
i

Introduction to Combinatorial
Optimization

Ding-Zhu Du Panos M Pardalos Xiaodong Hu Weili Wu

ii

Ding-Zhu Du
Department of Computer Science
University of Texas at Dallas, Richardson TX 75080, USA
E-mail: dzdu@dallas.edu

Panos M. Pardalos
Department of Industrial and System Engineering
University of Florida, Gainesville FL 32611-6595, USA
E-mail: pardalos@ufl.edu

Xiaodong Hu
Institute of Applied Mathematics
Chinese Academy of Sciences
Beijing, China
E-mail: xdhu@amss.ac.cn

Weili Wu
Department of Computer Science
University of Texas at Dallas, Richardson TX 75080, USA
E-mail: weiliwu@dallas.edu

iii

“Since the fabric of the world is the most perfect and
was established by the wisest Creator, nothing happens
in this world in which some reason of maximum or min-
imum would not come to light.”

- Euler

“When you say it, its marketing. When they say it, its
social proof.”

- Andy Crestodina

“God used beautiful mathematics in creating the world.”

- Paul Dirac

iv

Contents

1 Introduction 1

1.1 What is Combinatorial Optimization? 1

1.2 Optimal and Approximation Solution 2

1.3 Preprocessing . 6

1.4 Running Time . 7

1.5 Data Structure . 8

Exercises . 10

Historical Notes . 11

2 Sorting and Divide-and-Conquer 13

2.1 Algorithms with Self-Reducibility 13

2.2 Heap . 19

2.3 Counting Sort . 25

2.4 Examples . 29

Exercises . 34

Historical Notes . 36

3 Dynamic Programming and Shortest Path 37

3.1 Dynamic Programming . 37

3.2 Shortest Path . 44

3.3 Dijkstra Algorithm . 51

3.4 Priority Queue . 54

3.5 Bellman-Ford Algorithm . 58

3.6 All Pairs Shortest Paths . 58

Exercises . 65

Historical Notes . 67

4 Greedy Algorithm and Spanning Tree 69

4.1 Greedy Algorithms . 69

v

vi

4.2 Matroid . 75
4.3 Minimum Spanning Tree . 81
4.4 Local Ratio Method . 84
Exercises . 89
Historical Notes . 92

5 Incremental Method and Network Flow 95
5.1 Maximum Flow . 95
5.2 Edmonds-Karp Algorithm . 102
5.3 Bipartite Matching . 105
5.4 Dinitz Algorithm for Maximum Flow 110
5.5 Minimum Cost Maximum Flow 111
5.6 Chinese Postman and Graph Matching 114
Exercises . 117
Historical Notes . 121

8 NP-hard Problems and Approximation Algorithms 123
8.1 What is the class NP? . 123
8.2 What is NP-completeness? . 131
8.3 Hamiltonian Cycle . 137
8.4 Vertex Cover . 147
8.5 Three-Dimensional Matching 149
8.6 Partition . 154
8.7 Planar 3SAT . 165
8.8 Complexity of Approximation 170
Exercises . 184
Historical Notes . 189

Chapter 1

Introduction

“True optimization is the revolutionary contribution of modern
research to decision processes.”
- George Dantzig

Let us start this textbook from a fundamental question and tell you what
will constitute this book.

1.1 What is Combinatorial Optimization?

The aim of combinatorial optimization is to find an optimal object from
a finite set of objects. Those candidate objects are called feasible solutions
while the optimal one is called an optimal solution. For example, consider
following problem.

Problem 1.1.1 (Minimum Spanning Tree). Given a connected graph G =
(V,E) with nonnegative edge weight c : E → R+, find a spanning tree with
minimum total weight, where “spanning” means that all nodes are involved
and a spanning tree interconnects all nodes in V .

Clearly, the set of all spanning trees is finite and the aim of this problem
is to find one with minimum total weight from this set. Each spanning
tree is a feasible solution and the optimal solution is the spanning tree with
minimum total weight, which is also called the minimum spanning tree.
Therefore, this is a combinatorial optimization problem.

The combinatorial optimization is a proper subfield of discrete optimiza-
tion. In fact, there exists problem in discrete optimization, which does not
belong to combinatorial optimization. For example, consider the integer

1

2 Introduction

programming. It always belongs to discrete optimization. However, when
feasible domain is infinite, it does not belong to combinatorial optimization.
But, such a difference is not recognized very well in the literature. Actually,
if a paper on lattice-point optimization is submitted to Journal of Com-
binatorial Optimization, then usually, it will not be rejected due to out of
scope.

In view of methodologies, combinatorial optimization and discrete opti-
mization have very close relationship. For example, to prove NP-hardness
of integer programming, we need to cut its infinitely large feasible domain
into a finite subset containing optimal solution (see Chapter 8 for detail),
i.e., transform it into a combinatorial optimization problem.

Geometric optimization is another example. Consider following problem.

Problem 1.1.2 (Minimum Length Guillotine Partition). Given a rectan-
gle with point-holes inside, partition it into smaller rectangles without hole
inside by a sequence of guillotine cuts to minimize the total length of cuts.

There exist infinitely many number of partitions. Therefore, it is not a
combinatorial optimization problem. However, we can prove that optimal
partition can be found from a finite set of partitions of a special type (for de-
tail, see Chapter 3). Therefore, to solve the problem, we need only to study
partitions of this special type, i.e., a combinatorial optimization problem.

Due to above, we do not make a clear cut to exclude other parts of dis-
crete optimization. Actually, this book is methodology-oriented. Problems
are selected to illustrate methodology. Especially, for each method, we may
select a typical problem as companion to explore the method, such as it-
s requirements and applications. For example, we use sorting problem to
explain divide-and-conquer technique, employ the shortest path problem to
illustrate dynamic programming, etc..

1.2 Optimal and Approximation Solution

Let us show an optimality condition for the minimum spanning tree.

Theorem 1.2.1 (Path Optimality). A spanning tree T ∗ is a minimum s-
panning tree if and only if it satisfies following condition:

Path Optimality Condition For every edge (u, v) not in T ∗, there exists
a path p in T ∗, connecting u and v, and moreover, c(u, v) ≥ c(x, y)
for every edge (x, y) in path p.

Introduction 3

Proof. Suppose, for contradiction, that c(u, v) < c(x, y) for some edge (x, y)
in the path p. Then T ′ = (T ∗ \ (x, y)) ∪ (u, v) is a spanning tree with cost
less than c(T ∗), contradicting the minimality of T ∗.

Conversely, suppose that T ∗ satisfies the path optimality condition. Let
T ′ be a minimum spanning tree such that among all minimum spanning
tree, T ′ is the one with the most edges in common with T ∗. Suppose, for
contradiction, that T ′ 6= T ∗. We claim that there exists an edge (u, v) ∈ T ∗
such that the path in T ′ between u and v contains an edge (x, y) with
length c(x, y) ≥ c(u, v). If this claim is true, then (T ′ \ (x, y))∪ (u, v) is still
a minimum spanning tree, contradicting the definition of T ′.

Now, we show the claim by contradiction. Suppose the claim is not
true. Consider an edge (u1, v1) ∈ T ∗ \ T ′. the path in T ′ connecting u1

and v1 must contain an edge (x1, y1) not in T ∗. Since the claim is not true,
we have c(u1, v1) < c(x1, y1). Next, consider the path in T ∗ connecting x1

and y1, which must contain an edge (u2, v2) 6∈ T ′. Since T ∗ satisfies the
path optimality condition, we have c(x1, y1) ≤ c(u2, v2). Hence, c(u1, v1) <
c(u2, v2). As this argument continues, we will find a sequence of edges in T ∗

such that c(u1, v2) < c(u2, v2) < c(u3, v3) < · · · , contradicting the finiteness
of T ∗.

An algorithm can be designed based on path optimality condition.

Kruskal Algorithm
input: A connected graph G+ (V,E) with nonnegative edge weight c : E → R+.
output: A minimum spanning tree T .

Sort all edges e1, e2, ..., em in nondecreasing order of weight,
i.e., c(e1) ≤ c(e2) ≤ · · · ≤ c(em);
T ← ∅;
for i← 1 to m do

if T ∪ ei does not contain a cycle
then T ← T ∪ ei;

return T .

From this algorithm, we see that it is not hard to find the optimal solution
for the minimum spanning tree problem. If every combinatorial optimization
problem likes the minimum spanning tree, then we would be very happy to
final optimal solution for it. Unfortunately, there exist a large number of
problems that it is unlikely to be able to compute their optimal solution
efficiently. For example, consider following problem.

4 Introduction

Problem 1.2.2 (Minimum Length Rectangular Partition). Given a rectan-
gle with point-holes inside, partition it into smaller rectangles without hole
to minimize the total length of cuts.

Problems 1.1.2 and 1.2.2 are quite different. Problem 1.2.2 is intractable
while there exists an efficient algorithm to compute an optimal solution for
Problem 1.1.2. Actually, in theory of combinatorial optimization, we need to
study not only how to design and analysis of algorithms to find optimal solu-
tions, but also how to design and analysis of algorithms to compute approx-
imation solutions. When do we put our efforts on optimal solution? When
should we pay attention to approximation solutions? Ability for making
such a judgement has to be growth from study computational complexity.

The book consists of three building blocks, design and analysis of com-
puter algorithm for exact optimal solution, design and analysis of approxi-
mation algorithms, and nonlinear combinatorial optimization.

The first block contains six Chapters 2-7, which can be divide into two
parts (Fig.1.1). The first part is on algorithms with self-reducibility, includ-

Figure 1.1: Design and Analysis of Computer Algorithms.

ing the divide-and-conquer, the dynamic program, the greedy algorithm, the
local search, the local ratio, etc., which are organized into three chapters 2-4.
The second part is on incremental method, including the primal algorith-
m, the dual algorithm, and the primal-dual algorithm, which are organized
also into three chapters 5-7. There is an intersection between algorithms
with self-reducibility and primal-dual algorithms. In fact, in computation

Introduction 5

process of the former, an optimal feasible solution is built up step by step
based on certain techniques, and the latter also has a process to build up
an optimal primal solution by using information from dual side. Therefore,
some algorithm can be illustrated as an algorithm with self-reducibility, and
meanwhile it can also be explained as a prima-dual algorithm.

The second block contains four Chapters 8-11, covering the fundamental
knowledge on computational complexity, including theory on NP-hardness
and inapproximability, and basic techniques for design of approximation
including the restriction, the greedy approximation, and the relaxation with
rounding.

The third block contains three Chapters 10, 11, 12. Since Chapters 10-
11 serve both the second and the third blocks, selected examples are mainly
coming from the submodular optimization. Then, Chapter 12 is contributed
to the noncubmodular optimization. Nonsubmodular optimization is an
active research area currently. There are a lot of recent publications in the
literature. Probably, Chapter 12 can be seen an introduction to this area.
For a complete coverage, we may need a new book.

Now, we put above structure of this book into Fig.1.2 for a clear overview.

Figure 1.2: Structure of This book.

6 Introduction

1.3 Preprocessing

In Kruskal algorithm, the first line is to sort all edges into a nondecreasing
order of cost. This requires a preprocessing procedure for solving the sorting
problem as follows.

Problem 1.3.1 (Sorting). Given a sequence of positive integers, sort them
into nondecreasing order.

Following is a simple algorithm to do sorting job.

Insertion Sort
input: An array A with a sequence of positive integers.
output: An array A with a sequence of positive integers in

nondecreasing order.
for j ← 2 to length[A]

do key ← A[j]
i← j − 1
while i > 0 and A[i] > key

do A[i+ 1]← A[i]
i← i− 1

A[i+ 1]← key.

An example for using Insertion Sort is as shown in Fig.1.3.

Figure 1.3: An example for Insertion Sort. σ is the key lying outside of
array A.

Introduction 7

Although Insertion Sort is simple, it runs a little slow. Since sorting
appears very often in algorithm design for combinatorial optimization prob-
lems, we have to spend some space in Chapter 1 to introduce faster algo-
rithms.

1.4 Running Time

The most important measure of quality for algorithms is the running
time. However, for the same algorithm, it may take different times when we
run it in different computers. To give a uniform standard, we have to get an
agreement that run algorithms in a theoretical computer model. This model
is the multi-tape Turing machine which has been accepted by a very large of
population. Based on Turing machine, theory of computational complexity
has been built up. We will touch this part of theory in Chapter 8.

But, we will use RAM model to evaluate the running time for algorithms
throughout this book except Chapter 8. In RAM model, assume that each
line of pseudocode requires a constant time. For example, the running time
of Insertion Sort is calculated in Fig.1.4.

Figure 1.4: Running time calculation.

Actually, RAM model and Turing machine model are closely related.
The running time estimated based on these two models is considered to
be close enough. However, they are sometimes different in estimation of
running time. For example, following is a piece of pseudocode.

8 Introduction

for i = 1 to n
do assign First(i)← i

end-for

According to RAM model, the running time of this piece is O(n). However,
based on Turing machine, the running time of this piece is O(n log n) because
the assigned value has to be represented by a string with O(log n) symbols.

Theoretically, a constant factor is often ignored. For example, we usually
say that the running time of Insertion Sort is O(n2) instead of giving the
specific quadratic function with respect to n. Here f(n) = O(g(n)) means
that there exist constants c > 0 and n0 > 0 such that

f(n) ≤ c · g(n) for n ≥ n0

There are two more notations which appear very often in representation of
running time. f(n) = Ω(g(n)) means that there exist constant c > 0 and
n0 > 0 such that

0 ≤ c · g(n) ≤ f(n) for n ≥ n0.

f(n) = Θ(g(n)) means that there exist constants c1 > 0, c2 > 0 and n0 > 0
such that

c1 · g(n) ≤ f(n) ≤ c2 · g(n) for n ≥ n0.

1.5 Data Structure

A data structure is a data storage format which is organized and man-
aged to have efficient access and modification. Each data structure has sev-
eral standard operations. They are building bricks to construct algorithms.
The data structure plays an important role in improving efficiency of algo-
rithms. For example, we may introduce a simple data structure “Disjoint
Sets” to improve Kruskal algorithm.

Consider a collection of disjoint sets. For each set S, let First(S) denote
the first node in set S. Foe each element x in set S, denote First(x)=First(S).
Define three operations as follows.

Make-Set(x) creates a new set containing only x.

Union(x, y) unions sets Sx and Sy containing x and y, respectively, into
Sx ∪ Sy, Moreover, set

First(Sx ∪ Sy) =

{
First(Sx) if |Sx| ≥ |Sy|,
First(Sy) otherwise.

Introduction 9

Find-Set(x) returns First(Sx) where Sx is the set containing element x.

With this data structure, Kruskal algorithm can be modified as follows.

Kruskal Algorithm
input: A connected graph G = (V,E) with nonnegative edge weight c : E → R+.
output: A minimum spanning tree T .

Sort all edges e1, e2, ..., em in nondecreasing order of weight,
i.e., c(e1) ≤ c(e2) ≤ · · · ≤ c(em);
T ← ∅;
for each node v ∈ V do

Make-Set(v);
for i← 1 to m do

if Find-Set(x) 6= Find-Set(y) where ei = (x, y)
then T ← T ∪ ei

and Union(x, y);
return T .

An example for running this algorithm is as shown in Fig.1.5.

Figure 1.5: An example for Kruskal algorithm.

Denote m = |E| and n = |V |. Let us estimate the running time of
Kruskal algorithm.

• Sorting on all edges takes O(m log n) time.

• Assigning First(v) for all v ∈ V takes O(n) time.

10 Introduction

• For each node v, the value of First(v) can be changed at most O(log n)
time. This is because the value of First(v) is changed only if v is
involved in Union operation and after the operation, the set containing
v has size doubled.

• Thus, the second ”for loop takes O(n log n) time.

• Put total together, The running time is O(m log n) = O(m log n +
n log n).

Exercises

1. In a city there are N houses, each of which is in need of a water supply.
It costs Wi dollars to build a well at house i, and it costs Cij to build
a pipe in between houses i and j. A house can receive water if either
there is a well built there or there is some path of pipes to a house
with a well. Give an algorithm to find the minimum amount of money
needed to supply every house with water.

2. Consider a connected graph G with all distinct edge weights. Show
that the minimum spanning tree of G is unique.

3. Consider a connected graph G = (V,E) with nonnegative edge weight
c : E → R+. Suppose e∗1, e

∗
2, ..., e

∗
k are edges generated by Kruskal

algorithm, and e1, e2, ..., ek are edges of a spanning tree in ordering
c(e1) ≤ c(e2) ≤ · · · ≤ c(ek). Show that c(e∗i) ≤ c(ei) for all 1 ≤ i ≤ k.

4. Let V be a fixed set of n vertices. Consider a sequence of m undirected
edges e1, e2, ..., em. For 1 ≤ i ≤ m, let Gi denote the graph with
vertex set V and edge set Ei = {e1, ..., ei}. Let ci denote the number
of connected components of Gi. Design an algorithm to compute ci
for all i. Your algorithm should be asymptotically as fast as possible.
What is the running time of your algorithm?

5. There are n points lying in the Euclidean plane. Show that there exists
a minimum spanning tree on these n points such that every node has
degree at most five.

6. Can you modify Kruskal algorithm to compute a maximum weight
spanning tree?

Introduction 11

7. Consider a connected graph G = (V,E) with edge weight c : E → R,
i.e., the weight is possibly negative. Does Kruskal algorithm work for
computing a minimum weight spanning tree.

8. Consider a connected graph G = (V,E) with nonnegative edge weight
c : E → R+. Suppose edge e is unique longest edge in a cycle. Show
that e cannot be include in any minimum spanning tree.

9. Consider a connected graph G = (V,E) with nonnegative edge weight
c : E → R+. While a cycle exists, delete a longest edge from the cycle.
Show that this computation ends at a minimum spanning tree.

Historical Notes

There are many books, which have been written for combinatorial op-
timization [1, 2, 3, 4, 5, 15, 6, 7]. There are also many books published in
design and analysis of computer algorithms [9, 10], which cover a large por-
tion on combinatorial optimization problems. However, those books mainly
on computing exact optimal solutions and possibly a small part on approxi-
mation solutions. For approximation solutions, a large part of materials are
usually covered in separated books [11, 12, 16].

In recent developments of technology, combinatorial optimization gets a
lot of new applications [8, 13, 14]. This book tries to meet requests from
various areas for teaching, research, and reference, to put together three
components, the classic part of combinatorial optimization, approximation
theory developed in recent year, and newly appeared nonlinear combinatorial
optimization.

12 Introduction

Chapter 2

Sorting and
Divide-and-Conquer

“Defeat Them in Detail: The Divide and Conquer Strategy.
Look at the parts and determine how to control the individu-
al parts, create dissension and leverage it.”
- Robert Greene

Sorting is not a combinatorial optimization problem. However, it appears
in algorithms very often as a procedure, especially in algorithms for solving
combinatorial optimization problems. Therefore, we would like to start with
sorting for introducing an important technique for design of algorithms,
divide-and-conquer.

2.1 Algorithms with Self-Reducibility

There exist a large number of algorithms in which the problem is reduced
to several subproblems each of which is the same problem on a smaller-size
input. Such a problem is said to have the self-reducibility and the algorithm
is said to be with self-reducibility.

For example, consider sorting problem again. Suppose input contains n
numbers. We may divide these n numbers into two subproblems. One sub-
problem is the sorting problem on bn/2c numbers and the other subproblem
is the sorting problem on dn/2e numbers. After complete sorting in each
subproblem, combine two sorted sequences into one. This idea will result in
a sorting algorithm, called Merge Sort. The pseudocode of this algorithm is
shown in Algorithms 1.

13

14 Divide-and-Conquer

Algorithm 1 Merge Sort.

Input: n numbers a1, a2, ..., an in array A[1...n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.

1: Sort(A, 1, n)
2: return A[1...n]

Procedure Sort(A, p, r).
% Sort r − p+ 1 numbers ap, ap+1, ..., ar in array A[p...r]. %

1: if p < r then
2: q ← b(p+ r)/2c
3: Sort(A, p, q)
4: Sort(A, q + 1, r)
5: Merge(A, p, q, r)
6: end if
7: return A[p...r]

Procedure Merge(A, p, q, r).
% Merge sorted two arrays A[p...q] and A[p+ 1...r] into one. %

1: for i← 1 to q − p+ 1 do
2: B[i]← A[p+ i− 1]
3: end for
4: i← 1
5: j ← p+ 1
6: B[q − p+ 2]← +∞
7: A[r + 1]← +∞
8: for k ← p to r do
9: if B[i] ≤ A[j] then

10: A[k]← B[i]
11: i← i+ 1
12: else
13: A[k]← A[j]
14: j ← j + 1
15: end if
16: end for
17: return A[p...r]

Divide-and-Conquer 15

The main body calls a procedure. This procedure contains two self
calls, which means that the merge sort is a recursive algorithm, that is, the
divide will continue until each subproblem has input of single number. Then
this procedure employs another procedure (Merge) to combine solutions of
subproblems with smaller inputs into subproblems with larger inputs. This
computation process on input {5, 2, 7, 4, 6, 8, 1, 3} is shown in Fig. 2.1.

Figure 2.1: Computation process of Merge Sort.

It is easy to estimate that the running time of procedure Merge at each
level is O(n). Let t(n) be the running time of merge sort on input of size n.
By the recursive structure, we can obtain that t(1) = 0 and

t(n) = t(bn/2c) + t(dn/2e) +O(n).

Suppose
t(n) ≤ t(bn/2c) + t(dn/2e) + c · n

for some positive constant c. Define T (1) = 0 and

T (n) = 2 · T (dn/2e) + c · n.

By induction, it is easy to prove that

t(n) ≤ T (n) for all n ≥ 1.

Now, let us discuss how to solve recursive equation about T (n). Usually, we
use two stages. In the first stage, we consider special numbers n = 2k and
employ the recursive tree to find T (2k) (Fig. 2.2), that is,

16 Divide-and-Conquer

Figure 2.2: Recursive tree.

T (2k) = 2 · T (2k−1) + c · 2k

= 2 · (2 · T (2k−2) + c · 2k−1) + c · 2k

= ...

= 2kT (1) + kc · 2k

= c · k2k.

In general, we may guess that T (n) ≤ c′ ·n log n for some constant c′ > 0.
Let us show it by mathematical induction.

First, we choose c′ to satisfy T (n) ≤ c′ for n ≤ n0 where n0 will be
determined later. This choice will make T (n) ≤ c′n log n for n ≤ n0, which
meets the requirement for basis step of mathematical induction.

For induction step, consider n ≥ n0 + 1. Then we have

T (n) = 2 · T (dn/2e) + c · n
≤ 2 · c′dn/2e logdn/2e) + c · n
≤ 2 · c′((n+ 1)/2)(log(n+ 1)− 1)) + c · n
= c′ · (n+ 1) log(n+ 1)− c′(n+ 1) + c · n
≤ c′(n+ 1)(log n+ 1/n)− (c′ − c)n− c′

= c′n log n+ c′ log n− (c′ − c)n+ c′/n.

Now, we choose n0 sufficiently large such that n/2 > log n + 1/n and c′ >
max(2c, T (1), ..., T (n0)). Then above mathematical induction proof will be
passed. Therefore, we obtained following.

Divide-and-Conquer 17

Theorem 2.1.1. Merge Sort runs in O(n log n) time.

By the mathematical induction, we can also prove following result.

Theorem 2.1.2. Let T (n) = aT (n/b) + f(n) where constants a > 1, b > 1,
and n/b means dn/be or bn/bc. Then we have following.

1. If f(n) = O(nlogb a−ε) for some positive constant ε, then T (n) =
Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some positive constant ε and moreover,
af(n/b) ≤ cf(n) for sufficiently large n and some constant c < 1,
then T (n) = Θ(f(n)).

In Fig. 2.1, we see a tree structure between problem and subproblems. In
general, for any algorithm with delf-reducibility, its computational process
will produce a set of subproblems on which we can also construct a graph
to describe relationship between them by adding an edge from subproblem
A to subproblem B if at an iteration, subproblem A is reduced to several
problems, including subproblem B. This graph is called the self-reducibility
structure of the algorithm.

All algorithms with tree self-reducibility structure form a class, called
divide-and-conquer, that is, an algorithm is in class of divide-and-
conquer if and only if its self-reducibility structure is a tree. Thus,
the merge sort is a divide-and-conquer algorithm.

In a divide-and-conquer algorithm, it is not necessary to divide a problem
evenly or almost evenly. For example, we consider another sorting algorithm,
called Quick Sort. The idea is as follows.

In Merge Sort, the procedure Merge takes O(n) time, which is the main
consumption of time. However, if A[i] ≤ A[q] for p ≤ i < q and A[q] ≤ A[j]
for q < j ≤ r, then this procedure can be skipped and after sort A[p...q− 1]
and A[q + 1...r], we can simply put them together to obtain sorted A[p...r].

In order to have above property satisfied, Quick Sort uses A[r] to select
all elements A[p...r − 1] into two subsequences such that one contains ele-
ments less than A[r] and the other one contains elements at least A[r]. A
pseudocode of Quick Sort is as shown in Algorithm 2.

The division is not balanced in Quick Sort. In the worst case, one part
contains nothing and the other contains r − p elements. This will result
in running time O(n2). However, Quick Sort has expected running time

18 Divide-and-Conquer

Algorithm 2 Quick Sort.

Input: n numbers a1, a2, ..., an in array A[1...n].
Output: sorted numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.

1: Quicksort(A, 1, n)
2: return A[1...n]

Procedure Quicksort(A, p, r).
% Sort r − p+ 1 numbers ap, ap+1, ..., ar in array A[p...r]. %

1: if p < r then
2: q ← Partition(A, p, r)
3: Quicksort(A, p, q − 1)
4: Quicksort(A, q + 1, r)
5: end if
6: return A[p...r]

Procedure Partition(A, p, r).
% Find q such that there are q − p + 1 elements less that A[r] and others
bigger than or equal to A[r] %

1: x← A[r]
2: i← p− 1
3: for j ← p− 1 to r − 1 do
4: if A[j] < x then
5: i← i+ 1 and exchange A[i]↔ A[j]
6: end if
7: exchange A[i+ 1]↔ A[r]
8: end for
9: return i+ 1

Divide-and-Conquer 19

O(n log n). To see it, let T (n) denote the running time for n numbers. Note
that the procedure Partition runs in linear time. Then, we have

E[T (n)] ≤ 1

n
(E[T (n− 1)] + c1n)

+
1

n
(E[T (1)] + E[T (n− 2)] + c1n)

+ · · ·

+
1

n
(E[T (n− 1)] + c1n)

= c1n+
2

n

n−1∑
i=1

E[T (i)].

Now, we prove by induction on n that

E[T (n)] ≤ cn log n

for some constant c. For n = 1, it is trivial. Next, consider n ≥ 2. By
induction hypothesis,

E[T (n)] ≤ c1n+
2c

n

n−1∑
i=1

i log i

= c1n+ c(n− 1 log
(
Πn−1
i=1 i

i
)2/(n(n−1))

≤ c1n+ c(n− 1) log
12 + 22 + · · ·+ (n− 1)2

n(n− 1)/2

= c1n+ c(n− 1) log
2n− 1

3

≤ c1n+ cn log
2n

3

= cn log n+ (c1 − c log
3

2
)n.

Choose c ≥ c1/ log 3
2 . We obtain E[T (n)] ≤ cn log n.

Theorem 2.1.3. Expected running time of Quick Sort is O(n log n).

2.2 Heap

Heap is a quite useful data structure. Let us introduce it here and by
the way, give another sorting algorithm, Heap Sort.

20 Divide-and-Conquer

Figure 2.3: A heap.

A heap is a nearly complete binary tree, stored in an array (Fig.2.3).
What is nearly complete binary tree? It is a binary tree satisfying following
conditions.

• Every level other than bottom is complete.

• On the bottom, nodes are placed as left as possible.

For example, binary trees in Fig.2.4 are not nearly complete. An advantage

Figure 2.4: They are not nearly complete.

of nearly complete binary tree is easy to operate on it. For example, for
node i (i.e., a node with address i), its parent, left-child, and right-child can
be easily figured out as follows:

Parent(i)
return bi/2c.

Left(i)
return 2i.

Divide-and-Conquer 21

Right(i)
return 2i+ 1.

Thee are two types of heaps with special properties, respectively.

Max-heap: For every node i other than root, A[Parent(i)] ≥ A[i].

Min-heap: For every node i other than root, A[Parent(i)] ≤ A[i].

Max-heap has two special operations: Max-Heapify and Build-Max-Heap.
We describe them as follows.

When operation Max-Heapify(A, i) is called, two subtree rooted at Left(i)
and Right(i) are max-heaps, but A[i] may not satisfy the max-heap proper-
ty. Max-Heapify(A, i) makes the subtree rooted at A[i] becomes a max-heap
by moving A[i] downside. An example is as shown in Fig.2.5.

Figure 2.5: An example for Max-Heapify(A, i).

Following is algorithmic description for this operation.

Max-Heapify(A, i)
if Left(i) ≥Right(i) and Left(i) > A[i]

then Exchange A[i] and Left(i)
Max-Heapify(A,Left(i))

if Left(i) <Right(i) and Right(i) > A[i]
then Exchange A[i] and Right(i)

Max-Heapify(A,Right(i));

Operation Build-Max-Heap applies to a heap and make it become a
max-heap, which can be described as follows. (Note that Parent(size[A]) =
bsize[A]/2c.)

22 Divide-and-Conquer

Build-Max-Heap(A)
for i← bsize[A]/2c down to 1

do Max-Heapify(A, i);

An example is as shown in Fig.2.6.

Figure 2.6: An example for Build-Max-Heap(A).

It is interesting to estimate the running time of this operation. Let h be
the height of heap A. Then h = blog2 nc. At level i, A has 2i nodes, at each
of which Max-Heapify spends at most h− i steps to float down. Therefore,

Divide-and-Conquer 23

the running time of Build-Max-Heap(A) is

O(

h∑
i=0

2i(h− i)) = O(2h
h∑
i=0

h− i
2h−i

)

= O(2h
h∑
i=0

i

2i
)

= O(n).

Algorithm 3 Heap Sort.

Input: n numbers a1, a2, ..., an in array A[1...n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.

1: Build-Max-Heap(A)
2: for i← n down to 2 do
3: exchange A[1]↔ A[i]
4: heap− size[A]← i− 1
5: Max-Heapify(A, 1)
6: end for
7: return A[1...n]

Nowas shown in Algorithm 3, a sorting algorithm can be designed with
max-heap. Initially, build a max-heap A. In each subsequential steps, the
algorithm first exchange A[1] and A[heap−size(A)], and then reduce heap−
size(A) by 1, meanwhile with Max-Heapify(A, 1) to recover the max-heap.
An example is as shown in Fig.2.7.

Since the number of steps is O(n) and Max-Heapify(A, 1) takes O(log n)
time, the running time of Heap Sort is O(n log n).

Theorem 2.2.1. Heap Sort runs in O(n log n) time.

We already have two sorting algorithms with O(n log n) running time and
one sorting algorithm with expected O(n log n) running time. But, there is
no sorting algorithm with running time faster than O(n log n). Is O(n log n)
a barrier of running time for sorting algorithm? In some sense, the answer
is yes. All sorting algorithms presented previously belong to a class, called
comparison sort.

In comparison sort, order information about input sequence can be ob-
tained only by comparison between elements in the input sequence. Suppose
input sequence contains n positive integers. Then there are n! possible per-
mutations. The aim of sorting algorithm is to determine a permutation

24 Divide-and-Conquer

Continue

Figure 2.7: An example for Heap Sort.

Divide-and-Conquer 25

which gives nondecreasing order. Each comparison divides the set of possi-
ble permutations into two subsets. The comparison result tells which subset
contains a nondecreasing order. Therefore, every comparison sort algorithm
can be represented by a binary decision tree (Fig.2.8). The (worst case)
running time of the algorithm is the height (or depth) of the decision tree.

Figure 2.8: Decision tree.

Since the binary decision has n! leaves, its height T (n) satisfies

1 + 2 + · · ·+ 2T (n) ≥ n!

that is,

2T (n)+1 − 1 ≥
√

2πn
(n
e

)n
.

Thus,

T (n) = Ω(n log n).

Therefore, no comparison sort can do better than O(n log n).

Theorem 2.2.2. The running time of any comparison sort is Ω(n log n).

2.3 Counting Sort

To break the barrier of running time O(n log n), one has to design a
sorting algorithm without using comparison. Counting sort is such an algo-
rithm.

26 Divide-and-Conquer

Algorithm 4 Counting Sort.

Input: n numbers a1, a2, ..., an in array A[1...n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array B.

1: for i← 1 to k do
2: C[i]← 0
3: end for
4: for j ← 1 to n do
5: C[A[j]]← C[A[j]] + 1
6: end for
7: for i← 2 to k do
8: C[i]← C[i] + C[i− 1]
9: end for

10: for j ← n down to 1 do
11: B[C[A[j]]]← A[j]
12: C[A[j]]← C[A[j]]− 1
13: end for
14: return B[1...n]

Let us use an example to illustrate Counting Sort as shown in Algorithm
4. This algorithm involves three arrays A, B, and C. Array A contains
input sequence of positive integers. Suppose A = {4, 6, 5, 1, 4, 5, 2, 5}. Let
k be the largest integer in input sequence. Initially, the algorithm makes
preprocessing on array C in three stages.

1. Clean up array C.

2. For 1 ≤ i ≤ k, assign C[i] with the number of i’s appearing in array
A. (In the example, C = {1, 1, 0, 2, 3, 1} at this stage.)

3. Update C[i] such that C[i] is equal to the number of integers with
value at most i appearing in A. (In the example, C = {1, 2, 2, 4, 7, 8}
at this stage.)

With help of array C, the algorithm move element A[j] to array B for
j = n down to 1, by

B[C[A[j]]]← A[j]

and then update array C by

C[A[j]]← C[A[j]]− 1.

Divide-and-Conquer 27

This part of computation about the example is as follows.

C 1 2 2 4 7 8

A 4 6 5 1 4 5 2 5̂
B 5

C 1 2 2 4 6 8

A 4 6 5 1 4 5 2̂ 5
B 2 5

C 1 1 2 4 6 8

A 4 6 5 1 4 5̂ 2 5
B 2 5 5

C 1 1 2 4 5 8

A 4 6 5 1 4̂ 5 2 5
B 2 4 5 5

C 1 1 2 3 5 8

A 4 6 5 1̂ 4 5 2 5
B 1 2 4 5 5

C 0 1 2 3 5 8

A 4 6 5̂ 1 4 5 2 5
B 1 2 4 5 5 5

C 0 1 2 3 4 8

A 4 6̂ 5 1 4 5 2 5
B 1 2 4 5 5 5 6

C 0 1 2 3 4 7

A 4̂ 6 5 1 4 5 2 5
B 1 2 4 4 5 5 5 6

Now, let us estimate the running time of Counting Sort.

Theorem 2.3.1. Counting Sort runs in O(n+ k) time.

Proof. The loop at line 1 takes O(k) time. The loop at line 4 takes O(n)
time. The loop at line 7 takes O(k) time. The loop at line 10 takes O(n)
time. Putting all together, the running tine is O(n+ k).

28 Divide-and-Conquer

A student found a simple way to improve Counting Sort. Let consider
the same example. At the 2nd stage, C = {1, 1, 0, 2, 3, 1} where C[i] is equal
to the number of i’s appearing in array A. The student found that with this
array C, array B can be put in integers immediately without array A.

C 1 1 0 2 3 1

B 1
B 1 2
B 1 2 4 4
B 1 2 4 4 5 5 5
B 1 2 4 4 5 5 5 6

Is this method acceptable? The answer is no. Why not? Let us explain.
First, we should note that those numbers in input sequence may come

from labels of objects. The same numbers may come from different objects.
For example, consider a sequence of objects {329, 457, 657, 839, 436, 720, 355}.
If we use their the first digits from left as labels, then we will obtain a se-
quence {9, 7, 7, 9, 6, 0, 5}. When apply Counting Sort on this sequence, we
will obtain a sequence {720, 355, 436, 457, 657, 329, 839}. This is because
label gets moved together with its object in Counting Sort.

Moreover, consider two objects 329 and 839 with the same label 9. In
input sequence, 329 lies on the left-side of 839. After Counting Sort, 329
lies still on the left-side of 839.

A sorting algorithm is stable if for different objects with the same label,
after labels are sorted, the ordering of objects in output sequence is the same
as their ordering in input sequence. Following can be proved easily.

Lemma 2.3.2. Counting Sort is stable.

The student’s method cannot keep stable property.
With stable property, we can use Counting Sort in following way. Re-

member, after sort the leftmost digit, we obtain sequence

{720, 355, 436, 457, 657, 329, 839}.

Now, we continue to sort this sequence based on the second leftmost digit.
Then we will obtain sequence

{720, 329, 436, 839, 355, 457, 657}.

Continue to sort based on the rightmost digit, we will obtain sequence

{329, 355, 436, 457, 657, 720, 839}.

Now, let us use this technique to solve a problem.

Divide-and-Conquer 29

Example 2.3.3. There are n integers between 0 and n2 − 1. Design a
algorithm to sort them. The algorithm is required to run in O(n) time.

Each integer between 0 and n2 − 1 can be represented as

an+ b for 0 ≤ a ≤ n− 1, 0 ≤ b ≤ n− 1.

Apply Counting Sort first to b and then to a. Each application takes O(n) =
O(n+ k) time since k = n. Therefore, total time is still O(n).

In general, suppose there are n integers, each of which can be represented
in form

adk
d + ad−11kd−1 + · · ·+ a0

where 0 ≤ ai ≤ k − 1 for 0 ≤ i ≤ d. Then we can sort these n integers by
using Counting Sort first on a0, second on a1, ..., finally on ad. This method
is called Radix Sort.

Theorem 2.3.4. Radix Sort takes O(d(n+ k)) time.

2.4 Examples

Let us study some examples with divide-and-conquer technique and sort-
ing algorithms.

Example 2.4.1 (Maximum Consecutive Subsequence Sum). Given a se-
quence of n integers, find a consecutive subsequence with maximum sum.

Divide input sequence S into two subsequence S1 and S2 such that
|S1| = bn/2c and |S2| = dn/2e. Let Max − Sub(S) denote the consecu-
tive subsequence of S with maximum sum. Then there are two cases.

Case 1. Max − Sub(S) is contained in either S1 or S2. In this case,
Max− Sub(s) = Max− Sub(S1) or Max− Sub(s) = Max− Sub(S2).

Case 2. Max−Sub(S)∩S1 6= ∅ and Max−Sub(S)∩S2 6= ∅. In this case,
Max − Sub(S) ∩ S1 is the tail subsequence with maximum sum. That is,
suppose S1 = {a1, a2, ..., ap}. Then among subsequences {ap}, {ap−1, ap}, ...,
{a1, ..., ap}, Max− Sub(S) ∩ S1 is the one with maximum sum. Therefore,
it can be find in O(n) time. Similarly, Max − Sub(S) ∩ S2 is the head
subsequence with maximum sum, which can be computed in O(n) time.

Suppose Max − Sub(S) can be computed in T (n) time. Summarized
from above two cases, we obtain

T (n) = 2T (dn/2e) +O(n).

Therefore, T (n) = O(n log n).

30 Divide-and-Conquer

Example 2.4.2 (Closest Pair of Points). Given n points in the Euclidean
plane, find a pair of points to minimize the distance between them.

Initially, we may assume that all n points have distinct x-coordinates
since, if not, we may rotate the coordinate system a little.

Now, divide all points into two half parts based on x-coordinates. Find
the closest pair of points in each part. Suppose δ1 and δ2 are distances of
closest pairs in two parts, respectively, Let δ = min(δ1, δ2). We next study
if there is a pair of points lying in both parts, respectively and with distance
less than δ.

Figure 2.9: Closest pair of points.

For each point u = (xu, yu) in the left part (Fig.2.10), consider the
rectangle Ru = {(x, y) | xu ≤ x ≤ xu + δ, yu − δ ≤ y ≤ yu + δ}. It has
following properties.

• Every point in the right part and within distance δ from u lies in this
rectangle.

• This rectangle contains at most six points in the right part because
every two points have distance at least δ.

For each u in the left part, check every point v lying in Ru, if distance
d(u, v) < δ. If yes, then we keep the record and choose the closest pair of
points from them, which should be the solution. If not, then the solution
should either the closest pair of points in the left part or the closest pair of
points in the right part.

Let T (n) be the time for finding the closest pair of points from n points.
Above method give a recursive relation

T (n) = 2T (dn/2e) +O(n).

Divide-and-Conquer 31

Therefore, T (n) = O(n log n).

Example 2.4.3 (The ith Smallest Number). Given a sequence of n distinct
numbers and a positive integer i, find ith smallest number in O(n) time.

This algorithm consists of five steps. Let us name this algorithm as
A(n, i) for convenience of recursive call.

Step 1. Divide n numbers into dn/5e groups of 5 elements, possibly
except the last one of less than 5 elements (Fig.2.10).

Figure 2.10: x is selected through first three steps.

Step 2. Find the median of each group by Merge Sort. Possibly, for last
group, there are two median; in such a case, take the smaller one (Fig.2.10).

Step 3. Make a recursive call A(dn/5e, ddn/5e/2e). This call will find
the median x of dn/5e group median, and moreover, will select the smaller
one in case that two candidates of x exist (Fig 2.10).

Step 4. Exchange x with the last element in input array and partition
all numbers into two parts by using Partition procedure in Quick Sort. One
part (on the left) contains numbers less than x and the other part (on the
right) contains numbers larger than x (Fig.2.11).

Step 5. Let k be the number of elements in the left part (Fig.2.11). If
k = i− 1, then x is the ith smallest number. If k ≥ i, then the ith smallest
number lies on the left of x and hence make a recursive call A(k, i). If
k ≤ i−2, then the ith smallest number lies in the right of x and hence make
a recursive call A(n− k − 1, i− k − 1).

32 Divide-and-Conquer

Figure 2.11: x is selected through first three steps.

Now, let us analyze this algorithm. Let T (n) be the running time of
A(n, i).

