and B
be two regular points. We show that the distance between A and B, d(A4, B) is a
convex function of . Find a path in 7" which connects points A and B. Suppose the
path has k edges with lengths 1/, ..., g and with directions ey, ..., ex, respectively,
where ey, ..., e are unit vectors. Then d(A, B) = ||#17e1 + - -+ 2prex||p. Note that
a norm is a convex function and the part inside the norm is linear with respect to
z. Thus, d(A, B) is a convex function with respect to x. Finally, we notice that the
sum of convex functions is also a convex function. O

By Theorem 4.1, the problem is reduced to the problem of finding the minimax
value at critical points. Note that the transformation between the Steiner ratio
problem and the minimax problem is based on a mapping between sets of n points
in the FEuclidean plane and points in the (2n — 3)-dimensional space. Thus, each
critical point corresponds to a set of n points with a nice geometric structure, called
a critical structure. Finally, verify the conjecture on the point set with critical
structure.

For a technical reason, we also need to modify Gilbert-Pollak conjecture at the
beginning. This modification i1s necessary because the critical structure obtained
above 1s not nice enough to be able to handle. This modification will make the
critical struction much nicer. In the next section, we give the proof in details.

8. Refine the Proof of Du and Hwang

In the following, we will refine the proof for Gilbert-Pollak conjecture by using The-
orem 4.3. We will show how to modify Gilbert-Pollak conjecture, how to determine
the critical structure and how to verify the conjecture for the point set with critical
structure.

8.1. CHARACTERISTIC AREA AND INNER SPANNING TREES

Consider a full Steiner tree ¢(x). Two regular points are called adjacent if one can be
reached from the other by always moving in a clockwise direction or always moving
in a counterclockwise direction. Clearly, each regular point has two other adjacent
regular points.

Now, consider two adjacent regular points A and B with the path AS;---SgB
connecting them. Note that there 1s a point S; such that A lies inside of every
angle on the path AS; ---S; and B lies inside of every angle on the path S;---Sg B.
Thus, connecting A to Si,...,5; and B to S;, ..., Sk, we obtain AAS; Sy, AAS,S3,
sy AAS;1Si, AAS; B, ABS;Siq1, ..., ABr_1S;. Pasting these triangle along
their edges such that every point between them has a neighborhood isometric to a
neighborhood in the Euclidean plane, we obtain a simply connected region either
in the plane or in a multilayer Rimann surface (Figure 7). Call this region a cell.
Pasting all cells along all edges in ¢(#) results in an area such that every point on ¢(x)
has a neighbothood isometric to a neighborhood in the Euclidean plane. Clearly, the
area is a simply connected region in a multilayer Rimann surface. It is not unique
(Figure 7(a)(b)). However, they all satisfy the following properties:

(R1) Every point has a neighborhood isometric to a neighborhood in the Eu-
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NS

Fig. 7.  Simple connected region in multilayer Rimann surface.

clidean plane.

(R2) All regular points lie on the boundary.

(R3) t(x) lies inside of the area.

Those areas are called characteristic area of t(x). We will use C'(¢; #) to represent
any one of them.
As z varies the characteristic area C(¢;x) varies. For some x, {(x) may have self-
intersection in the Euclidean plane but has no self intersection in C'(¢; z) (see Figure
8). Let us allow such # together with C'(¢;#) in our consideration. Let X (¢; )

Y

Fig. 8. A monotone path with and without self-crossing.
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denote the set of all edge-length vectors y such that « together with C'(¢; ) can be
smoothly moved to y by varing the edge-lengths of all triangles which consist of the
characteristic area. Clearly, for any y € X (¢; ), C(¢; y) also has the properties (R1),
(R2) and (R3). If none of the triangles in C'(¢;y) is degenerated, then y must be an
interior point of X (¢; ). Thus, for every boundary point y of X (¢;x), C'(¢; y) must
have a degenerated triangle. This means that this triangle has either an angle of
180° or an edge of length zero. Look at back the triangles AASSy, -+, AASEB.
In each of them, every angle other than the angle at A i1s at most 120°. So, only
the angle at A may vary to 180°. This fact implies that for a boundary point y of
X (t; z), one of the following two cases has to occur:

(B1) y has at least one zero-component.