• Steps 1 and 2 take O(n) time.

• Step 3 takes T (dn/5e) time.

• Step 4 takes O(n) time.

• Step 5 takes T (max(k, n− k − 1)) time.

Therefore,

T (n) = T (dn/5e) + T (max(k, n− k − 1)) +O(n).

We claim that

max(k, n− k − 1) ≤ n− (3

⌈
1

2

⌈n
5

⌉⌉
− 2).

In fact, as shown in Fig.2.12,

k + 1 = 3

⌈
1

2

⌈n
5

⌉⌉
and

n− k ≥ 3

⌈
1

2

⌈n
5

⌉⌉
− 2.

Divide-and-Conquer 33

Figure 2.12: Estimation of k + 1 and n− k.

Therefore,

n− k − 1 ≤ n− 3

⌈
1

2

⌈n
5

⌉⌉
and

k ≤ n− (3

⌈
1

2

⌈n
5

⌉⌉
− 2).

Note that

n− (3

⌈
1

2

⌈n
5

⌉⌉
− 2) ≤ n− (

3n

10
− 2) ≤ 7n

10
+ 2.

By the claim,

T (n) ≤ T (dn/5e) + T (
7n

10
+ 2) + c′n

for some constant c′ > 0. Next, we show that

T (n) ≤ cn (2.1)

for some constant c > 0. Choose

c = max(20c′, T (1), T (2)/2, ..., T (59)/59).

Therefore, (2.1) holds for n ≤ 59. Next, consider n ≥ 60. By induction
hypothesis, we have

T (n) ≤ c(n/5 + 1) + c(7n/10 + 2) + c′n

≤ cn− (cn/10− 3c− c′n)

≤ cn

34 Divide-and-Conquer

since

c(n/10− 3) ≥ n/20 ≥ c′n.

The fist inequality is due to n ≥ 60 and the second one is due to c ≥ 20c′.
This ends the proof of T (n) = O(n).

Exercises

1. Use a recursion tree to estimate a good upper bound on the recurrence
T (n) = 3T (bn/2c) +n and T (1) = 0. Use the mathematical induction
to prove correctness of your estimation.

2. Draw the recursion tree for T (n) = 3T (bn/2c)+cn, where c is a positive
constant, and guest an asymptotic upper bound on its solution. Prove
your bound by mathematical induction.

3. Show that for input sequence in decreasing order, the running time of
Quick Sort is Θ(n2).

4. Show that Counting Sort is stable.

5. Find an algorithm to sort n integers in the range 0 to n3 − 1 in O(n)
time.

6. Let A[1 : n] be an array of n distinct integers sorted in increasing order.
(Assume, for simplicity, that n is a power of 2.) Give an O(log n)-time
algorithm to decide if there is an integer i, 1 ≤ i ≤ n, such that
A[i] = i.

7. Given an array A of integers, please return an array B such that
B[i] = |{A[k] | k > i and A[k] < A[i]}|.

8. Given a string S and an integer k > 0, find a longest substring of s
such that each symbol appears at least k times if it appears in the
substring.

9. Given an integer array A, please compute the number of pairs {i, j}
with A[i] > 2 ·A[j].

10. Given a sorted sequence of distinct nonnegative integers, find the s-
mallest missing number.

Divide-and-Conquer 35

11. Let S be a set of n points, pi = (xi, yi), 1 ≤ i ≤ n, in the plane.
A point pj ∈ S is a maximal point of S if there is no other point
pk ∈ S such that xk ≥ xj and yk ≥ yj . The figure below illustrates the
maximal points of a point-set S. Note that the maximal points form
a “staircase” which descends rightwards.

----o

|

* ----o

|

* | o = maximal point

--o * = non-maximal point

* |

* ---o

|

Give an efficient divide–and–conquer algorithm to determine the max-
imal points of S.

12. Given two sorted sequences with m, n elements, respectively, design
and analyze an efficient divide-and-conquer algorithm to find the kth
element in the merge of the two sequences. The best algorithm runs
in time O(log(max(m,n))).

13. Design a divide-and-conquer algorithm for the following longest as-
cending subsequence problem: Given an array A[1..n] of natural num-
bers, find the length of the longest ascending subsequence. (A subse-
quence is a list A[i1], A[i2], ..., A[im] where m is the length.)

14. Show that in a max-heap of length n, the number of nodes rooted at
which the subtree has height h is at most d n

2h+1 e.

15. Let A be an n × n matrix of integers such that each row is strictly
increasing from left to right and each column is strictly increasing from
top to bottom. Given an O(n)-time algorithm for finding whether a
given number x is an element of A, i.e., whether x = A(i, j) for some
i, j.

16. The maximum subsequence sum problem is defined as follows: Given
an array A[1..n] of integer numbers, find values of i and j with 1 ≤ i ≤
j ≤ n such that

∑j
k=iA[i] is maximized. Design a divide-and-conquer

algorithm for solving the maximum subsequence sum problem in time
O(n log n).

36 Divide-and-Conquer

17. Design a divide-and-conquer algorithm for multiplying n complex num-
bers using only 3(n− 1) real multiplications.

Historical Notes

Divide-and-conquer is a popular technique for algorithm design. It has a
special case, decrease-and-conquer. In decrease and conquer, the problem is
reduced to single subproblem. Both divide-and-conquer and decrease-and-
conquer have a long history. Their stamps can be found in many earlier
works, such as Gauss’s work Fourier transform in 1850 [17], John von Neu-
mann’s work on Merge Sort in 1945 [18], and John Mauchly’s work in 1946
[18]. Quick Sort was developed by Tony Hoare in 1959[19] (publishedin1962
[20]). Counting Sort and its applications to Radix Sort were found by Harold
H. Seward in 1954 [9, 18, 21].

Chapter 3

Dynamic Programming and
Shortest Path

“The art of programming is the art of organizing complexity.”
- Edsger Dijkstra

A divide-and-conquer algorithm consists of many itrations. Usually, each
iteration contains three steps. In the first step (called the divide step), divide
the problem into smaller subproblems. In the second step (called conquer
step), solve those subproblems. In the third step (called the combination
step), combine solutions for subproblems into a solution for the original prob-
lem. Is it true that every algorithm with each iteration consisting
of above three steps belongs to the class of divide-and-conquer?
The answer is No. In this chapter, we would like to introduce a class of algo-
rithms, called dynamic programming. Every algorithm in this class consists
of discrete iterations each of which contains the divide step, the conquer
step and the combination step. However, they may not be the divide-and-
conquer algorithms. Actually, their self-reducibility structure may not be a
tree.

3.1 Dynamic Programming

Let us first study several examples and start from simpler one.

Example 3.1.1 (Fibonacci Number). Fibonacci number Fi for i = 0, 1, ...
is defined by

F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2.

37

38 Dynamic Programming

The computational process can be considered as a dynamic programming
with self-reducibility structure as shown in Fig. 3.1.

Figure 3.1: Fibonacci numbers.

Example 3.1.2 (Labeled Tree). Let a1, a2, ..., an be a sequence of positive
integers. A labeled tree for this sequence is a binary tree T of n leaves
named v1, v2, ..., vn from left to right. We label vi by ai for all i, 1 ≤ i ≤ n.
Let Di be the length of the path from vi to the root of T . The cost of T is
defined by

cost(T) =
n∑
i=1

aiDi.

The problem is to construct a labeled tree T to minimize the cost cost(T) for
given sequence of positive integers a1, a2, ..., an.

Let T (i, j) be the optimal labeled tree for subsequence {ai, ai+1, ..., aj}
and sum(i, j) = ai + ai+1 + · · ·+ aj . Then

cost(T (i, j)) = min i ≤ k < j{cost(T (i, k)) + cost(T (k + 1, j))}+ sum(i, j)

where

sum(i, j) =

{
ai if i = j
ai + sum(i+ 1, j) if i < j.

As shown in Fig.3.2, there are 1 + 2 + · · ·+ n = n(n+1)
2 subproblems T (i, j)

in the table. From recursive formula, it can be seen that solution of each
subproblem T (i, j) can be computed in O(n) time. Therefore, this dynamic
programming runs totally in O(n3) time.

Actually, the running time of a dynamic programming is often estimated
by following formula:

running time = (number of subproblems)× (computing time of recursion).

Dynamic Programming 39

Figure 3.2: The table of subproblems T (i, j).

There are two remarks on this formula: (1) There are some exceptional
cases. We will see one in next section. (2) The divide-and conquer can
be considered as a special case of the dynamic programming. Therefore, its
running time can also be estimated with this formula. However, the outcome
is usually too rough.

It is similar to the divide-and-conquer that there are two ways to write
software codes for the dynamic programming. The first way is to employ
recursive call as shown in Algorithm 5. The second way is as shown in
Algorithm 6 which saves the recursive calls and hence in practice, it runs
faster with smaller space requirement.

Before study next example, let us first introduce a concept, guillotine
cut. Consider a rectangle P , a cut on P is called a guillotine cut if it cuts
P into two parts. A guillotine partition is a sequence of guillotine cuts.

Example 3.1.3 (Minimum Length Guillotine Partition). Given a rectangle
with point-holes inside (Fig. 3.3), partition it into smaller rectangles without
hole inside by a sequence of guillotine cuts to minimize the total length of
cuts.

Example 3.1.3 is a geometric optimization problem. It has infinitely
many feasible solutions. Therefore, strictly speaking, it is not a combinato-
rial optimization problem. However, it can be reduced to a combinatorial
optimization problem.

Lemma 3.1.4 (Canonical Partition). There exists a minimum length guil-
lotine partition such that every guillotine cut passes through a point-hole.

Proof. Suppose there exists a guillotine cut AB not passing through any
point-hole. Without loss of generality, assume that AB is a vertical cut.

40 Dynamic Programming

Algorithm 5 Algorithm for Labeled Tree.

Input: A sequence of positive integers a1, a2, ..., an.
Output: Minimum cost of a labeled tree.

1: return cost(T (1, n)).

function cost(T (i, j)) (i ≤ j)
1: if i = j then
2: tempt← ai
3: else
4: temp← +∞
5: for k = i to j − 1 do
6: temp← min(temp, cost(T (i, k)) + cost(T (k + 1, j)) + sum(i, j))
7: end for
8: end if
9: return cost(T (i, j))← temp;

function sum(i, j) (i ≤ j)
1: if i = j then
2: return sum(i, j)← ai
3: else
4: return sum(i, j)← ai + sum(i+ 1, j)
5: end if

Algorithm 6 Algorithm for Labeled Tree.

Input: A sequence of positive integers a1, a2, ..., an.
Output: Minimum cost of a labeled tree.

1: for i = 1 to n do
2: cost(T (i, i))← ai; sum(i, i)← ai
3: end for
4: for l = 2 to n do
5: for i = 1 to n− l + 1 do
6: j ← i+ l − 1
7: cost(T (i, j))← +∞; sum(i, j)← sum(i, j − 1) + aj
8: for k = i to j − 1 do
9: q ← cost(T (i, k)) + cost(T (k + 1, j)) + sum(i, j)

10: cost(T (i, j))← min(cost(T (i, j)), q)
11: end for
12: end for
13: end for
14: return cost(T (1, n))

Dynamic Programming 41

Figure 3.3: A rectangle with point-holes inside.

Let n1 be the number of guillotine cuts touching AB on the left and n2

the number of guillotine cuts touching AB on the right. Without loss of
generality, assume n1 ≥ n2. Then we can move AB to the right without
increasing the total length of rectangular guillotine partition, until meet a
point-hole. If this moving cannot meet a point-hole, then AB can be moved
to meet another vertical cut or vertical boundary and in either case, AB
can be deleted, contradicting the optimality of the partition.

By Lemma 3.1.4, we may consider only canonical guillotine partitions.
During the canonical guillotine partition, each subproblem can be deter-
mined by a rectangle in which each boundary edge is obtained by a guil-
lotine cut or a boundary edge of given rectangle and hence there are O(n)
possibility. This implies that the number of subproblems is O(n4).

To find an optimal one, let us study a guillotine cut on a rectangle P .
Let n be the number of point-holes. Since the guillotine cut passes a point-
hole, there are at most 2n possible positions. Suppose P1 and P2 are two
rectangles obtained from P by the guillotine cut. Let opt(P) denote the
minimum total length of guillotine partition on P . Then we have

opt(P) = min
candidate cuts

[opt(P1) + opt(P2) + (cut length)],

The computation time for this recurrence is O(n). Therefore, the optimal
rectangular guillotine partition can be computed by a dynamic programming
in O(n5) time.

One of important technique for design of dynamic programming for a
given problem is to replace the original problem by a proper one which can
be easily found to have a self-reducibility. Following is such an example.

42 Dynamic Programming

Example 3.1.5. Consider a horizontal strip. There are n target points
lying inside and m unit disks with centers lying outside of the strip where
each unit disk di has radius one and a positive weight w(di). Each target
point is covered by at least one unit disk. The problem is to find a subset of
unit disks, with minimum total weight, to cover all target points.

First, without loss of generality, assume all target points have distinct
x-coordinates; otherwise, we may rotate the strip together with coordinate
system a little to reach such a property. Line up all target points p1, p2, ..., on
in the increasing ordering of x-coordinate. Let Da be the set of all unit disks
with centers lying above the strip and Db the set of all unit disks with centers
lying below the strip. Let `1, `2, ..., `n be vertical lines passing through p1,
p2, ..., pn, respectively. For any two disks d, d′ ∈ Da, define d ≺i d′ if the
lowest intersection between the boundary of disk d and `i is not lower than
the lowest intersection between the boundary of disk d′ and `i. Similarly, for
ny two sensors d, d′ ∈ Db, define d ≺i d′ if the highest intersection between
the boundary of disk d and `i is not higher than the highest intersection
between the boundary of disk d′ and `i.

For any two disks da ∈ Da and db ∈ Db with pi covered by da or db, let
Di(da, db) be an optimal solution of following problem.

min w(D) =
∑
d∈D

w(d) (3.1)

subject to da, db ∈ D,
∀d ∈ D ∩ Da : d ≺i da,
∀d ∈ D ∩ Db : d ≺i db,
D covers targets points p1, p2, ..., pi.

Then, we have following recursive formula.

Lemma 3.1.6.

w(Di(da, db)) = min{w(Si−1(d′a, d
′
b)) + [da 6= d′a]w(da) + [db 6= d′b]w(db)

| d′a ≺i da, d′b ≺i db, and pi−1 is covered by d′a or d′b}

where

[d 6= d′] =

{
1 if d 6= d′,
0 otherwise .

Proof. . Let d′a be the disk in Di(da, db)∩Da whose boundary has the lowest
intersection with `i−1 and d′b the disk in Di(da, db)∩Db whose boundary has

Dynamic Programming 43

the highest intersection with `i−1. We claim that

w(Di(da, db)) = w(Di−1(d′a, d
′
b)) + [da 6= d′a]w(da) + [db 6= d′b]w(db). (3.2)

To prove it, we first show that if da 6= d′a, then da 6∈ Di−1(d′a, d
′
b) for w(da) >

0. In fact, for otherwise, there exists i′ < i − 1 such that pi′ is covered by
da, but not covered by d′a. This is impossible (Fig. 3.4). To see this, let A

Figure 3.4: Proof of Lemma 3.1.6.

be the lowest intersection between the boundary of disk d′a and `i′ and B
the lowest intersection between the boundary of disk d′a and `i. Then A and
B lie inside the disk da. Let C and D be intersection points between line
AB and the boundary of disk da. Let E be the lowest intersection between
the boundary of disk da and `i−1 and F the lowest intersection between the
boundary of disk d′a and `i−1. Note that da and d′a lies above the strip. We
have ∠CED > ∠AFB > π/2 and hence sin∠CED < sin∠AFB. Moreover,
we have |AB| < |CD|. Thus,

radius (da) =
|CD|

2 sin∠CED
>

|AB|
2 sin∠AFB

= radius(d′a),

contradicting the homogeneous assumption of disks. Therefore, our claim is
true. Similarly, if db 6= d′b, then db 6∈ Si−1(d′a, d

′
b) for w(sb) > 0. Therefore,

(3.2) holds. This means that for equation in Lemma 3.1.6, the left-side ≥
the right-side.

To see the left-side ≤ the right-side for the equation in Lemma 3.1.6, we
note that in the right-side, Si−1(d′a, d

′
b)∪{da, db} is always a feasible solution

of the problem (3.1).

44 Dynamic Programming

Let us employ the recursive formula in Lemma 3.1.6 to compute all
Si(da, db). There are totally O(m2n) problems. With the recursive formula,
each Si(da, db, k) can be computed in time O(m2). Therefor, all Si(da, db, k)
can be computed by dynamic programming in time O(m4n). The solution
of Example 3.1.5 can be computed by

S = argminSn(da,db)w(Sn(da, db))

where da ∈ Da, db ∈ Db, and pn is covered by da or db. This requires addi-
tional computation within time O(m2). Therefore, putting all computations
together, the time is O(m4n).

3.2 Shortest Path

Often, the running time of a dynamic programming algorithm can be
estimated by the product of the table size (the number of subproblems) and
the computation time of the recursive formula (i.e., the time for recursively
computing the solution of each subproblem). Does this estimation hold
for every dynamic programming algorithm? The answer is No. In
this section, we would like to provide a counterexample, the shortest path
problem. For this problem, we must consider something else in order to
estimate the running time of a dynamic programming algorithm.

Problem 3.2.1 (Shortest Path). Given a directed graph G = (V,E) with
arc cost c : E → Z, and a source node s and a sink node t in V , where Z is
the set of integers, find a path from s to t with minimum total arc cost.

In study of shortest path, arcs coming to s and arc going out from t are
useless. Therefore, we assume that those arcs do not exist in G, which may
simplify some statements later.

For any node u ∈ V , let d∗(s, u) denote the total cost of the shortest
path from node s to node u and N−(u), the in-neighbor set of u, i.e., the
set of nodes each with an arc coming to u. Then it is easy to obtain the
following recursive formula (Fig. 3.5).

d∗(s) = 0,

d∗(u) = min
v∈N−(v)

{d∗(v) + c(v, u)}.

Based on this recursive formula, we may write down an algorithm as follows:

Dynamic Programming 45

Figure 3.5: Recursive relation of d∗(u).

DP1 for the Shortest Path
S ← {s};
T ← V − S;
while T 6= ∅ do begin

find u ∈ T such that N−(u) ⊆ S;
compute d∗(u) = minv∈N−(u){d∗(v) + c(v, u)};
S ← S ∪ {u};
T ← T − {u};

end-while
output d∗(t).

This is a dynamic programming algorithm which works correctly for all
acyclic digraphs due to following.

Theorem 3.2.2. Consider an acyclic network G = (V,E) with a source
node s and a sink node t. Assume that for any v ∈ V − {s}, N−(v) 6= ∅.
Let (S, T) be a partition of V such that s ∈ S and t ∈ T . Then there exists
u ∈ T such that N−(u) ⊆ S.

Proof. Note that for any u ∈ T , N−(u) 6= ∅. If N−(u) 6⊆ S, then
there exists v ∈ N−(u) such that v ∈ T . If N−(v) 6⊆ S, then there exists
w ∈ N−(v) such that w ∈ T . This process cannot go forever. Finally, we
would find z ∈ T such that N−(z) ⊆ S. �

In this theorem, the acyclic condition cannot be dropped. In Fig. 3.6,
a counterexample is shown that a simple cycle may make no node u in T
satisfy N−(u) ⊆ S.

To estimate the running time of algorithm DP1, we note that d∗(u) needs
to be computed for u over all nodes, that is, the size of table for holding

46 Dynamic Programming

Figure 3.6: When S = {s}, there is no node u such that N−(u) ⊆ S.

all subproblems is O(n) where n is the number of nodes. In the recursive
formula for computing each d∗(u), the ”min” operation is over all nodes
in N−(u) which may contains O(n) nodes. Thus, the product of the table
size and the computation time of recursive formula is O(n2). However, this
estimation for the running time of algorithm DP1 is not correct. In fact, we
need also to consider the time for finding u ∈ T such that N−(u) ⊆ S. This
requires to check if a set is a subset of another set. What is the running
time of this computation? Roughly speaking, this may takes O(n log n) time
and hence, totally the running time of algorithm DP1 is O(n(n+n log n)) =
O(n2 log n).

Can we improve this running time by a smarter implementation? The
answer is yes. Let us do this in two steps.

First, we introduce a new number d(u) = minv∈N−(u)∩S(d∗(v) + c(v, u))
and rewrite the algorithm DP1 as follows.

DP2 for the Shortest Path
S ← ∅;
T ← V ;
while T 6= ∅ do begin

find u ∈ T such that N−(u) ⊆ S;
S ← S ∪ {u};
T ← T − {u};
d∗(u) = d(u);
for every w ∈ N+(u) update d(w)← min(d(w), d∗(u) + c(u,w));

end-while
output d∗(t).

In this algorithm, updating value of d(u) would be performed on all edges

Dynamic Programming 47

and for each edge, update once. Therefore, the total time is O(m) where m
is the number of edges, i.e., m = |E|.

Secondly, we introduce the topological sort. The topological sort of nodes
in a digraph G = (V,E) is a ordering such that for any arc (u, v) ∈ E, node u
has position before node v. There is an algorithm with running time O(m)
for topological sort as shown in Algorithm 7. Actually, in Algorithm 7,

Algorithm 7 Topological Sort.

Input: A directed graph G = (V,E).
Output: A topologically sorted sequence of nodes.

1: L← ∅
2: S ← {s}
3: while S 6= ∅ do
4: remove a node u from S
5: put u at tail of L
6: for each node v ∈ N+(u) do
7: remove arc (u, v) from graph G
8: if v has no other incoming arc then
9: insert v into S

10: end if
11: end for
12: end while
13: if graph G has an arc then
14: return error (G contains at least one cycle)
15: else
16: return L
17: end if

line 3 takes O(n) time and line 7 takes O(m) time. Hence, it runs totally in
O(m+n) time. However, for the shortest path problem, input directed graph
is connected if ignore the arc direction and hence n = O(m). Therefore,
O(m+ n) = O(m).

An example for topological sort is shown in Fig. 3.7. In each iteration,
yellow node is the one selected from S to initiate the iteration. During the
iteration, the yellow node will be moved from S to end of L and all arcs
from the yellow node will be deleted, meanwhile new nodes will be added to
S.

Now, we can first do topological sort and them carry out dynamic pro-
gramming, which will result in a dynamic programming (Algorithm 8 for
the shortest path problem, running in O(m) time.

48 Dynamic Programming

Figure 3.7: An example of topological sort.

Dynamic Programming 49

Algorithm 8 Dynamic Programming for Shortest Path.

Input: A directed graph G = (V,E) with arc weight c : E → Z, and two
nodes s and t in V .
Output: The length of shortest path from s to t.

1: S ← ∅
2: T ← V
3: do topological sort on T
4: d(s)← 0
5: for every u ∈ V \ {s} do
6: d(u)←∞
7: end for
8: while T 6= ∅ do
9: remove the first node u from T

10: S ← S ∪ {u}
11: d∗(u)← d(u)
12: for every (u, v) ∈ E do
13: d(v)← min(d(v), d∗(u) + c(u, v))
14: end for
15: end while
16: return d∗(t)

50 Dynamic Programming

Figure 3.8: An example of dynamic programming for shortest path.

Dynamic Programming 51

An example is shown in Fig. 3.8. At beginning, the topological sort
is done in previous example as shown in Fig. 3.7. In Fig. 3.8, the yellow
node represents the one removed from the front of T to initiate an iteration.
During the iteration, all red arcs from the yellow node are used for updating
the value of d(·) and meanwhile the yellow node is added to S whose d∗(·)’s
value equals to d(·)’s value.

It may worth mentioning that Algorithm 8 works for acyclic directed
graph without restriction on arc weight, i.e., arc weight can be negative. This
implies that the longest path problem can be solved in O(m) time if input
graph is acyclic. For definition of the longest path problem, please find it in
Chapter 8. The longest path problem is NP-hard and hence unlikely to have
a polynomial-time solution. This means that for the shortest path problem,
if input directed graph is not acyclic and arc weights can be negative, then
solution may not polynomial-time computable. What is about the case that
input directed graph is not acyclic and all arc weights are nonnegative? In
next section, we present a polynomial-time solution.

3.3 Dijkstra Algorithm

Dijkstra algorithm is able to find the shortest path in any directed graph
with nonnegative arc weights. Its design is based on following important
discovery.

Theorem 3.3.1. Consider a directed network G = (V,E) with a source
node s and a sink node t, and every arc (u, v) has a nonnegative weight
c(u, v). Suppose (S, T) is a partition of V such that s ∈ S and t ∈ T . If
d(u) = minv∈T d(v), then d∗(u) = d(u).

Proof. For contradiction, suppose d(u) = minv∈T d(v) > d∗(u). Then there
exists a path p (Fig. 3.9)from s to u such that

length(p) = d∗(u) < d(u).

Let w be the first node in T on path p. Then d(w) = length(p(s, w))
where p(s, w) is the piece of path p from s to w. Since all arc weights are
nonnegative, we have

length(p) ≥ length(p(s, w)) = d(w) ≥ d(u) > d∗(u) = length(p)

a contradiction.

52 Dynamic Programming

Figure 3.9: In proof of Theorem 3.3.1.

By Theorem 3.3.1, in dynamic programming for shortest path, we may
replace N−(u) ⊆ S by d(u) = minv∈T d(v) when all arc weights are nonneg-
ative. This replacement results in Dijkstra algorithm.

Dijkstra Algorithm
S ← ∅;
T ← V ;
while T 6= ∅ do begin

find u← argminv∈Td(v);
S ← S ∪ {u};
T ← T − {u};
d∗(u) = d(u);
for every w ∈ N+(u), update d(w)← min(d(w), d∗(u) + c(u,w));

end-while
output d∗(t).

With different data structures, Dijkstra algorithm can be implemented
with different running times.

With min-priority queue, Dijkstra algorithm can be implemented in time
O((m+ n) log n).

With Fibonacci heap, Dijkstra algorithm can be implemented in time
O(m+ n log n).

With Radix heap, Dijkstra algorithm can be implemented in time O(m+
n log c) where c is the maximum arc weight.

We will pick up one of them to introduce in next section. Before doing
it, let us first implement Dijkstra algorithm with simple buckets (also known
as Dial algorithm). This simple implementation can achieve running time
O(m+nc). When c is small, e.g., c = 1, it could be a good choice. (This case
occurs in study of Admonds-Karp algorithm for maximum flow in Chapter
5.)

Dynamic Programming 53

In this implementation, (n − 1)c + 2 buckets are prepared with labels
0, 1, ..., (n−1)c,∞. They are used for store nodes in T such that every node
u is stored in bucket d(u). Therefore, initially, s is in bucket 0 and other
nodes are in bucket ∞. As d(u)’s value is updated, node u will be moved
from a bucket to another bucket with smaller label. Note that if d(u) <∞,
then there must exist a simple path from s to u such that d(u) is equal to
the total weight of this path. Therefore, d(u) ≤ c(n−1), i.e., buckets set up
as above are enough for our purpose. In Fig.3.10, an example is computed
by Dihkstra algorithm with simple buckets.

Figure 3.10: An example for Dijstra algorithm with simple buckets.

Now let estimate the running time of Dijstra algorithm with simple buck-
ets.

• Time to create buckets is O(nc).

• Time for finding u to satisfy d(u) = minv∈T d(v) is O(nc). In fact,
u can be chosen arbitrarily from the nonempty bucket with smallest
label. Such a bucket in Fig.3.10 is pointed by a red arrow, which is

54 Dynamic Programming

traveling from left to right without going backward. This is because,
after update d(w) for w ∈ T , we always have d∗(u) ≤ d(w) for w ∈ T .

• Time to update d(w) for w ∈ T and update buckets is O(m).

• Therefore, total time is O(m+ nc).

3.4 Priority Queue

Although Dijkstra algorithm with simple buckets runs faster for small c,
it cannot be counted as a polynomial-time solution. In fact, the input size
of c is log c. Therefore, we would like to select a data structure with which,
implement Dijkstra algorithm in polynomial-time. This data structure is
priority queue.

A priority queue is a data structure for maintaining a set S f elements,
each with an associated value, called a key. All keys are stored in an array
A such that an element belongs to set S if and only if its key is in array
A. There are two types of priority queues, the min-priority queue and the
max-priority queue. Since they are similar, we introduce one of them, the
min-priority queue.

A min-priority queue supports following operations: Minimum(S), Extract-
Min(S), Increase-Key(S, x, k), Insert(S, x).

The min-heap can be employed in implementation of those operations.
Minimum(S) returns the element of S with the smallest key, which can

be implemented as follows.

Heap-Minimum(A)
return A[1].

Extract-Min(S) removes and returns the element of S with the smallest
key, which can be implemented by using min-heap as follows.

Heap-Extract-Min(A)
min← A[1];
A[1]← A[heap-size[A]];
heap-size[A] ← heap-size[A]-1;
Min-Heapify(A, 1);
return min.

Decrease-Key(S, x, k) decreases the value of element x’s key to the new
value k, which is assumed to be no more than x’s current key value. Suppose
that A[i] contains x’s key. Then, Decrease-Key(S, x, k) can be implemented
as an operation of min-heap as follows.

Dynamic Programming 55

Heap-Decrease-Key(A, i, key)
if key > A[i]

then error ”new key is larger than current key”;
A[i]← key;
while i > 1 and A[Parent(i)] > A[i]

do exchange A[i]↔ A[Parent(i)]
and i← Parent(i).

Insert(S, x.key) inserts the element x into S, which is implemented in
following.

Insert(A, key)
array-size[A]← array-size[A] + 1;
A[array-size[A]]← +∞;
Decrease-Key(A, array-size[A], key).

Now, we analyze these four operations. Minimum(S) runs clearly in
O(1) time. Each of other three operations runs in O(log n) time. Actually,
since Min-Heapify(A, 1) runs in O(log n) time, so does Extract-Min(S). For
Decrease-Key(S, x, k), as shown in Fig.3.11, computation is along a path
from a node approaching to the root of the heap and hence runs in O(log n)
time. This also implies that Insert(S, x.key) can be implemented in O(log n)
time.

Figure 3.11: Heap-Decrease-Key(A, 9, 1).

56 Dynamic Programming

In Algorithm 9, Dijkstra algorithm is implemented with priority queue
as follows.

• Use min-priority queue to keep set T and for every node u ∈ T , use
d(u) for the key of u.

• Use operation Extract-Min(T) to obtain u satisfying d(u) = minv∈T d(v).
This operation at line 9 will be used for O(n) times.

• Use operation Decrease-Key(T, v, key) on each edge (u, v) to update
d(v) and the min-heap. This operation on line 14 will be used for
O(m) times.

• Therefore, the total running time is O((m+ n) log n).

Algorithm 9 Dijkstra Algorithm with Priority Queue.

Input: A directed graph G = (V,E) with arc weight c : E → Z, and source
node s and sink node t in V .
Output: The length of shortest path from s to t.

1: S ← ∅
2: T ← V
3: d(s)← 0
4: for every u ∈ V \ {s} do
5: d(u)←∞
6: end for
7: build a min-priority queue on T with key d(u) for each node u ∈ T , i.e.,

use keys to build a min-heap.
8: while T 6= ∅ do
9: u← Extract-Min(T)

10: S ← S ∪ {u}
11: d∗(u)← d(u)
12: for every (u, v) ∈ E do
13: if d(v) > d∗(u) + c(u, v)) then
14: Decrease-Key(T, v, d∗(u) + c(u, v))
15: end if
16: end for
17: end while
18: return d∗(t)

An example is as shown in Fig.3.12.

Dynamic Programming 57

Figure 3.12: An example for Dijkstra algorithm with priority queue.

58 Dynamic Programming

3.5 Bellman-Ford Algorithm

Bellman-Ford algorithm allows negative arc cost, only restriction is no
negative weight cycle. The disadvantage of this algorithm is that the running
time is a little slow. The idea behind this algorithm is very simple.

Initially, assign d(s) = 0 and d(u) = ∞ for every u ∈ V \ {s}. Then,
algorithm updates d(u) such that in iteration i, d(u) is equal to the shortest
distance from s to u passing through at most i arcs. If there is no negative
weight cycle, then the shortest path contains at most n− 1 arcs. Therefore,
after n − 1 iterations, d(t) is the minimum weight of the path from s to t.
If in the nth iteration, d(u) is still updated for some u, then it means that
a negative weight cycle exists.

Bellman-Ford Algorithm
input:A directed graph G = (V,E) with weight c : E → R+,

a source node s and a sink node t.
output: The minimum weight of path from s to t,

or a message ”G contains a negative weight cycle”.
d(s)← 0;
for u ∈ V \ {s} do

d(u)←∞;
for i← 1 t n− 1 do

for each arc (u, v) ∈ E do
if d(u) + c(u, v) < d(v)

d(v)← d(u) + c(u, v);
for each arc (u, v) ∈ E do

if d(u) + c(u, v) < d(v)
then return ”G contains a negative weight cycle”.
else return d(t).

Its running time is easily estimated.

Theorem 3.5.1. Bellman-Ford algorithm computes a shortest path from s
to t within O(mn) time where n is the number of nodes and m is the number
of arcs in input directed graph.

3.6 All Pairs Shortest Paths

In this section, we study following problem.

Problem 3.6.1 (All-Pairs-Shortest-Paths). Given a directed graph G =
(V,E), find the shortest path from s to t for all pairs {s, t} of nodes.

Dynamic Programming 59

If apply Bellman-Ford algorithm for single pair of nodes for each of
O(n2) pairs, then the total time for computing a solution of the all-pairs-
shortest-paths problem is O(n3m). In the following, we will present two
faster algorithms, with running time O(n3 log n) and O(n3), respectively
with only restriction that no negative weight cycle exists. Before doing so,
let us consider an example on which, we introduce an approach which can
be used for the all-pairs-shortest-paths problem.

Example 3.6.2 (Path Counting). Given a directed graph G = (V,E) and
a positive integer k, count the number of paths with exactly k arcs from s to
t for all pairs {s, t} of nodes

Let a
(k)
st denote the number of paths with exactly k arcs from s to t.

Then, we have

a
(1)
st =

{
1 if (s, t) ∈ E,
0 otherwise.

This means that (a
(1)
st) is the adjacency matrix of graph G. Denote

A(G) = (a
(1)
st).

We claim that

A(G)k = (a
(k)
st).

Let us prove this claim by induction on k. Suppose it is true for k. Consider
a path from s to t with exactly k + 1 arcs. Decompose the path at a node
h such that the subpath from s to h contains exactly k arcs and (h, t) is

an arc. Then the subpath from s to h has a
(k)
sh choices and (h, t) has a

(1)
ht

choices. Therefore,

a
(k+1)
st =

∑
h∈V

a
(k)
sh a

(1)
ht .

It follows that

(a
(k+1)
st) = (a

(k)
ht)(a

(1)
ht) = A(G)k ·A(G) = A(G)k+1.

Now, we come back to the all-pairs shortest paths problem. First, we
assume that G has no loop. In fact, a loop with nonnegative weight does
not play any role in a shortest path and a loop with negative weight means
that the problem is meaning less.

60 Dynamic Programming

Let `
(k)
st denote the weight of the shortest path with at most k arcs from

s to t. For k = 1, we have

`
(1)
st =

c(s, t) if (s, t) ∈ E,
∞ if (s, t) 6∈ E and s 6= t,
0 if s = t.

Denote

L(G) = (`
(1)
st).

This is called the weighted adjacency matrix. For example, the graph in
Fig.3.13 has weighted adjacency matrix 0 4 ∞

∞ 0 6
5 ∞ 0

 .

Figure 3.13: A weighted directed graph.

We next establish a recursive formula for `
(k)
st .

Lemma 3.6.3.

`
k+1)
st = min

h∈V
(`

(k)
sh + `

(1)
st).

Proof. Since the shortest path from s to h with at most k arcs and the
shortest path from h to t with at most one arc form a path from s to t with
at most k + 1 arcs, we have

`
k+1)
st ≤ min

h∈V
(`

(k)
sh + `

(1)
ht).

Next, we show

`
k+1)
st ≥ min

h∈V
(`

(k)
sh + `

(1)
ht).

Dynamic Programming 61

To do so, consider two cases.

Case 1. There is a path with weight `
(k+1)
st from s to t containing at

most k arcs. In this case, we have

`
(k+1)
st = `

(k)
st

= `
(k)
st + `

(1)
ht

≥ min
h∈V

(`
(k)
sh + `

(1)
ht).

Case 2. Every path with weight `
(k+1)
st from s to t contains exactly k+ 1

arcs. In this case, we can find a node h′ on the path such that the piece
from s to h′ contains exactly k arcs and (h′, t) ∈ E. Their weights should

be `
(k)
sh′ and `

(1)
h′t, respectively. Therefore,

`
(k+1)
st = `

(k)
sh′ + `

(1)
h′t

≥ min
h∈V

(`
(k)
sh + `

(1)
ht).

If G does not contain negative weight cycle, then each shortest path does
not need to contain a cycle. Therefore, we have

Theorem 3.6.4. If G does not have a negative weight cycle, then `
(n−1)
st is

the weight of shortest path from s to t where n = |V |.

This suggests a dynamic programming to solve the all-pairs-shortest-

paths problem by using recursive formula in Lemma 3.6.3. Since each `
(k)
st is

computed in O(n) time, this algorithm will run in O(n4) time to compute

`
(n−1)
st for all pairs {s, t}.

Next, we give a method to speed up this algorithm. To do so, let us
define a new operation for matrixes. Consider two n × n square matrixes
A = (aij) and B = (bij). Define

A ◦B = (min
1≤h≤n

(aih + bhj)).

An example is as shown in Fig.3.14.
This operation satisfies associative law.

Lemma 3.6.5.
(A ◦B) ◦ C = A ◦ (B ◦ C).

62 Dynamic Programming

Figure 3.14: A new matrix multiplication.

We leave proof of this lemma as an exercise.
By this lemma, following is well-defined.

A(k) = A ◦ · · · ◦A︸ ︷︷ ︸
k

.

Note that if G has no negative weight cycle, then for m ≥ n − 1,
L(G)(m) = L(G)(n−1). This observation suggests following algorithm to
compute L(G)(n−1).

n← |V |;
m← 1;

L(1) ← L(G);
while m < n− 1

do L2m ← L(m) ◦ L(m) and
m← 2m;

return L(m).

With this improvement, the dynamic programming with recursive formu-
la in Lemma 3.6.3 is called the faster-all-pairs-shortest-paths al algorithm,
which runs in O(n3 log n) time.

Above result is derived under assumption thatG does not have a negative
weight cycle. Suppose G is unknown to have a negative weight cycle or
not. Can we modify the faster-all-pairs-shortest-paths algorithm to find a
negative weight cycle if G has one? The answer is yes. However, we need to
compute L(G)(m) for m ≥ n.

Dynamic Programming 63

Theorem 3.6.6. G contains a negative weight cycle if and only if L(G)(n)

contains a negative diagonal entry. Moreover, if L(G)(n) contains a negative
diagonal entry then such an entry keeps negative sign in every L(G)(m) for
m ≥ n.

Proof. It follows immediately from fact that a simple cycle contains at most
n arcs.

.
Next, let us study another algorithm for the all-pairs-shortest-paths

problem. First, we show a lemma.

Lemma 3.6.7. Assume V = {1, 2, ..., n}. Let d
(k)
ij denote the weight of

shortest path from i to j with internal nodes in {1, 2, ..., k}. Then for i 6= j,

d
(k)
ij =

{
c(i, j) if k = 0,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj if 1 ≤ k ≤ n,

and d
(k)
ij = 0 for i = j and k ≥ 0.

Proof. We need only to consider i 6= j. Let p be the shortest path from i
to j with internal nodes in {1, 2, ..., k}. For k = 0, p does not contain any
internal node. Hence, its weight is c(i, j). For k ≥ 1, there are two cases
(Fig.3.15).

Figure 3.15: Proof of Lemma 3.6.7.

Case 1. p does not contain internal node k. In this case,

d
(k)
ij = d

(k−1)
ij .

64 Dynamic Programming

Case 2. p contains an internal node k. Since p does not contain a cycle,
node k appears exactly once. Suppose that node k decomposes path p into
two pieces p1 and p2, from i to k and from k to j, respectively. Then

the weight of p1 should be d
(k−1)
ik and the weight of p2 should be d

(k−1)
ij .

Therefore, in this case, we have

d
(k)
ij = d

(k−1)
ik + d

(k−1)
kj .

Denote D(k) = (d
(k)
ij . Based on recursive formula in Lemma 3.6.7, we

obtain a dynamic programming as shown in Algorithm 10, which is called
Floyd-Warshall algorithm.

Algorithm 10 Floyd-Warshall Algorithm.

Input: A directed graph G = (V,E) with arc weight c : E → Z.
Output: The weight of shortest path from s to t for all pairs of nodes s
and t.

1: n← |V |
2: D(0) ← L(G)
3: for k ← 1 to n do
4: for i← 1 to n do
5: for j ← 1 to n do

6: d
(k)
ij ← min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

7: end for
8: end for
9: end for

10: return D(n)

From algorithm description, it is easy to see following.

Theorem 3.6.8. If G does not contain a negative weight cycle, then Floyd-
Warshall algorithm computes all-pairs shortest paths in O(n3) time.

If G contains a negative weight cycle, could Floyd-Warshall algorithm
tells us this fact? The answer is yes. Actually, we also have

Theorem 3.6.9. G contains a negative weight cycle if and only if D(n)

contains negative diagonal element.

Dynamic Programming 65

Exercises

1. Please construct a directed graph G = (V,E) with arc weight and
source vertex s such that for every arc (u, v) ∈ E, there is a shortest-
paths tree rooted at s that contains (u, v) and there is another shortest-
paths tree rooted at s that does not contain (u, v).

2. Show that the graph G contains a negative weight cycle if and only if
A(G)(n−1) 6= A(G)(2n−1).

3. Please give a simple example of a directed graph with negative-weight
arces to show that Dijkstra’s algorithm produces incorrect answers in
this case. Please also explain why the proof of correct of Dijkstra’s
algorithm cannot go through when negative-weight edges are allowed?

4. Please design an O(n2)-time algorithm to compute the longest mono-
tonically increasing subsequence for a given sequence of n numbers.

5. How can we use the output of the Floyd-Warshall algorithm to detect
the presence of a negative-weight cycle?

6. A stair is a rectilinear polygon as shown in the following figure:

----o

| |

| ----o

| |

| |

| --o

| |

| ---o

|____________|

Show that the minimum length rectangular partition for given stair
can be computed by a dynamic programming in time O(n2 log n).

7. Given a rectilinear polygon containing some rectilinear holes inside,
guillotine-partition it into small rectangles without hole inside with
minimum total length of guillotine cuts. Design a dynamic program-
ming to solve this problem in polynomial-time with respect to n where
n is the number of concave boundary points in input rectangle (a
boundary point is concave if it faces inside with an angle of more than
180o.)

66 Dynamic Programming

8. Consider a horizontal line. There are n points lying below the line
and m unit disks with centers above the line. Everyone of the n points
is covered by some unit disk. Each unit disk has a weight. Design
a dynamic programming to find a subset of unit disks covering all n
points, with the minimum total weight. The dynamic programming
should runs in polynomial time with respect to m and n.

9. Given a convex polygon in the Euclidean plane, partition it into trian-
gles with minimum total length of cuts. Design a dynamic program-
ming to solve this problem in time O(n3) where n is the number of
vertices of input polygon.

10. Does Dijkstra’s algorithm for shortest path work for input with neg-
ative weight and without negative weight cycle? If yes, please give a
proof. If not, please give a counterexample and a way to modify the
algorithm to work for input with negative weight and without negative
weight cycle.

11. Given a directed graph G = (V,E) and a positive integer k, count the
number of paths with at most k arcs from s to t for all pairs of nodes
s and t.

12. Given a graph G = (V,E) and a positive integer k, count the number
of paths with at most k edges from s to t for all pairs of nodes s and
t.

13. Given a directed graph G = (V,E) without loop, and a positive integer
k, count the number of paths with at most k arcs from s to t for all
pairs of nodes s and t.

14. Show that A ◦ (B ◦ C) = (A ◦B) ◦ C.

15. Does Faster-All-Pair-Shortest-Path algorithm work for input
with negative weight and without negative weight cycle? If yes, please
give a proof. If not, please give a counterexample.

16. Does Floyd-Warshall algorithm work for input with negative weight
and without negative weight cycle? If yes, please give a proof. If not,
please give a counterexample.

17. Given a sequence x1, x2, ..., xn of (not necessary positive) integers, find
a subsequence xi, xi+1, ..., xi+j of consecutive elements to maximize the
sum xi + xi+1 + · · ·+ xi+j . Can your algorithm run in linear time?

Dynamic Programming 67

18. Assume that you have an unlimited supply of coins in each of the
integer denominations d1, d2, . . . , dn, where each di > 0. Given an
integer amount m ≥ 0, we wish to make change for m using the mini-
mum number of coins drawn from the above denominations. Design a
dynamic programming algorithm for this problem.

19. Recall that C(n, k)—the binomial coefficient—is the number of ways
of choosing an unordered subset of k objects from a set of n objects.
(Here n ≥ 0 and 0 ≤ k ≤ n.) Give a dynamic programming algorithm
to compute the value of C(n, k) in O(nk) time and O(k) space.

20. Given a directed graph G = (V,E), with nonnegative weight on its
edges, and in addition, each edge is colored red or blue. A path from
u to v in G is characterized by its total length, and the number of
times it switches colors. Let δ(u, k) be the length of a shortest path
from a source node s to u that is allowed to change color at most k
times. Design a dynamic program to compute δ(u, k) for all u ∈ V .
Explain why your algorithm is correct and analyze its running time.

21. Given a rectilinear polygon without hole, partition this polygon into
rectangles with minimum total length of cut-lines. Design a dynamic
programming to solve this problem.

Historical Notes

Dynamic programming was proposed by Richard Bellman in 1953 [22]
and later became a popular method in optimization and control theory.
The basic idea is stemmed from self-reducibility. In design of computer al-
gorithms, it is a powerful and elegant technique to find an efficient solution
for many optimization problems, which attracts a lot of researchers’ efforts
in the literature, especially in the direction of speed-up dynamic program-
ming. For example, Yao [23] and Borchers and Gupta [24] speed up dynamic
programming with the quadrangle inequality, including a construction for
the rectilinear Steiner arborescence [25] from O(n3) time to O(n2) time.

The shortest path problem became a classical graph problem as early as
in 1873 [30]. A. Schrijver [29] provides a quite detail historical note with a
large list of references. There are many algorithms in the literature. Those
closely related to dynamic programming algorithms algorithms can be found
in Bellman [26], Dijkstra [27], Dial [31], and Fredman and Tarjan [28].

68 Dynamic Programming

All-pair-shortest-paths problem was first studied by Alfonso Shimbel in
1953 [32], who gave a O(n4)-time solution. Floyd [33] and Marshall [34]
found a O(n3)-time solution independently in the same year.

Chapter 4

Greedy Algorithm and
Spanning Tree

“Greed, in the end, fails even the greedy.”
- Cathryn Louis

Self-reducibility is the backbone of each greedy algorithm in which self-
reducibility structure is a tree of special kind, i.e., its internal nodes lie on
a path. In this chapter, we study algorithms with such a self-reducibility
structure and related combinatorial theory supporting greedy algorithms.

4.1 Greedy Algorithms

A problem that the greedy algorithm works for computing optimal solu-
tions often has the self-reducibility and a simple exchange property. Let us
use two examples to explain this point.

Example 4.1.1 (Activity Selection). Consider n activities with starting
times s1, s2, ..., sn and ending times f1, f2, ..., fn, respectively. They may be
represented by intervals [s1, f1), [s2, f2], ..., [sn, fn). The problem is to find a
maximum subset of nonoverlapping activities, i.e., nonoverlapping intervals.

This problem has following exchange property.

Lemma 4.1.2 (Exchange Property). Suppose f1 ≤ f2 ≤ · · · ≤ fn. In a
maximum solution without interval [s1, f1), we can always exchange [s1, f1)
with the first activity in the maximum solution preserving the maximality.

69

70 Greedy Algorithms

Proof. Let [si, fi) be the first activity in the maximum solution mentioned
in the lemma. Since f1 ≤ fi, replacing [si, fi) by [s1, f1) will not cost any
overlapping.

Following lemma states a self-reducibility.

Lemma 4.1.3 (self-reducibility). Suppose {I∗1 , I∗2 , ..., I∗k} is an optimal so-
lution. Then{I∗2 , ..., I∗k} is an optimal solution for the activity problem on
input {Ii | Ii ∩ I∗1} where Ii = [si, fi).

Proof. For contradiction, Suppose that {I∗2 , ..., I∗k} is not an optimal solution
for the activity problem on input {Ii | Ii ∩ I∗1}. Then, {Ii | Ii ∩ I∗1} contains
k nonoverlapping acitivities, whicl all are not overlapping with I∗1 . Putting
I∗1 in these k activities, we will obtain a feasible solution containing k + 1
activities, contradicting the assumption that {I∗1 , I∗2 , ..., I∗k} is an optimal
solution.

Based on Lemmas 4.1.2 and 4.1.3, we can design a greedy algorithm in
Algorithm 11 and obtain following result.

Algorithm 11 Greedy Algorithm for Activity Selection.

Input: A sequence of n activities [s1, f1), [s2, f2), ..., [sn, fn).
Output: A maximum subset of nonoverlapping activities.

1: sort all activities into ordering f1 ≤ f2 ≤ ... ≤ fn
2: S ← ∅
3: for i← 1 to n do
4: if [si, fi) does not overlap any activity in S then
5: S ← S ∪ {[si, fi)}
6: end if
7: end for
8: return S

Theorem 4.1.4. Algorithm 11 produces an optimal solution for the activity
selection problem.

Proof. Let us prove it by induction on n. For n = 1, it is trivial.

Consider n ≥ 2. Suppose {I∗1 , I∗2 , ..., I∗k} is an optimal solution. By Lem-
ma 4.1.2, we may assume that I∗1 = [s1, f1). By Lemma 4.1.3, {I∗2 , ..., I∗k} is
an optimal solution for the activity selection problem on input {Ii | Ii∩I∗1 =
∅}.

Greedy Algorithms 71

Note that after select [s1, f1), if we ignore all iterations i with [si, fi) ∩
[s1, f1) 6= ∅, then remaining part is the same as greedy algorithm running on
input {Ii | Ii∩I∗1 = ∅}. By induction hypothesis, it will produces an optimal
solution for the activity selection problem on input {Ii | Ii ∩ I∗1 = ∅}, which
must contain k − 1 activities. Together with [s1, f1), they form a subset of
k nonoverlappng activities, which should be optimal.

Next, we study another example.

Example 4.1.5 (Huffman Tree). Given n characters a1a2, ..., an with weight-
s f1, f2, ..., fn, respectively, find a binary tree with n leaves labeled by a1, a2, ..., an,
respectively, to minimize

d(a1) · f1 + d(a2) · f2 + · · ·+ d(an) · fn

where d(ai) is the depth of leaf ai, i.e., the number of edges on the path from
the root to ai.

First, we show a property of optimal solutions.

Lemma 4.1.6. In any optimal solution, every internal node has two chil-
dren.

Proof. If an internal node has only one child, then this internal node can be
removed to reduce the objective function value.

We can also show an exchange property and a self-reducibility.

Lemma 4.1.7 (Exchange Property). If fi > fj and d(ai) > d(aj), then
exchanging ai and aj would make the objective function value decrease.

Proof. Let d′(ai) and d(aj) be the depths of ai and aj , respectively after
exchange ai and aj . Then d′(ai) = d(aj) and d′(aj) = d(ai). Therefore, the
difference of objective function values before and after exchange is

(d(ai) · fi + d(aj) · fj)− (d′(ai) · fi + d′(aj) · fj)
= (d(ai) · fi + d(aj) · fj)− (d(aj) · fi + d(ai) · fj)
= (d(ai)− d(aj))(fi − fj)
> 0

72 Greedy Algorithms

Figure 4.1: A self-reducibility.

Lemma 4.1.8 (Self-Reducibility). In any optimal tree T ∗, if we assign the
weight of an internal node u with the total weight wu of its descendant leaves,
then removal the subtree Tu at the internal node results in an optimal tree
T ′u for weights at remainder’s leaves (Fig.4.1).

Proof. Let c(T) denote the objective function value of tree T , i.e.,

c(T) =
∑

aover leaves of T

d(a) · f(a)

where d(a) is the depth of leaf a and f(a) is the weight of leaf a. Then we
have

c(T ∗) = c(Tu) + c(T ′u).

If T ′u is not optimal for weights at leaves of T ′u, then we have a binary tree
T ′′u for those weights with c(T ′′u) < c(T ′u). Therefore c(Tu ∪ T ′′u) < c(T ∗),
contradicting optimality of T ∗.

By Lemmas 4.1.7 and 4.1.8, we can construct an optimal Huffman tree
in following.

• Sort f1 ≤ f2 ≤ · · · ≤ fn.

• By exchange property, there must exist an optimal tree in which a1

and a2 and sibling at bottom level.

• By self-reducibility, the problem can be reduced to construct optimal
tree for leaves weights {f1 + f2, f3, ..., fn}.

• Go back to initial sorting step. This process continue until only two
weights exist.

Greedy Algorithms 73

In Fig.4.2, an example is presented to explain this construction. This
construction can be implemented with min-priority queue (Algorithm 12

Figure 4.2: An example for construction of Huffman Tree.

Algorithm 12 Greedy Algorithm for Huffman Tree.

Input: A sequence of leaf weights {f1, f2, ..., fn}.
Output: A binary tree.

1: Put f1, f2, ..., fn into a min-priority queue Q
2: for i← 1 to n− 1 do
3: allocate a new node z
4: left[z]← x← Extract-Min(Q)
5: right[z]← y ← Extract-Min(Q)
6: f [z]← f [x] + f [y]
7: Insert(Q, z)
8: end for
9: return Extract-Min(Q)

The Huffman tree problem is raised from study of Huffman codes as
follows.

Problem 4.1.9 (Huffman Codes). Given n characters a1a2, ..., an with fre-
quencies f1, f2, ..., fn, respectively, find prefix binary codes c1, c2, ..., cn to
minimize

|c1| · f1 + |c2| · f2 + · · ·+ |cn| · fn,

where |ci| is the length of code ci, i.e., the number of symbols in ci.

Actually, c1, c2, ..., cn are called prefix binary codes if no one is a prefix
of another one. Therefore, they have a binary tree representation.

74 Greedy Algorithms

• Each edge is labeled with 0 or 1.

• Each code is represented by a path from the root to a leaf.

• Each leaf is labeled with a character.

• The length of a code is the length of corresponding path.

An example is as shown in Fig4.3. With this representation, the Huffman
cods problem can be transformed exactly the Huffman tree problem.

Figure 4.3: Huffman codes.

In Chapter 1, we see that Kruskal greedy algorithm can compute the
minimum spanning tree. Thus, we may have a question: Does the minimum
spanning tree problem have an exchange property and self-reducibility? The
answer is yeas and they are given in the following.

Lemma 4.1.10 (Exchange Property). For an edge e with the smallest
weight in a graph G and a minimum spanning tree T without e, there must
exist an edge e′ in T such that (T \ e′)∪ e is still a minimum spanning tree.

Proof. Suppose u and v are two endpoints of edge e. Then T contains a
path p connecting u and v. On path p, every edge e′ must have weight
c(e′) = c(e). Otherwise, (T \ e′)∪ e will be a spanning tree with total weight
smaller that c(T), contradicting minimality of c(T).

Now, select any edge e′ in path p. Then (T \e′)∪e is a minimum spanning
tree.

Lemma 4.1.11 (Self-Reducibility). Suppose T is a minimum spanning tree
of a graph G and edge e in T has the smallest weight. Let G′ and T ′ be
obtained from G and T , respectively by shrinking e into a node (Fig.4.4).
Then T ′ is a minimum spanning tree of G′.

Greedy Algorithms 75

Figure 4.4: Lemma 4.1.11.

Proof. It is easy to see that T is a minimum spanning tree of G if and only
if T ′ is a minimum spanning tree of G′.

With above two lemma, we are able to give an alternative proof for
correctness of Kruskal algorithm. We leave it as an exercise for reader.

4.2 Matroid

There is a combinatorial structure has a close relationship with greedy
algorithms. This is the matroid. To introduce matroid, let us first study
independent systems.

Consider a finite set S and a collection C of subsets of S. (S, C) is called
an independent system if

A ⊂ B,B ∈ C ⇒ A ∈ C,

i.e., it is hereditary. In the independent system (S, C), each subset in C is
called an independent set.

Consider a maximization as follows.

Problem 4.2.1 (Independent Set Maximization). Let c be a nonnegative
cost function on S. Denote c(A) =

∑
x∈A c(x) for any A ⊆ S. The problem

is to maximize c(A) subject to A ∈ C.

Also, consider the greedy algorithm in Algorithm 13.

For any F ⊆ E, a subset I of F is called a maximal independent subset
if no independent subset of E contains F as a proper subset. Define

u(F) = max{|I| | I is an independent subset of F}
v(F) = min{|I| | I is a maximal independent subset of F}

76 Greedy Algorithms

Algorithm 13 Greedy Algorithm for Independent Set Maximization.

Input: An independent system (S, C) with a nonnegative cost function c on
S.
Output: An independent set.

1: Sort all elements in S into ordering c(x1) ≥ c(x2) ≥ · · · ≥ c(xn)
2: A← ∅
3: for i← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A← A ∪ {xi}
6: end if
7: end for
8: return A

where |I| is the number of elements in I. Then we have following theorem
to estimate the performance of Algorithm 13.

Theorem 4.2.2. Let AG be a solution obtained by Algorithm 13. Let A∗ be
an optimal solution for the independent set maximization. Then

1 ≤ c(A∗)

c(AG)
≤ max

F⊆S

u(F)

v(F)
.

Proof. Note that S = {x1, x2, ..., xn} and c(x1) ≥ c(x2) ≥ · · · ≥ c(xn).
Denote Si = {x1, . . . , xi}. Then

c(AG) = c(x1)|S1 ∩AG|+
n∑
i=2

c(xi)(|Si ∩AG| − |Ai−1 ∩AG|)

=
n−1∑
i=1

|Si ∩AG|(c(xi)− c(xi+1)) + |An ∩AG|c(xn).

Similarly,

c(A∗) =
n−1∑
i=1

|Si ∩A∗|(c(xi)− c(xi+1)) + |Sn ∩AI∗|c(xn).

Thus,
c(A∗)

c(AG)
≤ max

1≤i≤n

|A∗ ∩ Si|
|AG ∩ Si|

.

We claim that Ai ∩ AG is a maximal independent subset of Si. In fact, for
contradiction, suppose that Si ∩AG is not a maximal independent subset of

Greedy Algorithms 77

Si. Then there exists an element xj ∈ Si \ AG such that (Si ∩ AG) ∪ {xj}
is independent. Thus, in the computation of Algorithm 2.1, I ∪ {ej} as a
subset of (Si ∩AG){xj} should be independent. This implies that xj should
be in AG, a contradiction.

Now, from our claim, we see that

|Si ∩AG| ≥ v(Si).

Moreover, since Si ∩A∗ is independent, we have

|Si ∩A∗| ≤ u(Si).

Therefore,
c(A∗)

c(AG)
≤ max

F⊆S

u(F)

v(F)
.

The matroid is an independent system satisfying an additional property,
called Augmentation Property:

A,B ∈ C and |A| > |B|
⇒ ∃x ∈ A \B : B ∪ {x} ∈ C.

This property is equivalent to some others.

Theorem 4.2.3. An independent system (S, C) is a matroid if and only if
for any F ⊆ S, u(F) = v(F).

Proof. For forward direction, consider two maximal independent sets A and
B. If |A| > |B|, then there exists x ∈ A \ B such that B ∪ {x} ∈ C,
contradicting maximality of B.

For backward direction, consider two independent sets with |A| > |B|.
Set F = A ∪B. Then every maximal independent set of F has size at least
|A| (> |B|). Hence, B cannot be a maximal independent set of F . Thus,
there exists an element x ∈ F \B = A \B such that B ∪ {x} ∈ C.

Theorem 4.2.4. An independent system (S, C) is a matroid if and only if
for any cost function c(·), Algorithm 13 gives a maximum solution.

Proof. . For necessity, we note that when (S, C) is matroid, we have u(F) =
v(F) for any F ⊆ S. Therefore, Algorithm 13 gives an optimal solution.

78 Greedy Algorithms

For sufficiency, we give a contradiction argument. To this end, suppose
independent system (S, C) is not a matroid. Then, there exists F ⊆ S such
that F has two maximal independent sets I and J with |I| < |J |. Define

c(e) =

1 + ε if e ∈ I
1 if e ∈ J \ I
0 otherwise

where ε is a sufficient small positive number to satisfy c(I) < c(J). The
greedy algorithm will produce I, which is not optimal.

This theorem gives tight relationship between matroids and greedy al-
gorithms, which is built up on all nonnegative objective function. It may
be worth mentioning that the greedy algorithm reaches optimal for certain
class of objective functions may not provide any additional information to
the independent system. Following is a counterexample.

Example 4.2.5. Consider a complete bipartite graph G = (V1, V2, E) with
|V1| = |V2|. Let I be the family of all matchings. Clearly, (E, I) is an
independent system. However, it is not a matroid. An interesting fact is
that maximal matchings may have different cardinalities for some subgraph
of G although all maximal matchings for G have the same cardinality.

Furthermore, consider the problem max{c(·) | I ∈ I}, called the maxi-
mum assignment problem.

If c(·) is a nonnegative function such that for any u, u′ ∈ V1 and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) =⇒ c(u, v) + c(u′, v′) ≥ c(u, v′) + c(u′, v),

This means that replacing edges (u1, v
′) and (u′, v1) in M∗ by (u1, v1) and

(u′, v′) will not decrease the total cost of the matching. Similarly, we can put
all (ui, vi) into an optimal solution, that is, they form an optimal solution.
This gives an exchange property. Actually, we can design a greedy algorithm
to solve the maximum assignment problem. (We leave this as an exercise.)

Next, let us present some examples of the matroid.

Example 4.2.6 (Linear Vector Space). Let S be a finite set of vectors and
I the family of linearly independent subsets of S. Then (S, I) is a matroid.

Example 4.2.7 (Graph Matroid). Given a graph G = (V,E) where V and
E are its vertex set and edge set, respectively. Let I be the family of edge
sets of acyclic subgraphs of G. Then (E, I) is a matroid.

Greedy Algorithms 79

Proof. . Clearly, (E, I) is an independent system. Consider a subset F of
E. Suppose that the subgraph (V, F) has m connected components. Note
that in each connected components, every maximal acyclic subgraph must
be a spanning tree which has the number of edges one less than the number
of vertices. Thus, every maximal acyclic subgraph of (V,E) has exactly
|V | −m edges. By Theorem 4.2.3, (E, I) is a matroid.

In a matroid, all maximal independent subsets have the same cardinality.
They are also called bases. In a graph matroid obtained from a connected
graph, every base is a spanning tree.

Let B be the family of all bases of a matroid (S, C). Consider the following
problem:

Problem 4.2.8 (Base Cost Minimization). Consider a matroid (S, C) with
base family B and a nonnegative cost function on S. Te problem is to min-
imize c(B) subject to B ∈ B.

Algorithm 14 Greedy Algorithm for Base Cost Minimization.

Input: A matroid (S, C) with a nonnegative cost function c on S.
Output: A base.

1: Sort all elements in S into ordering c(x1) ≤ c(x2) ≤ · · · ≤ c(xn)
2: A← ∅
3: for i← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A← A ∪ {xi}
6: end if
7: end for
8: return A

Theorem 4.2.9. An optimal solution of the base cost minimization can be
computed by Algorithm 14, a variation of Algorithm 13.

Proof. Suppose that every base has the cardinality m. Let M be a positive
number such that for any e ∈ S, c(e) < M . Define c′(e) = M − c(e) for
all e ∈ E. Then c′(·) is a positive function on S and the non-decreasing
ordering with respect to c(·) is the non-increasing ordering with respect to
c′(·). Note that c′(B) = mM − c(B) for any B ∈ B. Since Algorithm 13
produces a base with maximum value of c′, Algorithm 14 produces a base
with minimum value of function c.

80 Greedy Algorithms

The correctness of greedy algorithm for the minimum spanning tree can
also be obtained from this theorem.

Next, consider following problem.

Problem 4.2.10 (Unit-Time Task Scheduling). Consider a set of n unit-
time tasks, S = {1, 2, ..., n}. Each task i can be processed during a unit-time
and has to be completed before an integer deadline di and if not completed,
will receive a penalty wi. The problem is to find a schedule for S on a
machine within time n to minimize total penalty.

A set of tasks is independent if there exists a schedule for these tasks
without penalty. Then we have following.

Lemma 4.2.11. A set A of tasks is independent if and only if for any
t = 1, 2, ..., n, Nt(A) ≤ t where Nt(A) = |{i ∈ A | di ≤ t}|.

Proof. It is trivial for ”only if” part. For ”if” part, note that if the condition
holds, then tasks in A can be scheduled in order of nondecreasing deadlines
without penalty.

Example 4.2.12. Let S be a set of unit-time tasks with deadlines and penal-
ties and C the collection of all independent subsets of S. Then, (S, C) is a
matroid. Therefore, an optimal solution for the unit-time task scheduling
problem can be computed by a greedy algorithm (i.e., Algorithm 13).

Proof. (Hereditary) Trivial.

(Augmentation) Consider two independent sets A and B with |A| < |B|.
Let k the largest k such that Nt(A) ≥ Nt(B). (A few examples are presented
in Fig.4.5 to explain the definition of k.) Then k < n and Nt(A) < Nt(B)
for k + 1 ≤ t ≤ n. Choose x ∈ {i ∈ B \A | di = k + 1}. Then

Nt(A ∪ {x}) = Nt(A) ≤ t for 1 ≤ t ≤ k

and

Nt(A ∪ {x}) ≤ Nt(A) + 1 ≤ Nt(B) ≤ t for k + 1 ≤ t ≤ n.

Example 4.2.13. Consider an independent system (S, C). For any fixed
A ⊆ S, define

CA = {B ⊆ S | A 6⊆ B}.

Then, (S, CA) is a matroid.

Greedy Algorithms 81

Figure 4.5: In proof of Example 4.2.12.

Proof. Consider any F ⊆ S. If A 6⊆ F , then F has unique maximal inde-
pendent set, which is F . Hence, u(F) = v(F).

If A ⊆ F , then every maximal independent subset of F is in form F \{x}
for some x ∈ A. Hence, u(F) = v(F) = |F | − 1.

4.3 Minimum Spanning Tree

Let us revisit the minimum spanning tree problem.

Consider a graph G = (V,E) with nonnegative edge weight c : E → R+,
and a spanning tree T . Let (u, v) be an edge in T . Removal (u, v) would
break T into two connected components. Let U andW be vertex sets of these
two components, respectively. The edges between U and V constitute a cut,
denoted by (U,W). The cut (U,W) is said to be induced by deleting (u, v).
For example, in Fig.4.6, deleting (3, 4) induces a cut ({1, 2, 3}, {4, 5, 6, 7, 8}).

Theorem 4.3.1 (Cut Optimality). A spanning tree T ∗ is a minimum span-
ning tree if and only if it satisfies the cut optimality condition as follows.

Cut Optimality Condition For every edge (u, v) in T ∗, c(u, v) ≤ c(x, y)
for every edge (x, y) contained in the cut induced by deleting (u, v).

Proof. Suppose, for contradiction, that c(u, v) > c(x, y) for some edge (x, y)
in the cut induced by deleting (u, v) from T ∗. Then T ′ = (T ∗\(u, v))∪(x, y)
is a spanning tree with cost less than c(T ∗), contradicting the minimality of
T ∗.

82 Greedy Algorithms

Figure 4.6: A cut induced by deleting an edge from a spanning tree.

Conversely, suppose that T ∗ satisfies the cut optimality condition. Let
T ′ be a minimum spanning tree such that among all minimum spanning
tree, T ′ is the one with the most edges in common with T ∗. Suppose, for
contradiction, that T ′ 6= T ∗. Consider an edge (u, v) in T ∗ \ T ′. Let p
be the path from u to v in T ′. Then p has at least one edge (x, y) in the
cut induced by deleting (u, v) from T ∗. Thus, c(u, v) ≤ c(x, y) by the cut
optimality condition. Hence, T ′′ = (T ′ \ (x, y)) ∪ (u, v) is also a minimum
spanning tree, contradicting the assumption on T ′.

The following algorithm is designed based on cut optimality condition.

Prim Algorithm
input: A graph G = (V,E) with nonnegative edge weight c :→ R+.
output: A spanning tree T .

U ← {s} for some s ∈ V ;
T ← ∅;
while U 6= V do

find the minimum weight edge (u, v) from cut (U, V \ U)
and T ← T ∪ (u, v);

return T .

An example for using Prim algorithm is shown in Fig.4.7. The construc-
tion starts at node 1 and guarantees that the cut optimality conditions are
satisfied at the end.

The min-priority queue can be used for implementing Prim algorithm to
obtain following result.

Theorem 4.3.2. Prim algorithm can construct a minimum spanning tree
in O(m logm) time where m is the number of edges in input graph.

Greedy Algorithms 83

Figure 4.7: An example with Prim algorithm.

84 Greedy Algorithms

Proof. Prim algorithm can be implemented by using min-priority queue in
following way.

• Keep to store all edges in a cut (U,W) in the min-priority queue S.

• At each iteration, choose the minimum weight edge (u, v) in the cut
(U,W) by using operation Extract-Min(S) where u ∈ U and v ∈W .

• For every edge (x, v) with x ∈ U , delete (c, v) from S. This needs a
new operation on min-priority queue, which runs O(m) time.

• Add v to U .

• For every edge (v, y) with y ∈ V \ U , insert (v, y) into priority queue.
This also requires O(logm) time.

In this implementation, Prim algorithm runs in O(m logm) time.

Prim algorithm can be considered as a special type of greedy algorithm.
Actually, its correctness can also be established by an exchange property
and a self-reducibility as follows.

Lemma 4.3.3 (Exchange Property). Consider a cut (U,W) in a graph
G = (V,E). Suppose edge e has the smallest weight in cut (U,W). If a
minimum spanning tree T does not contain e, then there must exist an edge
e′ in T such that (T \ e′) ∪ e is still a minimum spanning tree.

Lemma 4.3.4 (Self-Reducibility). Suppose T is a minimum spanning tree
of a graph G and edge e in T has the smallest weight in the cut induced by
deleting e from T . Let G′ and T ′ be obtained from G and T , respectively by
shrinking e into a node. Then T ′ is a minimum spanning tree of G′.

We leave proofs of them as exercises.

4.4 Local Ratio Method

The local ratio method is also a type of algorithm with self-reducibility.
Its basic idea is as follows.

Lemma 4.4.1. Let c(x) = c1(x) + c2(x). Suppose x∗ is an optimal solution
of minx∈Omega c1(x) and minx∈Omega c2(x). Then x∗ is an optimal solu-
tion of minx∈Omega c(x). The similar statememt holds for the maximization
problem.

Greedy Algorithms 85

Proof. For any x ∈ Ω, c1(x) ≥ c1(x∗), c2(x) ≥ c2(x∗), and hence c(x) ≥
c(x∗).

Usually, the objective function c(x) is decomposed into c1(x) and c2(x)
such that optimal solutions of minx∈Omega c1(x) constitute a big pool so that
the problem is reduced to find an optimal solution of minx∈Omega c2(x) in
the pool. In this section, we present two examples to explain this idea.

First, we study following problem

Problem 4.4.2 (Weighted Activity Selection). Given n activities each with
a time period [si, fi) and a positive weight wi, find a nonoverlapping subset
of activities to maximize the total weight.

Suppose, without loss of generality, f1 ≤ f2 ≤ · · · ≤ fn. First, we
consider a special case that for every activity [si, fi), if si < f1, i.e., activity
[si, fi) overlaps with activity [s1, f1), then wi = w1 > 0, and if si ≥ f1,
then wi = 0. In this case, every feasible solution containing an activity
overlapping with [s1, f1) is an optimal solution. Motivated from this special
case, we may decompose the problem into two subproblems. The first one
is in the special case and the second one has weight as follows

w′i =

{
wi − w1 if si < f1,
wi otherwise.

In the second subproblem obtained from the decomposition, some activ-
ity may have non-positive weight. Such an activity can be removed from our
consideration because putting it in any feasible solution would not increase
the total weight. This operation would simplify the problem by removing
at least one activity. Repeat the decomposition and simplification until no
activity is left.

To explain how to obtain an optimal solution, let A′ be the set of re-
maining activities after the first decomposition and simplification and Opt′

is an optimal solution for the weighted activity selection problem on A′.
Since simplification does not effect the objective function value of optimal
solution, Opt′ is an optimal solution of the second subproblem in the decom-
position. If Opt′ contains an activity overlapping with activity [s1, f1), then
Opt′ is also an optimal solution of the first subproblem and hence by Lemma
4.4.1, Opt′ is an optimal solution for the weighted activity selection problem
on original input A. If Opt′ does not contain an activity overlapping with
[s1, f1), then Opt′ ∪{[s1, f1)} is an optimal solution for the first subproblem
problem and the second subproblem and hence also an optimal solution for
the original problem.

86 Greedy Algorithms

Based on the above analysis, we may construct the following algorithm.

input A = {[s1, f1), [s2, f2), ..., [sn, fn)} with f1 ≤ f2 ≤ · · · ≤ fn.
B ← ∅;
while A 6= ∅ do begin

[sj , fj)← argmin[si,fi)∈Afi;

B ← B ∪ {[sj , fj)};
for every [si, fi) ∈ A do

if si < fj then wi ← wi − wj ;
for every [si, fi) ∈ A do

if wi ≤ 0 then A← A− {[si, fi)};
end-while;
[sk, fk)← argmax[si,fi)∈Bfi;

Opt← {[sk, fk)};
B ← B − {[sk, fk)};
while B 6= ∅ do

[sh, fh)← argmax[si,fi)∈Bfi;

if sk ≥ fh,
then Opt← Opt ∪ {[sh, fh)}

and [sk, fk)← [sh, fh);
B ← B − {[sh, fh)};

end-while;
output Opt.

Now, we run this algorithm on an example as shown in Fig. 4.8.
Next, we study the second example.
Consider a directed graph G = (V,E). A subgraph T is called an ar-

borescence rooted at a vertex r if T satisfies the following two conditions:
(a) If ignore direction on every arc, then T is a tree.
(b) For any vertex v ∈ V , T contains a directed path from r to v.
Let T be an arborescence with root r. Then for any vertex v ∈ V −{r},

there is exactly one arc coming to v. This property is quite important.

Lemma 4.4.3. Suppose T is obtained by choosing one incoming arc at each
vertex v ∈ V − {r}. Then T is an arborescence if and only if T does not
contain a directed cycle.

Proof. Note that the number of arcs in T is equal to |V | − 1. Thus, condi-
tion (b) implies the connectivity of T when ignore direction, which implies
condition (a). Therefore, if T is not an arborescence, then condition (b)
does not hold, i.e., there exists v ∈ V − {r} such that there does not exist

Greedy Algorithms 87

Figure 4.8: An example for weighted activity selection.

a directed path from r to v. Now, T contains an arc (v1, v) coming to v
with v1 6= r, an arc (v2, v1) coming to v1 with v2 6= v, and so on. Since the
directed graph G is finite. The sequence (v, v1, v2, ...) must contains a cycle.

Conversely, if T contains a cycle, then T is not an arborescence by the
definition. This completes the proof of the lemma.

Now, we consider the minimum arborescence problem.

Problem 4.4.4 (Minimum Arborescence). Given a directed graph G =
(V,E) with positive arc weight w : E → R+, and a vertex r ∈ V , com-
pute an arborescence with root r to minimize total arc weight.

The following special case gives a basic idea for a local ratio method.

Lemma 4.4.5. Suppose for each vertex v ∈ V − {r}, all arcs coming to v
have the same weight. Then every arborescence with root r is optimal for
the Min Arborescence problem.

Proof. It follows immediately from the fact that each arborescence contains
exactly one arc coming to v for each vertex v ∈ V − {r}.

Since arcs coming to r are useless in construction of an arborescence
with root r, we remove them at beginning. For each v ∈ V − {r}, let wv
denote the minimum weight of an arc coming to v. By Lemma 4.4.5, we
may decompose the minimum arborescence problem into two subproblems.

88 Greedy Algorithms

In the first one, every arc coming to a vertex v has weight wv. In the
second one, every arc e coming to a vertex v has weight w(e)− wv, so that
every vertex v ∈ V − {r} has a coming arc with weight 0. If all 0-weight
arcs contain an arborescence T , then T must be an optimal solution for
the second subproblem and hence also an optimal solution for the original
problem. If not, then by Lemma 4.4.3, there exists a directed cycle with
weight 0. Contract this cycle into one vertex. Repeat the decomposition
and the contraction until an arborescence with weight 0 is found. Then in
backward direction, we may find a minimum arborescence for the original
weight. An example is shown in Fig. 4.9.

Figure 4.9: An example for computing a minimum arborescence.

According to above analysis, we may construct the following algorithm.

Local Ratio Algorithm for Minimum Arborescence

Greedy Algorithms 89

input a directed graph G = (V,E) with arc weight w : E → R+, and a root r ∈ V .
outpu An arborescence T with root r.
C ← ∅;
repeat

for every v ∈ V \ {r} do
let ev be the one with minimum weight among arcs coming to v and
T ← T ∪ {ev};
for every edge e = (u, v) coming to v do

w(e)← w(e)− wv;
if T contains a cycle C

thenC ← C ∪ {C} and
contract cycle C into one vertex in G and T ;

until T does not contain a cycle;
for every C ∈ C do

add C into T and properly delete an arc of C.
return T .

Exercises

1. Suppose that for every cut of the graph, there is a unique light edge
crossing the cut. Show that the graph has a unique minimum spanning
tree. Does the converse hold? If not, please give a counterexample.

2. Consider a finite set S. Let Ik be the collection of all subsets of S
with size at most k. Show that (S, Ik) is a matroid.

3. Solve following instance of the unit-time task scheduling problem.

ai 1 2 3 4 5 6 7

di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

Please solve the problem again when each penalty wi is replaced by
80− wi.

4. Suppose that the characters in an alphabet is ordered so that their
frequencies are monotonically decreasing. Prove that there exists an
optimal prefix code whose codeword length are monotonically increas-
ing.

5. Show that if (S, I) is a matroid, then (S, I ′) is a matroid, where

I ′ = {A′ | S −A′ contains some maximal A ∈ I}.

90 Greedy Algorithms

That is, the maximal independent sets of (S, I ′) are just complements
of the maximal independent sets of (S, I).

6. Suppose that a set of activities are required to schedule in a large
number of lecture halls. We wish to schedule all the activities using
as few lecture halls as possible. Give an efficient greedy algorithm to
determine which activity should use which lecture hall.

7. Consider a set of n files, f1, f2, . . . , fn, of distinct sizes m1,m2, . . . ,mn,
respectively. They are required to be recorded sequentially on a single
tape, in some order, and retrieve each file exactly once, in the reverse
order. The retrieval of a file involves rewinding the tape to the begin-
ning and then scanning the files sequentially until the desired file is
reached. The cost of retrieving a file is the sum of the sizes of the files
scanned plus the size of the file retrieved. (Ignore the cost of rewinding
the tape.) The total cost of retrieving all the files is the sum of the
individual costs.

(a) Suppose that the files are stored in some order fi1 , fi2 , . . . , fin .
Derive a formula for the total cost of retrieving the files, as a
function of n and the mik ’s.

(b) Describe a greedy strategy to order the files on the tape so that
the total cost is minimized, and prove that this strategy is indeed
optimal.

8. We describe here one simple way to merge two sorted lists: Compare
the smallest numbers of the two lists, remove the smaller one of the
two from the list it is in, and place it somewhere else as the first
number of merged list. We now compare the smallest numbers of the
two lists of remaining numbers and place the smaller one of the two as
the second number of the merged list. This step can be repeated until
the merged list is completely built up. Clearly, in the worst case it
takes n1 +n2− 1 comparisons to merge two sorted lists which have n1

and n2 numbers, respectively. Given m sorted lists, we can select two
of them and merge these two lists into one. We can then select two
lists from the m− 1 sorted lists and merge them into one. Repeating
this step, we shall eventually end up with one merged list. Describe a
general algorithm for determining an order in which m sorted lists A1,
A2, ..., Am are to be merged so that the total number of comparisons
is minimum. Prove that your algorithm is correct.

Greedy Algorithms 91

9. Let G = (V,E) be a connected undirected graph. The distance be-
tween two vertices x and y, denoted by d(x, y), is the number of edges
on the shortest path between x and y. The diameter of G is the maxi-
mum of d(x, y) over all pairs (x, y) in V × V . In the remainder of this
problem, assume that G has at least two vertices.

Consider the following algorithm on G: Initially, choose arbitrarily
x0 ∈ V . Repeatedly, choose xi+1 such that d(xi+1, xi) = maxv∈V d(v, xi)
until d(xi+1, xi) = d(xi, xi−1).

Can this algorithm always terminates? When it terminates, is d(xi+1, xi)
guaranteed to equal the diameter of G? (Prove or disprove your an-
swer.)

10. Consider a graph G = (V,E) with positive edge weight c : E → R+.
Show that for any spanning tree T and the minimum spanning tree
T ∗, there exists a one-to-one onto mapping ρ : E(T) → E(T ∗) such
that c(ρ(e)) ≤ c(e) for every e ∈ E(T) where E(T) denotes the edge
set of T .

11. Given a strongly connected directed graph G = (V,E) with nonnega-
tive edge weight w : E → R+ and a node r ∈ V , design a polynomial-
time algorithm to compute the minimum weight arborescence rooted
at r. (An arborescence rooted at r is a directed tree that, for every
x ∈ V , contains a directed path from r to x.)

12. Consider a point set P in the Euclidean plane. Let R be a fixed positive
number. A steinerized spanning tree on P is a tree obtained from a
spanning tree on P by putting some Steiner points on its edges to break
them into pieces each of length at most R. Show that the steinerized
spanning with minimum number of Steiner points is obtained from the
minimum spanning tree.

13. Consider a graph G = (V,E) with edge weight w : E → R+. Show
that the spanning tree T which minimizes

∑
e∈E(T) ‖e‖α for any fixed

1 < α is the minimum spanning tree, i.e., the one which minimizes∑
e∈E(T) ‖e‖.

14. Let B be the family of all maximal independent subsets of an inde-
pendent system (E, I). Then (E, I) is a matroid if and only if for any
nonnegative function c(·), Algorithm 14 produces an optimal solution
for the problem min{c(I) | I ∈ B}.

92 Greedy Algorithms

15. Consider a complete bipartite graph G = (U, V,E) with |U | = |V |.
Let c(·) be a nonnegative function on E such that for any u, u′ ∈ V1

and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) =⇒ c(u, v)+c(u′, v′) ≥ c(u, v′)+c(u′, v).

(a) Design a greedy algorithm for problem max{c(·) | I ∈ I}.
(b) Design a greedy algorithm for problem min{c(·) | I ∈ I}.

16. Given n intervals [si, fi) each with weight wi ≥ 0, design an algorithm
to compute the maximum-weight subset of disjoint intervals.

17. Give a counterexample to show that an independent system with all
maximal independent sets of the same size may not be a matroid.