(B2) t(y) has a regular point lies on the path from the regular point to an adjacent
regular point. (For example, in Figure 9, (a) is not in Case (B2) because the regular
point and the path which seem to overlap are in different layers. But, (b) is in Case

(B2).)

@ (b)
Fig. 9. (b) is in Case (B2) but (a) is not.

A spanning tree on P(t;x) is called an inner spanning tree with respect to ¢(x)
and a characteristic area C'(¢; ) if it lies inside of C(¢;x). Let I(t; #) denote the set
of inner spanning tree topologies. We will prove the following.

Theorem 8.1 For every full Steiner tree topology t and any characteristic area
Ct; ),
min max f;,(x) > 0.
reX; s€l(t;r) -
Theorem 8.1 is equivalent to

V3

Ls(P(t;2)) 2 5 Ln(P(t;2))

where Ly (P(t;2)) is the length of the minimum inner spanning tree with respect to
t(x). Since Ly (P(t;2)) > Ly (P(t; x)), Gilbert-Pollak conjecture is a consequence
of Theorem 8.1.
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Define

gi(x) = Jax Jes(2)

and
Mt;2) = {i € I(t:2) | fiole) = gi(o)}.

To use Theorem 4.3, we need to prove the following.

Lemma 8.2 For every interior point & of X, there is a neighborhood of & such that
for any y in the neighborhood, M(t;y) C M(t;x).

Proof. First, we show that for any m € M(t; ) there exists a neighborhood U
of # such that for any y € U, m is in I(t;y). For contradiction, suppose such
a neighborhood does not exist. Then there is a sequence of points yi converging
to « such that m & I(¢;yz). Thus every m(¢;yr) has at least one edge not in
the characteristic area C(¢;yx). Since the number of edges is finite, there exists a
subsequence of m(t; yi) each of which contains an edge not in C'(¢; z), but these edges
converge to an edge AB in m(t; ). It is easy to see that AB is on the boundary of
the area C'(¢; ) and that A and B are not adjacent. (An edge between two adjacent
regular points always lies in the characteristic area.) Since all vertices in an inner
spanning tree lie on the boundary of C(t;x), there is a regular point lying in the
interior of the segment AB, contradicting the minimality of m(¢; z).

Now, we prove the lemma by contradiction. Suppose that there is a sequence of
points yi converging to & such that for each yg, a spanning tree topology my exists
such that my € M(t;yx) \ M(¢; ). Since the number of spanning tree topologies is
finite, there is a subsequence of points yg: with the same myg/, denoted by m. We
can also assume that this subsequence lies inside of the neighborhood U of . Thus,
for every k', t(m(t;yn) < £(m/(t;yp)) for all m’ € M (¢; ) since M (¢;2) C I(t; yp).
Letting &' — oo, we obtain that £(m(t;z)) < £(m/(t;z)) for m’ € M(¢;2). Since
m & M(t;z), m(t; ) must not be an inner spanning tree. It follows that there exists
a neighborhood of # such that for any point y in the neighborhood, m(t; y) is not an
inner spanning tree for ¢(y), contradicting the existence of the subsequence of points
yr. O

An immediate consequence of Lemma 8.2 is that ¢;(z) is continuous over interior
of X;. Denote F(t) = mingcx, g:(z). By Theorem 4.3 and Lemmas 7.1 and 8.2,
F(t) is achieved at some critical point. Choose a full topology t* such that F(t*) =
min; F'(t) where t is over all full Steiner tree topologies on n regular points. We prove
Theorem 8.1 by contradiction. Suppose that Theorem 8.1 is false, i.e., F(t*) < 0,
and that n is the smallest number of regular points such that F'(t*) < 0. From now
on, a point x in X+ is called a minimum point iff g (x) = F(t*).

Lemma 8.3 Every minimum point is an interior point of Xy« .
Proof. Suppose to the contrary that there exists a minimum point z on the boundary

of X;». First, assume that (B1) occurs, that is, t*(#) have some edges vanished. If
there is a vanished edge incident to a regular point, then ¢*(z) can be decomposed
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into several edge-disjoint smaller Steiner trees. Since every smaller Steiner tree has
fewer regular points, we can apply Theorem 8.1 to them. Note that a union of inner
spanning trees for the smaller Steiner trees is an inner spanning tree for ¢*(x). We
find a contradiction to F(t*) < 0 by summing all inequalities. So, every vanished
edge is between two Steiner points. In this case, we can find a topology ¢ satisfying
the following conditions (Figure 10).