18. Consider the following scheduling problem. There are n jobs, i =
1, 2, ..., n, and there is one super-computer and n identical PCs. Each
jobs needs to be pre-processed first on the supercomputer and then
finished by one of the PCs. The time required by job i on the super-
computer is pi; i = 1, 2, ..., n; the time required on a PC for job i is fi;
i = 1, 2, ..., n. Finishing several jobs can be done in parallel since we
have as many PCs as there are jobs. But the supercomputer process-
es only one job at a time. The input to the problem are the vectors
p = [p1, p2, ..., pn] and f = [f1, f2, ..., fn]. The objective of the prob-
lem is to minimize the completion time of last job (i.e., minimize the
maximum completion time of any job). Describe a greedy algorithm
that solves the problem in O(n log n) time. Prove that your algorithm
is correct.

19. Design a local ratio algorithm to compute a minimum spanning tree.

Historical Notes

The greedy algorithm is an important class of computer algorithms with
self-reducibility, for solving combinatorial optimization problems. It uses
the greedy strategy in construction of an optimal solution. There are several
variations of greedy algorithms, e.g., Prime algorithm for minimum spanning
tree in which greedy principal applies not globally, but a subset of edges.

Could Prim algorithm be considered as a local search method? The
answer is no. Actually, in local search method, a solution is improved by
finding a better one within a local area. Therefore, the greedy strategy

Greedy Algorithms 93

applies to search for the best moving from a solution to another better
solution. This can also be called as incremental method, which will be
introduced in next chapter.

The minimum spanning tree has been studied since 1926 [38]. Its history
can be found a remarkable article [35]. The best known theoretical algorithm
is due to Bernard Chazelle [36, 37]. The algorithm runs almost in O(m) time.
However, it is too complicated to implement and hence may not be practical.

94 Greedy Algorithms

Chapter 5

Incremental Method and
Network Flow

“Change is incremental. Change is small.”
- Theodore Melfi

In this chapter, we study the incremental method which is very different
from those methods in previous chapters. This method does not use the
self-reducibility. It starts from a feasible solution and in each iteration,
computation moves from a feasible solution to another feasible solution by
improving the objective function value. The incremental method has been
used in study of many problems, especially in study of network flow.

5.1 Maximum Flow

Consider a flow network G = (V,E), i.e., a directed graph with a non-
negative capacity c(u, v) on each arc (u, v), and two given nodes, source s
and sink t. An example of the flow network is shown in Fig. 5.1. For sim-
plicity of description for flow, we may extend capacity c(u, v) to every pair
of nodes u and v by defining c(u, v) = 0 if (u, v) 6∈ E.

A flow in flow network G is a real function f on V ×V satisfying following
three conditions:

1. (Capacity Constraint) f(u, v) ≤ c(u, v) for every u, v ∈ V .

2. (Skew Symmetry) f(u, v) = −f(v, u) for all u, v ∈ V .

3. (Flow Conservation)
∑

v∈V \{u} f(u, v) = 0 for every u ∈ V \ {s, t}.

95

96 Incremental Method

Figure 5.1: A flow network.

The flow has following properties.

Lemma 5.1.1. Let f be a flow of network G = (V,E). Then following
holds.

(a) If (u, v) 6∈ E and (v, u) 6∈ E, then f(u, v) = 0.
(b) For any x ∈ V \ {s, t},

∑
f(u,x)>0 f(u, x) =

∑
f(x,v)>0 f(x, v).

(c)
∑

f(s,v)>0 f(s, v)−
∑

f(u,s)>0 f(u, s) =
∑

f(u,t)>0 f(u, t)−
∑

f(t,v)>0 f(t, v).

Proof. (a) By capacity constraint, f(u, v) ≤ c(u, v) = 0 and f(v, u) ≤
c(v, u) = 0. By skew symmetric, f(u, v) = −f(v, u) ≥ 0. Hence, f(u, v) = 0.

(b) By flow conservation, for any x ∈ V \ {s, t},∑
f(x,u)<0

f(x, u) +
∑

f(x,v)>0

f(x, v) =
∑
v∈V

f(x, v) = 0.

By skew symmetry,∑
f(u,x)>0

f(u, x) = −
∑

f(x,u)<0

f(x, u) =
∑

f(x,v)>0

f(x, v).

(c) By (b), we have∑
x∈V \{s,t}

∑
f(u,x)>0

f(u, x) =
∑

x∈V \{s,t}

∑
f(x,v)>0

f(x, v).

For (y, z) ∈ E with y, z ∈ V \ {s, t}, if f(y, z) > 0, then f(y, z) appears in
both the left-hand and the right-hand sides and hence it will be cancelled.
After cancellation, we obtain∑

f(s,v)>0

f(s, v) +
∑

f(t,v)>0

=
∑

f(u,s)>0

f(u, s) +
∑

f(u,t)>0

f(u, t).

Incremental Method 97

Now, the flow value of f is defined to be

|f | =
∑

f(s,v)>0

f(s, v)−
∑

f(u,s)>0

f(u, s) =
∑

f(u,t)>0

f(u, t)−
∑

f(t,v)>0

f(t, v).

In case that the source s does not have arc coming in, we have

|f | =
∑

f(s,v)>0

f(s, v).

In general, we can also represent |f | as

|f | =
∑

v∈V \{s}

f(s, v) =
∑

u∈V \{t}

f(u, t).

In Fig. 5.2, arc labels with underline give a flow. This flow has value 11.

Figure 5.2: A flow in network.

The maximum flow problem is as follows.

Problem 5.1.2 (Maximum Flow). Given a flow network G = (V,E) with
arc capacity c : V × V → R+, a source s and a sink t, find a flow f with
maximum flow value. Usually, assume that s does not have in-coming arc
and t does not have out-going arc.

An important tool for study of the maximum flow problem is the resid-
ual network. The residual network for a flow f in a network G = (V,E)
with capacity c is the flow network with Gf (V,E′) with capacity c′(u, v) =
c(u, v)− f(u, v) for any u, v ∈ V where E′ = {(u.v) ∈ V × V | c′(u, v) > 0}.
For example, the flow in Fig.5.2 has its residual network as shown in Fig.5.3.
Two important properties of the residual network are included in following
lemmas.

98 Incremental Method

Figure 5.3: The residual network Gf of the flow f in Fig. 5.2.

Lemma 5.1.3. Suppose f ′ is a flow in the residual network Gf . Then f+f ′

is a flow in network G and |f + f ′| = |f |+ |f ′|.

Proof. For any u, v ∈ V , since f ′(u, v) ≤ c′(u, v) = c(u, v) − f(u, v),
we have f(u, v) + f ′(u, v) ≤ c(u, v), that is, f + f ′ satisfies the capacity
constraint. Moreover, f(u, v) + f ′(u, v) = −f(v, u)− f ′(v, u) = −(f(v, u) +
f ′(v, u)) and for every u ∈ V \ {s, t},∑

v∈V \{u}

(f + f ′)(u, v) =
∑

v∈V \{u}

f(u, v) +
∑

v∈V \{u}

f ′(u, v) = 0.

This means that f+f ′ satisfies the skew symmetry and the flow conservation
conditions. Therefore, f + f ′ is a flow. Finally,

|f +f ′| =
∑

v∈V \{s}

(f +f ′)(s, v) =
∑

v∈V \{s}

f(s, v)+
∑

v∈V \{s}

f ′(s, v) = |f |+ |f ′|.

�

Lemma 5.1.4. Suppose f ′ is a flow in the residual network Gf . Then
(Gf)f ′ = Gf+f ′, i.e., the residual network of f ′ in network Gf is the residual
network of f + f ′ in network G.

Proof. The arc capacity of (Gf)f ′ is

c′(u, v)− f ′(u, v) = c(u, v)− f(u, v)− f ′(u, v) = c(u, v)− (f + f ′)(u, v)

which is the same as that in Gf+f ′ .

Incremental Method 99

In order to get a flow with larger value, Lemmas 5.1.3 and 5.1.4 suggest
us to find a flow f ′ in Gf with |f ′| > 0. A simple way is to find a path P
from s to t and define f ′ by

f ′(u, v) =

{
min(x,y)∈P c

′(x, y) if (u, v) ∈ P,
0 otherwise.

The following algorithm is motivated from this idea.

Algorithm 15 Ford-Fulkerson Algorithm for Maximum Flow

Input: A flow network G = (V,E) with capacity function c, a source s and
a sink t.
Output: A flow f .

1: G← G;
2: f ← 0; (i.e., ∀u, v ∈ V, f(u, v) = 0)
3: while there exists a path P from s to t in G do
4: δ ← min{c(u, v) | (u, v) ∈ P} and
5: send a flow f ′ with value δ from s to t along path P ;
6: G← Gf ′ ;
7: f ← f + f ′;
8: end while
9: return f .

Using this algorithm, an example is shown in Fig.5.4. The s-t path of
the residual network is called an augmenting path and hence Ford-Fulkerson
algorithm is an augmenting path algorithm.

Now, we may have two questions: Can Ford-Fulkerson algorithm stop
within finitely many steps? When Ford-Fulkerson algorithm stops, does
output reach the maximum?

The answer for the first question is negative, that is, Ford-Fulkerson
algorithm may run infinitely many steps. A counterexample can be obtained
from the one as shown in Fig.5.5 by setting m =∞. However, with certain
condition, Ford-Fulkerson algorithm will run within finitely many steps.

Theorem 5.1.5. If every arc capacity is a finite integer, then Ford-Fulkerson
algorithm runs within finitely many steps.

Proof. The flow value has upper bound
∑

(s,v)∈E c(s, v). Since every arc
capacity is integer, in each step, the flow value will be increased by at least
one. Therefore, the algorithm will run within at most

∑
(s,v)∈E c(s, v) steps.

100 Incremental Method

(1)
(2)

(3) (4)

(5) (6)

Figure 5.4: An example for using Ford-Fulkerson Algorithm.

The answer for the second question is positive. Actually, we have fol-
lowing.

Theorem 5.1.6. A flow f is maximum if and only if its residual network
Gf does not contain a path from source s to sink t.

To prove this theorem, let us first show a lemma.
A partition (S, T) of V is called an s-t cut if s ∈ S and t ∈ T . The

capacity of an s-t cut is defined by

CAP(S, T) =
∑

u∈S,v∈T
c(u, v).

Lemma 5.1.7. Let (S, T) be a s-t cut. Then for any flow f ,

|f | =
∑

f(u,v)>0,u∈S,v∈T

f(u, v)−
∑

f(v,u)>0,u∈S,v∈T

f(v, u) ≤ CAP(S, T).

Proof. By Lemma 5.1.1(b),∑
x∈S\{s}

∑
f(u,x)>0

f(u, x) =
∑

x∈S\{s}

∑
f(x,v)>0

f(x, v).

Incremental Method 101

Simplifying this equation, we will obtain∑
f(s,x)>0,x∈S\{s}

f(s, x) +
∑

u∈T,x∈S\{s},f(u,x)>0

f(u, x)

=
∑

f(x,s)>0,x∈S\{s}

f(x, s) +
∑

v∈T,x∈S\{s},f(x,v)>0

f(x, v).

Thus, ∑
f(s,x)>0

f(s, x) +
∑

u∈T,x∈S,f(u,x)>0

f(u, x)

=
∑

f(x,s)>0

f(x, s) +
∑

v∈T,x∈S,f(x,v)>0

f(x, v),

that is,

|f | =
∑

f(s,x)>0

f(s, x)−
∑

f(x,s)>0

f(x, s)

=
∑

v∈T,x∈S,f(x,v)>0

f(x, v)−
∑

u∈T,x∈S,f(u,x)>0

f(u, x)

≤
∑

v∈T,x∈S,f(x,v)>0

f(x, v)

≤
∑

x∈S,v∈T
c(x, v).

Now, we prove Theorem 5.1.6.
Proof of Theorem 5.1.6. If residual network Gf contains a path from source
s to sink t, then a positive flow can be added to f and hence f is not
maximum. Next, we assume that Gf does not contain a path from s to t.

Let S be the set of all nodes each of which can be reached by a path
from s. Set T = V \ S. Then (S, T) is a partition of V such that s ∈ S
and t ∈ T . Moreover, Gf has no arc from S to T . This fact implies two
important facts:

(a) For any arc (u, v) with u ∈ S and v ∈ T , f(u, v) = c(u, v).
(b) For any arc (v, u) with u ∈ S and v ∈ T , f(v, u) = 0.
Based on these two facts, by Lemma 5.1.7, we obtain that

|f | =
∑

u∈S,v∈T
c(u, v).

Hence, f is a maximum flow. �

102 Incremental Method

Corollary 5.1.8. The maximum flow is equal to minimum s-t cut capacity.

Finally, we remark that Ford-Fulkerson algorithm is not polynomial-
time. An couterexample is given in Fig. 5.5. On this counterexample, the
algorithm runs in 2m steps. However, the input size is O(logm). Clearly,
2m is not a polynomial with respect to O(logm).

Figure 5.5: Ford-Fulkerson Algorithm runs not in polynomial time.

5.2 Edmonds-Karp Algorithm

To improve the running time of Ford-Fulkerson algorithm, a simple mod-
ification is found which works very well, that is, at each iteration, find
a shortest augmenting path instead of an arbitrary augmenting. By the
shortest, we mean the path contains the minimum number of arcs. This
algorithm is called Admonds-Karp algorithm (Algorithm 16).

An example for using Admonds-Karp algorithm is shown in Fig.5.6.
Compared with Fig.5.4, we may find that input flow network is same, but
obtained maximum flows are different. Thus, for this input flow network,
there are two different maximum flow. Actually, in this case, there are
infinitely many maximum flows. The reader may prove it as an exercise.

To estimate the running time, let us study some properties of Admonds-
Karp algorithm.

Let δf (x) denote the shortest path distance from source s to node x in
the residual network Gf of flow f where each arc is considered to have unit
distance.

Lemma 5.2.1. When Edmonds-Karp algorithm runs, δf (x) increases mono-
tonically with each flow augmentation.

Incremental Method 103

Algorithm 16 Admonds-Karp Algorithm for Maximum Flow

Input: A flow network G = (V,E) with capacity function c, a source s and
a sink t.
Output: A flow f .

1: G← G;
2: f ← 0; (i.e., ∀u, v ∈ V, f(u, v) = 0)
3: while there exists a path from s to t in G do
4: find a shortest path P from s to t;
5: set δ ← min{c(u, v) | (u, v) ∈ P} and
6: send a flow f ′ with value δ from s to t along path P ;
7: G← Gf ′ ;
8: f ← f + f ′;
9: end while

10: return f .

Figure 5.6: An example for using Admonds-Karp Algorithm.

104 Incremental Method

Proof. For contradiction, suppose flow f ′ is obtained from flow f through
an augmentation with path P and δf ′(v) < δf (v) for some node v. Without
loss of generality, assume δf ′(v) reaches the smallest value among such v,
i.e.,

δf ′(u) < δf ′(v)⇒ δf ′(u) ≥ δf (u).

Suppose arc (u, v) is on the shortest path from s to v in Gf ′ . Then δf ′(u) =
δf ′(v)− 1 and hence δf ′(u) ≥ δf (u). Next, let us consider two cases.

Case 1. (u, v) ∈ Gf . In this case, we have

δf (v) ≤ δf (u) + 1 ≤ δf ′(u) + 1 = δf ′(v),

a contradiction.
Case 2. (u, v) 6∈ Gf . Then arc (v, u) must lie on the augmenting path P

in Gf (Fig.5.7). Therefore,

δf (v) = δf (u)− 1 ≤ δf ′(u)− 1 = δf ′(v)− 2 < δf ′(v),

a contradiction.

Figure 5.7: Proof of Lemma 5.2.1.

An arc (u, v) is critical in residual network Gf if (u, v) has the smallest
capacity in the shortest augmenting path in Gf .

Lemma 5.2.2. Each arc (u, v) can be critical at most (|V |+ 1)/2 times.

Proof. Suppose arc (u, v) is critical in Gf . Then (u, v) will disappear in
next residual network. Before (u, v) appears again, v, u) has to appear in
augmenting path of a residual network Gf ′ . Thus, we have

δf ′(u) = δf ′(v) + 1.

Incremental Method 105

Since δf (v) ≤ δf ′(v), we have

δf ′(u) = δf ′(v) + 1 ≥ δf (v) + 1 = δf (u) + 2.

By Lemma 5.2.1, the shortest path distance from s to u will increase by
2(k − 1) when arc (u, v) can be critical k times. Since this distance is at
most |V | − 1, we have 2(k − 1) ≤ |V | − 1 and hence k ≤ (|V |+ 1)/2.

Now, we establish a theorem on running time.

Theorem 5.2.3. Edmonds-Karp algorithm runs in time O(|V | · |E|2).

Proof. In each augmentation, there exists a critical arc. Since each arc can
be critical (|V |+ 1)/2 times, there are at most O(|V | · |E|) augmentations.
In each augmentation, finding the shortest path takes O(|E|) time and oper-
ations on the augmenting path take also O(|E|) time. Putting all together,
Edmonds-Karp algorithm runs in time O(|V | · |E|2).

Note that above theorem does not require that all arc capacities are
integer. Therefore, the modification of Admonds and Karp has two folds:
(1) Make the algorithm halt within finitely many iterations and (2) the
number of iterations is bounded by a polynomial.

5.3 Bipartite Matching

The maximum flow has many applications. One of them is to deal with
the maximum bipartite matching.

Consider a graph G = (V,E). A subset of edges is called a matching if
edges in the subset are not adjacent each other. In other words, a matching
is an independent edge subset. A bipartite matching is a matching in a
bipartite graph.

Problem 5.3.1 (Maximum Bipartite Matching). Given a bipartite graph
(U, V,E), find a matching with maximum cardinality.

This problem can be transformed into a maximum flow problem as fol-
lows. Add a source node s and a sink node t. Connect s to every node u in
U by adding an arc (s, u). Connect every node v in V to t by adding an arc
(v, t). Add to every edge in E the direction from U to V . Finally, assign
every arc with unit capacity. An example is shown in Fig. 5.8.

Motivated from observation on the example in Fig. 5.8, we may have
questions:

106 Incremental Method

Figure 5.8: Maximum bipartite matching is transformed to maximum flow.

(1) Can we do augmentation directly in bipartite graph without putting
it in a flow network?

(2) Can we perform the first three augmentations in the same time?
For both questions, the answer is yes. Let us explain the answer one

by one. To give yes-answer for the first question, we need to define the
augmenting path as follows.

Consider a matching M in a bipartite graph G = (U, V,E). Let us call
every edge in M as matched edge and every edge not in M as unmatched
edge. A node v is called a free node if v is not an ending point of a matched
edge. The augmenting path is now defined to be a path satisfying following
two conditions:

(a) It is an alternating path, that is, edges on the path is alternatively
unmatched and matched.

(b) The path is between two free nodes.
Clearly, on an augmenting path, turn all matched edges to unmatched

and turn all unmatched edges to matched. Then considered matching will
become a matching with one more edges. Therefore, if a matching M has
an augmenting path, then M cannot be maximum. The following theorem
indicates that the inverse holds.

Theorem 5.3.2. A matching M is maximum if and only if M does not
have an augmenting path.

Proof. Let M be a matching without augmenting path. For contradiction,

Incremental Method 107

suppose M is not maximum. Let M∗ be a maximum matching. Then
|M | < |M∗|. Consider M ⊕M∗ = (M \M∗)∪ (M∗ \M)in which every node
has degree at most two (Fig. 5.9).

Figure 5.9: M ⊕M∗.

Hence, it is disjoint union of paths and cycles. Since each node with
degree two must be incident to two edges belonging in M and M ′, respec-
tively. Those paths and cycles must be alternative. They can be classified
into four types as shown in Fig. 5.10.

Figure 5.10: Connected components of M ⊕M∗.

Note that in each of the first three types of connected components, the
number of edges in M is not less than the number of edges in M∗. Since
|M | < |M∗|, we have |M \ M∗| < |M∗ \ M |. Therefore, the connected
component of the fourth type must exist, that is, M has an augmenting
path, a contradiction.

We now return to the question on augmentation of several paths at the
same time. The following algorithm is the result of positive answer.

108 Incremental Method

Algorithm 17 Hopcroft-Karp Algorithm for Maximum Bipartite Matching

Input: A bipartite graph G = (U, V,E).
Output: A maximum matching M .

1: M ←any edge;
2: while there exists an augmenting path do
3: find a maximal set of disjoint augmenting paths {P1, P2, ..., Pk};
4: M ←M ⊕ (P1 ∪ P2 ∪ · · ·Pk);
5: end while
6: return M .

We next analyze Hopcroft-Karp algorithm.

Lemma 5.3.3. In each iteration, the length of the shortest augmenting path
is increased by at least two.

Proof. Suppose matching M ′ is obtained from matching M through aug-
mentation on a maximal set of shortest augmenting paths, {P1, P2, ..., Pk},
for M . Let P be a shortest augmenting path for M ′. If P is disjoint from
{P1, P2, ..., Pk}, then P is also an augmenting path for M . Hence, the length
of P is longer than the length of P1. Note that the augmenting path must
have odd length. Therefore, the length of P at-least-two longer than the
length of P1.

Next, assume that P has an edge lying in Pi for some i. Note that every
augmenting path has two endpoints in U and V , respectively. Let u and v
be two endpoints of P , and ui and vi two endpoints of Pi where u, uiinU
and v, vi ∈ V . Without loss of generality, assume that (x, y) is the edge
lying on P and also on some Pi such that no such edge exists from y to v.
Clearly,

distP (y, v) ≥ distPi(y, vi), (5.1)

where distP (y, v) denotes the distance between y and v on path P . In fact,
if distP (y, v) < distPi(y, vi), then replacing the piece of Pi between y and vi
by the piece of P between y and v, we obtain an augmenting path for M ,
shorter than Pi, contradicting to shortest property of Pi. Now, we claim
that following holds.

distPi(ui, y) + 1 = distPi(ui, x) ≤ distP (u, x) = distP (u, y)− 1. (5.2)

To prove this claim, we may put the bipartite graph into a flow network as
shown in Fig. 5.8. Then every augmenting path receive a direction from U
to V and the claim can be proved as follows.

Incremental Method 109

First, note that on path P , we assumed that the piece from y to v is
disjoint from all P1, P2, ..., Pk. This assumption implies that edge (x, y) is
in direction from x to y on P , so that distP (u, x) = distP (u, y)− 1.

Secondly, note that edge (x, y) also appears on Pi and after augmen-
tation, every edge in Pi must change its direction. Thus, edge (x, y) is in
direction from y to x on Pi. Hence, distPi(ui, y) + 1 = distPi(ui, x).

Thirdly, by Lemma 5.2.1, we have distPi(ui, x) ≤ distP (u, x).
Finally, putting (5.1) and (5.2) together, we obtain

distPi(ui, vi) + 2 ≤ distP (u, v).

Theorem 5.3.4. Hopcroft-Karp algorithm computes a maximum bipartite
matching in time O(|E|

√
|V |).

Proof. In each iteration, it takes O(|E|) time to find a maximal set of short-
est augmenting paths and to perform augmentation on these paths. (We will
give more explanation after the proof of this theorem.) Let M be the match-
ing obtained through

√
|V | iterations. Let M∗ be the maximum matching.

Then M ⊕M∗ contains |M∗| \ |M | augmenting path, each of length at least
1 + 2

√
|V | by Lemma 5.3.3. Therefore, each takes at least 2 + 2

√
|V | nodes.

This implies that the number of augmenting paths in M ⊕ M∗ is upper
bounded by

|V |/(2 + 2
√
|V |) <

√
|V |/2.

Thus, M∗ can be obtained from M through at most
√
|V |/2 iterations.

Therefore, M∗ can be obtained within at most 3
2 ·
√
|V | iterations. This

completes the proof.

There are two steps in finding a maximal set of disjoint augmenting paths
for a matching M in bipartite graph G = (U, V,E).

In the first step, employ the breadth-first-search to put nodes into differ-
ent levels as follows. Initially, select all free nodes in U and put them in the
first level. Next, put in the second level all nodes each with a unmatched
edge connecting to a node in the first level. Then, put in the third level all
nodes each with a matched edge connecting to a node in the second level.
Continue in this alternating ways, until a free node in V is discovered, say
in the kth level (Fig. 5.11). Let F be all free nodes in the kth level and
H the obtained subgraph. If the breadth-first-search comes to the end and
still cannot find a free node in V , then this means that there is no augment-
ing path and a maximum matching has already obtained by Hopcroft-Karp
algorithm.

110 Incremental Method

Figure 5.11: The breadth-first search.

In the second step, employ the depth-first-search to find path from each
node in F to a node in the first level. Such paths will be search one by one
in H and once a path is obtained, all nodes on this depth-first-search path
will be deleted from H, until no more such path can be found.

Since both steps can work in O(|E|) time, the total time for finishing
this task is O(|E|).

5.4 Dinitz Algorithm for Maximum Flow

The idea in Hopcroft-Karp algorithm can be extended from matching to
flow. This extension gives a variation of Edmonds-Karp algorithm, called
Dinitz algorithm.

Consider a flow network G = (V,E). The algorithm starts with a zero
flow f(u, v) = 0 for every arc (u, v). In each substantial iteration, consider
residual network Gf for flow f . Start from source node s to do the breadth-
first-search until node t is reached. If t cannot be researched, then algorithm
stops and the maximum flow is already obtained. If t is reached with distance
` from node s, then the breadth-first-search tree contains ` level and its nodes
are divided into ` classes V0, V1, ..., V` where Vi is the set of all nodes each
with distance i from s and ` ≤ |V |. Collect all arcs from Vi to Vi+1 for
i = 0, 1, ..., ` − 1. Let L(s) be the obtained a levelable subnetwork. Above
computation can be done in O(|E|) time.

Next, the algorithm finds augmenting paths to do augmentations in fol-
lowing way.

Incremental Method 111

Step 1. Iteratively, for v 6= t and u 6= s, remove, from L(s), every arc (u, v)
with no coming arc at u or no out-going arc at v. Denote by L̂(s) the
obtained levelable network.

Step 2. If L̂(s) is empty, then this iteration is completed and go to next
iteration. If L̂(s) is not empty, then it contains a path of length `, from
s to t. Find such a path P by using the depth-first-search. Do aug-
mentation along the path P . Update L(s) by using L̂(s) and deleting
all critical arcs on P . Go to Step 1.

This algorithm has following property.

Lemma 5.4.1. Let δf (s, t) denote the distance from s to t in residual graph
Gf of flow f . Suppose flow f ′ is obtained from flow f through an iteration
of Dinitz’ algorithm. Then δf ′(s, t) ≥ δf (s, t) + 2.

Proof. The proof is similar to the proof of Lemma 5.2.1.

The correctness of Dinitz’ algorithm is stated in following theorem.

Theorem 5.4.2. Dinitz’ algorithm produces a maximum flow in O(|V |2|E|)
time.

Proof. By Lemma 5.4.1, Dinitz’ algorithm runs within O(|V |) iterations.
Let us estimate the running time in each iteration.

• The construction of L(s) spends O(|E|) time.

• It needs O(|V |) time to find each augmenting path and to do aug-
mentation. Since each augmentation will remove at least one critical
arc, there are at most O(|E|) augmentations. Thus, the total time for
augmentations is O(|V | · |E|).

• Amortizing all time for removing arcs, it is at most O(|E|).

Therefore, each iteration runs in O(|V | · |E|) time. Hence, Dinitz algorithm
runs in O(|V |2|E|) time. At end of algorithm, Gf does not contain a path
from s to t. Thus, f is a maximum flow.

5.5 Minimum Cost Maximum Flow

The following problem is closely related to maximum flow.

112 Incremental Method

Problem 5.5.1 (Minimum Cost Maximum Flow). Given a flow network
G = (V,E) with capacity c(u, v) and cost a(u, v), a source s and a sink t, find
a maximum flow f with the minimum total cost cost(f) =

∑
(u,v)∈E a(u, v) ·

f(u, v).

There is a solution (Algorithm 18) similar to Edmonds-Karp algorithm.

Algorithm 18 Algorithm for Minimum Cost Maximum Flow

Input: A flow network G = (V,E) with nonnegative capacity c(u, v) and
nonnegative cost a(u, v) for each arc (u, v), a source s and a sink t.
Output: A flow f .

1: Gf ← G;
2: f ← 0; (i.e., ∀u, v ∈ V, f(u, v) = 0)
3: while there exists a path from s to t in Gf do
4: find a minimum cost path P from s to t;
5: set δ ← min{c(u, v) | (u, v) ∈ P} and
6: send a flow f ′ with value δ from s to t along path P ;
7: Gf ← (Gf)f ′ ;
8: f ← f + f ′;
9: end while

10: return f .

In this algorithm, arc cost in Gf needs some explanation. For arc (v, u)
added from a flow on arc (u, v), its cost a(v, u) = −a(u, v). In particular,
when G contains two arc (u, v) and (v, u), Gf may contains multi-arcs (v, u)
and (v, u)f . (v, u) has given capacity c(v, u) and cost a(u, v). However,
(v, u)f has capacity f(u, v) and cost −a(u, v).

Clearly, Algorithm 18 produces a maximum flow. However, for correct-
ness, we have to show this maximum flow has the minimum cost. To do so,
let us first establish an optimality condition.

A directed cycle is called a negative cost cycle in residual graph Gf if the
total arc cost of the cycle is negative.

Lemma 5.5.2. A maximum flow f has the minimum cost if and only if its
residual graph Gf does not contain a negative cost cycle.

Proof. If Gf contains a negative cost cycle, then the cost can be reduced by
adding a flow along this cycle. Next, assume that Gf for a maximum flow
f does not contain a negative cost cycle. We show that f has the minimum
cost. For contradiction, assume that f does not reach the minimum cost,
so that its cost is larger than the cost of a maximum flow f ′. Note that

Incremental Method 113

every flow can be decomposed into disjoint union of several path-flows. This
fact implies that f contains a path-flow P has cost larger that the cost of
a path-flow P ′ in f ′. Let P̂ be obtained from P by reversing its direction.
Then P̂ ∪ P ′ forms a negative cost cycle, which may be decomposed into
several simple cycles and one of them must also have negative cost. This
simple cycle must be contained in Gf , a contradiction.

Lemma 5.5.3. Suppose that the residual graph Gf of maximum flow f does
not contain a negative cost cycle. Let the maximum flow f ′ be obtained from
f through one augmentation in Algorithm 18. Then Gf ′ does not contain a
negative cost cycle.

Proof. For contradiction, suppose Gf ′ contains a negative cost cycle Q. S-
ince Gf does not contain a negative cost cycle, Q must contain some arcs
which are reverse of some arcs on the augmenting path P in Gf . In P , re-
placing those arcs by remaining arcs in Q, we will obtain a path with path in
Gf , with cost smaller than the cost of P , contradicting the rule for choosing
augmenting path in Algorithm 18.

Now, we show the correctness of Algorithm 18.

Theorem 5.5.4. Suppose that the input flow network G = (V,E) has non-
negative capacity and nonnegative cost on each arc. Then Algorithm 18 ends
at a minimum cost maximum flow.

Proof. It follow immediately from Lemmas 5.5.3 and 5.5.2.

There is an interesting observation that Algorithm 18 is not in class of
incremental methods. In fact, its feasible domain is the set of maximum
flows. The incremental method should move from moving from a maximum
flow to another maximum flow with cost reducing. Such an example is the
cycle canceling algorithm as shown in Algorithm 19.

Both Algorithms 18 and 19 run in pseudo-polynomial time when all
capacities are integers. In such a case, the flow in the algorithms are al-
ways integers and hence in each iteration, the flow value is increased by
at least one. Since the maximum flow value is bounded O(|V |C) where
Cisthemaximumarccapacity. Therefore, the number of iterations is at most
O(|V |C). In case that arc capacities are not integers, we even do not know
whether these two algorithms will halt. In the literature, there are strong
polynomial-time algorithms for the minimum cost maximum flow problem.
The reader may refer the historical notes for references.

The minimum cost maximum flow has many applications. Here, let us
mention an example.

114 Incremental Method

Algorithm 19 Cycle Canceling for Minimum Cost Maximum Flow

Input: A flow network G = (V,E) with nonnegative capacity c(u, v) and
nonnegative cost a(u, v) for each arc (u, v), a source s and a sink t.
Output: A maximum flow f .

1: Compute a maximum flow f with Admonds-Karp algorithm;
2: while Gf contains a negative cost cycle Q do
3: f ← f ∪Q;
4: end while
5: return f .

Problem 5.5.5 (Minimum Cost Perfect Matching in Bipartite Graph). Giv-
en a complete bipartite graph G = (U, V,E) (|U | = |V |) with cost a(u, v) for
each edge (u, v) ∈ E, find a perfect matching with the minimum total edge
cost.

This problem can be transformed into an instance of minimum cost max-
imum flow in following way:

• Add a source node s and a sink node t and add arcs from s to every
node in U and arcs from every node in V to t. Every of those added
arcs has capacity one and cost zero.

• For every edge in E, assign a direction from U to V .

This problem can also be reduced to the maximum weight bipartite
matching problem as follows: Let amax = maxe∈Ea(e). Define a new edge
cost a′(e) = amax − a(e) for e ∈ E. Since the perfect matching always
contains |U | edges, a perfect matching reaches the minimum edge cost with
a(e) if and only if it reaches the maximum edge cost with a′(e). Thus, the
minimum cost perfect matching problem is transformed to the maximum
weight bipartite matching problem.

5.6 Chinese Postman and Graph Matching

The technique at end of last section can also be employed to solve fol-
lowing problem.

Problem 5.6.1 (Chinese Postman Problem). Given a graph G = (V,E)
with edge cost a, find a postman tour to minimize total edge cost where a
postman tour is a cycle passing through every edge at least once.

Incremental Method 115

A cycle is called as a Euler tour if it passes through every edge exactly
once. In graph theory, it has been proved that a connected graph has an
Euler tour if and only if every node has even degree. A node is called as
an odd node if its degree is odd. Note that the number of odd degree for
any graph is even. Therefore, we may solve the Chinese postman problem
in following way.

• Construct a complete graph H on all old nodes and assign the distance
between any two nodes u and v with the shortest distance between u
and v in G.

• Find the minimum cost perfect matching M in H.

• Add M to input graph G and the Euler tour in G ∪M is the optimal
solution.

In this method, the minimum cost perfect matching in graph H can be
transformed to the maximum weight matching problem in H by changing
the edge cost by employing the same technique at last section.

Note that currently, we do not know how to reduce the maximum weight
matching problem into a network flow problem. Therefore, we may like to
employ alternating path and cycle again.

This time, an alternating path is an augmenting path if it is maximal
and the total weight of its matched edges is less than the total weight of
its unmatched edges; an alternating cycle is an augmenting cycle if it is
maximal and the total weight of its matched edges is less than the total
weight of its unmatched edges.

Actually, maximum matching in general graph is in similar situation.
Let us explore more alternating path method for this problem.

Problem 5.6.2 (Maximum Graph Matching). Given a graph G = (V,E),
find a matching with maximum cardinality.

Recall that an augmenting path is defined to be a path satisfying following
two conditions:

(a) It is an alternating path, that is, edges on the path is alternatively
unmatched and matched.

(b) The path is between two free nodes.

Now, proof of Theorem 5.3.2 can be applied to the graph matching with-
out any change. Therefore, we obtained following algorithm for the maxi-
mum graph matching problem.

116 Incremental Method

Algorithm 20 Algorithm for Maximum Graph Matching

Input: A graph G = (V,E).
Output: A maximum matching M .

1: M ←any edge;
2: while there exists an augmenting path P do
3: M ←M ⊕ P ;
4: end while
5: return M .

How to find an augmenting path for matching in a general graph G =
(V,E)? Let us introduce the Blossom algorithm. A blossom is an almost
alternating odd cycle as shown in Fig.5.12. The Blossom algorithm is similar

Figure 5.12: A Blossom shrinks into a node.

to the first step of augmenting-path finding in Hopcroft-Karp algorithm, i.e.,
employ the breadth-first-search by using unmatched edge and matched edge
alternatively. However, start from one free node x at a time. In the search,
algorithm may stop at another free node y, i.e., an augmenting path is found,
or determine that no augmenting path exists with x as an end. In the search
process, a Blossom may be found. In such a case, shrink the Blossom into
a node. Why a Blossom can be shrink into a point? It is because the
alternating path can be extended passing through a Blossom out-reach to
its any connection (Fig. 5.13). Clearly, this algorithm runs in O(|V | · |E|)
time. Thus, we have following.

Theorem 5.6.3. The maximum cardinality matching in graph G = (V,E)
can be found in O(|V |2 · |E|) time.

Incremental Method 117

Figure 5.13: A alternating path passes a Blossom.

Exercises

1. A conference organizer wants to set up a review plan. There are m
submitted papers and n reviewers. Each reviewer has made p papers as
”prefer to review”. Each paper should have at least q review reports.
Find a method to determine whether such a review plan exists or not.

2. A conference organizer wants to set up a review plan. There are m
submitted papers and n reviewers. Each reviewer is allowed to made
at least p1 papers as ”prefer to review” and at least p2 papers as ”likely
to review”. Each paper should have at least q1 review reports and at
most q2 review reports. Please give a procedure to make the review
plan.

3. Suppose there exist two distinct maximum flows f1 and f2. Show that
there exist infinitely many maximum flows.

4. Consider a directed graph G with a source s, a sink t and nonneg-
ative arc capacities. Find a polynomial-time algorithm to determine
whether G contains a unique s-t cut.

5. Consider a flow network G = (V,E) with a source s, a sink t and
nonnegative capacities. Suppose a maximum flow f is given. If an
arc is broken, find a fast algorithm to compute a new maximum flow
based on f . A favorite algorithm will run in O(|E| log |V |) time.

6. Consider a flow network G = (V,E) with a source s, a sink t and

118 Incremental Method

nonnegative integer capacities. Suppose a maximum flow f is given.
If the capacity of an arc is increased by one, find a fast algorithm to
update the maximum flow. A favorite algorithm runs in O(|E|+ |V |)
time.

7. Consider a directed graph G = (V,E) with a source s and a sink t.
Instead of arc capacity, assume that there is the nonnegative integer
node capacity c(v) on each node v ∈ V , that is, the total flow passing
node v cannot exceed c(v). Show that the maximum flow can be
computed in polynomial-time.

8. Show that the maximum flow of a flow network G = (V,E) can be
decomposed into at most |E| path-flows.

9. Suppose a flow network G = (V,E) is symmetric, i.e., (u, v) ∈ E if
and only if (v, u) ∈ E and c(u, v) = c(v, u). Show that Edmonds-Karp
algorithm terminates within at most |V | · |E|/4 iterations.

10. Consider a directed graph G. A node-disjoint set of cycles is called a
cycle-cover if it covers all nodes. Find a polynomial-time algorithm to
determine whether a given graph G has a cycle-cover or not.

11. Consider a graph G. Given two nodes s and t, and a positive integer
k, find a polynomial time algorithm to determine whether there exist
or not k edge-disjoint paths between s and t.

12. Consider a graph G. Given two nodes s and t, and a positive integer
k, find a polynomial time algorithm to determine whether there exist
or not k node-disjoint paths between s and t.

13. Consider a graph G. Given three nodes x, y, z, find a polynomial
algorithm to determine whether there exists a simple path from x to
z passing through y.

14. Prove or disprove (by counterexample) following statement.

(a) If a flow network has unique maximum flow, then it has unique
minimum s-t cut.

(b) If a flow network has unique minimum s-t cut, then it has unique
maximum flow.

(c) A maximum flow must associate with a minimum s-t cut such
that the flow passes through the minimum s-t cut.

Incremental Method 119

(d) A minimum s-t cut must associate with a maximum flow such
that he flow passes through the minimum s-t cut.

15. Let M be a maximal matching of a graph G. Show that for any
matching M ′ of G, |M ′| ≤ 2 · |M |.

16. We say that a bipartite graph G = (L,R,E) is d-regular if every vertex
v ∈ L ∪ R has degree exactly d. Prove that every d-regular bipartite
graph has a matching of size |L|.

17. There are n students who studied at a late-night study for final exam.
The time has come to order pizzas. Each student has his own list of
required toppings (e.g. mushroom, pepperoni, onions, garlic, sausage,
etc). Everyone wants to eat at least half a pizza, and the topping
of that pizza must be in his reqired list. A pizza may have only one
topping. How to compute the minimum number of pizzas to order to
make everyone happy?

18. Consider bipartite graph G = (U, V,E). Let H be the collection of all
subgraphs H that for every u ∈ U , H has at most one edge incident
to u. Let E(H) denote the edge set of H and I = {E(H) | H ∈ H}.
Show that (a) (E, I) is a matroid and (b) all matchings in G form an
intersection of two matroids.

19. Consider a graph G = (V,E) with nonnegative integer function c :
V → N . Find an augmenting path method to compute a subgraph
H = (V, F) (F ⊆ E) with maximum number of edges such that for
every v ∈ V , deg(v) ≤ c(v).

20. A conference with a program committee of 30 members received 100
papers. The PC chair wants to make an assignment. He first asked all
PC members each to choose 15 prefered papers. Based on what PC
members choose, the PC chair wants to find an assignment such that
each PC member reviews 10 papers among 15 chosen ones and each
paper gets 3 PC members to review. How do we figure out whether
such an assignment exists? Please design a maximum flow formulation
to answer this question.

21. Let U = {u1, u2, ..., un} and V = {v1, v2, ..., vn}. A bipartite graph
G = (U, V,E) is convex if (ui, vk), (uj , vk) ∈ E with i < j imply
(uh, vk) ∈ E for all h = i, i + 1, ..., j. Find a greedy algorithm to
compute the maximum matching in a convex bipartite graph.

120 Incremental Method

22. Consider a bipartite graph G = (U, V,E) and two node subsets A ⊆ U
and B ⊆ V . Show that if there exist a matching MA covering A and a
matching MB covering B, then there exists a matching MA∪B covering
A ∪B.

23. An edge-cover C of a graph G = (V,E) is a subset of edges such that
every vertex is incident to an edge in C. Design a polynomial-time
algorithm to find the minimum edge-cover, i.e., an edge-cover with
minimum cardinality.

24. (König Theorem) Show that the minimum size of vertex cover is equal
to the maximum size of matching in bipartite graph.

25. Show that the vertex-cover problem in bipartite graphs can be solved
in polynomial-time.

26. A matrix with all entries being 0 or 1 is called a 0-1 matrix. Consider
a positive integer d and a 0-1 matrix M that each row contains exactly
two 1s. Show a polynomail-time algorithm to find a minimum number
of rows to form a submatrix such that for every d+ 1 columns C0, C1,
..., Cd, there exists a row at which C0 has entry 1, but all C1, ..., Cd
have entry 0 (such a matrix is called a d-disjunct matrix).

27. Design a cycle canceling algorithm for the Chinese postman problem.

28. Design a cycle canceling algorithm for the minimum spanning tree
problem.

29. Consider a graph G = (V,E) with nonnegative edge distance d(e)
for e ∈ E. There are m source nodes s1, s1, ..., sm and n sink nodes
t1, t2, ..., tn. Suppose these source are required to provide those sink
nodes with certain type of product. Suppose that si is required to
provide ai products and tj requires bj products. Assume

∑m
i=1 ai =∑n

j=1 bj . The target is to find a transportation plan to minimize the
total cost where on each edge, the cost is the multiplication of the
distance and the amount of products passing through the edge. Show
that a transportation plan is minimum if and only if there is no cycle
such that the total distance of unloaded edges is less than the total
distance of loaded edges.

30. Consider m sources s1, s1, ..., sm and n sinks t1, t2, ..., tn. These source
are required to provide those sink nodes with certain type of produc-
t. si is required to provide ai products and tj requires bj product-

Incremental Method 121

s. Assume
∑m

i=1 ai =
∑n

j=1 bj . Given a distance table (dij between
sources si and sinks tj , the target is to find a transportation plan to
minimize the total cost where on each edge, the cost is the multipli-
cation of the distance and the amount of products passing through
the edge. Show that a transportation plan is minimum if and on-
ly if there is no circuit [(i1, j1), (i2, j1), (i2, j2), ..., (i1, jk)] such that
(i1, j1), (i2, j2), ..., (ik, jk) are loaded, (i2, j1), (i3, j2), ..., (i1, jk) are un-
loaded, and

∑k
h=1 d(ih, jh) >

∑k
h=1 d(ih, jh−1) (j0 = jk). Here, (i, j)

is said to be loaded if there is at least one product transported from
si to tj .

Historical Notes

Maximum flow problem was proposed by T. E. Harris and F. S. Ross
in 1955 [39, 40] and was first solved by L.R. Ford and D.R. Fulkerson in
1956 [41]. However, Ford-Fulkerson algorithm is a pseudo polynomial-time
algorithm when all arc capacities are integers. If arc capacities may not be
integers, the termination of the algorithm may meet a trouble. The first
strong polynomial-time was designed by Edmonds and Karp [42]. Later,
various designs appeared in the literature, including Dinitz’ algorithm [43,
44], Goldberg-Tarjan push-relabel algorithm [45], Goldberg-Rao algorithm
[46], Sherman algorithm [47], algorithm of Kelner, Lee, Orecchia and Sidford
[48]. Currently, the best running time is O(|V ||E|). This record is kept by
Orlin algorithm [49].

Minimum cost maximum flow is studied following up with maximum
flow problem. Similarly, earlier algorithms run in pseudo polynomial-time
such as out-of-kilter algorithm [56], cheapest path augmentation [60], cycle
canceling [57], and successive shortest path [58]. Polynomial-time algorithms
were found later such as minimum mean cycle canceling [55] and speed-
up successive shortest path. Currently, the fastest strong polynomial-time
algorithm has running time is O(|E|2 log2 |V |). This record is also kept by
an algorithm of Orlin [59].

Matching is a classical subject in graph theory. Both maximum (cardi-
nality) matching and minimum cost perfect matching problems in bipartite
graphs can be easily transformed to maximum flow problems. However,
they can also solved with alternating path methods. So far, Hopcroft-Karp
algorithm [53] is the fastest algorithm for the maximum bipartite matching.
In general graph, they have to be solved with alternating path method since
currently, no reduction have beeb found to transform matching problem to

122 Incremental Method

flow problem. Those algorithms were designed by Edmonds [52]. An ex-
tension of Hopcroft-Karp algorithm was made by Micali and Vazirani [54],
which runs in O(

√
|E||V |) time.

For maximum weight matching, nobody has found any method to trans-
form it to a flow problem. Therefore, we have to employ the alternating
path and cycle method [52], too.

Chinese postman problem was proposed by Kwan [50] and the first
polynomial-time solution was given by Edmonds and Johnson[51] with min-
imum cost perfect matching in complete graph with even number of nodes.

Chapter 8

NP-hard Problems and
Approximation Algorithms

“The biggest difference between time and space is that you can’t
reuse time.”
- Merrick Furst

8.1 What is the class NP?

The class P consists of all polynomial-time solvable decision problems.
What is the class NP? There are two popular misunderstandings:

(1) NP is the class of problems which are not polynomial-time solvable.

(2) A decision problem belongs to the class NP if its answer can be
checked in polynomial-time.

The misunderstanding (1) comes from misexplanation of NP as the brief
name for ”Not Polynomial-time solvable”. Actually, it is polynomial-time
solvable, but in a wide sense of computation, nondeterministic computation,
that is, NP is the class of all nondeterministic polynomial-time solv-
able decision problems. Thus, NP is the brief name of ”Nondeterministic
Polynomial-time”.

What is the nondeterministic computation? Let us explain it starting
from computation model, Turing machine (TM). A TM consists of three
parts, a tape, a head, and a finite control (Fig. 8.1).

The tape has the left end and infinite long in the right direction, which
is divided into infinitely many cells. Each cell can hold a symbol. All
symbols possibly on the tape form an alphabet Γ, called the alphabet of tape
symbols. In Γ, there is a special symbol B, called the blank symbol, which

123

124 NP-hard Problems

Figure 8.1: One-tape Turing machine.

means the cell is actually empty. Initially, an input string is written on the
tape. All symbols possibly in the input string form another alphabet Σ,
called the alphabet of input symbols. Assume that both Γ and Σ are finite
and B ∈ Γ \ Σ.

The head can read, erase, and write symbols on the tape. Moreover, it
can move to left and right. In each move, the head can shift a distance of
one cell. Please note that in classical one-tape TM, the head is not allowed
to stay in the place without move before the TM halts.

The finite control contains a finite number of states, forming a set Q.
The TM’s computation depends on function δ : Q× Γ→ Q× Γ×D where
D = {R,L} is the set of possible moving directions and R means moving to
right while L means moving to left. This function δ is called the transaction
function. For example, δ(q, a) = (p, b, L) means that when TM in state q
reads symbol a, it will change state to p, change symbol a to b, and them
move to the left (the upper case in 8.2); δ(q, a) = (p, b, R) means that when
TM in state q reads symbol a, it will change state to p, change symbol a
to b, and them move to the right (the lower case in 8.2); Initially, on an
input x, the TM is in a special state s, called the initial state, and its head
is located at the leftmost cell, which contains the first symbol of x if x is
not empty. The TM stops moving if and only if it enters another special
state h, called the final state. An input x is said to be accepted if on x, the
TM will finally stop. All accepted inputs form a language, which is called
the language accepted by the TM. The language accepted by a TM M is
denoted by L(M).

From above description, we see that each TM can be described by the
following parameters, an alphabet Σ of input symbols, an alphabet Γ of tape
symbols, a finite set Q of states in finite control, a transition function δ, and

NP-hard Problems 125

Figure 8.2: One move to the right.

an initial state s.

The computation time of an TM M on an input x is the number of
moves from initial state to final state, denoted by TimeM (x). A TM M is
said to be polynomial-time bounded if there exists a polynomial p such that
for every input x ∈ L(M), Timem(x) ≤ p(|x|). So far, what we described
TM is the deterministic TM (DTM), that is, for each move, there exists at
most one transition determined by the transition function. All languages
accepted by polynomial-time bounded DTM form a class, denoted by P.

There are many variations of the TM, in which the TM has more freedom.
For example, the head is allowed to stay at the same cell during a move, the
tape may have no left-end, and multiple tapes exist (Fig. 8.3). However, in
term of polynomial-time computability, all of them have been proved to have
the same power. Based on such experiences, one made following conclusion.

Figure 8.3: A multi-tape TM.

126 NP-hard Problems

Extended Church-Turing Thesis. A function computable in polynomial-
time in any reasonable computational model using a reasonable time com-
plexity measure is computable by a deterministic TM in polynomial-time.

Extended Church-Turing Thesis is a natural law of computation. It
is similar to physics laws, which cannot have a mathematical proof, but is
obeyed by the natural world. By Extended Church-Turing thesis, the class P
is independent from computational models. In the statement, ”reasonable”
is an important word. Are there unreasonable computational models? The
answer is Yes. For example, the nondeterministic Turing machine (NTM)
is an important one among them. In an NTM, for each move, there may

Figure 8.4: There are many possible transitions for each move in an NTM.

exist many possible transitions (Fig. 8.4) and the NTM can use any one of
them. Therefore, transition function δ in an NTM is a mapping from Q×Γ
to 2Q×Γ×{R,L}, that is, δ(q, a) is the set of all possible transitions. When
the NTM in state q reads symbol a, it can choose any one transition from
δ(q, a) to implement.

It is worth to mentioning that for each nondeterministic move of one-tape
NTM, the number of possible transitions is upper-bounded by |Q| × |Γ| × 3
where Q is the set of states, Γ is the alphabet of tape symbols, and 3 is a
upper-bound for the number of moving choices. |Q| × |Γ| × 3 is a constant
independent from input size |x|.

The computation process of the DTM can be represented by a path
while the computation process of the NTM has to be represented by a tree.
When an input x is accepted by an NTM? The definition is that as long
as there is a path in the computation tree, leading to final state, then x is
accepted. Suppose that at each move, we make a guess for choice of possible
transitions. This definition means that if there exists a correct guess which

NP-hard Problems 127

leads to final state, we will accept the input. Let us look at an example.
Consider following problem.

Problem 8.1.1 (Hamiltonian Cycle). Given a graph G = (V,E), does G
contain a Hamiltonian cycle? Here, a Hamiltonian cycle is a cycle passing
through each vertex exactly once.

The following is a nondeterministic algorithm for the Hamiltonian cycle
problem.

input a graph G = (V,E).
step 1 guess a permutation of all vertices.
step 2 check if guessed permutation gives a Hamitonian cycle.

if yes, then accept input.

In step 1, the guess corresponds to nondeterministic moves in the NTM.
Note that in step 2, if the outcome of checking is no, then we cannot give
any conclusion and hence nondeterministic computation gets stuck. How-
ever, a nondeterministic algorithm is considered to solve a decision problem
correctly if there exists a guessed result leading to correct yes-answer. For
example, in above algorithm, if input graph contains a Hamiltonian cycle,
then there exists a guessed permutation which gives a Hamiltonian cycle
and hence gives yes-answer. Therefore, it is a nondeterministic algorithm
which solves the Hamiltonian Cycle problem.

Now, let us recall the second popular misunderstanding of NP mentioned
at beginning of this section:

(2) A decision problem belongs to the class NP if its answer can checked
in polynomial-time.

Why (2) is wrong? This is because not only checking step is required
to be polynomial-time computable, but also guessing step is required to be
polynomial-time computable. How do we estimate guessing time? Let us
explain this starting from what is a legal guess. Note that in an NTM, each
nondeterministic move can select a choice of transition from a pool with
size upper-bound independent from input size. Therefore, A legal guess
is a guess from a pool with size independent from input size. For
example, in above algorithm, guessing in step 1 is not legal because the
number of permutation of n vertices is n! which depends on input size.

What is the running time of step 1? It is the number of legal guesses
spent in implementation of the guess in step 1. To implement the guess in
step 1, we may encode each vertex into a binary code of length dlog2 ne.
Then each permutation of n vertices is encoded into a binary code of length

128 NP-hard Problems

O(n log n). Now, guessing a permutation can be implemented by O(n log n)
legal guesses each of which chooses either 0 or 1. Therefore, the running
time of step 1 is O(n log n).

In many cases, the guessing step is easily implemented by a polynomial
number of legal guesses. However, there are some exceptions; one of them
is the following.

Problem 8.1.2. Given an m × n integer matrix A and an n-dimensional
integer vector b, determine whether there exists a m-dimensional integer
vector x such that Ax ≥ b.

In order to prove that Problem 8.1.2 is in NP, we may guess an n-
dimensional integer vector x and check whether x satisfies Ax ≥ b. How-
ever, we need to make sure that guessing can be done in nondeterministic
polynomial-time. That is, we need to show that if the problem has a solu-
tion, then there is a solution of polynomial size. Otherwise, our guess cannot
find it. This is not an easy job. We include the proof into the following three
lemmas.

Let α denote the maximum absolute value of elements in A and b. Denote
q = max(m,n).

Lemma 8.1.3. If B is a square submatrix of A, then | detB| ≤ (αq)q.

Proof. Let k be the order of B. Then | detB| ≤ k!αk ≤ kkαk ≤ qqαq =
(qα)q.

Lemma 8.1.4. If rank(A) = r < n, then there exists a nonzero vector z
such that Az = 0 and every component of z is at most (αq)q.

Proof. Without loss of generality, assume that the left-upper r×r submatrix
B is nonsingular. Set xr+1 = · · · = xn−1 = 0 and xn = −1. Apply Cramer’s
rule to system of equations

B(x1, · · · , xr)T = (a1n, · · · , arn)T

where aij is the element of A on the ith row and the jth column. Then we
can obtain xi = detBi/detB where Bi is a submatrix of A. By Lemma
3.1, | detBi| ≤ (αq)q. Now, set z1 = detB1, · · · , zr = detBr, zr+1 = · · · =
zn−1 = 0, and zn = detB. Then Az = 0.

Lemma 8.1.5. If Ax ≥ b has an integer solution, then it must have an
integer solution whose components of absolute value not exceed 2(αq)2q+1.

NP-hard Problems 129

Proof. Let ai denote the ith row of A and bi the ith component of b. Suppose
that Ax ≥ b has an integer solution. Then we choose a solution x such that
the following set gets the maximum number of elements.

Ax = {ai | bi ≤ aix ≤ bi + (αq)q+1} ∪ {ei | |xi| ≤ (αq)q},

where ei = (0, · · · , 0, 1︸ ︷︷ ︸
i

, 0, · · · , 0). We first prove that the rank of Ax is n.

For otherwise, suppose that the rank of Ax is less than n. Then we can
find nonzero integer vector z such that for any d ∈ Ax, dz = 0 and each
component of z does not exceed (αq)q. Note that ek ∈ Ax implies that kth
component zk of z is zero since 0 = ekz = zk. If zk 6= 0, then ek 6∈ Ax,
so, |xk| > (αq)q. Set y = x + z or x − z such that |yk| < |xk|. Then
for every ei ∈ Ax, yi = xi, so, ei ∈ Ay, and for ai ∈ Ax, aiy = aix, so,
ai ∈ Ay. Thus, Ay contains Ax. Moreover, for ai 6∈ Ax, aiy ≥ aix− |aiz| ≥
bi+(αq)q+1−nα(αq)q ≥ bi. Thus, y is an integer solution of Ax ≥ b. By the
maximality of Ax, Ay = Ax. This means that we can decrease the value of
the kth component again. However, it cannot be decreased forever. Finally,
a contradiction would appear. Thus, Ax must have rank n.

Now, choose n linearly independent vectors d1, · · · , dn from Ax. Denote
ci = dix. Then |ci| ≤ α+ (αq)q+1. Applying Cramer’s rule to the system of
equations dix = ci, i = 1, 2, · · · , n, we obtain a representation of x through
ci’s: xi = detDi/ detD where D is a square submatrix of (AT , I)T and Di

is a square matrix obtained from D by replacing the ith column by vector
(c1, · · · , cn)T . Note that the determinant of any submatrix of (AT , I)T e-
quals to the determinant of a submatrix of A. By Laplac expansion, it is easy
to see that |xi| ≤ |detDi| ≤ (αq)q(|c1|+ · · ·+ |cn|) ≤ (αq)qn(α+ (αq)q+1) ≤
2(αq)2q+1. �

By Lemma 8.1.5, it is enough to guess a solution x whose total size is
at most n log2(2(αq)2q+1)) = O(q2(log2 q + log2 α). Note that the input A
and b have total length at least β =

∑m
i=1

∑n
j=1 log2 |aij |+

∑n
j=1 log2 |bj | ≥

mn+ log2 α ≥ q+ IP is in NP.

Theorem 8.1.6. Problem 8.1.2 is in NP.

Proof. It follows immediately from Lemma 8.1.5.

The definition of the class NP involves three concepts, nondeterministic
computation, polynomial-time, and decision problems. The first two con-
cepts have been explained as above. Next, we explain what is the decision
problem.

130 NP-hard Problems

A problem is called a decision problem if its answer is “Yes” or “No”.
Each decision problem corresponds to the set of all inputs which receive
yes-answer, which is a language when each input is encoded into a string.
For example, the Hamiltonian cycle problem and Problem 8.1.2 are decision
problems. In case of no confusion, we sometimes use the same notation to
denote a decision problem and its corresponding language. For example, we
may say that a decision problem A has its characteristic function

χA(x) =

{
1 if x ∈ A,
0 otherwise.

Actually, we mean that the corresponding language of decision problem A
has characteristic function χA.

Usually, combinatorial optimization problems are not decision problems.
However, every combinatorial optimization problem can be transformed into
a decision version. For example, consider following.

Problem 8.1.7 (Traveling Salesman). Given n cities and a distance table
between n cities, find the shortest Hamiltonian tour where a Hamitonian
tour is a Hamitonian cycle in the complete graph on the n cities.

Its decision version is as follows.

Problem 8.1.8 (Decision Version of Traveling Salesman). Given n cities, a
distance table between n cities, and an integer K > 0, is there a Hamiltonian
tour with total distance at most K?

Clearly, if the traveling salesman problem can be solved in polynomial-
time, so is its decision version. Conversely, if its decision version can be
solved in polynomial-time, then we may solve the traveling salesman problem
in the following way within polynomial-time.

Let us assume that all distances between cities are integers. 1 Let
dmin and dmax be the smallest distance and the maximum distance between
two cities. Let a = ndmin and b = ndmax. Set K = d(a+ b)/2e. Determine
whether there is a tour with total distance at most K by solving the decision
version of the traveling salesman problem. If answer is Yes, then set b← K;
else set a ← K. Repeat this process until |b − a| ≤ 1. Then, compute the
exact optimal objective function value of the traveling salesman problem by
solving its decision version twice with K = a and K = b, respectively. In

1If they are rational numbers, then we can transform them into integers. If some of
them are irrational numbers, then we have to touch the complexity theory of real number
computation, which is out of scope of this book.

NP-hard Problems 131

this way, suppose the decision version of the traveling salesman problem can
be solved in polynomial-time p(n). Then the traveling salesman problem
can be solved in polynomial-time O(log(ndmax)p(n)).

Now, we may find that actually, Problem 8.1.2 is closely related to the
decision version of following integer program.

Problem 8.1.9 (0-1 Integer Program).

max cx

subject to Ax ≥ b
x ∈ {0, 1}n,

where A is an m×n integer matrix, c is an n-dimensional integer row vector,
and b is an m-dimensional integer column vector.

8.2 What is NP-completeness?

In 1965, J. Admonds conjectured following.

Conjecture 8.2.1. The traveling salesman problem does not have a polynomial-
time solution.

In study of this conjecture, S. Cook introduced the class NP and showed
the first NP-complete problem in 1971.

A problem is NP-hard if the existence of polynomial-time so-
lution for it implies the existence of polynomial-time solution for
every problem in NP. An NP-hard problem is NP-complete if it also
belongs to the class NP.

To introduce Cook’s result, let us recall some knowledge on Boolean
algebra.

A Boolean function is a function whose variable values and function val-
ue all are in {true, false}. Here, we would like to denote true by 1 and false
by 0. In the following table, there are two boolean functions of two vari-
ables, conjunction ∧ and disjunction ∨, and a Boolean function of a variable,
negation ¬.

x y x ∧ y x ∨ y ¬x
0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

132 NP-hard Problems

For simplicity, we also write x ∧ y = xy, x ∨ y = x + y and ¬x = x̄.
The conjunction and disjunction follow the commutative, associative, and
distributive laws. An interesting and important law about negation is De
Morgan’s law, i.e.

xy = x̄+ ȳ and x+ y = x̄ȳ.

The SAT problem is defined as follows:

Problem 8.2.2 (Satisfiability (SAT)). Given a Boolean formula F , is there
a satisfied assignment for F?

Here, an assignment to variables of F is satisfied if the assignment makes
F equal to 1. A Boolean formula F is satisfiable if there exists a satisfied
assignment for F .

The SAT problem has many applications. For example, the following
puzzle can be formulated into an instance od SAT.

Example 8.2.3. After three men interviewed, the department Chair said:”We
need Brown and if we need John then we need David, if and only if we need
either Brown or John and don’t need David.” If this department actually
need more than one new faculty, which ones were they?

Solution. Let B, J , and D denote respectively Brown, John, and David.
What Chair said can be written as a Boolean formula

[[B(J̄ +D)][(B + J)D̄] +B(J̄ +D) · (B + J)D̄

= BD̄J̄ + (B̄ + JD̄)(B̄J̄ +D)

= BD̄J̄ + B̄J̄ + B̄D

Since this department actually need more than one new faculty, there is only
one way to satisfy this Boolean formula, that is, B = 0, D = J = 1. Thus,
John and David will be hired. �

Now, we are ready to state Cook’s result.

Theorem 8.2.4 (Cook Theorem). The SAT problem is NP-complete.

After the first NP-complete problem is discovered, there are a large num-
ber of problems have been found to be NP-hard or NP-complete. Indeed,
there are many tools passing the NP-hardness from one problem to another
problem. We introduce one of them as follows.

Consider two decision problems A andB. A is said to be polynomial-time
many-one reducible to B, denoted by A ≤pm B, if there exists a polynomial-
time computable function f mapping from all inputs of A to inputs of B such

NP-hard Problems 133

that A receives yes-answer on input x if and only if B receives yes-answer
on input f(x) (Fig. 8.5).

Figure 8.5: Polynomial-time many-one reduction.

For example, we have

Example 8.2.5. The Hamiltonian cycle problem is polynomial-time many-
one reducible to the decision version of the traveling salesman problem.

Proof. To construct this reduction, for each input graph G = (V,E) of the
Hamiltonian cycle problem, we consider V as the set of cities and define a
distance table D by setting

d(u, v) =

{
1 if (u, v) ∈ E
|V |+ 1 otherwise.

Moreover, set K = |V |. If G contains a Hamiltonian cycle, this Hamilto-
nian cycle would give a tour with total distance |V | = K for the traveling
salesman problem on defined instance. Conversely, if the traveling salesman
problem on defined instance has a Hamiltonian tour with total distance at
most K, then this tour cannot contain an edge (u, v) 6∈ E and hence it
induces a Hamiltonian cycle in G. Since the reduction can be constructed
in polynomial-time, it is a polynomial-time many-one reduction from the
Hamiltonian cycle problem to the decision version of the traveling salesman
problem.

There are two important properties of the polynomial-time many-one
reduction.

Proposition 8.2.6. (a) If A ≤pm B and B ≤pm C, then A ≤pm C.
(b) If A ≤pm B and B ∈ P , then A ∈ P .

134 NP-hard Problems

Proof. . (a) Let A ≤pm B via f and B ≤pm C via g. Then A ≤pm C via
h where h(x) = g(f(x)). Let f and g be computable in polynomial-times
p(n) and q(n), respectively. Then for any x with |x| = n, |f(x)| ≤ p(n).
Hence, h can be computed in time p(n) + q(p(n)) (b) Let A ≤pm B via f . f

A

A

B

B

C

C

A

A

B

B

1

0

f

f

f

f

g

g

B

B

(a)

(b)

Figure 8.6: The proof of Proposition 8.2.6.

is computable in polynomial-time p(n) and B can be solved in polynomial-
time q(n). Then A can be solved in polynomial-time p(n) + q(p(n)).

Property (a) indicates that ≤pm is a partial ordering. Property (b) gives
us a simple way to establish the NP-hardness of a decision problem. To show
the NP-hardness of a decision problem B, it suffices to find an NP-complete
problem A and prove A ≤pm B. In fact, if B ∈ P , then A ∈ P . Since A is
NP-complete, every problem in NP is polynomial-time solvable. Therefore,
B is NP-hard.

The SAT problem is the root to establish the NP-hardness of almost all
other problems. However, it is hard to use the SAT problem directly to
construct reduction. Often, we use an NP-complete special case of the SAT
problem. To introduce this special case, let us first explain a special type of
Boolean formulas, 3CNF.

A literal is either a Boolean variable or the negation of a Boolean variable.

NP-hard Problems 135

An elementary sum is a sum of several literals. Consider an elementary sum
c and a Boolean function f . If c = 0 implies f = 0, then c is called a clause
of f . A CNF (conjunctive normal form) is a product of its clauses. A CNF
is called a 3CNF if each clause of the CNF contains exactly three distinct
literals about three variables.

Problem 8.2.7. 3SAT: Given a 3CNF F , determine whether the F is
satisfiable.

Theorem 8.2.8. The 3SAT problem is NP-complete.

Proof. It is easy to see that the 3SAT problem belongs to NP. Next, we
show SAT ≤pm 3SAT .

First, we show two facts.

(a) w = x+ y if and only if p(w, x, y) is satisfiable where

p(w, x, y) = (w̄ + x+ y)(w + x̄+ y)(w + x+ ȳ)(w + x̄+ ȳ).

(b) w = xy if and only if q(w, x, y) is satisfiable where

q(w, x, y) = p(w̄, x̄, ȳ).

To show (a), we note that w = x+ y if and only if w̄x̄ȳ +w(x+ y) = 1.
Moreover, we have

w̄x̄ȳ + w(x+ y)

= (w̄ + x+ y)(x̄ȳ + w)

= (w̄ + x+ y)(x̄+ w)(ȳ + w)

= (w̄ + x+ y)(w + x̄+ y)(w + x+ ȳ)(w + x̄+ ȳ)

= q(w, x, y).

Therefore, (a) holds.

(b) can be derived from (a) by noting that w = xy if and only if w̄ = x̄+ȳ.

Now, consider a Boolean formula F . F must contain a term xy or x+ y
where x and y are two literals. In the former case, replace xy by a new
variable w in F and set F ← q(w, x, y)F . In the latter case, replace x + y
by a new variable w in F and set F ← p(w, x, y)F . Repeat this operation
until F becomes a literal z. Let u and v be two new variables. Finally, set
F ← F (z + u+ v)(z + ū+ v)(z + u+ v̄)(z + ū+ v̄). Then the original F is
satisfiable if and only if the new F is satisfiable.

136 NP-hard Problems

Starting from the 3SAT problem through polynomial-time many-one re-
duction, there are a very large number of combinatorial optimization prob-
lems; their decision versions have been proved to be NP-complete. Moreover,
none of them have been found to have a polynomial-time solution. If one
of them has a polynomial-time solution, so do others. This fact makes one
confidently say: An NP-hard problem is unlikely to have a polynomial-time
solution. This ”unlikely” can be removed only if P 6=NP is proved, which is
a big open problem in the literature.

Since for NP-hard combinatorial optimization problems, they are unlike-
ly to have polynomial-time exact solution, we have to move our attention
from exact solutions to approximation solutions. How do we design and
analyze approximation solution? Those techniques will be studied system-
atically in next a few chapters. Before to do so, we would touch a few funda-
mental NP-complete problems and their related combinatorial optimization
problems with their approximation solution in later sections of this chapter.

To end of this section, let us mention a rough way to judge whether a
problem has a possible polynomial-time solution or not. Note that in many
cases, it is easy to judge whether a problem belongs to NP or not. For a
decision problem A in NP, if it is hard to find a polynomial-time solution,
then we may study its complement Ā = {x | x 6∈ A}. If Ā ∈ NP, then we
may need to try hard to find a polynomial-time solution. If is is hard to
show Ā ∈ NP , then we may try to show NP-hardness of problem A.

Actually, let co-NP denote the class consisting of all complements of
decision problems in NP. Then class P is contained in the intersection of NP
and co-NP (Fig. 8.7). So far, no natural problem has been found to exist in

Figure 8.7: Intersection of NP and co-NP.

(NP∩co-NP)\P.

In the history, there are two well-known open problems existing in NP∩co-

NP-hard Problems 137

NP, and was unknown to have polynomial-time solutions for many years.
They are the primality test and the decision version of linear program. Fi-
nally, they both have been found to have polynomial-time solutions.

8.3 Hamiltonian Cycle

Consider an NP-complete decision problem A and a possible NP-hard
decision problem B. How do we construct a polynomial-time many-one
reduction? Every reader who has no experience would like to know the
answer of this question. Of course, we would not have an efficient method
to produce such a reduction. Indeed, we do not know if such an method
exists. However, we may give some idea to follow.

Let us recall how to show a polynomial-time many-one reduction from
A to B.

(1) Construct a polynomial-time computable mapping f from all inputs
of problem A to inputs of problem B.

(2) Prove that problem A on input x receives yes-answer if and only if
problem B on input f(x) receives yes-answer.

Since the mapping f has to satisfy (2), the idea is to find the relationship
of output of problem A and output of problem B, that is, find the mapping
from inputs to inputs through the relationship between outputs
of two problems. Let us explain this idea through an example.

Theorem 8.3.1. The Hamiltonian cycle problem is NP-complete.

Proof. We already proved previously that the Hamiltonian cycle problem
belongs to NP. Next, we are going to construct a polynomial-time many-one
reduction from the NP-complete 3SAT problem to the Hamiltonian cycle
problem.

The input of the 3SAT problem is a 3CNF F and the input of the Hamil-
tonian cycle problem is a graph G. We need to find a mapping f such that
for any 3CNF F , f(F) is a graph such that F is satisfiable if and only if
f(F) contains a Hamiltonian cycle. What can make F satisfiable? It is a
satisfied assignment. Therefore, our construction should give a relationship
between assignments and Hamiltonian cycles. Suppose F contains n vari-
ables x1, x2, ..., xn and m clauses C1, C2, ..., Cm. To do so, we first build a
ladder Hi with 4m+2 levels, corresponding to a variable xi as shown in Fig.
8.8. In this ladder, there are exactly two Hamiltonian paths correspond-
ing two values 0 and 1 for xi. Connect n ladders into a cycle as shown in
Fig. 8.9. Then we obtained a graph H with exactly 2n Hamiltonian cycles
corresponding to 2n assignments of F .

138 NP-hard Problems

1x
1c

1c1x 2

1x

1x

4m+2
levels

Figure 8.8: A ladder Hi contains exactly two Hamiltonian paths between
two ends.

Figure 8.9: Each Hamiltonian cycle of graph H represents an assignment.

NP-hard Problems 139

Now, we need to find a way to involve clauses. An idea is to represent
each clause Cj by a point and represent the fact ”clause Cj is satisfied under
an assignment” by the fact ”point Cj is included in the Hamiltonian cycle
corresponding to the assignment”. To realize this idea, for each literal xi in
clause Cj , we connected point Cj to two endpoints of an edge, between the
(4j − 1)th level and the (4j)th level, on the path corresponding to xi = 1
(Fig. 8.10), and for each x̄i in clause Cj , we connected point Cj to two
endpoints of an edge on the path corresponding to xi = 0. This completes
our construction for graph f(F) = G.

Figure 8.10: A point C1 is added.

To see this construction meeting our requirement, we first assume F
has a satisfied assignment σ and show that G has a Hamiltonian cycle.
To this end, we find the Hamiltonian cycle C in H corresponding to the
satisfied assignment. Note that each clause Cj contains a literal y = 1
under assignment σ. Thus, Cj is connected to endpoints of an edge (u, v)
on the path corresponding to y = 1. Replacing this edge (u, v) by two
edges (Cj , u) and (Cj , v) would include point Cj into the cycle, which would
becomes a Hamiltonian cycle of G when all points Cj are included.

Conversely, suppose G has a Hamiltonian cycle C. We claim that in C,
each point Cj must connect to two endpoints of an edge (u, v) in H. If our
claim holds, then replace two edges (Cj , u) and (Cj , v) by edge (u, v). We
would obtain a Hamiltonian cycle of graph H, corresponding an assignment

140 NP-hard Problems

of F , which makes every clause Cj satisfied.
Now, we show the claim. For contradiction, suppose that cycle C con-

tains its two edges (Cj , u) and (Cj , v) for some clause Cj such that u and
v are located in different Hi and Hi′ , respectively, with i 6= i′. To find a
contradiction, we look at closely the local structure of vertex u as shown in
Fig. 8.11. Note that each ladder is constructed with length longer enough

Figure 8.11: Local structure near vertex u.

so that every clause Cj has a special location in ladder Hi and locations for
different clauses with at least distance three away each other (see Fig. 8.8).
This makes that at vertex u, edges possible in C form a structure as shown
in Fig. 8.11. In this local structure, since cycle C contains vertex w, C must
contain edges (u,w) and (w, z), which imply that (u, u′) and (u, u′′) are not
in C. Note that either (z, z′) or (z, z′′) is not in C. Without loss of generality
assume that (z, z′′) is not in C. Then edges possible in C form a structure
as shown in 8.11. Since Hamiltonian cycle C contains vertices u′′, w′′, and
z′′, C must contain edges (u′′, u′′′), (u′′, w′′), (w′′, z′′), (z′′, z′′′). Since C con-
tains vertex w′′′, C must contain edges (u′′′, w′′′) and (w′′′, z′′′). This means
that C must contain the small cycle (u′′, w′′, z′′, z′′′, w′′′, u′′′). However, a
Hamiltonian cycle is a simple cycle which cannot properly contain a small
cycle, a contradiction.

Next, we give some examples in each of which the NP-hardness is estab-
lished by reductions from the Hamiltonian cycle problem.

Problem 8.3.2 (Hamiltonian Path). Given a graph G = (V,E), does G
contains a Hamiltonian path? Here, a Hamiltonian path of a graph G is a
simple path on which every vertex appears exactly once.

NP-hard Problems 141

Theorem 8.3.3. The Hamiltonian path problem is NP-complete.

Proof. The Hamiltonian path problem belongs to NP because we can guess
a permutation of all vertices in O(n log n) time and then check, in O(n)
time, whether guessed permutation gives a Hamiltonian path. To show the
NP-hardness of the Hamiltonian path problem, we may modify the proof
of Theorem 8.3.1, to construct a reduction from the 3SAT problem to the
Hamiltonian path problem by making a little change on graph H, which
is obtained from connecting all Hi into a path instead of a cycle. Howev-
er, in the following we would like to give a simple proof by reducing the
Hamiltonian cycle problem to the Hamiltonian path problem.

We are going to find a polynomial-time computable mapping f from
graphs to graphs such that G contains a Hamiltonian cycle if and only if
f(G) contains a Hamiltonian path. Our analysis starts from how to build
a relationship between a Hamiltonian cycle of G and a Hamiltonian path
of f(G). If f(G) = G, then from a Hamiltonian cycle of G we can find a
Hamiltonian path of f(G) by deleting an ege; however, from a Hamiltonian
path of f(G) we may not be able to find a Hamiltonian cycle of G. To have
”if and only if” relation, we first consider a simple case that there is an edge
(u, v) such that if G contains a Hamiltonian cycle C, then C must contains
edge (u, v). In this special case, we may put two new edges (u, u′) and (v, v′)
at u and v, respectively.

For simplicity of speaking, we may call these two edges as two horns.
Now, if G has the Hamiltonian cycle C, then f(G) has a Hamiltonian path
between endpoints of two horns, u′ and v′, Conversely, if f(G) has a Hamil-
tonian path, then this Hamiltonian path must have two endpoints u′ and
v′; hence we can get back C by deleting two horns and putting back edge
(u, v).

Now, we consider the general case that such an edge (u, v) may not exists.
Note that for any vertex u of G, suppose u have k neighbors v1, v2, ..., vk.
Then a Hamiltonian cycle of G must contain one of edges (u, v1), (u, v2),
..., (u, vk). Thus, we may first connect all v1, v2, ..., vk to a vertex u′ and
put two horns (u,w) and (u′, w′) (Fig. 8.12). This construction would work
similarly as above.

As a corollary of Theorem 8.3.1, we have

Corollary 8.3.4. The traveling salesman problem is NP-hard.

Proof. In Example 8.2.5, a polynomial-time many-one reduction has been
constructed from the Hamiltonian cycle problem to the traveling salesman
problem.

142 NP-hard Problems

Figure 8.12: Install two horns at u and its copy u′.

The longest path problem is a maximization problem as follows:

Problem 8.3.5 (Longest Path). Given a graph G = (V,E) with positive
edge length c : E → R+, and two vertices s and t, find a longest simple path
between s and t.

As another corollary of Theorem 8.3.1, we have

Corollary 8.3.6. The longest path problem is NP-hard.

Proof. We will construct a polynomial-time many-one reduction from the
Hamiltonian cycle problem to the decision version of the longest path prob-
lem as follows: Given a graph G = (V,E) with positive edge length c : E →
R+, two vertices s and t, and an integer K > 0, is there a simple path
between s and t with length at least K?.

Let graph G = (V,E) be an input of the Hamiltonian cycle problem.
Choose a vertex u ∈ V . We make a copy of u by adding a new vertex
u′ and connecting u′ to all neighbors of u. Add two new edges (u, s) and
(u′, t). Obtained graph is denoted by f(G). Let K = |V |+ 2. We show that
G contains a Hamiltonian cycle if and only if f(G) contains a simple path
between s and t with length at most K.

First, assume that G contains a Hamiltonian cycle C. Break C at vertex
u by replacing an edge (u, v) with (u′, v). We would obtain a simple path
between u and u′ with length |V |. Extend this path to s and t. We would
obtain a simple path between s and t with length |V |+ 2 = K.

Conversely, assume that f(G) contains a simple path between s and t
with length at most K. Then this path contains a simple subpath between

NP-hard Problems 143

u and u′ with length |V |. Merge u and u′ by replacing edge (u′, v), on the
subpath, with edge (u, v). Then we would obtain a Hamiltonian cycle of
G.

For NP-hard optimization problems like the traveling salesman problem
and the longest path problem, it is unlikely to have an efficient algorithm
to compute their exact optimal solution. Therefore, one usually study algo-
rithms which produce approximation solutions for them. Such algorithms
are simply called approximations.

For example, let us study the traveling salesman problem. When the
given distance table satisfies the triangular inequality, that is,

d(a, b) + d(b, c) ≥ d(a, c)

for any three vertices a, b and c where d(a, b) is the distance between a and
b, there is an easy way to obtain a tour (i.e, a Hamiltonian cycle) with total
distance within twice from the optimal.

To do so, at the first compute a minimum spanning tree in the input
graph and then travel around the minimum spanning tree (see Fig. 8.13).
During this trip, a vertex which appearing at the second time can be skipped
without increasing the total distance of the trip due to the triangular in-
equality. Note that the length of a minimum spanning tree is smaller than
the minimum length of a tour. Moreover, this trip uses each edge of the
minimum spanning tree exactly twice. Thus, the length of the Hamiltonian
cycle obtained from this trip is within twice from the optimal.

Figure 8.13: Travel around the minimum spanning tree.

144 NP-hard Problems

Christofids in 1976 introduced an idea to improve above approximation.
After computing the minimum spanning tree, he consider all vertices of odd
degree (called odd vertices) in the tree and compute a minimum perfect
matching among these odd vertices. Because in the union of the minimum
spanning tree and the minimum perfect matching, every vertex has even
degree, one can travel along edges in this union using each edge exactly
once. This trip, called Euler tour, can be modified into a traveling salesman
tour (Fig.8.14), without increasing the length by the triangular inequality.
Thus, an approximation is produced with length bounded by the length of

Figure 8.14: Christofids approximation.

minimum spanning tree plus the length of the minimum perfect matching
on the set of vertices with odd degree. We claim that each Hamiltonian
cycle (namely, a traveling salesman tour) can be decomposed into a dis-
joint union of two parts that each is not smaller than the minimum perfect
matchings for vertices with odd degree. To see this, we first note that the
number of vertices with odd degree is even since the sum of degrees over
all vertices in a graph is even. Now, let x1, x2, · · · , x2k denote all vertices
with odd degree in clockwise ordering of the considered Hamiltonian cycle.
Then (x1, x2), (x3, x4), · · · , (x2k−1, x2k) form a perfect matching for vertices
with odd degree and (x2, x3), (x4, x5), · · · , (x2k, x1) form the other perfect
matching. The claim then follows immediately from the triangular inequal-
ity. Thus, the length of the minimum matching is at most half of the length
of the minimum Hamiltonian cycle. Therefore, Christofids gave an approx-
imation within a factor of 1.5 from the optimal.

From the above example, we see that the ratio of objective function
values between approximation solution and optimal solution is a measure

NP-hard Problems 145

for the performance of an approximation.

For a minimization problem, the performance ratio of an approximation
algorithm A is defined as follows:

r(A) = sup
I

A(I)

opt(I)

where I is over all possible instances and A(I) and opt(I) are respectively
the objective function values of the approximation produced by algorithm
A and the optimal solution with respect to instance I.

For a maximization problem, the performance ratio of an approximation
algorithm A is defined by

r(A) = inf
I

A(I)

opt(I)
.

For example, the performance ratio of Christofids approximation is at
most 3/2 as we showed in the above. Actually, the performance ratio of
Christofids approximation is exactly 3/2. To see this, we consider 2n + 1
points (vertices) with distances as shown in Figure 8.15. The minimum span-
ning tree of these 2n+1 points has distance 2n. It has only two odd vertices
with distance n(1 + ε). Hence, the length of Christofids approximation is
2n+ n(1 + ε). Moreover, the minimum tour has length (2n− 1)(1 + ε) + 2.
Thus, in this example, A(I)/opt(I) = (3n+nε)/(2n+ 1 + (2n− 1)ε)) which
is appoarch to 3/2 as ε goes to 0 and n goes to infinity.

Figure 8.15: Extremal case for Christofids approximation.

Theorem 8.3.7. For the traveling salesman problem in metric space, the
Christofids approximation A has the performance ratio r(A) = 3/2.