(1) Two regular points are adjacent in ¢ iff they are adjacent in ¢*.(¢ is called a
companion of t* when ¢ satisfies this condition.)

(2) There is a tree T interconnecting the n points in P(¢*; ), with the topology
t and with length less than £(¢*(x)).

Fig. 10. A companion.

To do so, let us first note that

If the Steiner tree of topology ¢ for P(¢; ) exists, then there exists a parameter
vector y such that P(t;y) = P(t*;2). Let h = 1/£(t(y)). Since £(t(y)) < T) <
£(t*(z)) =1, h > 1. Note that t(hy) is similar to ¢(y). Hence

1— (V3/2){(s(t; hy))
= 1= (V3/2)h{(s(t; hy))
1— (V3/2)he(s(tx; z))

ge+ ()
= F(t7)

ft,s(hy)

A

where s is a minimum spanning tree topology for the point sets P(t; hy) and P(t*, z).
Since hy € X:, we have F(t) < g:(hy) < F(t*), contradicting the minimality of
F(tr).

If the Steiner tree of topology t for P(t*; ) does not exist, then we cannot use
the above argument directly since g;(y) is undefined. (Remember that F'(¢*) is the
minimum over all full Steiner topologies. So even though 7' is a shorter tree, there is
no contradiction to the minimality of F'(t*).) Now, we consider any tree of topology
t. Such a tree can be determined by edge lengths and angles at every Steiner point.
Write the lengths into a length vector y and the angles into an angle vector 6.
Denote such a tree by t(y,#). Two regular points is said to be adjacent in t(y, #) if
in a Steiner tree of topology ¢, the corresponding two regular points are adjacent.
Constructing the characteristic area for ¢(y, /) by connecting every pair of adjacent
regular points, we can define an inner spanning tree and a minimum inner spanning
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tree for ¢(y, #) in a similar way. Let Ly (¢;y, ) denote the length of a minimum inner
spanning tree for ¢(y,#). We can also show the continuity of Ly (¢;y,0). Restrict
all angles to be between 0° and 360° and the sum of any three angles at the same
Steiner point to equal 360°. Let Y: be the set of vectors (y,#) with the described
restrictions on @ and the restrictions > y; = 1 and y > 0. Then Y; is compact. So,
the function h defined by h.(y,0) = 1 — (v/3/2)L¢(y, #) reaches its minimum in Y;.
We denote this minimum value by H (¢). By an argument similar to that in the last
paragraph, we can prove that H(¢) < F(t*). Thus, H(t) < F(t).

Suppose that h:(y,8) = H(t). If all components of # equal 120°, then t(y, 0) =
t(y) and y € X,. Thus, F(t) < h(y,0) = H(t), a contradiction. Therefore, § must
have a component less than 120°. Note that for an angle that is less than 120° in
t(y,0), at least one edge of the angle must be vanished, for otherwise, we can shorten
the tree without changing the topology. Thus, t(y,#) contains vanished edges. If
there exists a vanished edge incident to a regular point, we decompose h(y,f) and
find a full topology ' with fewer regular points such that H(#') < 0. If there exists
a vanished edge between two Steiner points, then we can find a new companion ¢’ of
t such that H(#') < H(t). Repeating the above argument, we will obtain infinitely
many full topologies with at most n regular points, contradicting the finiteness of
the number of topologies. Therefore, (B1) cannot occur.

Now, assume that (B2) occurs. So, ¢(z) (in its characteristic area) has a regular
point touching an edge or another regular point. In the former case, we can decom-
pose t(x) at the touching point to obtain two trees each with less than n regular
points. In the latter case, we can reduce the number of regular points by one. In
either case, an contradiction is achieved by an argument similar to the one used at
the beginning of this proof. O

8.2. CRITICAL STRUCTURE

In this subsection, we want to determine the geometric structure of P(t*, z) for every
interior minimum point z in X;+. For simplicity of notation, we use ¢ for ¢* in this
subsection and the next subsection.