146 NP-hard Problems

For simplicity, an approximation A is said to be α-approximation if
r(A) ≤ α for minimizations and r(A) ≥ α for maximizations, that is, for
every input I,

opt(I) ≤ A(I) ≤ α · opt(I)

for minimizations, and

opt(I) ≥ A(I) ≥ α · opt(I).

For example, Christofids approximation is a 1.5-approximation, but not α-
approximation of the traveling salesman problem in metric space for any
constant α < 1.5.

Not every problem has a polynomial-time approximation with constant
performance ratio. An example is the traveling salesman problem without
triangular inequality condition on distance table. In fact, for contradiction,
suppose that its performance ratio r(A) ≤ K for a constant K. Then we
can show that the Hamiltonian cycle problem can be solved in polynomial
time. For any graph G = (V,E), define that for any pair of vertices u and
v,

d(u, v) =

{
1 if {u, v} ∈ E
K · |V | otherwise

This gives an instance I for the traveling salesman problem. Then, G has a
Hamiltonian cycle if and only if for I, the travel salesman has a tour with
length at most K|V |. The optimal tour has length |V |. Applying approx-
imation algorithm A to I, we will obtain a tour of length at most K|V |.
Thus, G has a Hamiltonian cycle if and only if approximation algorithm A
produces a tour of length at most K|V |. This means that the Hamiltonian
cycle problem can be solved in polynomial time. Because the Hamiltoni-
an cycle problem is NP-complete, we obtain a contradiction. The above
argument proved the following.

Theorem 8.3.8. If P 6= NP , then no polynomial-time approximation al-
gorithm for the traveling salesman problem in general case has a constant
performance ratio.

For the longest path problem, there exists also a negative result.

Theorem 8.3.9. For any ε > 0, the longest path problem has no polynomial-
time n1−ε-approximation unless NP = P .

NP-hard Problems 147

8.4 Vertex Cover

A vertex subset C is called a vertex cover if every edge has at least one
endpoint in C. Consider following problem.

Problem 8.4.1 (Vertex Cover). Given a graph G = (V,E) and a positive
integer K, is there a vertex cover of size at most K?

The vertex-cover problem is the decision version of the minimum vertex
cover problem as follows.

Problem 8.4.2 (Minimum Vertex Cover). Given a graph G = (V,E), com-
pute a vertex cover with minimum cardinality.

Theorem 8.4.3. The vertex-cover problem is NP-complete.

Proof. It is easy to show that the vertex cover problem is in NP. This can
be done by guessing a vertex subset within O(n log n) time and checking
whether obtained vertex subset is a vertex cover or not. Next, we show that
the vertex cover problem is NP-hard.

Let F be a 3-CNF with m clauses C1, ..., Cm and n variables x1, ..., xn.
We construct a graph G(F) of 2n+3m vertices as follows: For each variable
xi, we give an edge with two endpoints labeled by two literals xi and x̄i.
For each clause Cj = x+ y + z, we give a triangle j1j2j3 and connect j1 to
literal x, j2 to literal y and j3 to literal z (Fig.8.16). Now, we prove that F
is satisfiable if and only if G(F) has a vertex cover of size at most n+ 2m.

Figure 8.16: G(F)

First, suppose that F is satisfiable. Consider an assignment satisfying
F . Let us construct a vertex cover S as follows: (1) S contains all truth

148 NP-hard Problems

literals; (2) for each triangle j1j2j3, put two vertices into S such that the
remainder jk is adjacent to a truth literal. Then S is a vertex cover of size
exactly n+ 2m.

Conversely, suppose that G(F) has a vertex cover S of size at most
n+ 2m. Since each triangle j1j2j3 must have at least two vertices in S and
each edge (xi, x̄i) has at least one vertex in S, S must contain exactly two
vertices in each triangle j1j2j3 and exactly one vertex for each edge (xi, x̄i).
Set

xi =

{
1 if xi ∈ S,
0 if x̄i ∈ S.

Then each clause Cj must have a truth literal which is the one adjacent to
the jk not in S. Thus, F is satisfiable.

The above construction is clearly polynomial-time computable. Hence,
the 3SAT problem is polynomial-time many-one reducible to the vertex cover
problem.

Corollary 8.4.4. The minimum vertex cover problem is NP-hard.

Proof. It is NP-hard since its decision version is NP-complete.

There are two combinatorial optimization problems closely related to the
minimum vertex cover problem.

Problem 8.4.5 (Maximum Independent Set). Given a graph G = (V,E),
find an independent set with maximum cardinality.

Here, an independent set is a subset of vertices such that no edge exists
between two vertices in the subset. A subset of vertices is an independent
set if and only if its complement is a vertex cover. In fact, from the defini-
tion, every edge has to have at least one endpoint in the complement of an
independent set, which means that the complement of an independent set
must be a vertex cover. Conversely, if the complement of a vertex subset
I is a vertex cover, then every edge has an endpoint not in I and hence I
is independent. Furthermore, it is easy to see that a vertex subset I is the
maximum independent set if and only if the complement of I is the minimum
vertex cover.

Problem 8.4.6 (Maximum Clique). Given a graph G = (V,E), find a clique
with maximum size.

Here, a clique is a complete subgraph of input graph G and its size is the
number of vertices in the clique. Let Ḡ be the complementary graph of G,

NP-hard Problems 149

that is, an edge e is in Ḡ if and only if e is not in G. Then a vertex subset
I is induced a clique in G if and only if I is an independent set in Ḡ. Thus,
a subgraph on a vertex subset I is a maximum clique in G if and only if I
is a maximum independent set in Ḡ.

From their relationship, we see clearly following.

Corollary 8.4.7. Both the maximum independent set problem and the max-
imum clique problem are NP-hard.

Next, we study the approximation of the minimum vertex cover problem.

Theorem 8.4.8. The minimum vertex cover problem has a polynomial-time
2-approximation.

Proof. Compute a maximal matching. The set of all endpoints of edges in
this maximal matching form a vertex cover which is a 2-approximation for
the minimum vertex cover problem since each edge in the matching must
have an endpoint in the minimum vertex cover.

The minimum vertex cover problem can be generalized to hypergraphs.
This generalization is called the hitting set problem as follows:

Problem 8.4.9 (Hitting Set). Given a collection C of subsets of a finite set
X, find a minimum subset S of X such that every subset in C contains an
element in S. Such a set S is called a hitting set.

For the maximum independent set problem and the maximum clique
problem, there are negative results on their approximation.

Theorem 8.4.10. For any ε > 0, the maximum independent set problem
has no polynomial-time n1−ε-approximation unless NP = P .

Theorem 8.4.11. For any ε > 0, the maximum clique problem has no
polynomial-time n1−ε-approximation unless NP = P .

8.5 Three-Dimensional Matching

Consider another well-known NP-complete problem.

Problem 8.5.1 (Three-Dimensional Matching (3DM)). Consider three dis-
joint sets X, Y , Z each with n elements and 3-sets each consisting three
elements belonging to X, Y , and Z, respectively. Given a collection C of
3-sets, determine whether C contains a three-dimensional matching, where

150 NP-hard Problems

a subcollection M of C is called a three-dimensional matching if M consists
of n 3-sets such that each element of X ∪ Y ∪ Z appears exactly once in
3-sets of M.

Theorem 8.5.2. The 3DM problem is NP-complete.

Proof. First, the 3DM problem belongs to NP because we can guess a collec-
tion of n 3-sets within O(n log n) time and check, in O(n+m) time, whether
obtained collection is a three-dimensional matching in given collection C.

Next, we show the NP-hardness of the 3DM problem by constructing a
polynomial-time many-one reduction from the 3SAT problem to the 3DM
problem. Consider an input 3CNF F of the 3SAT problem. Suppose that
F contains n variables x1, ..., xn and m clauses C1, ..., Cm. Construct a
collection C of 3-sets as follows.

X

Y

Z

1x 1x

1x

1x 1x

1x

1c

2x

3211 xxxc

Figure 8.17: Proof of Theorem 8.5.2.

• For each variable xi, construct 2m 3-sets {xi1, yi1, zi1}, {xi2, yi1, zi2},
{xi2, yi2, zi3}, ..., {xi1, yim, z2m}. They form a cycle as shown in Fig.8.17.

• For each clause Cj consisting variables xi1 , xi2 , xi3 , construct three
3-sets, {x0j , y0j , zi1k1}, {x0j , y0j , zi2k2}, and {x0j , y0j , zi3k3} where for
h = 1, 2, 3,

kh =

{
2j − 1 if Cj contains xih ,
2j if Cj contains x̄ih .

• For each 1 ≤ h ≤ m(n − 1), 1 ≤ i ≤ n, 1 ≤ k ≤ 2m, construct 3-set
{xn+1,h, yn+1,h, zik}.

NP-hard Problems 151

• Collect all above xpq, ypq, and zpq to form sets X, Y , and Z, respec-
tively.

Now, suppose CF has a three-dimensional matching M. Note that each
element appears inM exactly once. For each variable xi,M contains either

Pi = {{{xi1, yi1, zi1}, {xi2, yi2, zi3, ..., {xim, yim, zi,2m−1}}

or

Qi = {{{xi1, yi2, zi2}, {xi2, yi3, zi4, ..., {xim, yi1, zi,2m}}

Define

xi =

{
1 if Pi ⊆M,
0 if Qi ⊆M.

Then this assignment will satisfy F . In fact, for any clause Cj . In or-
der to have elements x0j and y0j appear in M, M must contain 3-set
{x0j , y0j , zihkh} for some h ∈ {1, 2, 3}. This assignment will assign 1 to
the hth literal of Cj according to the construction.

Conversely, suppose F has a satisfied assignment. We can construct a
three-dimensional matching M as follows.

• if xi = 1, then put Pi into M. If xi = 0, then put Qi into M.

• If hth literal of clause Cj is equal to 1, then put 3-set {x0j , y0j , zihkh}
into M.

• So far, all elements in X ∪ Y have been covered by 3-sets put in M.
However, there are m(n−1) elements of Z are left outside. We now use
3-sets {xn+1,h, yn+1,h, zik} to play a role of garbage collector. For each
zik not appearing in 3-sets in M, select a pair of xn+1,h and yn+1,h,
and then put 3-set {xn+1,h, yn+1,h, zik} into M.

There is a combinatorial optimization problem closely related to the
three-dimensional matching problem.

Problem 8.5.3 (Set Cover). Given a collection C of subsets of a finite set
X, find a minimum set cover A where a set cover A is a subcollection of C
such that every element of X is contained in a subset in A.

Theorem 8.5.4. The set cover problem is NP-hard.

152 NP-hard Problems

Proof. Note that the decision version of the set cover problem is as follows:
Given a collection C of subsets of a finite setX and a positive integer k ≤ |X|,
determine whether there exists a set cover of size at most k.

We construct a polynomial-time many-one reduction from the three-
dimensional matching problem to the decision version of the set cover prob-
lem. Let (X,Y, Z, C) be an instance of the three-dimensional matching prob-
lem. Construct an instance (X, C, k) of the decision version of the set cover
problem by setting

X ← X ∪ Y ∪ Z,
C ← C,
k ← |X ∪ Y ∪ Z|.

Clearly, for instance (X,Y, Z, C), a three-dimensional matching exists if and
only if for instance (X, C, k), a set cover of size k exists.

For any subcollection A ⊆ C, define

f(A) = | ∪A∈A A|.

The set cover problem has a greedy approximation as follows:

Algorithm 21 Greedy Algorithm SC.

Input: A finite set X and a collection of subsets of X.
Output: A subcollection A of C.
1: A ← ∅.
2: while f(A) < |X| do
3: choose A ∈ C to maximize f(A ∪ {A})
4: and set A ← A∪ {A}
5: end while
6: return A.

This approximation can be analyzed as follows:

Lemma 8.5.5. For any two subcollections A ⊂ B and any subset A ⊆ X,

∆Af(A) ≥ ∆Af(B), (8.1)

where ∆Af(A) = f(A ∪ {A})− f(A).

Proof. Since A ⊂ B, we have

∆Af(A) = |A \ ∪S∈AS| ≥ |A \ ∪S∈BS| = ∆Af(B).

�

NP-hard Problems 153

Theorem 8.5.6. Greedy Algorithm SC is a polynomial-time (1 + ln γ)-
approximation for the set cover problem, where γ is the maximum cardinality
of a subset in input collection C.

Proof. Let A1, ..., Ag be subsets selected in turn by Greedy Algorithm SC.
Denote Ai = {A1, ..., Ai}. Let opt be the number of subsets in a minimum
set-cover.

Let {C1, ..., Copt} be a minimum set-cover. Denote Cj = {C1, ..., Cj}.
By the greedy rule,

f(Ai+1)− f(Ai) = ∆Ai+1f(Ai) ≥ ∆Cjf(Ai)

for 1 ≤ j ≤ opt. Therefore,

f(Ai+1)− f(Ai) ≥
∑opt

j=1 ∆Cjf(Ai)
opt

.

On the other hand,

|X| − f(Ai)
opt

=
f(Ai ∪ Copt)− f(Ai)

opt

=

∑opt
j=1 ∆Cjf(Ai ∪ Cj−1)

opt
.

By Lemma 8.5.5,
∆Cjf(Ai) ≥ ∆Cjf(Ai ∪ Cj−1).

Therefore,

f(Ai+1)− f(Ai) ≥
|X| − f(Ai)

opt
, (8.2)

that is,

|X| − f(Ai+1) ≤ (|X| − f(Ai))(1−
1

opt
)

≤ |X|(1− 1

opt
)i+1

≤ |X|e−(i+1)/opt.

Choose i such that |X| − f(Ai+1) < opt ≤ |X| − f(Ai). Then

g ≤ i+ opt

and
opt ≤ |X|e−i/opt.

154 NP-hard Problems

Therefore,

g ≤ opt(1 + ln
|X|
opt

) ≤ opt(1 + ln γ).

The following theorem indicates that above greedy approximation has
the best possible performance ratio for the set cover problem.

Theorem 8.5.7. For ρ < 1, there is no polynomial-time (ρ lnn)-approximation
for the set cover problem unless NP = P where n = |X|.

In the worst case, we may have γ = n. Therefore, this theorem indicates
that the performance of Greedy algorithm is tight in some sense.

The hitting set problem is equivalent to the set cover problem. To see
this equivalence, for each element x ∈ X, define Sx = {C ∈ C | x ∈ C}.
Then the set cover problem on input (X, C) is equivalent to the hitting set
problem on input (C, {Sx | x ∈ X}). In fact, A ⊆ C covers X if and only if
A hits every Sx. From this equivalence, following is obtained immediately.

Corollary 8.5.8. The hitting set problem is NP-hard and has a greedy (1 +
ln γ)-approximation. Moreover, for any ρ < 1, it has no polynomial-time
ρ ln γ-approximation unless NP=P.

8.6 Partition

The partition problem is defined as follows.

Problem 8.6.1 (Partition). Given n positive integers a1, a2, ..., an, is there
a partition (N1, N2) of [n] such that

∑
i∈N1

ai =
∑

i∈N2
ai?

To show NP-completeness of this problem, we first study another proble.

Problem 8.6.2 (Subsum). Given n+1 positive integers a1, a2, ..., an and L
where 1 ≤ L ≤ S =

∑n
i=1 ai, is there a subset N1 of [n] such that

∑
i∈N1

ai =
L?

Theorem 8.6.3. The subsum problem is NP-complete.

Proof. The subsum problem belongs to NP because we can guess a subset N1

of [n] in O(n) time and check, in polynomial-time, whether
∑

i∈N1
ai = L.

Next, we show 3SAT ≤pm Subsum. Let F be a 3CNF with n variables
x1, x2, ..., xn and m clauses C1, C2, ..., Cm. For each variable xi, we construct
two positive decimal integers bxi and bx̄i , representing two literals xi and x̄i,

NP-hard Problems 155

respectively. Each bxi (bx̄i) contains m+ n digits. Let bxi [k] (bx̄i [k]) be the
kth rightmost digit of bxi (bx̄i). Set

bxi [k] = bx̄i [k] =

{
1 if k = i,
0 otherwise

for recording the ID of variable xi. To record information on relationship
between literals and clauses, set

bxi [n+ j] =

{
1 if xi appears in clause Cj ,
0 otherwise,

and

bx̄i [n+ j] =

{
1 if x̄i appears in clause Cj ,
0 otherwise.

Finally, define 2m + 1 additional positive integers cj , c
′
j for 1 ≤ j ≤ m and

L as follows:

cj [k] = c′j [k] =

{
1 if k = n+ j,
0 otherwise.

L =

m︷︸︸︷
3...3

n︷︸︸︷
1...1 .

For example, if F = (x1 + x2 + x̄3)(x̄2 + x̄3 + x4), then we would construct
the following 2(m+ n) + 1 = 13 positive integers.

bx1 = 010001, bx̄1 = 000001,

bx2 = 010010, bx̄2 = 100010,

bx3 = 000100, bx̄3 = 110100,

bx4 = 101000, bx̄4 = 001000,

c1 = c′1 = 010000, c2 = c′2 = 100000,

L = 331111.

Now, we show that F has a satisfied assignment if and only if A = {bi,j |
1 ≤ n, j = 0, 1} ∪ {cj , c′j | 1 ≤ j ≤ m} has a subset A′ such that the sum of
all integers in A′ is equal to L.

First, suppose F has a satified assignment σ. For each variable xi, put
bxi into A′ if xi = 1 under assignment σ and put bx̄i into A′ if xi = 0 under
assignment σ. For each clause Cj , put both cj and c′j into A′ if Cj contains
exactly one satisfied literal under assignment σ, put only cj into A′ if Cj
contains exactly two satisfied literal under assignment σ, and put neither

156 NP-hard Problems

cj nor c′j into A′ if all three literals in Cj are satisfied under assignment σ.
Clearly, obtained A′ meets the condition that the sum of all numbers in A′

isequal to L.

Conversely, suppose that there exists a subset A′ of A such that the sum
of all numbers in A is equal to L. Since L[i] = 1 for 1 ≤ i ≤ n, A′ contains
exactly one of bxi and bx̄i . Define an assignment σ by setting

xi =

{
1 if bxi ∈ A′,
0 if bx̄i ∈ A′.

We claim that σ is a satisfied assignment for F . In fact, for any clause Cj ,
since L[n + j] = 3, there must be a bxi or bx̄i in A′ whose the (n + j)th
leftmost digit is 1. This means that there is a literal with assignment 1,
appearing Cj , i.e., making Cj satisfied.

Now, we show the NP-completeness of the partition problem.

Theorem 8.6.4. The partition problem is NP-complete.

Proof. The partition problem can be seen as the subsum problem in the
special case that L = S/2 where S = a1 + a2 + · · ·+ an. Therefore, it is in
NP. Next, we show Subsum ≤pm Partition.

Consider an instance of the subsum problem, consisting of n+ 1 positive
integers a1, a2, ..., an and L where 0 < L ≤ S. Since the partition problem is
equivalent to the subsum problem with 2L = S, we may assume without of
generality that 2L 6= S. Now, consider an input for the partition problem,
consisting of n+ 1 positive integers a1, a2, ..., an and |2L−S|. We will show
that there exists a subset N1 of [n] such that

∑
i∈N1

ai = L if and only if
A = {a1, a2, ..., an, |2L − S|} has a partition (A1, A2) such the sum of all
numbers in A1 equals the sume of all numbers in A2. Consider two cases.

Case 1. 2L > S. First, suppose there exists a subset N1 of [n] such that∑
i∈N1

ai = L. Let A1 = {ai | i ∈ N1} and A2 = A− A1. Then, the sum of
all numbers in A2 is equal to∑

i∈[n]−N1

ai + 2L− S = S − L+ 2L− S = L =
∑
i∈N1

ai.

Conversely, suppose A has a partition (A1, A2) such the sum of all numbers
in A1 equals the sume of all numbers in A2. Without loss of generality,
assume 2L − S ∈ A2. Note that the sum of all numbers in A equals S +
2L− S = 2L. Therefore, the sum of all numbers in A1 equals L.

NP-hard Problems 157

Case 2. 2L < S. Let L′ = S − L and N2 = [n]−N1. Then 2L′ − S > 0
and

∑
i∈N1

ai = L if and only if
∑

i∈N2
ai = L′. Therefore, this case can

be done in a way similar to Case 1 by replacing L and N1 with L′ and N2,
respectively.

We next study an optimization problem.

Problem 8.6.5 (Knapsack). Suppose you get in a cave and find n items.
However, you have only a knapsack to carry them and this knapsack cannot
carry all of them. The knapsack has a space limit S and the ith item takes
space ai and has value ci. Therefore, you would face a problem of choosing
a subset of items, which can be put in the knapsack, to maximize the total
value of chosen items. This problem can be formulated into the following
linear 0-1 programming.

max c1x1 + c2x2 + · · ·+ cnxn

subject to a1x1 + a2x2 + · · ·+ anxn ≤ S
x1, x2, ..., xn ∈ {0, 1}

In this 0-1 linear programming, variable xi is an indicator that xi = 1 if the
ith item is chosen, and xi = 0 if the ith item is not chosen.

Theorem 8.6.6. The knapsack problem is NP-hard.

Proof. The decision version of the knapsack problem is as follows: Given
positive integers a1, a2, ..., an, c1, c2, ..., cn, S and k, does following system of
inequalities have 0-1 solution?

c1x1 + c2x2 + · · ·+ cnxn ≥ k,

a1x1 + a2x2 + · · ·+ anxn ≤ S.

We construct a polynomial-time many-one reduction from the partition
problem to the decision version of the knapsack problem. Consider an in-
stance of the partition problem, consisting positive integers a1, a2, ..., an.
Define an instance of the decision version of the knapsack problem by set-
ting

ci = ai for 1 ≤ i ≤ n
k = S = b(a1 + a2 + · · ·+ an)/2c.

Then the partition problem receives yes-answer if and only if the decision
version of knapsack problem receives yes-answer.

158 NP-hard Problems

Algorithm 22 2-Approximation for Knapsack.

Input: n items 1, 2, ..., n and a knapsack with volume S. Each item i is
associated with a positive volume ai and a positive value ci. Assume ai ≤ S
for all i ∈ [n].
Output: A subset A of items with total value cG.

1: sort all items into ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cn/an;
2: A← ∅, k ← 1;
3: if

∑n
i=1 ai ≤ S then

4: A← [n]
5: else
6: while

∑
i∈A ≤ S and k < n do

7: k ← k + 1
8: end while
9: if

∑k1
i=1 ci > ck then

10: A← [k − 1]
11: else
12: A← {k}
13: end if
14: end if
15: cG ←

∑
i∈A ci;

16: return A and cG.

NP-hard Problems 159

The knapsack problem has a simple 2-approximation (Algorithm 22).

Without loss of generality, assume ai ≤ S for every 1 ≤ i ≤ n. Otherwise,
item i can be removed from our consideration because it cannot be put in
the knapsack. First, Sort all items into ordering c1

a1
≥ c2

a2
≥ · · · ≥ cn

an
. Then

put items one by one into knapsack according to this ordering, until no more
item can be put in. Suppose that above process stops at the kth item, that
is, either k = n or first k items have been placed into the knapsack and the
(k + 1)th item cannot put in. In the former case, all n items can be put
in the knapsack. In the latter case, if

∑k
i=1 ci > ck+1, then take the first k

items to form a solution; otherwise, take the (k + 1)th item as a solution.

Theorem 8.6.7. Algorithm 22 produces a 1/2-approximation for the knap-
sack problem.

Proof. If all items can be put in the knapsack, then this will give a simple
optimal solution. If not, then

∑k
i=1 ci+ck+1 > opt where opt is the objective

function value of an optimal solution. Hence max(
∑k

i=1 ci, ck+1) ≥ 1/2 ·
opt.

From above 2-approximation, we may have following observation: For
an item selected into the knapsack, two facts are considered.

• The first fact is the ratio ci/ai. The larger ratio means that volume is
used for higher value.

• The second fact is the ci. When putting an item with small ci and
bigger ci/ai into the knapsack may affect the possibility of putting
items with bigger ci and smaller ci/ai, we may select the one with
bigger ci.

By properly balancing consideration on these two facts, we can obtain a
construction for (1 + ε)-approximation for any ε > 0 (Algorithm 23).

Denote α = cG · 2ε
1+ε where cG is the total value of a 2-approximation

solution obtained by Algorithm 22. Classify all items into two sets A and
B. Let A be the set of all items each with value ci < α and B the set of
all items each with value ci ≥ α. Suppose |A| = m. Sort all items in A in
ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cm/am.

For any subset I of B, with |I| ≤ 1 + 1/ε, if
∑

i∈I ai > S, then define

c(I) = 0; otherwise, select the largest k ≤ m satisfying
∑k

i=1 ai ≤ S−
∑

i∈I ci

and define c(I) =
∑

i∈I ci +
∑k

i=1 ci.

Set cε = maxI c(I).

160 NP-hard Problems

Algorithm 23 2-Approximation for Knapsack.

Input: n items 1, 2, ..., n, a knapsack with volume S and a positive number
ε. Each item i is associated with a positive volume ai and a positive value
ci. Assume ai ≤ S for all i ∈ [n].
Output: A subset Aε of items with total value cε.

1: run Algorithm 22 to obtain cG;
2: α← cG · 2ε

1+ε ;
3: classify all items into A and B where
4: A← {i ∈ [n] | ci < α}, B ← {i ∈ [n] | ci ≥ α};
5: sort all items of A into ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cm/am;
6: Aε ← ∅, k ← 1;
7: B ← {IsubseteqB | |I| ≤ 1 + 1/ε};
8: for each I ∈ B do
9: if

∑
i∈I > S then

10: B ← B \ {I}
11: else
12: S ← S −

∑
i∈I ci;

13: if
∑

i∈A ai > S then

14: while
∑k

i=1 ai ≤ S and k < m do
15: k ← k + 1
16: end while
17: if

∑k1
i=1 ci > ck then

18: A(I)← [k − 1]
19: else
20: A(I)← {k}
21: end if
22: else
23: A(I)← A
24: end if
25: end if
26: c(I)←

∑
i∈I∪A(I) ci;

27: end for
28: I ← argmaxI∈Bc(I);
29: Aε ← I ∪A(I);
30: cε ← c(I);
31: return Aε and cε.

NP-hard Problems 161

Lemma 8.6.8.

cε ≥
1

1 + ε
· opt

where opt is the objective function value of an optimal solution.

Proof. Let Ib = B ∩ OPT and Ia = A ∩ OPT where OPT is an optimal
solution. Note that for I ⊆ B with |I| > 1 + 1/ε, we have∑

i∈I
ai > α · (1 + 1/ε)

= cG ·
2ε

1 + ε
· (1 + 1/ε)

≥ opt.

Thus, we must have |Ib| ≤ 1 + 1/ε and hence cε ≥ c(Ib). Moreover, we have

c(Ib) =
∑
i∈Ib

ci +
∑
i∈Ia

ci

≥ opt− α

= opt− cG ·
2ε

1 + ε

≥ opt− opt

2
· 2ε

1 + ε

= opt · 1

1 + ε
.

Therefore, cε ≥ opt · 1
1+ε .

Lemma 8.6.9. Algorithm 23 runs in O(n2+1/ε) time.

Proof. Note that there are at most n1+1/ε subsets I of B with |I| ≤ 1 + 1/ε.
For each such I, the algorithm runs in O(n) time. Hence, the total time is
O(n2+1/ε).

An optimization problem is said to have PTAS (polynomial-time ap-
proximation scheme) if for any ε > 0, there is a polynomial-time (1 + ε)-
approximation for the problem. By Lemmas 8.6.8 and 8.6.9, the knapsack
problem has a PTAS.

Theorem 8.6.10. Algorithm 23 provides a PTAS for the knapsack problem.

162 NP-hard Problems

A PTAS is called a FPTAS (fully polynomial-time approximation scheme)
if for any ε > 0, there exists a (1+ε)-approximation with running time which
is a polynomial with respect to 1/ε and the input size. Actually, the knap-
sack problem also has a FPTAS. To show it, let us first study exact solutions
for the knapsack problem

Let opt(k, S) be the objective function value of an optimal solution of
the following problem:

max c1x1 + c2x2 + · · ·+ ckxk

subject to a1x1 + a2x2 + · · ·+ akxk

x1, x2, ..., xk ∈ {0, 1}.

Then

opt(k, S) = max(opt(k − 1, S), ck + opt(k − 1, S − ak)).

This recursive formula gives a dynamic programming to solve the knapsack
problem within O(nS) time. This is a pseudopolynomial-time algorithm,
not a polynomial-time algorithm because the input size of S is dlog2 Se, not
S.

To construct a PTAS, we need to design another pseudopolynomial-time
algorithm for the knapsack problem.

Let c(i, j) denote a subset of index set {1, . . . , i} such that

(a)
∑

k∈c(i,j) ck = j and

(b)
∑

k∈c(i,j) sk = min{
∑

k∈I sk |
∑

k∈I ck = j, I ⊆ {1, ..., i}}.
If no index subset satisfies (a), then we say that c(i, j) is undefined, or

write c(i, j) = nil. Clearly, opt = max{j | c(n, j) 6= nil and
∑

k∈c(i,j) sk ≤
S}. Therefore, it suffices to compute all c(i, j). The following algorithm is
designed with this idea.

Initially, compute c(1, j) for j = 0, . . . , csum by setting

c(1, j) :=

∅ if j = 0,
{1} if j = c1,
nil otherwise,

where csum =
∑n

i=1 ci.
Next, compute c(i, j) for i ≥ 2 and j = 0, . . . , csum.

for i = 2 to n do
for j = 0 to csum do

case 1 [c(i− 1, j − ci) = nil]

NP-hard Problems 163

set c(i, j) = c(i− 1, j)
case 2 [c(i− 1, j − ci) 6= nil]

and [c(i− 1, j) = nil]
set c(i, j) = c(i− 1, j − ci) ∪ {i}

case 3 [c(i− 1, j − ci) 6= nil]
and [c(i− 1, j) 6= nil]
if [
∑

k∈c(i−1,j) sk >
∑

k∈c(i−1,j−ci) sk + si]

then c(i, j) := c(i− 1, j − ci) ∪ {i}
else c(i, j) := c(i− 1, j);

Finally, set opt = max{j | c(n, j) 6= nil and
∑

k∈c(i,j) sk ≤ S}.

This algorithm computes the exact optimal solution for the knapsack
problem with running time O(n3M log(MS)) where M = max1≤k≤n ck,
because the algorithm contains two loops, the outside loop runs in O(n)
time, the inside loop runs in O(nM) time, and the central part runs in
O(n log(MS)) time. This is a pseudopolynomial-time algorithm because
the input size of M is log2M , the running time is not a polynomial with
respect to input size.

Now, we use the second pseudopolynomial-time algorithm to design a
FPTAS.

For any ε > 0, choose integer h > 1/ε. Denote c′k = bckn(h+ 1)/Mc for
1 ≤ k ≤ n and consider a new instance of the knapsack problem as follows:

max c′1x1 + c′2x2 + · · ·+ c′nxn

subject to s1x1 + s2x2 + · · ·+ snxn ≤ S
x1, x2, . . . , xn ∈ {0, 1}.

Apply the second pseudopolynomial-time algorithm to this new problem.
The running time will be O(n4h log(nhS)), a polynomial-time with respect
to n, h, and logS. Suppose xh is an optimal solution of this new problem.
Set ch = c1x

∗h1 + · · ·+ cnx
h
n. We claim that

c∗

ch
≤ 1 +

1

h
,

that is, xh is a (1 + 1/h)-approximation.

To show our claim, let Ih = {k | xhk = 1} and c∗ =
∑

k∈I∗ ck. Then, we

164 NP-hard Problems

have

ch =
∑
k∈Ih

ckn(h+ 1)

M
· M

n(h+ 1)

≥
∑
k∈Ih
bckn(h+ 1)

M
c · M

n(h+ 1)

=
M

n(h+ 1)

∑
k∈Ih

c′k

≥ M

n(h+ 1)

∑
k∈I∗

c′k

≥ M

n(h+ 1)

∑
k∈I∗

(
ckn(h+ 1)

M
− 1)

≥ opt− M

h+ 1

≥ opt(1− 1

h+ 1
).

Theorem 8.6.11. The knapsack problem has FPTAS.

For an application of this result, we study a scheduling problem.

Problem 8.6.12 (Scheduling P‖Cmax). Suppose there are m identical ma-
chines and n jobs J1, ..., Jn. Each job Ji has a processing time ai, which
does not allow preemption, i.e., the processing cannot be cut. All jobs are
available at the beginning. The problem is to find a scheduling to minimize
the complete time, called makespan.

Theorem 8.6.13. The scheduling P‖Cmax problem is NP-hard.

Proof. For m = 2, this problem is equivalent to find a partition (N1, N2)
for [n] to minimize max(

∑
i∈N1

ai,
∑

i∈N2
ai). Thus, it is easy to reduce the

partition problem to the decision version of this problem by requiring the
makespan not exceed b(

∑n
i=1 ai)/2c.

For m = 2, we can also obtain a FPTAS from the FPTAS of the knapsack
problem.

To this end, we consider the following instance of the knapsack problem:

max a1x1 + a2x2 + · · ·+ anxn

subject to a1x1 + a2 + · · ·+ anxn ≤ S/2
x1, x2, ..., xn ∈ {0, 1}

NP-hard Problems 165

where S = a1 + a2 + · · · + an. It is easy to see that if optk is the objective
function value of an optimal solution for this knapsack problem, then opts =
S − optk is the objective function value of an optimal solution of above
scheduling problem.

Applying the FPTAS to above instance of the knapsack problem, we
may obtain a (1 + ε)-approximation solution x̂. Let N1 = {i | x̂i = 1} and
N2 = {i | x̄i = 0}. Then (N1, N2) is a partition of [n] and moreover, we have

max(
∑
i∈N1

ai,
∑
i∈N2

ai) =
∑
i∈N2

ai = S −
∑
i∈N1

ai

and
optk∑
i∈N1

ai
≤ 1 + ε.

Therefore,
S − opts

S −
∑

i∈N2
ai
≤ 1 + ε,

that is,

S −
∑
i∈N2

ai ≥ (S − opts)/(1 + ε).

Thus, ∑
i∈N2

ai ≤
εS + opts

1 + ε
≤ ε · 2opts + opts

1 + ε
≤ opts(1 + ε).

Therefore, (N1, N2) is a (1 + ε)-approximation solution for the scheduling
problem.

8.7 Planar 3SAT

A CNF F is planar if graph G ∗ (F), defined as follows, is planar.

• The vertex set consists of all variables x1, x2, ..., xn and all clauses
C1, C2, ..., Cm.

• The edge set E(G∗(F)) = {(xi, Cj) | xi appears in Cj}.

A CNF F is strongly planar if graph G(F), defined as follows, is planar.

• The vertex set consists of all literals x1, x̄1, x2, x̄2, ..., xn, x̄n and all
clauses C1, C2, ..., Cm.

166 NP-hard Problems

• The edge set E(G∗(F)) = {(xi, x̄i) | i = 1, 2, ...,m} ∪ {(xi, Cj) | xi ∈
Cj} ∪ {(x̄, Cj) | x̄i ∈ Cj}.

Corresponding two types of planar CNF, there are two problems.

Problem 8.7.1 (Planar 3SAT). Given a planar 3CNF F , determine whether
F is satisfiable.

Problem 8.7.2 (Strongly Planar 3SAT). Given a strongly planar 3CNF F ,
determine whether F is satisfiable.

Theorem 8.7.3. The planar 3STA problem is NP-complete.

Proof. The problem is a special case of the 3SAT problem and hence longs to
NP. We next construct a reduction to witness 3SAT ≤pm Planar 3SAT. To do
so, consider a 3CNF F and G∗(F). G∗(F) may contains many crosspoints.
For each crosspoint, we use a crosser to remove it. As shown in Fig.8.18,
this crosser is constructed with three ⊕ operations each defined by

x⊕ y = xȳ + x̄y.

We next show that for each ⊕ operation x ⊕ y = z, there exists a planar

Figure 8.18: A crosser.

3CNF Fx⊕y=z such that

x⊕ y = z ⇔ Fx⊕y=z ∈ SAT

that is, Fx⊕y=z is satisfiable.

Note that a CNF c(x, y, z) = (x + y + z̄)(x̄ + z)((̄y) + z) is planar as
shown in Fig.8.19. Moreover, we have

NP-hard Problems 167

Figure 8.19: CNF c(x, y, z) is planar.

x+ y = z ⇔ c(x, y, z) ∈ SAT,
x · y = z ⇔ c(x̄, ȳ, z̄) ∈ SAT.

Since
x⊕ y = (x+ y) · ȳ + x̄ · (x+ y),

we have

x⊕ y = z ⇔ F ′x⊕y=z = c(x, y, u)c(ū, y, v̄)c(x, ū, w̄)c(v, w, z) ∈ SAT.

As show in Fig.8.20, F ′x⊕y=z is planar. F ′x⊕y=z contains some clauses with

Figure 8.20: CNF F ′x⊕y=z is planar.

two literals. Each such clause x+ y can be replaced by two clauses (x+ y+
w)(x + y + w̄) with a new variable w as shown in Fig.8.21. Then we can
obtain a planar 3CNF Fx⊕y=z such that

x⊕ y = z ⇐⇒ Fx⊕y=z ∈ SAT.

168 NP-hard Problems

Figure 8.21: A clause of size 2 can be replaced by two clauses of size 3.

Finally, look back at the instance 3cNF F of the 3SAT problem at the
beginning. Let F ∗ be the product of F and all 3CNFs for all ⊕ operations
appearing in crossers used for removing crosspoints in G∗(F). Then F ∗ is
planar and

F ∈ SAT ⇐⇒ F ∗ ∈ SAT.

This completes our reduction from the 3SAT problem to the planar 3SAT
problem.

Theorem 8.7.4. The strongly planar 3STA problem is NP-complete.

Proof. Clearly, the strongly planar 3SAT problem belongs to NP. Next,
we construct a polynomial-time many-one reduction from the planar 3SAT
problem to the strongly plana 3SAT problem. Consider a planar 3CNF F .
In G∗(F), if we replace each vertex labeled with variable x by an edge with
endpoints x and x̄, then some crosspoints will be introduced.

To overcome this trouble, we replace the vertex with label x in G∗(F)
by a cycle G(Fx) (Fig.8.22) where

Fx = (x+ w̄1)(w1 + w̄2) · · · (wk + x̄),

and k is selected in the following way: For each edge (x,Cj), label it with
x if Cj contains lateral X, and x̄ if Cj contains literal x̄. Select k to be the
number of changes from edge x to x̄ when travel around vertex x. Note that

(x+ w̄1)(w1 + w̄2) · · · (wk + x̄) = 1⇒ x = w1 = · · · = wk.

NP-hard Problems 169

Figure 8.22: Cycle G(Fx).

Now, each edge (x,Cj) in G∗(F) is properly replaced by an edge (x,Cj) or
(wi, Cj) (Fig.8.23). We will obtain a planar G(F ′) where F ′ = F ·

∏
x Fx

and F ′ is a strongly planar CNF. Note that F ′ contains some clauses of size
2. Finally, we can replace them by clauses of size 3 as shown in Fig.8.21.

Figure 8.23: Each vertex x is replaced properly by a cycle G(Fx).

As an application, let us consider a problem in planar graphs.

Problem 8.7.5 (Planar Vertex Cover). Given a planar graph G, find a
minimum vertex cover of G.

Theorem 8.7.6. The planar vertex cover problem is NP-hard.

Proof. We construct a polynomial-time many-one reduction from the strong-
ly planar 3SAT problem to the planar vertex cover problem. Let F be a

170 NP-hard Problems

strongly planar 3CNF with n variables x1, x2, ..., xn andm clauses C1, C2, ..., Cm.
Consider G(F). For each clause Cj , replace vertex Cj properly by a triangle

1x

2x 3x
4x

1x

2x 3x
4x

1c
2c

2x 3x
4x2x 3x

4x

1c

13c

11c 12c

2c

23c
22c

21c

1x 1x

Figure 8.24: Each vertex Cj is replaced properly by a triangle Cj1Cj2Cj3.

Cj1cj2Cj3 (Fig.8.24) and we will obtain a planar graph G′ such that G′ has
a vertex cover of size at most 2m+ n if and only if F is satisfiable.

The planar vertex cover problem has PTAS. Actually, a lot of combi-
natorial optimization problem in planar graph and geometric plan or space
have PTAS. We will discuss them in later chapters.

8.8 Complexity of Approximation

In previous sections, we studied several NP-hard combinatorial opti-
mization problems. Based on their approximation solutions, they may be
classified into following four classes.

1. PTAS, consisting of all combinatorial problems each of which has a P-
TAS, e.g., the knapsack problem and the planar vertex cover problem.

2. APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(1)-approximation, e.g., the vertex cov-
er problem and the Hamiltonian cycle problem with triangular inequal-
ity.

3. Log-APX, consisting of all combinatorial optimization problems each
of which has a polynomial-time O(lnn)-approximation for minimiza-
tion, or (1/O(lnn))-approximation for maximization, e.g., the set cov-
er problem.

NP-hard Problems 171

4. Poly-APX, consisting of all combinatorial optimization problems each
of which has a polynomial-time p(n)-approximation for minimization,
or (1/p(n))-approximation for maximization for some polynomial p(n),
e.g., the maximum independent set problem and the longest path prob-
lem.

Clearly, PTAS ⊂ APX ⊂ Log-APX ⊂ Poly-APX. Moreover, we have

Theorem 8.8.1. If NP 6= P, then PTAS 6= APX 6= Log-APX 6= Poly-APX.

Actually from previous sections we know that the set cover problem has
(1+lnn)-approximation and if NP 6= P, then it has no polynomial-time O(1)-
approximation. Hence, the set cover problem separates APX and Log-APX.
The maximum independent set problem has a trivial 1/n-approximation
by taking a single vertex as solution and hence it belongs to Poly-APX.
Moreover, if NP 6= P, then it has no polynomial-time nε−1-approximation.
Hence, the maximum independent set problem separates Log-APX from
Poly-APX. Next, we study a problem which separates PTAS from APX.

Problem 8.8.2 (k-Center). Given a set C of n cities with a distance table,
find a subset S of k cities as centers to minimize

max
c∈C

min
s∈S

d(c, s)

where d(c, s) is the distance between c and s.

Theorem 8.8.3. The k-center problem with triangular inequality has a
polynomial-time 2-approximation.

Proof. Consider following algorithm.

Initially, choose arbitrarily a vertex s1 ∈ C and set
S1 ← {s1};
fori = 2 to k do

select si = arcmaxc∈Cd(c, Si−1), and set
Si ← Si−1 ∪ {si}; output Sk.

We will show that this algorithm gives a 2-approximation.
Let S∗ be an optimal solution. Denote

opt = max
c∈C

d(c, S∗).

Classify all cities into k clusters such that each cluster contains a center
s∗ ∈ S∗ and d(c, s∗) ≤ d∗ for every city c in the cluster. Now, we consider
two cases.

172 NP-hard Problems

Case 1. Every cluster contain a member si ∈ Sk. Then for each city c
in the cluster with center s∗, d(c, si) ≤ d(c, s∗) + d(s∗, si) ≤ 2 · opt.

Case 2. There is a cluster containing two members si, sj ∈ Sk with i < j.
Suppose the center of this cluster is s∗. Then for any c ∈ C,

d(c, Sk) ≤ d(c, Sj−1)

≤ d(sj , Sj−1)

≤ d(sj , si)

≤ d(si, s
∗) + d(s∗, sj)

≤ 2 · opt.

A corollary of Theorem 8.8.3 is that the k-center problem belongs to
APX. Before we show that the k-center problem does not belong to PTAS
unless NP=P, let us study another problem.

Problem 8.8.4 (Dominating Set). Given a graph G, find the minimum
dominating set where a dominating set is a subset of vertices such that every
vertex is either in the subset or adjacent to a vertex in the subset.

Lemma 8.8.5. The decision version of the dominating set problem is NP-
complete.

Proof. Consider an input graph G = (V,E) of the vertex cover problem. For
each edge (u, v), create a new vertex xuv together with two edges (u, xuv)
and (xuv, v) (Fig.8.25). Then we obtain a modified graph G′. If G has a

Figure 8.25: For each edge (u, v), add a new vertex xuv and two edges
(xuv, u) and xuv, v).

NP-hard Problems 173

vertex cover of size ≤ k, then the same vertex subset must be a dominating
set of G′, also of size ≤ k.

Conversely, if G′ has a dominating set D of size ≤ k, then without loss
of generality, we may assume D ⊆ E. In fact, if xuv ∈ D, then we can
replace xuv by either u or v, which results in a dominating set of the same
size. Since D ⊆ E dominating all xuv in G′, D covers all edges in G.

Now, we come back to the k-center problem.

Theorem 8.8.6. For any ε > 0, the k-center problem with triangular in-
equality does not have a polynomial-time (2 − ε)-approximation unless N-
P=P.

Proof. Suppose that the k-center problem has a polynomial-time (2 − ε)-
approximation algorithm A. We use algorithm A to construct a polynomial-
time algorithm for the decision version of the dominating set problem.

Consider an instance of the decision version version of the dominating
set problem, consisting of a graph G = (V,E) and a positive integer k.
Construct an instance of the k-center problem by choosing all vertices as
cities with distance table defined as follows:

d(u, v) =

{
1 if (u, v) ∈ E,
|V |+ 1 otherwise.

If G has a dominating set of size at most k, then the k-center problem will
have an optimal solution with opt = 1. Therefore, algorithm A produces a
solution with objective function value at most (2 − ε), actually has to be
one. If G does not have a dominating set of size at most k, then the k-center
problem will have its optimal solution with opt ≥ 2. Hence, algorithm A
produces a solution with objective function value at least two. Therefore,
from objective function value of solution produced by algorithm A, we can
determine whether G has a dominating set od size ≤ k or not. By Lemma
8.8.5, we have NP=P.

By Theorems 8.8.3 and 8.8.6, the k-center problem with triangular in-
equality separates PTAS and APX.

Actually, APX is a large class which contains many problems not in
PTAS if NP 6=P. Those are called APX-complete problems. There are several
reductions to establish the APX-completeness. Let us introduce a popular
one, the polynomial-time L-reduction.

Consider two combinatorial optimization problems Π and Γ. Π is said to
be polynomial-time L-reducible to Γ, written as Π ≤pL Γ, if there exist two

174 NP-hard Problems

polynomial-time computable functions h and g, and two positive constants
a and b such that

(L1) h maps from instances x of Π to instances h(x) of Γ such that

optΓ(h(x)) ≤ a · optΠ(x)

where optΠ(x) is the objective function value of an optimal solution
for Π on instance x;

(L2) g maps from feasible solutions y of Γ on instance h(x) to feasible
solutions g(y) of Π on instance x such that

|objΠ(g(y))− optΠ(x)| ≤ b · |objΓ(y)− optΓ(h(x))|

where objΓ(y) is the objective function value of feasible solution y for
Γ (Fig.8.26).

x)(xh

)(yg y

xon of

solutions

feasible

)(on of

solutions

feasible

xh

Figure 8.26: Definition of L-reduction.

This reduction has following properties.

Theorem 8.8.7. Π ≤pL Γ,Γ ≤pL Λ⇐ Π ≤pL Λ.

Proof. As shown in Fig.8.27, we have

optΛ(h′(h(x))) ≤ a′ · optΓ(h(x)) ≤ a′a · optΠ(x)

NP-hard Problems 175

x)(xh

)(' yg y

xon of

solutions

feasible

)(on of

solutions

feasible

xh

))((' xhh

))('(ygg

))(('on of

solutions

feasible

xhh

h

p

L
p

L

'h

g 'g

Figure 8.27: The proof of Theorem 8.8.7.

and

|objΠ(g(g′(y)))− optΠ(x)|
≤ b · |objΓ(g′(y))− optΓ(h(x))|
≤ bb′ · |objΛ(y)− optΛ(h′(h(x)))|.

Theorem 8.8.8. If Π ≤pL Γ and Γ ∈ PTAS, then Π ∈ PTAS.

Proof. Consider four cases.

Case 1. Both Π and Γ are minimization problems.

objΠ(g(y))

optΠ(x)
= 1 +

objΠ(g(y))− optΠ(x)

optΠ(x)

≤ 1 +
ab(objΓ(y)− optΓ(h(x)))

optΓ(h(x))
.

If y is a polynomial-time (1+ε)-approximation for Γ, then g(y) is a polynomial-
time (1 + abε)-approximation for Π.

176 NP-hard Problems

Case 2. Π is a minimization and Γ is a maximization.

objΠ(g(y))

optΠ(x)
= 1 +

objΠ(g(y))− optΠ(x)

optΠ(x)

≤ 1 +
ab(optΓ(h(x))− objΓ(y))

optΓ(h(x))

≤ 1 +
ab(optΓ(h(x))− objΓ(y))

objΓ(y)
.

If y is a polynomial-time (1 + ε)−1-approximation for Γ, then g(y) is a
polynomial-time (1 + abε)-approximation for Π.

Case 3. Π is a maximization and Γ is a minimization.

objΠ(g(y))

optΠ(x)
= 1− optΠ(x)− objΠ(g(y))

optΠ(x)

≥ 1− ab(objΓ(y)− optΓ(h(x)))

optΓ(h(x))
.

If y is a polynomial-time (1+ε)-approximation for Γ, then g(y) is a polynomial-
time (1− abε)-approximation for Π.

Case 4. Both Π and Γ are maximization.

objΠ(g(y))

optΠ(x)
= 1− optΠ(x)− objΠ(g(y))

optΠ(x)

≥ 1− ab(optΓ(h(x))− objΓ(y))

optΓ(h(x))

≥ 1− ab(optΓ(h(x))− objΓ(y))

objΓ(y)
.

If y is a polynomial-time (1 + ε)−1-approximation for Γ, then g(y) is a
polynomial-time (1− abε)-approximation for Π.

Let us look at some examples for APX-complete problems.

Problem 8.8.9 (MAX3SAT-3). Given a 3CNF F that each variable appears
in at most three clauses, find an assignment to maximize the number of
satisfied clauses.

Theorem 8.8.10. The MAXT3SAT-3 problem is APX-complete.

Let us use this APX-completeness as a root to derive others.

Problem 8.8.11 (MI-b). Given a graph G with vertex-degree upper-bounded
by b, find a maximum independent set.

NP-hard Problems 177

Theorem 8.8.12. The MI-4 problem is APX-complete.

Proof. First, we show MI-4 ∈ APX. Given a graph G = (V,E), construct
a maximal independent set by selecting vertices iteratedly and at each it-
eration, select an vertex and delete it together with its neighbors until no
vertex is left. Clearly, this maximal independent set contains at least |V |/5
vertices. Therefore, it gives a polynomial-time 1/5-approximation.

Next, we show MAX3SAT ≤pL MI-4. Consider an instance 3CNF F of
MAX3SAT, with n variables x1, x2, ..., xn and m clauses C1, C2, ..., Cm. For
each clause Cj , create a triangle with three vertices Cj1, Cj2, Cj3 labeled by
three literals of Cj , respectively. Then connect every vertex with label xi to
every vertex with label x̄i as shown in Fig.8.28. This graph is denoted by

Figure 8.28: The proof of Theorem 8.8.12.

h(F). For each independent set y of h(F), we define an assignment g(y) to
make every vertex in the independent set with a true literal. Thus, F has
at least |y| clauses satisfied.

To show (L1), we claim that

optMAX3SAT (F) = optMI−4(h(F)).

Suppose x∗ is an optimal assignment. Construct an independent set y∗ by
selecting one vertex with true label in each satisfied clause. Then

optMAX3SAT (F) = |y∗| ≤ optMI−4(h(F)).

Conversely, suppose y∗ is a maximum independent set of h(F). We have F
have at least |y∗| satisfied clauses with assignment g(y∗). Therefore,

optMAX3SATF ≥ |y∗| = optMI−4(h(F)).

178 NP-hard Problems

To see (L2), we note that

|optMAX3SAT (F)− objMAX3SAT (g(y))| ≤ |optMI−4(h(F))− objMI−4(y)|

since objMAX3SAT (g(y)) ≥ objMI−4(y).

Theorem 8.8.13. The MI-3 problem is APX-complete.

Proof. Since MI-4 ∈ APX, so is MI-3. We next show MI-4 ≤pL MI-3. Con-
sider a graph G = (V,E) with vertex-degree at most 4. For each vertex u
with degree 4, we put a path (u1, v1, u2, v2, u3, v3, u4) as shown in Fig.8.29.
Denote obtained graph by G′ = h(G). Then (L1) holds since

Figure 8.29: Vertex u is replaced by a path (u1, v1, u2, v2, u3, v3, u4).

optMI3(G′) ≤ |V (G′)| ≤ 7|V (G)| ≤ 28 · optMI−4(G)

where V (G) denotes the vertex set of graph G. To see (L2), note that the
path (u1, v1, u2, v2, u3, v3, u4) has unique maximum independent set Iu =
{u1, u2, u3, u4}. For any independent set I of G′, define g(I) to be obtained
from I by replace set Iu by vertex u and removing all other vertices not in
G. Then g(I) is an independent set of G. We claim

optMI−4(G)− |g(I)| ≤ optMI−3(G′)− |I|.

To show it, define I ′ to be obtained from I by {v1, v2, v3} if I contains one
of v1, v2, v3. Clearly, I ′ is still an independent set of G′ and |I| ≤ |I ′| and
g(I) = g(I ′). Then, we have

optM−4(G)− g(I) = optMI−4(G)− g(I ′)

= optMI−3(G′)− |I ′|
≤ optMI−3(G′)− |I|.

NP-hard Problems 179

Problem 8.8.14 (VC-b). Given a graph G with vertex-degree upper-bounded
by b, find the minimum vertex cover.

Theorem 8.8.15. The VC-3 problem is APX-complete.

Proof. Since the vertex cover problem has a polynomial-time 2-approximation,
so does the VC-3 problem. Hence, VC-3 ∈ APX. Next, we show MI-3 ≤pL
VC-3.

For any graph G = (V,E) with vertex-degree at most 3, define h(G) = G.
To see (L1), note that optMI−3 ≥ |V |/4 and |E| ≤ 3|V |/2 = 1.5|V |. Hence

optV C−3(G) = |V |−optMI−3(G) ≤ |V |−|V |/4 = (3/4)|V | ≤ 3 ·optMI−3(G).

Now, for any vertex cover C, define g(C) to be the complement of C. Then
we have

optMI−3(G)− |g(C)| = |V | − optV C−3(G))− (|V | − |C|)
= |C| − optV C−3(G).

Therefore, (L2) holds.

There are also many problems in Log-APX \ APX, such as various opti-
mization problems on covering and dominating. The lower bound for their
approximation performance is often established based on Theorem 8.5.7 with
a little modification.

Theorem 8.8.16. Theorem 8.5.7 still holds in special case that each input
consisting of a collection C of subsets of a final set X with condition |C| ≤
|X|, that is, in this case, we still have that for any 0 < ρ < 1, the set
cover problem does not have a polynomial-time (ρ lnn)-approximation unless
NP=P where n = |X|.

Here is an example.

Theorem 8.8.17. For any 0 < ρ < 1, the dominating set problem does not
have a polynomial-time (ρ lnn)-approximation unless NP=P where n is the
number of vertices in input graph.

Proof. Suppose there exists a polynomial-time (ρ lnn)-approximation for the
dominating set problem. Consider instance (X, C) of the set cover problem
with |C| ≤ |X|. Construct a bipartite graph G = (C, X,E). For S ∈ C and

180 NP-hard Problems

Figure 8.30: The proof of Theorem 8.8.17.

x ∈ X, there exists an edge (S, x) ∈ E if and only if x ∈ S. Add two new
vertices o and o′ together with edges (o, o′) and (S, o) for all (S, o). Denote
this new graph by G′ as shown in Fig.8.30.

First, note that

optds(G
′) ≤ optsc(X, C) + 1

where optds(G
′) denotes the size of minimum dominating set of G′ and

optsc(G) denotes the cardinality of minimum set cover on input (X, C). In
fact, suppose that C∗ is a minimum set cover on input (X, |C). Then C∪{o}
is a dominating set of G′.

Next, consider a dominating set D of G′, generated by the polynomial-
time (ρ lnn)-approximation for the dominating set problem. Then, we have
|D| ≤ (ρ ln(2|X|+ 2))optds(G

′). Construct a set cover S as follows:

Step 1. If D does not contains o, then add o. If D contains a vertex with
label x ∈ X, then replace x by a vertex with label C ∈ C such that
x ∈ C. We will obtain a dominating setD′ ofG′ with size |D′| ≤ |D|+1
and without vertex labeled by element in X.

Step 2. Remove o and o′ from D′. We will obtain a set cover S for X with
size |S| ≤ |D|.

NP-hard Problems 181

Note that

|S| ≤ |D|
≤ (ρ ln(2|X|+ 2))optds(G

′)

≤ (ρ ln(2|X|+ 2))(1 + optsc(X, C))

=
ln(2|X|+ 2)

ln |X|
· (1 +

1

optsc(X, C)
) · (ρ ln |X|)optsc(X, C).

Select two sufficiently large positive constants α and β such that

ρ′ =
ln(2α+ 2)

lnα
· (1 +

1

β
) · ρ < 1.

Then for |X| ≥ α and optsc(X, C) ≥ β,

|S| ≤ (ρ′ ln |X|) · optsc(X, C).

For |X| < α or optsc(X, C) < β, an exactly optimal solution can be comput-
ed in polynomial-time. Therefore, there exists a polynomial-time (ρ′ lnn)-
approximation for the set cover problem and hence NP=P by Theorem
8.8.16.

Class Poly-APX may also be further divided into several levels.

Polylog-APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(lni n)-approximation for minimization,
or (1/O(lni n))-approximation for maximization for some i ≥ 1.

Sublinear-APX, consisting of all combinatorial optimization problems each
of which has a polynomial-time O(na)-approximation for minimiza-
tion, or (1/na)-approximation for maximization for some 0 < a < 1.

Linear-APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(n)-approximation for minimization, or
(1/n)-approximation for maximization.

In the literature, we can find the group Steiner tree problem [71, 72]
and the connected set cover problem [73] in Polylog-APX \ Log-APX unless
some complexity class collapses; the directed Steiner tree problem [74] and
the densest k subgraph problem [75] in Sublinear-APX \ Log-APX. However,
there are quite a few problems in Linear-APX \ Sublinear-APX. Especially,
we may meet such a problem in the real world. Next, we give an example
in study of wireless sensors.

182 NP-hard Problems

Consider a set of wireless sensors lying in a rectangle which is a piece of
boundary area of region of interest. The region is below the rectangle and
outside is above the rectangle. The monitoring area of each sensor is a unit
disk, i.e., a disk with radius of unit length. A point is said to be covered
by a sensor if it lies in the monitoring disk of the sensor. The set of sensors
is called a barrier cover if they can cover a line (not necessarily straight)
connecting two vertical edges (Fig.8.31) of the rectangle. The barrier cover
is used for protecting any intruder coming from outside. Sensors are powered

Figure 8.31: Sensor barrier covers.

with batteries and hence lifetime is limited. Assume that all sensors have
unit lifetime. When several disjoint barrier covers are available, they are
often working one by one, so that a security problem is raised.

In Fig.8.31, a point a lies behind barrier cover B1 and in frond of barrier
cover B2. Suppose B2 works first and after B2 stops, B1 starts to work.
Then the intruder can go point a during the period that B2 works. After
B2 stops, the intruder enters the area of interest without getting monitored
by any sensor. Thus, scheduling (B2, B1) is not secure. The existence of
point b in Fig.8.31 indicates that scheduling (B1, B2) is not secure, neither.
Thus, in Fig.8.31, secure scheduling can contain only one barrier cover. In
general, we have following problem.

Problem 8.8.18 (Secure Scheduling). Given n disjoint barrier covers B1, B2, ..., Bn,
find a longest secure scheduling.

Following gives a necessary and sufficient condition for a secure schedul-
ing.

NP-hard Problems 183

Lemma 8.8.19. A scheduling (B1, B2, .., Bk) is secure if and only if for any
1 ≤ i ≤ k − 1, there is not point a lying above Bi and below Bi+1.

Proof. If such a point a exists, then the scheduling is not secure since the
intruder can walk to point a during Bi works and enters into the area of
interest during Bi+1 works. Thus, the condition is necessary.

For sufficiency, suppose the scheduling is not secure. Consider the mo-
ment at which the intruder gets the possibility to enter the area of interest
and the location a where the intruder lies. Let Bi works before this moment.
Then a must lie above Bi and below Bi+1.

This lemma indicates that the secure scheduling can be reduced to the
longest path problem in directed graphs in the following way.

• Construct a directed graph G as follows. For each barrier cover Bi,
create a node i. For two barrier covers Bi and Bj , if there exists a
point a lying above barrier cover Bi and below barrier cover Bj , add
an arc (i, j).

• Construct the complement Ḡ of graph G, that is, Ḡ and G have the
same node set and ar arc in Ḡ if and only if it is not in G.

By Lemma 8.8.19, each secure scheduling of barrier covers correspond-
ing a simple path in Ḡ and a secure scheduling is maximum if and only if
corresponding simple path is the longest one. Actually, the longest path
problem can also be reduced to the secure scheduling problem as shown in
the proof of following theorem.

Theorem 8.8.20. For any ε > 0, the secure scheduling problem has no
polynomial-time n1−ε-approximation unless NP = P .

Proof. Let us reduce the longest path problem in directed graph to the
secure scheduling problem. Consider a directed graph G = (V,E). Let
Ḡ = (V, Ē) be the complement of G, i.e., Ē = {(i, j) ∈ V × V | (i, j) 6∈ E}.
Draw a horizontal line L and for each arc (i, j) ∈ Ē, create a point (i, j)
on the line L. All points (i, j) are apart from each other with distance 6
units (Fig.8.32). At each point (i, j), add a disk Sij with center (i, j) and
unit radius. Cut line L into a segment L′ to include all disks between two
endpoints. Add more unit disks with centers on the segment L′ to cover the
uncovered part of L′ such that point (i, j) is covered only by Sij . Let B0

denote the set of sensors with constructed disks as their monitoring areas.

Now, let Bi be obtained from B0 by following way:

184 NP-hard Problems

Figure 8.32: Sensor barrier covers.

• For any (i, j) ∈ Ē, remove Sij to break B0 into two parts. Add two

unit disks Siji1 and Siji2 to connect the two parts, such that point (i, j)
lies above them.

• For any (j, i) ∈ Ē, remove Sji to break B0 into two parts. Add two

unit disks Siji1 and Siji2 to connect the two parts, such that point (i, j)
lies below them.

• To make all constructed barrier covers disjoint, unremoved disks in B0

will be made copies and put those copies into Bi (see Fig.8.32).

Clearly, G has a simple path (i1, i2, ..., ik) if and only if there exists a secure
scheduling (Bi1 , Bi2 , ..., Bik). Therefore, our construction gives a reduction
from the longest path problem to the secure scheduling problem. Hence, this
theorem can be obtained from Theorem 8.3.9 for the longest path problem2.

Exercises

1. For any language A, Kleene closure A∗ = A0 ∪ A1 ∪ A2 ∪ · · · . Solve
following:

(a) Design a deterministic Turing machine to accept language ∅∗.
(b) Show that if A ∈ P, then A∗ ∈ P.

(c) Show that if A ∈ NP, then A∗ ∈ NP.

2Theorem 8.3.9 states for undirected graphs. The same theorem also holds for directed
graphs since the graph can be seen as special case of directed graphs.

NP-hard Problems 185

2. Given a graph G = (V,E) with edge weight w : E → R+, assign
each vertex u with a weight xu to satisfy xu + xv ≥ w(u, v) for every
edge (u, v) ∈ E, and to minimize

∑
u∈V xu. Find a polynomial-time

solution and a faster 2-approximation.

3. Given a graph G = (V,E) and a positive integer k, find a set C of k
vertices to cover the maximum number of edges. Show following.

(a) This problem has a polynomial-time (1/2)-approximation.

(b) If this problem has a polynomial-time 1/γ-approximation, then
the minimum vertex cover problem has a polynomial-time γ-
approximation.

4. Show that following problems are NP-hard:

(a) Given a directed graph, find the minimum subset of edges such
that every directed cycle contains at least one edge in the subset.

(b) Given a directed graph, find the minimum subset of vertices such
that every directed cycle contains at least one vertex in the subset.

5. Show NP-hardness of following problem: Given a graph G and an
integer k > 0, determine whether G has a vertex cover C of size at
most k, satisfying the following conditions:

(a) The subgraph G|C induced by C has no isolated point.

(b) Every vertex in C is adjacent to a vertex not in C.

6. Show that all internal nodes of a depth-first search tree form a vertex
cover, which is 2-approximation for the minimum vertex cover prob-
lem.

7. Given a directed graph, find an acyclic subgraph containing maximum
number of arcs. Design a polynomial-time 1/2-approximation for this
problem

8. A wheel is a cycle with a center (not on the cycle) which is connected
every vertex on the cycle. Prove the NP-completeness of following
problem: Given a graph G, does G have a spanning wheel?

9. Given a 2-connected graph G and a vertex subset A, find the minimum
vertex subset B such that A∪B induces a 2-connected subgraph. Show
that this problem is NP-hard.

186 NP-hard Problems

10. Show that following problems are NP-hard:

(a) Given a graph G, find a spanning tree with minimum number of
leaves.

(b) Given a graph G, find a spanning tree with maximum number of
leaves.

11. Given two graphs G1 and G2, show following:

(a) It is NP-complete to determine whether G1 is isomorphic to a
subgraph of G2 or not.

(b) It is NP-hard to find a subgraphs H1 of G1 and a subgraph H2

of G1 such that H1 is isomorphic to H2 and |E(H1)| = |E(H2)|
reaches the maximum common.

12. Given a collection C of subsets of three elements in a finite set X, show
following:

(a) It is NP-complete to determine whether there exists a set cover
consisting of disjoint subsets in C.

(b) It is NP-hard to find a minimum set cover, consisting of subsets
in C.

13. Given a graph, find the maximum number of vertex-disjoint paths with
length two. Show following.

(a) This problem is NP-hard.

(b) This problem has a polynomial-time 2-approximation.

14. Design a polynomial-time 2-approximation for following problem: Giv-
en a graph, find a maximal matching with minimum cardinality.

15. (Maximum 3DM) Given 3 disjoint sets X, Y , Y with |X| = |Y | = |Z|
and a collection C of 3-sets, each 3-set consisting of exactly one element
in X, one element in Y , and one element in Z, find the maximum
number of disjoint 3-sets in C. Show following.

(a) This problem is NP-hard.

(b) This problem has polynomial-time 3-approximation.

(c) This problem is APX-complete.

NP-hard Problems 187

16. There are n students who studied at a late-night for an exam. The time
has come to order pizzas. Each student has his own list of required
toppings (e.g., pepperoni, sausage, mushroom, etc). Everyone wants
to eat at least one third of a pizza, and the topping of the pizza must
be in his required list. To save money, every pizza may have only one
topping. Find the minimum number of pizzas to order in order to
make everybody happy. Please answer following questions.

(a) Is it an NP-hard problem?

(b) Does it belong to APX?

(c) If everyone wants to eat at least a half of a pizza, is there a change
about the answer for above questions?

17. Show that following is an NP-hard problem: Given two collections C
and D of subsets of X and an positive integer d, find a subset A with
at most d elements of X to minimize the total number of subsets in C
not hit by A and subsets in D hit by A, i.e., to minimize

|{S ∈ C | S ∩A = ∅} ∪ {SinD | S ∩A 6= ∅}|.

18. Design a FPTAS for following problem: Consider n jobs and m identi-
cal machine. Assume that m is a constant. Each job j has a processing
time pj and a weight wj . The processing does not allow preemption.
The problem is to find a scheduling to minimize

∑
j wjCj where Cj is

the completion time of job j.

19. Design a FPTAS for following problem: Consider a directed graph with
a source node s and a sink node t. Each edge e has an associated cost
c(e) and length `(e). Given a length bound L, find a minimum-cost
path from s to t of total length at most L.

20. Show the NP-completeness of following problem: Given n positive inte-
gers a1, a2, ..., an, is there a partition (I1, I2) of [n] such that |

∑
i∈I1 ai−∑

i∈I2 ai| ≤ 2.

21. (Ron Graham’s Approximation for Scheduling P ||Cmax) Show that
following algorithm gives a 2-approximation for the scheduling P ||Cmax

problem:

• List all jobs. Process them according to the ordering in the list.

• Whenever a machine is available, move the first job from the list
to the machine until the list becomes empty.

188 NP-hard Problems

22. In proof of Theorem 8.7.4, if let k be the degree of vertex x, then the
proof can also work. Please complete the construction of replacing
vertex x by cycle G(Fx).

23. (1-in-3SAT) Given a 3CNF F , is there an assignment such that for
each clause of F , exactly one literal gets value 1? This is called the
1-in-3SAT problem. Show following.

(a) The 1-in-3SAT problem is NP-complete.

(b) The planar 1-in-3SAT problem is NP-complete.

(c) The strongly planar 1-in-3SAT is NP-complete.

24. (NAE3SAT) Given a 3CNF F , determine whether there exists an as-
signment such that for each clause of F , is there an assignment such
that for each clause of F , not all 3 literals are equal? This is called
the NAE3SAT problem. Show following.

(a) The NAE3SAT problem is NP-complete.

(b) The planar NAE3SAT is in P.

25. (Planar 3SAT with Variable Cycle) Given a 3CNF F which has G∗(F)
with property that all variables can be connected into a cycle without
crossing, is F satisfiable.

(a) Show that this problem is NP-complete.

(b) Show that the planar Hamiltonian cycle problem is NP-hard.

26. Show that the planar dominating set problem is NP-hard.

27. Show that following are APX-complete problems:

(a) (Maximum 1-in-3SAT) Given a 3CNF F , find an assignment to
maximize the number of 1-in-3 clauses, i.e., exactly one literal
equal to 1.

(b) (Maximum NAE3SAT) Given a 3CNF F , find an assignment to
maximize the number of NAE clauses, i.e., either one or two
literals equal to 1.

28. (Network Steiner Tree) Given a network G = (V,E) with nonnegative
edge weight, and a subset of nodes, P , find a tree interconnecting all
nodes in P , with minimum total edge weight. Show that this problem
is APX-complete.

NP-hard Problems 189

29. (Rectilinear Steiner Arborescence) Consider a rectilinear plan with
origin O. Given a finite set of terminals in the first of this plan, find
the shortest arborescence to connect all terminals, that is, the shortest
directed tree rooted at origin O such that for each terminal t, there is
path from O to t and the path is allowed to go only to the right or
upward. Show that this problem is NP-hard.

30. (Connected Vertex Cover) Given a graph G = (V,E), find a minimum
vertex cover which induces a connected subgraph. Show that this
problem has a polynomial-time 3-approximation.

31. (Weighed Connected Vertex Cover) Given a graph G = (V,E) with
nonnegative vertex weight, find a minimum total weight vertex cover
which induces a connected subgraph. Show following.

(a) This problem has a polynomial-timeO(lnn)-approximation where
n = |V |.

(b) For any 0 < ρ < 1, this problem has no polynomial-time (ρ lnn)-
approximation unless NP=P.

32. (Connected Dominating Set) In a graph G, a subset C is called a con-
nected dominating set if C is a dominating set and induces a connected
subgraph. Given a graph, find a minimum connected dominating set.
Show that for any 0 < ρ < 1, this problem has no polynomial-time
(ρ lnn)-approximation unless NP=P where n is the number of vertices
in input graph.

33. Show that following problem is APX-complete: Given a graph with
vertex-degree upper-bounded by a constant b, find a clique of the max-
imum size.

34. Show that the traveling salesman problem does not belong to Poly-
APX if the distance table is not required to satisfy the triangular
inequality.

Historical Notes

190 NP-hard Problems

Bibliography

[1] Cook, William J.; Cunningham, William H.; Pulleyblank, William R.;
Schrijver, Alexander (1997). Combinatorial Optimization. Wiley.

[2] Lawler, Eugene (2001). Combinatorial Optimization: Networks and
Matroids.

[3] Lee, Jon (2004). A First Course in Combinatorial Optimization. Cam-
bridge University Press.

[4] Papadimitriou, Christos H.; Steiglitz, Kenneth (July 1998). Combina-
torial Optimization : Algorithms and Complexity. Dover.

[5] Schrijver, Alexander (2003). Combinatorial Optimization: Polyhedra
and Efficiency. Algorithms and Combinatorics. 24. Springer.

[6] Gerard Sierksma; Yori Zwols (2015). Linear and Integer Optimization:
Theory and Practice. CRC Press.

[7] Sierksma, Gerard; Ghosh, Diptesh (2010). Networks in Action; Text
and Computer Exercises in Network Optimization. Springer.

[8] Pintea, C-M. (2014). Advances in Bio-inspired Computing for Combi-
natorial Optimization Problem. Intelligent Systems Reference Library.
Springer.

[9] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford (2009). Introduction to Algorithms, Third Edition (3rd ed.).

[10] Anany V. Levitin, Introduction to the Design and Analysis of Algo-
rithms (Addison Wesley, 2002).

[11] Vazirani, Vijay V. (2003). Approximation Algorithms. Berlin:
Springer.

191

192 NP-hard Problems

[12] Williamson, David P.; Shmoys, David B. (April 26, 2011), The Design
of Approximation Algorithms, Cambridge University Press.

[13] Wen Xu, Weili Wu: Optimal Social Influence, Springer, 2020.

[14] Weili Wu, Zha Zhang Wonjun Lee, Ding-Zhu Du: Optimal Coverage
in Wireless Sensor Networks, Springer, 2020.

[15] Ding-Zhu Du, Panos M. Pardalos, Weili Wu: Mathematical Theory of
Optimization, Springer, 2010.

[16] Ding-Zhu Du, Ker-I Ko, Xiaodong Hu, Desin and Analysis of Approx-
imation Algorithms, (Springer 2012).

[17] Heideman, M. T., D. H. Johnson, and C. S. Burrus, ”Gauss and the
history of the fast Fourier transform”, IEEE ASSP Magazine, 1, (4),
14C21 (1984).

[18] Donald E. Knuth, The Art of Computer Programming: Volume 3,
Sorting and Searching, second edition (Addison-Wesley, 1998).

[19] ”Sir Antony Hoare”. Computer History Museum. Archived from the
original on 3 April 2015. Retrieved 22 April 2015.

[20] Hoare, C. A. R. (1961). ”Algorithm 64: Quicksort”. Comm. ACM. 4
(7): 321

[21] Seward, H. H. (1954), ”2.4.6 Internal Sorting by Floating Digital Sort”,
Information sorting in the application of electronic digital computers
to business operations (PDF), Master’s thesis, Report R-232, Mas-
sachusetts Institute of Technology, Digital Computer Laboratory, pp.
25C28.

[22] Stuart Dreyfus: Richard Bellman on the birth of dynamic program-
ming, Operations Research 50 (1) (2002) 48-51.

[23] F.F. Yao, Efficient dynamic programming using quadrangle inequali-
ties, in: Proc. 12th Ann. ACM Symp. on Theory of Computing (1980)
429-435.

[24] Al Borchers, Prosenjit Gupta: Extending the Quadrangle Inequality
to Speed-Up Dynamic Programming. Inf. Process. Lett. 49(6): 287-
290 (1994)

NP-hard Problems 193

[25] S K. Rao, P. Sadayappan, F.K. Hwang and P.W. Shor: The Rectilinear
Steiner Arborescence Problem, Algorithmica, 7 (2-3) (1992) 277-288.

[26] R. Bellman, On a routing problem, Quarterly of Applied Mathematics
16 (1958) 87C90.

[27] E.W. Dijkstra, A note on two problems in connexion with graphs,
Numerische Mathematik, 1 (1959) 269C271.

[28] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in im-
proved network optimization algorithms, Journal of the Association
for Computing Machinery 34 (1987) 596C615

[29] A. Schrijver: On the history of the shortest path problem, Documenta
Math, Extra Volume ISMP (2012) 155-167.

[30] Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathe-
matik Annalen 6 (1873) 29C30.

[31] Dial, Robert B. (1969), ”Algorithm 360: Shortest-Path Forest with
Topological Ordering [H]”, Communications of the ACM, 12 (11):
632C633.

[32] Shimbel, Alfonso (1953). ”Structural parameters of communication
networks”. Bulletin of Mathematical Biophysics. 15 (4): 501C507.

[33] Floyd, Robert W. (June 1962). ”Algorithm 97: Shortest Path”. Com-
munications of the ACM. 5 (6): 345.

[34] Warshall, Stephen (January 1962). ”A theorem on Boolean matrices”.
Journal of the ACM. 9 (1): 11C12.

[35] Graham, R. L.; Hell, Pavol (1985), ”On the history of the minimum
spanning tree problem”, Annals of the History of Computing, 7 (1):
43C57

[36] Chazelle, Bernard (2000), ”A minimum spanning tree algorithm with
inverse-Ackermann type complexity”, Journal of the Association for
Computing Machinery, 47 (6): 1028C1047

[37] Chazelle, Bernard (2000), ”The soft heap: an approximate priority
queue with optimal error rate” (PDF), Journal of the Association for
Computing Machinery, 47 (6): 1012C1027

194 NP-hard Problems

[38] Otakar Boruvka on Minimum Spanning Tree Problem (translation of
both 1926 papers, comments, history) (2000) Jaroslav Nesetril, Eva
Milková, Helena Nesetrilová. (Section 7 gives his algorithm, which
looks like a cross between Prim’s and Kruskal’s.)

[39] T.E. Harris, F.S. Ross: Fundamentals of a Method for Evaluating Rail
Net Capacities, Research Memorandum 1955.

[40] A. Schrijver: On the history of the transportation and maximum flow
problems, Mathematical Programming, 91 (3) (2002): 437C445.

[41] L.R. Ford, D.R. Fulkerson: Maximal flow through a network Canadian
Journal of Mathematics 8: 399C404 (1956).

[42] J. Edmonds, R. Karp: Theoretical improvements in algorithmic effi-
ciency for network flow problems, Journal of the ACM 19 (2): 248C264
(1072).

[43] E.A. Dinic: Algorithm for solution of a problem of maximum flow in
a network with power estimation”. Soviet Mathematics - Doklady, 11:
1277C1280 (1970).

[44] Yefim Dinitz: Dinitz’ Algorithm: The Original Version and Even’s
Version, in Oded Goldreich, Arnold L. Rosenberg, Alan L. Selman
(eds.), Theoretical Computer Science: Essays in Memory of Shimon
Even. (Springer, 2006): pp. 218C240.

[45] A.V. Goldberg, R.E. Tarjan: A new approach to the maximum-flow
problem, Journal of the ACM 35 (4): 921 (1988).

[46] A.V. Goldberg, S. Rao: Beyond the flow decomposition barrier, Jour-
nal of the ACM, 45 (5): 783 (1998).

[47] J. Sherman: Nearly Maximum Flows in Nearly Linear Time, Proceed-
ings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’2013), pp. 263C269.

[48] J.A. Kelner, Y.T. Lee, L. Orecchia, A. Sidford: An Almost-Linear-
Time Algorithm for Approximate Max Flow in Undirected Graphs,
and its Multicommodity Generalizations, Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SO-
DA’2014), pp. 217.

NP-hard Problems 195

[49] J.B. Orlin: Max flows in O(nm) time, or better, Proceedings of the
45th annual ACM symposium on Symposium on theory of computing
(STOC ’13), pp. 765C774.

[50] M.K. Kwan: Graphic Programming Using Odd or Even Points, Chi-
nese Math. 1: 273-277 (1962).

[51] J. Edmonds, E.L. Johnson: Matching, Euler Tours, and the Chinese
Postman, Math. Programm. 5 : 88-124 (1973).

[52] J. Edmonds: Paths, Trees and Flowers, Canadian Journal of Mathe-
matics, 17: 449C467 (1965).

[53] J.E. Hopcroft, R.M. Karp: An n5/2 algorithm for maximum match-
ings in bipartite graphs, SIAM Journal on Computing, 2 (4): 225C231
(1973).

[54] S. Micali, V.V. Vazirani: An O(
√
|V | · |E|) algorithm for finding maxi-

mum matching in general graphs, Proc. 21st IEEE Symp. Foundations
of Computer Science, pp. 17C27 (1980).

[55] Andrew V. Goldberg, Robert E. Tarjan: Finding minimum-cost cir-
culations by canceling negative cycles, Journal of the ACM 36 (4):
873C886 (1989).

[56] D.R. Fulkerson: An out-of-kilter method for minimal cost flow prob-
lems, Journal of the Society for Industrial and Applied Mathematics
9(1):18-27 (1961).

[57] Morton Klein: A primal method for minimal cost flows with appli-
cations to the assignment and transportation problems, Management
Science 14 (3): 205C220 (1967).

[58] M.A. Engquist: A successive shortest path algorithm for the assign-
ment problem. Research Report, Center for Cybernetic Studies (CCS)
375, University of Texas, Austin; 1980.

[59] James B. Orlin: A polynomial time primal network simplex algorithm
for minimum cost flows, Mathematical Programming 78 (2): 109C129
(1997).

[60] R.G. Busacker, P.G. Gowen: A procedure for determining a family
of minimum cost network flow patterns, Operations Research Office
Technical Report 15, John Hopkins University, Baltimore; 1961.

196 NP-hard Problems

[61] V. Klee, G. Minty: How Good Is the Simplex Algorithm? In Inequal-
ities, (Academic Press, New York, 1972).

[62] A. Charnes: Optimality and degeneracy in linear programming, Eco-
nomics 2: 160-170 (1952).

[63] G.B. Dantzig: A. Orden, P. Wolfe: Note on linear programming, Pa-
cific J. Math 5: 183-195 (1955).

[64] Robert G. Bland: New finite pivoting rules for the simplex method,
Mathematics of Operations Research 2 (2): 103C107 (1977).

[65] E.M. Beale: Cycling in dual simplex algorithm, Navel Research Logis-
tics Quarterly 2: 269-276 (1955).

[66] L.G. Karchiyan: A polynomial algorithm for linear progranning, Dok-
lady Akad. Nauk. USSR. Sci. 244: 1093-1096 (1979).

[67] N. Karmakkar: A new polynomial-time algorithm for linear program-
ming, Proceedings of the 16th Annual ACM Symposium on the Theory
of Computing, 302-311, 1984.

[68] Jianzhong Zhang, Shaoji Xu: Linear Programming, Schiece Press,
1987.

[69] L.V. Kantorovich: A new method of solving some classes of extremal
problems, Doklady Akad Sci SSSR 28: 211C214 (1940).

[70] G.B Dantzig: Maximization of a linear function of variables subject
to linear inequalities, 1947. Published pp. 339C347 in T.C. Koopman-
s (ed.):Activity Analysis of Production and Allocation, New York-
London 1951 (Wiley & Chapman-Hall).

[71] N. Garg, G. Konjevod, R. Ravi, A polylogarithmic approximation
algorithm for the group Steiner tree problem, SODA 2000.

[72] Halperin, E. and Krauthgamer, R. [2003], Polylogarithmic inapprox-
imability, Proceedings, 35th ACM Symposium on Theory of Comput-
ing, pp. 585C594.

[73] Wei Zhang, Weili Wu, Wonjun Lee, Ding-Zhu Du: Complexity and
approximation of the connected set-cover problem. J. Glob. Optim.
53(3): 563-572 (2012)

NP-hard Problems 197

[74] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M.
Li. Approximation algorithms for directed Steiner problems. Journal
of Algorithms, 33:73C91, 1999.