Let T'(¢; ) denote the union of minimum inner spanning trees for P(¢; x). Let us
first show some properties of T'(¢; z).

Lemma 8.4 Two minimum inner spanning trees can never cross, i.e., edges meet
only at vertices.

Proof. Suppose that AB and C'D are two edges crossing at the point E (Figure
11) and they belong to two minimum inner spanning trees T and 7", respectively.
Without loss of generality, assume that FA is the shortest one among the four
segments FA, EB, EC and ED. Removing the edge C'D from the tree T, the
remaider has two connected components containing C' and D, respectively. Without
loss of generality, assume that A and C' are in the same component. Note that
UAD) < U(EA) + L(ED) < £LCD). If AD lies in the characteristic area, then
connecting the two components by AD results in a shorter inner spanning tree,
contradicting the minimality of 77. If AD does not lie in the characteristic area,
there must exist some regular points lying inside of the triangle FAD. Consider
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c

Fig. 11. AB and CD cross each other.

the convex hull of those regular points and two points A and D. The boundary of
the convex hull other than the edge AD must lie in the characteristic area. This
boundary contains a path from A to D. In this path there exists two adjacent
vertices which belong to different connected components of 77\ {C'D}. Connecting
two such adjacent vertices also results in an inner spanning tree shorter than 77, a
contradiction. O

Lemma 8.5 Every polygon of T'(t;x) has at least 2 equal longest edges.

Proof. Suppose to the contrary that I'(¢; #) has a polygon @ with the unique longest
edge e. Let m be the minimum inner spanning tree containing e. For every edge
e’ of ( not in m, the union of m and e’ contains a cycle. If this cycle contains
e, then (m\ {e}) U{e'} is an inner spanning tree shorter than m, a contradiction.
Thus, such a cycle does not contain e. Hence, for every ¢’ in @ not in m, m has
a path connecting two endpoints of e’. These paths and e form a cycle in m, a
contradiction. O

Lemma 8.6 Let A, B and C' be three regular points. Suppose that all three edges
AB, BC and CA lie in C(t; ). If the edge AB is in T'(t;2), then

U(AB) <max({(AC), {(BC)).
Moreover, if AB is in T'(t; ) and
L(AB) > max((AC), ¢((BC)),
then either BC' or C'A is in T'(t;z) and also has the same length as AB.

Proof. To prove the first half, for contradiction, suppose that

((AB) > max({(AC), {(BC)).
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Removal AB from the minimum spanning tree results in two connected components
containing A and B, respectively. (' is in one of the components. Thus, adding AC
or BC' would result in a spanning tree shorter than the minimum spanning tree, a
contradiction.

The second half can be proved in a similar way. O

Note that the characteristic area of () is bounded by a polygon of n edges.
Partitioning the area into n — 2 triangles by adding n — 3 edges, we will obtain a
network with n vertices and 2n — 3 edges. This network will be called a triangulation
of C(t;x). Let us first ignore the full Steiner tree ¢(x) and consider the relationship
between the vertex set and the length of edges. Note that in the previous discussion,
when we say that a set P of points is given, we really mean that the distance between
every two points in the set i1s given, that is, relative positions between those points
have been given. With this understanding, we make the following observations.

(1) The vertex set (i.e., the set of regular points, P(¢;x)) can be determined by
2n — 3 edge lengths of the network.

(2) The 2n — 3 edge-lengths are independent variables, that is, the network could
vary by changing any edge-length and fixing all others as long as in each triangle,
the triangular inequality is preserved.

Note that every T'(¢; ) can be embedded in a triangulation of C'(¢; ). Thus, all
edges in T'(¢; z) are independent.

A T'(t; z) is said to have a critical structure if T'(¢; z) partitions C(¢; x) into n — 2
equilateral triangles. Such a structure has the property that any perturbation would
change the set of topologies of minimum inner spanning tree. The following lemma
shows that every minimum point has I'(¢; ) with a critical structure.

N

Fig. 12. A critical structure.

Lemma 8.7 If ™ is a minimum point, then T'(t;z*) divides C(t;x*) into 2n — 3
equilateral triangles (Figure 12).

Proof. First, let us embed T'(¢; 2*) into a triangulation of C'(¢; #*). If the lemma is
false then one of the following must occur:

(a) There is an edge in the triangulation which does not belong to T'(¢; 2*).

(b) No edge in the triangulation does not belong to T'(t; #*). But, I'(¢; #*) has a
nonequilateral triangle.
We will show that in each case, the number of minimum spanning trees can be
increased, i.e., we can find another minimum point y such that M (¢;2*) C M (¢;y)

and M (t;2*) # M (t;y).
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First, assume that (a) occurs. Let £ be the length of the logest edge which is in
the triangulation but is not in T'(¢; #*). We shrink all longest edges and keep other
edge-lengths until a new minimum spanning tree is produced. Let ¢/ be the length
of the longest edge at the last minute during the shrinking. Note that the triangular
inequality is always preserved in every triangle if shrinking happens to all logest
edges in the triangle or shrinking happens to the shortest edge in an isosceles. The
latter is guaranteed by Lemma 8.6. Thus, during the shrinking from ¢ to £, we do
not need to worry about the condition on the triangular inequality.

Now, for each £ € [¢/,£"], denote by P(¢) the corresponding set of regular points.
Then P(¢') = P(t;2*). Consider the set L of all £ € [¢, '] satisfying the condition
that there is a minimum point y in X; such that P({) = P(t;y). Since ¢ € L, L is
nonempty. Moreover, L is a closed set since all minimum points form a closed set.
Now, consider the minimal element ¢* of 1. We may assume £* > ¢ for if £* = ¢,
then y meets the requirement already. Suppose P(¢*) = P(t;y). Then for any
m € M(t;z*), £(m(t;y)) = £(m(t; #*)). Since both z* and y are minimum points,
we have g:(z*) = g+(y), that is, the length of a minimum inner spanning tree for
P(t; ") equals that for P(¢;y). Hence M(t;2*) C M(¢;y). However, x is a critical
point. Thus, M(¢;x*) = M(t;y). By Lemma 8.3, y is an interior point of X;. This
means that there exists a neighborhood of £* such that for £ in it, the Steiner tree
of topology t exists for the point set P(¢). Thus, there exists £/ < ¢ < ¢* such that
P({) = P(t; z) for some vector z (not-necessarily in X; but hz € X, for some h > 0).
Since £(m(t; x)) is continuous with respect to z, there is a neighborhood of y such
that for every point ¢ in the neighborhood, M (¢;y') C M (¢;y). So, £ can be chosen
to make z satisfy M(¢;2) C M(¢;y), too. Note that M(t;2*) = M(t;y) and for
every m € M (¢t;2%), £(m(t; 2)) = £(m(t; x*)). Tt follows that for every m € M (t; z*),
m(t; z) is a minimum inner spanning tree for P(¢;z). Thus, M (¢;z) = M (t;2*) and
ge(x*) = g1(z). Suppose hz € X where h is a positive number. By the second half
of Theorem 4.3, g:(2*) = ge(hz) = hgi(z). So, h = 1, i.e, z € X. Hence, z is a
minimum point, contradicting the minimality of £*.

In case (b), we can give a similar proof by increasing the length of all shortest
edges in T'(¢;2%). O

8.3. HEXAGONAL TREES

In this subsection, we prove g:(z*) > 0 where #* is a minimum point. To do this, we
begin with studying a different kind of trees. A tree in C'(¢; z*) is called a hexagonal
tree if every edge of the tree is parallel to some edge in T'(¢;2*). The shortest
hexagonal tree interconnecting the point set P is called a minimum hexagonal tree
on P. Let Ly(P) denote the length of the minimum hexagonal tree on P. The
following relation was discovered by Weng [25].

Lemma 8.8 L,(P) > (v/3/2)Lx(P)

Proof. First, we note that if a triangle ABC has the angle at A not less than 120°,
then £(BC) > (v/3/2)(£(AB) + £(AC)). Now, each edge of a Steiner minimum tree

can be replaced by two edges meeting at an angle of 120° and parallel to the given
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directions. Therefore, the lemma holds. O

A point on a hexagonal tree but not in P is called a junction if the point is
incident to at least three lines. A hexagonal tree for n points is said to be full if all
regular points are leaves. Any hexagonal tree can be decomposed into a union of
edge-disjoint smaller full hexagonal trees. Such a smaller full hexagonal tree will be
said to be a full component of the hexagonal tree.

In the hexagonal tree, an edge is referred to as a path between two vertices
(regular points or junctions). Thus, an edge can contain several straight segments.
An edge is called a straight edge if it contains only one straight segment, and is
called a nonstraight edge otherwise. Any two segments adjacent to each other in an
nonstraight edge meet at an angle of 120° since if they meet at an angle of 60° then
we can shorten the edge easily.

In any minimum hexagonal tree 7', an edge with more than two straight seg-
ments can be replaced by an edge with at most two segment. To see this, consider
a nonstraight edge e in a minimum hexagonal tree T'. Suppose A and B are two
endpoints of e. Then all shortest hexagonal paths from A to B form a parallelogram
(see Figure 13). This parallelogram must lie in C'(¢; #*). For otherwise, the part of

A
O

Fig. 13. The parallelogram.

this parallelogram which is inside of C'(¢; *) must contain a piece of the boundary
of C'(¢; #*). This boundary has to have at least two consecutive segments in the dif-
ferent directions in order to pass through the parallelogram without crossing e. The
common endpoint of the two segment is a regular point lying in the parallelogram.
Consider all such regular points and all shortest hexagonal paths from A to B in
C(t;2*). One of the paths must pass through one of the regular points, say C' (see
Figure 13). Replace e by this path and delete an edge incident to C'. This would
result in a shorter hexagonal tree, contradicting the minimality of 7. Now, since the
parallelogram lies in C'(¢; %), we can use a path with at most two straight segments
to replace e.

From now on, we make the convention that any edge in a minimum hexagonal has
at most two straight segment. In addition, when we talk about an edge of a junction,
its first segment is the segment incident to the junction. The other segment, if it
exists, 1s the second segment of the edge.  Note that the junctions as shown in
Figure 14 can result in a shorter tree. Thus, those kinds of junctions cannot exist
in a minimum hexagonal tree.

Let T be a minimum hexagonal tree for the point set P with the maximum
number of full components.
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@ (b)

Fig. 14. Junctions like these cannot exist.

Lemma 8.9 T can be chosen to have the properties that every junction of degree
three in T has at most one nonstraight edge.

Proof. First, consider a junction of degree three has two nonstraight edges. Then
these two edges have segments in the same direction. Flip the edges if necessary to
line up these two segments, then the second segments of these two edges as well as
the first segment of the third edge are three segments each lying completely on one
side of the line just constructed. Therefore one side has the majority of the three
segments and we can move the line to decrease the number of nonstraight edges (see
Figure 15).

For a junction of degree more than three, the proof is similar (see Figure 15). O

Now, we complete our proof for Theorem 8.1 by proving the following lemma.

Lemma 8.10 Let T be a minimum hexagonal tree for the point set P with the
mazimum number of full hexagonal subtrees and the property in Lemma 8.9. Then
T 1s a mimimum inner spanning tree.

Proof. Suppose that the lemma is false. Then T has a full component 7’ with at
least one junction. Suppose that 7" interconnects a subset P’ of P. Clearly, 7" has
a junction J adjacent to two regular points A and B. (Otherwise, 7" contains a
cycle.)

Let us first consider the case that both edges AJ and JB are straight. If AJ
and JB are in different directions then J is a regular point. Hence, they are in the
same direction. Let C be the third vertex adjacent to J. First, we can assume that
JC' is straight for if JC' is not straight, we can replace it by a straight edge without
increasing the length and the number of full components (Figure 16 (a)).

Since C' being a regular point implies J being a regular point, we see that C'is a
Junction. We will show that one of the following occurs:

(a) J is a regular point.

(b) C' can be moved further away from J.

Since the latter movement cannot last forever, J is a regular point which contradicts
the definition of the junction.
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Fig. 15. Decrease the number of nonstraight edges.

J

ow

B A
L J ®

o>

@ (b)

Fig. 16. (a) increases the number of full components; (b) shortens 7.

Let [ be aline through C', parallel to AB. If C' has a straight edge overlapping ! on
the right of C', then we go from C' along the edges of T” to the left as far as possible.
Suppose that we end at a point D. Then £(CD) < £(JB) for if {(CD) > {(JB),
then JC' can be moved to the right until J and B are identical so that the number
of full components is increased. Since £(C'D) < £(JB), D cannot be a regular
point. For otherwise, we can move JC to touch D which increases the number of
full components. D cannot be a junction, neither. In fact, for otherwise, 7" can
be shorten (Figure 16 (b)). Thus, D is a corner of a nonstraight edge. A similar
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situation happens to the left hand side of C. Now, we can move C further away
from J as shown in Figure 17. If C' has no edge with segment overlapping /, then
C' can also be moved further away from J. This movement cannot happen forever.
Finally, C' becomes a regular point. It follows that J is a regular point.

[ B8
L 2=
[ BS
o
[ BS
o

Fig. 17. C is moved further away from J.

Secondly, we consider the case that A.J is a straight edge and J B is a nonstraight
edge with a segment in the same direction as AJ. Flip JB, if necessary, to line up
the two first segments of AJ and JB. Let BD be the first segment of JB. Then
D must be a regular point. If D is not identical to B, then we can shorten T by
deleting an edge incident to D. If D is identical to B, then we go back to the first
case.

Thirdly, if AJ is a straight edge and JB is a nonstraight edge without a segment
in the same direction as AJ, then J can be moved either to A or to a regular point
(Figure 18) which increases the number of full components.

Fig. 18. J is moved to a regular point.

Since other cases are symmetric to the above three, the lemma is proved. O

By Lemmas 8.8 and 8.10, for any minimum point z*,

V3

Ls(P(t:7) 2 G- L(P(t:27)

that is,
ge(z*) > 0.

It follows that F'(t) > 0, contradicting the assumption that F(¢) < 0. (Please note
that this ¢ is the ¢* in Section 8.1.) Therefore, Theorem 8.1 is proved.
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9. Discussion

Gao, Du and Graham [?] proved that in any normed plane, the Steiner ratio is at
least 2/3. Their proof is also based on a minimax theorem in Section 4.

Graham and Hwang [19] conjectured that the Steiner ratio in n-dimensional recti-
linear space is n/(2n—1). The Graham-Hwang’s conjecture can be easily transferred
to a minimax problem meeting the condition requested by Theorem 1. For exam-
ple, choose lengths of all straight segments of an interconnecting tree as parameters.
When the graph structure of the tree is fixed, the set of original points can be deter-
mined by such segments-lengths, the total length of the tree 1s a linear function and
the length of a spanning tree is also a linear function. Hence, their linear combina-
tion is a linear function which is certainly concave. However, it is hard to determine
the critical structure according to this transformation. To explain the difficulty, we
notice that in general the critical points could exist in both the boundary and in-
terior of the polytope (see Theorem 1). In the proof of Gilbert-Pollak conjecture,
a crucial fact is that only interior critical points need to be considered in a contra-
diction argument. The critical structure of interior critical points are relatively easy
to be determined. However, for the current transformation for the Graham-Hwang
conjecture, we have to consider some critical points on the boundary. It requires a
new technique, either determine critical structure for such critical points or eliminate
them from our consideration.

Pratt [21] consider the problem of determining the Steiner ratio on a sphere. He

V3

believe that the Steiner ratio on a sphere should also be 73 and proved that it is at

most @ The difficulty for solving Pratt’s problem is at the job (1). In fact, if the
transformation in the proof of Gilbert-Pollak conjecture can meet the condition in
some minimax theorem similar to Theorem 1, then the rest proof can also be moved
from there.

The k-Steiner ratio in a metric space is the largest lower bound for the ratio
between the lengths of the Steiner minimum tree and the minimum k-size Steiner
tree for the same given set of points where the minimum k-size Steiner tree (k-size
ST) is the minimum length network interconnecting the given points and satisfying
the condition that splitting the tree at each given point of degree more than one
results subtrees of given points at most k. (The minimum 2-size Steiner tree is in
fact the minimum spanning tree.) The significance of determining the k-Steiner ratio
is stem from the study of polynomial-time heuristics for the Steiner minimum tree
[1, 14, 23]. Du, Zhang, and Feng [14] conjectured that in the Euclidean plane, the
3-Steiner ratio is (1 + \/g)\/i/(l +V2+ \/§) The proof of this conjecture is blocked

at the difficulty on characterizing the critical structure.
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