[75] Bhaskara, Aditya; Charikar, Moses; Chlamtac, Eden; Feige,
Uriel; Vijayaraghavan, Aravindan (2010), ”Detecting high log-
densitiesan O(n1/4) approximation for densest k-subgraph”, S-
TOC’10Proceedings of the 2010 ACM International Symposium on
Theory of Computing, ACM, New York, pp. 201C210

[76] Lidong Wu, Hongwei Du, Weili Wu, Deying Li, Jing Lv, Wonjun Lee:
Approximations for Minimum Connected Sensor Cover. INFOCOM
2013: 1187-1194

[77] Zhao Zhang, Xiaofeng Gao, Weili Wu: Algorithms for connected set
cover problem and fault-tolerant connected set cover problem. Theor.
Comput. Sci. 410(8-10): 812-817 (2009)

[78] Lidong Wu, Huijuan Wang, Weili Wu: Connected Set-Cover and
Group Steiner Tree. Encyclopedia of Algorithms 2016: 430-432

[79] Zhao Zhang, Weili Wu, Jing Yuan, Ding-Zhu Du: Breach-Free Sleep-
Wakeup Scheduling for Barrier Coverage With Heterogeneous Wireless
Sensors. IEEE/ACM Trans. Netw. 26(5): 2404-2413 (2018)

[80] Ambühl, C. [2005], An optimal bound for the MST algorithm to com-
pute energy efficient broadcast trees in wireless networkds, Proceed-
ings, 32nd International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 3580, Springer, pp.
1139C1150.

[81] P.K. Agarwal, M. van Kreveld, S. Suri, Label placement by maximum
independent set in rectangles, Comput. Geom. Theory Appl., 11 (118)
209-218.

[82] C. Ambühl, T. Erlebach, M. Mihalák and M. Nunkesser, Constant-
approximation for minimum-weight (connected) dominating sets in
unit disk graphs, Proceedings of the 9th International Workshop on
Approximation Algorithms for Combinatorial Optimization (APPROX
2006), LNCS 4110, Springer, 2006, pp. 3-14.

[83] B.S. Baker, Approximation algorithms for NP-complete problems on
planar graphs, Proc. FOCS, 1983, pp. 265-273.

198 NP-hard Problems

[84] B.S. Baker, Approximation algorithms for NP-complete problems on
planar graphs, J. ACM 41(1) (1994) 153-180.

[85] P. Berman, B. Basgupta, S. Muthukrishnan, S. Ramaswami, Efficient
approximation algorithms for tiling and packing problem with rectan-
gles, J. Algorithms, 41 (2001) 178-189.

[86] T.M. Chan, Polynomial-time approximation schemes for picking and
piercing fat objects, J. Algorithms, 46 (2003) 178-189.

[87] T.M. Chan, A note on maximum independent sets in rectangle inter-
section graphs, Information Processing Letters, 89 (2004) 19-23.

[88] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, Ding-Zhu Du: A
polynomial-time approximation scheme for the minimum-connected
dominating set in ad hoc wireless networks. Networks 42(4): 202-208
(2003)

[89] D. Dai and C. Yu, A 5-Approximation Algorithm for Minimum
Weighted Dominating Set in Unit Disk Graph, to appear in Theo-
retical Computer Science.

[90] T. Erlebach, K. Jansen, and E. Seidel, Polynomial-time approximation
schemes for geometric graphs, Proc. of 12th SODA, 2001, 671-679.

[91] X. Gao, Y. Huang, Z. Zhang and W. Wu, (6 + ε)-approximation for
minimum weight

dominating set in unit disk graphs, COCOON’08, pp. 551-557.

[92] D.S. Hochbaum and W. Maass, Approximation schemes for covering
and packing problems in image processing and VLSI, J.ACM 32 (1985)
130-136.

[93] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J.
Rosenkrantz, and R.E. Stearns, Efficient approximations and approx-
imation schemes for geometric problems, Journal of Algorithms, 26(2)
(1998) 238-274.

[94] T. Jiang and L. Wang, An approximation scheme for some Steiner
tree problems in the plane, Lecture Notes in Computer Science, Vol
834 (1994) 414-427.

NP-hard Problems 199

[95] T. Jiang, E.B. Lawler, and L. Wang, Aligning sequences via an evo-
lutionary tree: complexity and algorithms, Proc. 26th STOC, 1994,
.

[96] D.S. Johnson and M. Garey, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Freeman, New York, 1979).

[97] R.M. Karp, Probabilistic analysis of partitioning algorithms for the
traveling salesman problem in the plane, Mathematics of Operations
Research 2 (1977).

[98] S. Khanna, S. Muthukrishnan, and M. Paterson, On approximating
rectangle tiling and packing, Proc. 9th ACM-SIAM Symp. on Discrete
Algorithms, 1998, pp. 384-393.

[99] J. Komolos and M.T. Shing, Probabilistic partitioning algorithms for
the rectilinear Steiner tree problem, Networks 15 (1985) 413-423.

[100] M. Min, S.C.-H. Huang, J. Liu, E. Shragowitz, W. Wu, Y. Zhao, and
Y. Zhao, An approximation scheme for the rectilinear Steiner mini-
mum tree in presence of obstructions, Novel Approaches to Hard Dis-
crete Optimization, Fields Institute Communications Series, American
Math. Society, vol 37(2003), pp. 155-163.

[101] F. Nielsen, Fast stabbing of boxes in high dimensions,

Theoret. Comput. Sci., 246 (2000) 53-72.

[102] S.A. Vavasis, Automatic domain partitioning in tree dimensions,
SIAM J. Sci. Stat. Comput. 12(4) (1991) 950-970.

[103] D. Sankoff, Minimal mutation trees of sequences, SIAM J. Appl.
Math., 28 (1975) 35-42.

[104] L. Wang, T. Jiang, and E.L. Lawler, Approximation algorithms for
tree alignment with a given phylogeny, Algorithmica 16 (1996) 302-
315.

[105] L. Wang and T. Jiang, An approximation scheme for some Steiner tree
problems in the plane, Networks 28 (1996) 187–193.

[106] L. Wang, T. Jiang, and D. Gusfield, A more efficient approximation
scheme for tree alignment, Proceedings of the first annual international
conference on computational biology, 1997, 310-319.

200 NP-hard Problems

[107] Zhao Zhang, Xiaofeng Gao, Weili Wu, Ding-Zhu Du: A PTAS for
minimum connected dominating set in 3-dimensional Wireless sensor
networks. J. Glob. Optim. 45(3): 451-458 (2009)

[108] Feng Zou, Xianyue Li, Donghyun Kim and Weil Wu, Two Constant
Approximation Algorithms for Node-Weighted Steiner Tree in Unit
Disk Graphs”, COCOA2008, St. John’s, Newfoundland, Canada, Au-
gust 21-24.

[109] Feng Zou, Xiayue Li, Sugang Gao, Yuexian Wang, Weili Wu, (6 +
ε)-approximation for weighted connected dominating set in unit disk
graphs, submitted to Theoretical Computer Science.

[110] Hongwei Du, Qiang Ye, Jiaofei Zhong, Yuexuan Wang, Wonjun Lee,
Haesun Park: Polynomial-time approximation scheme for minimum
connected dominating set under routing cost constraint in wireless
sensor networks. Theor. Comput. Sci. 447: 38-43 (2012).

[111] E.M. Arkin, J.S.B. Mitchell and G. Narasimhan, Resource-constructed
geometric network optimization, Proc. of 14th Annual Symposium on
Computational Geometry, Minneapolis, 1998, pp.307-316.

[112] Arora, S. [1996], Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems, Proc. 37th IEEE Symp.
on Foundations of Computer Science, pp. 2-12.

[113] Arora, S. [1997], Nearly linear time approximation schemes for Eu-
clidean TSP and other geometric problems, IProc. 38th IEEE Symp.
on Foundations of Computer Science, pp. 554-563.

[114] Arora, S. [1998], Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems, Journal of the ACM 45
(1998) 753-782.

[115] Arora, S., Raghavan, P. and Rao, S. [1998], Polynomial Time Approx-
imation Schemes for Euclidean k-medians and related problems, ACM
STOC.

[116] Arora, S., Grigni, M., Karger, D., Klein, P. and Woloszyn, A. [1998],
Polynomial time approximation scheme for Weighted Planar Graph
TSP, roc. SIAM SODA.

NP-hard Problems 201

[117] Cheng, X., Kim, J.-M. and Lu, B. [2001], A polynomial time approx-
imation scheme for the problem of interconnecting highways, Journal
of Combinatorial Optimization 5: 327-343.

[118] Cheng, X., DasGupta, B. and Lu, B. [2000], A polynomial time ap-
proximation scheme for the symmetric rectilinear Steiner arborescence
problem, to appear in Journal of Global Optimization.

[119] Du, D.Z., Hwang, F.K., Shing, M.T. and Witbold, T. [1988], Optimal
routing trees, IEEE Transactions on Circuits 35: 1335-1337.

[120] Du, D.-Z., Pan, L.Q., and Shing, M.-T. [1986], Minimum edge length
guillotine rectangular partition, Technical Report 0241886, Math. Sci.
Res. Inst., Univ. California, Berkeley.

[121] Du, D.-Z., Hsu, D.F. and Xu, K.-J. [1987], Bounds on guillotine ratio,
Congressus Numerantium 58: 313-318.

[122] Du, D.-Z. [1986], On heuristics for minimum length rectangular parti-
tions, Technical Report, Math. Sci. Res. Inst., Univ. California, Berke-
ley.

[123] Du, D.-Z. and Zhang, Y.-J. [1990], On heuristics for minimum length
rectilinear partitions, Algorithmica, 5: 111-128.

[124] Gonzalez, T. and Zheng, S.Q. [1985], Bounds for partitioning rectilin-
ear polygons, Proc. 1st Symp. on Computational Geometry.

[125] Gonzalez, T. and Zheng, S.Q. [1989], Improved bounds for rectangular
and guillotine partitions, Journal of Symbolic Computation 7: 591-610.

[126] Lingas, A., Pinter, R.Y., Rivest, R.L. and Shamir, A. [1982], Minimum
edge length partitioning of rectilinear polygons, Proc. 20th Allerton
Conf. on Comm. Control and Compt., Illinos.

[127] Lingas, A. [1983], Heuristics for minimum edge length rectangular
partitions of rectilinear figures, Proc. 6th GI-Conference, Dortmund,
(Springer-Verlag).

[128] Levcopoulos, C. [1986], Fast heuristics for minimum length rectangular
partitions of polygons, Proc 2nd Symp. on Computational Geometry.

[129] Lu, B. and Ruan, L. [2000], Polynomial time approximation scheme for
the rectilinear Steiner arborescence problem, Journal of Combinatorial
Optimization 4: 357-363.

202 NP-hard Problems

[130] Mitchell, J.S.B. [1996a], Guillotine subdivisions approximate polyg-
onal subdivisions: A simple new method for the geometric k-MST
problem. Proc. 7th ACM-SIAM Symposium on Discrete Algorithms,
pp. 402-408.

[131] Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S. [1999], A
constant-factor approximation algorithm for the geometric k-MST
problem in the plane SIAM J. Comput. 28: 771–781.

[132] Mitchell, J.S.B. [1999], Guillotine subdivisions approximate polygo-
nal subdivisions: Part II - A simple polynomial-time approximation
scheme for geometric k-MST, TSP, and related problem, SIAM J.
Comput. 28: 1298-1307.

[133] Mitchell, J.S.B. [1997], Guillotine subdivisions approximate polygonal
subdivisions: Part III - Faster polynomial-time approximation scheme
for geometric network optimization, Proc. ninth Canadian conference
on computational geometry, 229-232.

[134] Rao, S.B. and W.D. Smith [1998], Approximating geometrical graphs
via ”spanners” and ”banyans”, ACM STOC’98, pp. 540-550.

[135] Xiaofeng Gao, Weili Wu, Xuefei Zhang, Xianyue Li: A constant-factor
approximation for d-hop connected dominating sets in unit disk graph.
Int. J. Sens. Networks 12(3): 125-136 (2012)

[136] Lidong Wu, Hongwei Du, Weili Wu, Yuqing Zhu, Ailian Wang, Won-
jun Lee: PTAS for routing-cost constrained minimum connected dom-
inating set in growth bounded graphs. J. Comb. Optim. 30(1): 18-26
(2015)

[137] Zhao Zhang, Xiaofeng Gao, Weili Wu, Ding-Zhu Du: PTAS for Min-
imum Connected Dominating Set in Unit Ball Graph. WASA 2008:
154-161

[138] A. Borchers and D.-Z. Du, The k-Steiner ratio in graphs, Proceedings
of 27th ACM Symposium on Theory of Computing, 1995.

[139] F.R.K. Chung and E.N. Gilbert, Steiner trees for the regular simplex,
Bull. Inst. Math. Acad. Sinica, 4 (1976) 313-325.

[140] F.R.K. Chung and R.L. Graham, A new bound for euclidean Steiner
minimum trees, Ann. N.Y. Acad. Sci., 440 (1985) 328-346.

NP-hard Problems 203

[141] F.R.K. Chung and F.K. Hwang, A lower bound for the Steiner tree
problem, SIAM J.Appl.Math., 34 (1978) 27-36.

[142] R. Crourant and H. Robbins, What Is Mathematics?, (Oxford Univ.
Press, New York, 1941).

[143] D.E. Drake and S. Hougardy, On approximation algorithms for the ter-
minal Steiner tree problem, Information Processing Letters, 89 (2004)
15-18.

[144] D.-Z. Du, R.L. Graham, P.M. Pardalos, P.-J. Wan, Weili Wu and W.
Zhao, Analysis of greedy approximations with nonsubmodular poten-
tial functions, Proc. ACM-SIAM Symposiun on Discrete Algorithms
(SODA), 2008, pp. 167-175.

[145] D.-Z. Du and F.K. Hwang, The Steiner ratio conjecture of Gilbert-
Pollak is true, Proceedings of National Academy of Sciences, 87 (1990)
9464-9466.

[146] D.-Z. Du, Y. Zhang, and Q. Feng, On better heuristic for euclidean
Steiner minimum trees, Proceedings 32nd FOCS (1991).

[147] L.R. Foulds and R.L. Graham, The Steiner problem in Phylogeny is
NP-complete, Advanced Applied Mathematics, 3 (1982) 43-49.

[148] M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of com-
puting Steiner minimal trees, SIAM J. Appl. Math., 32 (1977) 835-859.

[149] M.R. Garey and D.S. Johnson, The rectilinear Steiner tree is NP-
complete, SIAM J. Appl. Math., 32 (1977) 826-834.

[150] E.N. Gilbert and H.O. Pollak, Steiner minimal trees, SIAM J. Appl.
Math., 16 (1968) 1-29.

[151] R.L. Graham and F.K. Hwang, Remarks on Steiner minimal trees,
Bull. Inst. Math. Acad. Sinica, 4 (1976) 177-182.

[152] S.Y. Hsieh and S.-C. Yang, Approximating the selected-internal Stein-
er tree, Theoretical Computer Science, 38 (2007) 288-291.

[153] F.K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM
J. Appl. Math., 30 (1972) 104-114.

204 NP-hard Problems

[154] R.M. Karp, Reducibility among combinatorial problems, in R.E.
Miller and J.W. Tatcher (ed.), Complexity of Computer Computation,
Plenum Press, New York, (1972) 85-103.

[155] G.-H. Lin and G. Xue, Steiner tree problem with minimum number
of Steiner points and bounded edge-length, Information Processing
Letters, 69 (1999) 53-57.

[156] G.-H. Lin and G. Xue, On the terminal Steiner tree problem, Infor-
mation Processing Letters, 84 (2002) 103-107.

[157] I. Mandoiu and A. Zelikovsky, A Note on the MST heuristic for bound-
ed edge-length Steiner trees with minimum number of Steiner points,
Information Processing Letters, 75(4) (2000) 165-167.

[158] R. Ravi and J. D. Kececioglu, Approximation methods for sequence
alignment under a fixed evolutionary tree, Proc. 6th Symp. on Com-
binatorial Parrern Matching. Springer LNCS, 937 (1995) 330-339.

[159] G. Robin and A. Zelikovsky, Improved Steiner trees approximation in
graphs, SIAM-ACM Symposium on Discrete Algorithms (SODA), San
Francisco, CA, January 2000, pp. 770-779.

[160] J.H. Rubinstein and D.A. Thomas, The Steiner ratio conjecture for
six points, J. Combinatoria Theory, Ser.A, 58 (1991) 54-77.

[161] P. Schreiber, On the history of the so-called Steiner weber problem,
Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe,
35, no.3 (1986).

[162] L. Wang and D.-Z. Du, Approximations for bottleneck Steiner trees,
Algorithmica, 32 (2002) 554-561.

[163] L. Wang and D. Gusfield, Improved approximation algorithms for
tree alignment, Proc. 7th Symp. on Combinatorial Parrern Matching.
Springer LNCS, 1075 (1996) 220-233.

[164] A. Zelikovsky, The 11/6-approximation algorithm for the Steiner prob-
lem on networks, Algorithmica, 9 (1993) 463-470.

[165] A. Zelikovsky, A series of approximation algorithms for the acyclic
airected Steiner tree Problem, Algorithmica, 18 (1997) 99-110.

NP-hard Problems 205

[166] Jiawen Gao, Suogang Gao, Wen Liu, Weili Wu, Ding-Zhu Du, Bo
Hou: An approximation algorithm for the k-generalized Steiner forest
problem. Optim. Lett. 15(4): 1475-1483 (2021)

[167] Feng Zou, Yuexuan Wang, XiaoHua Xu, Xianyue Li, Hongwei Du,
Peng-Jun Wan, Weili Wu: New approximations for minimum-weighted
dominating sets and minimum-weighted connected dominating sets on
unit disk graphs. Theor. Comput. Sci. 412(3): 198-208 (2011)

[168] Ling Ding, Weili Wu, James Willson, Lidong Wu, Zaixin Lu, Wonjun
Lee: Constant-approximation for target coverage problem in wireless
sensor networks. INFOCOM 2012: 1584-1592

[169] Zaixin Lu, Weili Wu, Wei Wayne Li: Target coverage maximisation
for directional sensor networks. Int. J. Sens. Networks 24(4): 253-263
(2017)

[170] Zaixin Lu, Travis Pitchford, Wei Li, Weili Wu: On the Maximum
Directional Target Coverage Problem in Wireless Sensor Networks.
MSN 2014: 74-79

[171] Biaofei Xu, Yuqing Zhu, Deying Li, Donghyun Kim, Weili Wu: Mini-
mum (k, ω)-angle barrier coverage in wireless camera sensor networks.
Int. J. Sens. Networks 21(3): 179-188 (2016)

[172] Maggie Xiaoyan Cheng, Lu Ruan, Weili Wu: Achieving minimum cov-
erage breach under bandwidth constraints in wireless sensor networks.
INFOCOM 2005: 2638-2645

[173] Maggie Xiaoyan Cheng, Lu Ruan, Weili Wu: Coverage breach prob-
lems in bandwidth-constrained sensor networks. ACM Trans. Sens.
Networks 3(2): 12 (2007)

[174] Ling Guo, Deying Li, Yongcai Wang, Zhao Zhang, Guangmo Tong,
Weili Wu, Ding-Zhu Du: Maximisation of the number of β-view cov-
ered targets in visual sensor networks. Int. J. Sens. Networks 29(4):
226-241 (2019)

[175] Weili Wu, Zhao Zhang, Chuangen Gao, Hai Du, Hua Wang, Ding-
Zhu Du: Quality of barrier cover with wireless sensors. Int. J. Sens.
Networks 29(4): 242-251 (2019)

206 NP-hard Problems

[176] Mihaela Cardei, My T. Thai, Yingshu Li, Weili Wu: Energy-efficient
target coverage in wireless sensor networks. INFOCOM 2005: 1976-
1984

[177] Zhao Zhang, Weili Wu, Jing Yuan, Ding-Zhu Du: Breach-Free Sleep-
Wakeup Scheduling for Barrier Coverage With Heterogeneous Wireless
Sensors. IEEE/ACM Trans. Netw. 26(5): 2404-2413 (2018)

[178] Donghyun Kim, Wei Wang, Junggab Son, Weili Wu, Wonjun Lee,
Alade O. Tokuta: Maximum Lifetime Combined Barrier-Coverage of
Weak Static Sensors and Strong Mobile Sensors. IEEE Trans. Mob.
Comput. 16(7): 1956-1966 (2017)

[179] Chen Wang, My T. Thai, Yingshu Li, Feng Wang, Weili Wu: Min-
imum Coverage Breach and Maximum Network Lifetime in Wireless
Sensor Networks. GLOBECOM 2007: 1118-1123

[180] Chen Wang, My T. Thai, Yingshu Li, Feng Wang, Weili Wu: Opti-
mization scheme for sensor coverage scheduling with bandwidth con-
straints. Optim. Lett. 3(1): 63-75 (2009)

[181] Zhao Zhang, James Willson, Zaixin Lu, Weili Wu, Xuding Zhu, Ding-
Zhu Du: Approximating Maximum Lifetime k-Coverage Through Min-
imizing Weighted k-Cover in Homogeneous Wireless Sensor Networks.
IEEE/ACM Trans. Netw. 24(6): 3620-3633 (2016)

[182] James Willson, Zhao Zhang, Weili Wu, Ding-Zhu Du: Fault-tolerant
coverage with maximum lifetime in wireless sensor networks. INFO-
COM 2015: 1364-1372

[183] Hongwei Du, Panos M. Pardalos, Weili Wu, Lidong Wu: Maximum
lifetime connected coverage with two active-phase sensors. J. Glob.
Optim. 56(2): 559-568 (2013)

[184] Lidong Wu, Hongwei Du, Weili Wu, Deying Li, Jing Lv, Wonjun Lee:
Approximations for Minimum Connected Sensor Cover. INFOCOM
2013: 1187-1194

[185] N. Garg, J. Köemann, Faster and simpler algorithms for multicom-
modity flows and other fractional packing problems, in Proceedings of
the 39th Annual Symposium on the Foundations of Computer Science
(1998), pp. 300C309.

NP-hard Problems 207

[186] J. Byrka, F. Grandoni, T. Rothvoss, L. Sanita, An improved LP-based
approximation for Steiner tree, in STOC 10: Proceedings of the Forty-
Second ACM Symposium on Theory of Computing, June 5C8 (2010),
pp. 583C592

[187] P. Berman, G. Calinescu, C. Shah, A. Zelikovsky, Efficient energy
management in sensor networks, in Ad Hoc and Sensor Networks,
Wireless Networks and Mobile Computing, vol. 2, ed. by Y. Xiao, Y.
Pan (Nova Science Publishers, Hauppauge, 2005)

[188] T. Erlebach, M. Mihal, A (4 + ε)-approximation for the minimum-
weight dominating set problem in unit disk graphs, in WAOA (2009),
pp. 135C146

[189] T. Erlebach, T. Grant, F. Kammer, Maximising lifetime for fault tol-
erant target coverage in sensor networks. Sustain. Comput. Inform.
Syst. 1, 213C225 (2011)

[190] J. Willson, W. Wu, L. Wu, L. Ding, D.-Z. Du, New approximation for
maximum lifetime coverage. Optimization 63(6), 839C847 (2014)

[191] J. Li, Y. Jin, A PTAS for the weighted unit disk cover problem, in Au-
tomata, Languages, and Programming. ICALP (2015), pp. 898C909.

[192] Manki Min, Hongwei Du, Xiaohua Jia, Christina Xiao Huang, Scott
C.-H. Huang, Weili Wu: Improving Construction for Connected Dom-
inating Set with Steiner Tree in Wireless Sensor Networks. J. Glob.
Optim. 35(1): 111-119 (2006)

[193] Donghyun Kim, Zhao Zhang, Xianyue Li, Wei Wang, Weili Wu, Ding-
Zhu Du: A Better Approximation Algorithm for Computing Connect-
ed Dominating Sets in Unit Ball Graphs. IEEE Trans. Mob. Comput.
9(8): 1108-1118 (2010)

[194] Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, Scott C.-H. Huang:
Minimum connected dominating sets and maximal independent sets
in unit disk graphs. Theor. Comput. Sci. 352(1-3): 1-7 (2006)

[195] Blum, Arim; Jiang, Tao; Li, Ming; Tromp, John; Yannakakis [1994],
Linear approximation of shortest superstrings, Journal of ACM, vol
41, no 4, 630-647.

[196] Chvátal, V. [1979], A greedy heuristic for the set-covering problem,
Mathematics of Operations Research, vol 4, no 3, 233-235.

208 NP-hard Problems

[197] Du, Ding-Zhu and Miller, Zevi [1988], Matroids and subset intercon-
nection design, SIAM J. Discrete Math., vol 1 no 4, 416-424.

[198] Du, D.-Z.; Graham, R.L; Pardalos, P.M.; Wan, P.-J.; Wu, Weili and
Zhao, Wenbo [2008], Analysis of greedy approximation with nonsub-
modular potential functions, to appear in Proc. of SODA.

[199] Du, Xiufeng; Wu, Weili; Kelley, Dean F. [1998], Approximations for
subset interconnection designs, Theoretical Computer Science, vol 207
no 1, 171-180.

[200] Feige, Uriel, A threshold of lnn for approximating set cover, J. ACM
vol 45, no 4, 634-652.

[201] M.L. Fisher, G.L. Nemhauser and L.A. Wolsey, An alalysis of approx-
imations for maximizing submodular set functions - II, Math. Prog.
Study, 8 (1978) 73-87.

[202] Guha, S. and Khuller, S. [1998], Approximation algorithms for con-
nected dominating sets, Algorithmca vol 20, no 4, 374-387.

[203] Hausmann, D.; Korte, B.; Jenkyns, T.A. [1980], Worst case analy-
sis of greedy type algorithms for independence systems, Mathematical
Programming Study no 12, 120-131.

[204] Jenkyns, Thomas A [1976], The efficacy of the ”greedy” algorithm,
Congressus Numerantium, no 17, 341-350.

[205] Johnson, D.S. [1974], Approximation algorithms for combinatorial
problems, Journal of Computer and System Sciences, vol 9 no 3, 256-
278.

[206] Lovász, L. [1975], On the ratio of optimal integral and fractional cov-
ers, Discrete Mathematics, vol 13, 383-390.

[207] Lund, C, and Yanakakis, M. [1994], On the hardness of approximating
minimization problems, J. ACM, vol 41 no 5, 960-981.

[208] Korte, Bernhard and Hausmann, Dirk [1978], An analysis of the greedy
heuristic for independence systems, Ann. Discrete Math. vol 2, 65-74.

[209] Korte, B and Vygen, J. [2002], Combinatorial Optimization, Springer.

[210] Prisner, Erich [1992], Two algorithms for the subset interconnection
design problem, Networks, vol 22 no 4, 385-395.

NP-hard Problems 209

[211] Slavik, Petr [1997], A tight analysis of the greedy algorithm for set
cover, Journal of Algorithms, vol 25, no 2, 237-254.

[212] Tarhio, J. and Ukkonen, E. [1988], A greedy approximation algorithm
for constructing shortest common superstrings, Theoretical Computer
Science, vol 57, no 1, 131-145.

[213] Turner, J.S. [1989], Approximation algorithms for the shortest com-
mon superstring problem, Information and Computation, vol 83, no
1, 1-20.

[214] Wolsey, Laurence A. [1982], An analysis of the greedy algorithm for
submodular set covering problem, Combinatorica, vol 2 no 4, 385-393.

[215] L.M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc, Power con-
sumption in packer radio networks, Theoretical Computer Science 243
(2000) 289-305.

[216] W.T. Chen and N.F. Huang, The Strongly connection problem on mul-
tihop packet radio networks, IEEE Transactions on Communications,
vol. 37, no. 3 (1989) pp. 293-295.

[217] Kirk Pruhs: Speed Scaling. Encyclopedia of Algorithms 2016: 2045-
2047.

[218] Jeff Edmonds, Kirk Pruhs: Scalably scheduling processes with arbi-
trary speedup curves. ACM Trans. Algorithms 8(3): 28 (2012).

[219] H. Lin and J. Bilmes, Optimal selection of limited vocabulary speech
corpora. In Interspeech, 2011

[220] Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes: Fast
Semidifferential-based Submodular Function Optimization. ICML (3)
2013: 855-863.

[221] K. Nagano, Y. Kawahara, and K. Aihara: Size-constrained submodu-
lar minimization through minimum norm base, in Proceedings of the
28th International Conference on Machine Learning, Bellevue, WA,
USA, 2011.

[222] Anton Barhan, Andrey Shakhomirov: Methods for Sentiment Analy-
sis of Twitter Messages, Proceeding of the 12th Conference of Fruct
Association, 2012, pp. 216-222.

210 NP-hard Problems

[223] Baoyuan Wu, Siwei Lyu, Bernard Ghanem: Constrained Submodular
Minimization for Missing Labels and Class Imbalance in Multi-label
Learning. AAAI 2016: 2229-2236.

[224] M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 2nd edition, 1988.

[225] J. B. Orlin, A faster strongly polynomial time algorithm for submodu-
lar function minimization. Mathematical Programming, 118:237C251,
2009.

[226] A. Schrijver: A combinatorial algorithm minimizing submodular func-
tions in strong polynomial time, J. Combinatorial Theory (B), 80
(2000): 346-355.

[227] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher, An
analysis of approximations for maximizing submodular set functions -
I. Mathematical Programming, 14(1): 265-294 (1978).

[228] M. Sviridenko, A Note on Maximizing a Submodular Set Function
Subject to Knapsack Constraint. Operations Research Letters, 32: 41-
43 (2004).

[229] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance, Cost-effective outbreak de-
tection in networks. Pages 420-429 of: KDD’07: Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery
and data mining. New York, NY, USA: ACM, 2007.

[230] G. Calinescu, C. Chekuri, M. Pl and J. Vondrk, Maximizing a sub-
modular set function subject to a matroid constraint, SIAM J. Comp.
40:6 (2011), 1740-1766.

[231] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of ap-
proximations for maximizing submodular set functions C II. In Poly-
hedral Combinatorics, volume 8 of Mathematical Programming Study,
pages 73C87. North-Holland Publishing Company, 1978.

[232] Laurence A. Wolsey, An analysis of the greedy algorithm for the sub-
modular set covering problem. Combinatorica, 2(4):385-393 (1982).

[233] U. Feige, V. Mirrokni, and J. Vondrak, Maximizing nonmonotone sub-
modular functions, in Proceedings of the IEEE Foundations of Com-
puter Science, 2007, pp. 461C471.

NP-hard Problems 211

[234] J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko, Nonmonotone
submodular maximization under matroid and knapsack constraints, in
Proceedings of the ACM Symposium on Theory of Computing, 2009,
pp. 323C332.

[235] M. Feldman, J. Naor, R. Schwartz: A unified continuous greedy algo-
rithm for submodular maximization, IEEE FOCS 2011, pp. 570-579.

[236] Z. Svitkina and L. Fleischer, Submodular approximation: Sampling-
based algorithms and lower bounds, SIAM Journal on Computing
(2011).

[237] Ruiqi Yang, Shuyang Gu, Chuangen Gao, Weili Wu, Hua Wang,
Dachuan Xu: A constrained two-stage submodular maximization.
Theor. Comput. Sci. 853: 57-64 (2021).

[238] Shuyang Gu, Ganquan Shi, Weili Wu, Changhong Lu: A fast dou-
ble greedy algorithm for non-monotone DR-submodular function
maximization. Discret. Math. Algorithms Appl. 12(1): 2050007:1-
2050007:11 (2020)

[239] Lei Lai, Qiufen Ni, Changhong Lu, Chuanhe Huang, Weili Wu:
Monotone submodular maximization over the bounded integer lattice
with cardinality constraints. Discret. Math. Algorithms Appl. 11(6):
1950075:1-1950075:14 (2019)

[240] Chenfei Hou, Suogang Gao, Wen Liu, Weili Wu, Ding-Zhu Du, Bo
Hou: An approximation algorithm for the submodular multicut prob-
lem in trees with linear penalties. Optim. Lett. 15(4): 1105-1112
(2021).

[241] Zhao Zhang, Joonglyul Lee, Weili Wu, Ding-Zhu Du: Approximation
for minimum strongly connected dominating and absorbing set with
routing-cost constraint in disk digraphs. Optim. Lett. 10(7): 1393-1401
(2016)

[242] Zhao Zhang, Weili Wu, Lidong Wu, Yanjie Li, Zongqing Chen: Strong-
ly connected dominating and absorbing set in directed disk graph. Int.
J. Sens. Networks 19(2): 69-77 (2015)

[243] Hongjie Du, Weili Wu, Shan Shan, Donghyun Kim, Wonjun Lee: Con-
structing weakly connected dominating set for secure clustering in dis-
tributed sensor network. J. Comb. Optim. 23(2): 301-307 (2012)

212 NP-hard Problems

[244] Deying Li, Donghyun Kim, Qinghua Zhu, Lin Liu, Weili Wu: Mini-
mum Total Communication Power Connected Dominating Set in Wire-
less Networks. WASA 2012: 132-141

[245] Xiaofeng Gao, Wei Wang, Zhao Zhang, Shiwei Zhu, Weili Wu: A P-
TAS for minimum d-hop connected dominating set in growth-bounded
graphs. Optim. Lett. 4(3): 321-333 (2010)

[246] Jiao Zhou, Zhao Zhang, Weili Wu, Kai Xing: A greedy algorithm
for the fault-tolerant connected dominating set in a general graph. J.
Comb. Optim. 28(1): 310-319 (2014)

[247] Shan Shan, Weili Wu, Wei Wang, Hongjie Du, Xiaofeng Gao, Ailian
Jiang: Constructing minimum interference connected dominating set
for multi-channel multi-radio multi-hop wireless network. Int. J. Sens.
Networks 11(2): 100-108 (2012)

[248] Deying Li, Hongwei Du, Peng-Jun Wan, Xiaofeng Gao, Zhao Zhang,
Weili Wu: Minimum Power Strongly Connected Dominating Sets in
Wireless Networks. ICWN 2008: 447-451

[249] Donghyun Kim, Xianyue Li, Feng Zou, Zhao Zhang, Weili Wu: Recy-
clable Connected Dominating Set for Large Scale Dynamic Wireless
Networks. WASA 2008: 560-569

[250] Ning Zhang, Incheol Shin, Feng Zou, Weili Wu, My T. Thai: Trade-
off scheme for fault tolerant connected dominating sets on size and
diameter. FOWANC 2008: 1-8

[251] Ling Ding, Xiaofeng Gao, Weili Wu, Wonjun Lee, Xu Zhu, Ding-Zhu
Du: Distributed Construction of Connected Dominating Sets with
Minimum Routing Cost in Wireless Networks. ICDCS 2010: 448-457

[252] Deying Li, Hongwei Du, Peng-Jun Wan, Xiaofeng Gao, Zhao Zhang,
Weili Wu: Construction of strongly connected dominating sets in
asymmetric multihop wireless networks. Theor. Comput. Sci. 410(8-
10): 661-669 (2009)

[253] Feng Zou, Xianyue Li, Donghyun Kim, Weili Wu: Construction of
Minimum Connected Dominating Set in 3-Dimensional Wireless Net-
work. WASA 2008: 134-140

NP-hard Problems 213

[254] Xianyue Li, Xiaofeng Gao, Weili Wu: A Better Theoretical Bound to
Approximate Connected Dominating Set in Unit Disk Graph. WASA
2008: 162-175

[255] Lu Ruan, Hongwei Du, Xiaohua Jia, Weili Wu, Yingshu Li, Ker-I
Ko: A greedy approximation for minimum connected dominating sets.
Theor. Comput. Sci. 329(1-3): 325-330 (2004)

[256] Hongwei Du, Weili Wu, Qiang Ye, Deying Li, Wonjun Lee, Xuepeng X-
u: CDS-Based Virtual Backbone Construction with Guaranteed Rout-
ing Cost in Wireless Sensor Networks. IEEE Trans. Parallel Distribut-
ed Syst. 24(4): 652-661 (2013)

[257] Hongwei Du, Qiang Ye, Weili Wu, Wonjun Lee, Deying Li, Ding-Zhu
Du, Stephen Howard: Constant approximation for virtual backbone
construction with Guaranteed Routing Cost in wireless sensor net-
works. INFOCOM 2011: 1737-1744

[258] I. Dinur, D. Steurer, Analytical approach to parallel repetition, in
STOC 14: Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing (2014), pp. 624C633

[259] Chuanwen Luo, Wenping Chen, Deying Li, Yongcai Wang, Hongwei
Du, Lidong Wu, Weili Wu: Optimizing flight trajectory of UAV for
efficient data collection in wireless sensor networks. Theor. Comput.
Sci. 853: 25-42 (2021)

[260] Xingjian Ding, Jianxiong Guo, Deying Li, Weili Wu: Optimal wireless
charger placement with individual energy requirement. Theor. Com-
put. Sci. 857: 16-28 (2021)

[261] Chuanwen Luo, Lidong Wu, Wenping Chen, Yongcai Wang, Deying
Li, Weili Wu: Trajectory Optimization of UAV for Efficient Data Col-
lection from Wireless Sensor Networks. AAIM 2019: 223-235

[262] Donghyun Kim, Wei Wang, Deying Li, Joonglyul Lee, Weili Wu, Alade
O. Tokuta: A joint optimization of data ferry trajectories and commu-
nication powers of ground sensors for long-term environmental moni-
toring. J. Comb. Optim. 31(4): 1550-1568 (2016)

[263] Donghyun Kim, R. N. Uma, Baraki H. Abay, Weili Wu, Wei Wang,
Alade O. Tokuta: Minimum Latency Multiple Data MULE Trajectory
Planning in Wireless Sensor Networks. IEEE Trans. Mob. Comput.
13(4): 838-851 (2014)

214 NP-hard Problems

[264] Donghyun Kim, Wei Wang, Weili Wu, Deying Li, Changcun Ma, Nas-
sim Sohaee, Wonjun Lee, Yuexuan Wang, Ding-Zhu Du: On bounding
node-to-sink latency in wireless sensor networks with multiple sinks.
Int. J. Sens. Networks 13(1): 13-29 (2013)

[265] Donghyun Kim, Baraki H. Abay, R. N. Uma, Weili Wu, Wei Wang,
Alade O. Tokuta: Minimizing data collection latency in wireless sensor
network with multiple mobile elements. INFOCOM 2012: 504-512

[266] Donghyun Kim, Wei Wang, Nassim Sohaee, Changcun Ma, Weili Wu,
Wonjun Lee, Ding-Zhu Du: Minimum Data-Latency-Bound k-Sink
Placement Problem in Wireless Sensor Networks. IEEE/ACM Trans.
Netw. 19(5): 1344-1353 (2011)

[267] Deying Li, Qinghua Zhu, Hongwei Du, Weili Wu, Hong Chen, Wen-
ping Chen: Conflict-Free Many-to-One Data Aggregation Scheduling
in Multi-Channel Multi-Hop Wireless Sensor Networks. ICC 2011: 1-5

[268] Donghyun Kim, Wei Wang, Ling Ding, Jihwan Lim, Heekuck O-
h, Weili Wu: Minimum average routing path clustering problem in
multi-hop 2-D underwater sensor networks. Optim. Lett. 4(3): 383-
392 (2010)

[269] Wei Wang, Donghyun Kim, James Willson, Bhavani M. Thuraising-
ham, Weili Wu: A Better Approximation for Minimum Average Rout-
ing Path Clustering Problem in 2-d Underwater Sensor Networks. Dis-
cret. Math. Algorithms Appl. 1(2): 175-192 (2009)

[270] Wei Wang, Donghyun Kim, Nassim Sohaee, Changcun Ma, Weili Wu:
A PTAS for Minimum d-Hop Underwater Sink Placement Problem
in 2-d Underwater Sensor Networks. Discret. Math. Algorithms Appl.
1(2): 283-290 (2009)

[271] Zhao Zhang, Xiaofeng Gao, Xuefei Zhang, Weili Wu, Hui Xiong: Three
Approximation Algorithms for Energy-Efficient Query Dissemination
in Sensor Database System. DEXA 2009: 807-821

[272] Weili Wu, Xiuzhen Cheng, Min Ding, Kai Xing, Fang Liu, Ping Deng:
Localized Outlying and Boundary Data Detection in Sensor Networks.
IEEE Trans. Knowl. Data Eng. 19(8): 1145-1157 (2007)

[273] Guanfeng Li, Hui Ling, Taieb Znati, Weili Wu: A Robust on-Demand
Path-Key Establishment Framework via Random Key Predistribution

NP-hard Problems 215

for Wireless Sensor Networks. EURASIP J. Wirel. Commun. Netw.
2006 (2006)

[274] Xingjian Ding, Jianxiong Guo, Yongcai Wang, Deying Li, Weili Wu:
Task-driven charger placement and power allocation for wireless sensor
networks. Ad Hoc Networks 119: 102556 (2021).

[275] Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, Weili Wu:
Matching influence maximization in social networks. Theor. Comput.
Sci. 857: 71-86 (2021)

[276] Jianxiong Guo, Weili Wu: Adaptive Influence Maximization: If In-
fluential Node Unwilling to Be the Seed. ACM Trans. Knowl. Discov.
Data 15(5): 84:1-84:23 (2021)

[277] Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, Weili Wu:
Maximize the Probability of Union-Influenced in Social Networks. CO-
COA 2021: 288-301.

[278] Jianxiong Guo, Weili Wu: Influence Maximization: Seeding Based
on Community Structure. ACM Trans. Knowl. Discov. Data 14(6):
66:1-66:22 (2020)

[279] Jing Yuan, Weili Wu, Wen Xu: Approximation for Influence Maxi-
mization. Handbook of Approximation Algorithms and Metaheuristics
(2) 2018

[280] Zaixin Lu, Zhao Zhang, Weili Wu: Solution of Bharathi-Kempe-Salek
conjecture for influence maximization on arborescence. J. Comb. Op-
tim. 33(2): 803-808 (2017)

[281] Yuqing Zhu, Weili Wu, Yuanjun Bi, Lidong Wu, Yiwei Jiang, Wen Xu:
Better approximation algorithms for influence maximization in online
social networks. J. Comb. Optim. 30(1): 97-108 (2015)

[282] Wen Xu, Zaixin Lu, Weili Wu, Zhiming Chen: A novel approach to
online social influence maximization. Soc. Netw. Anal. Min. 4(1): 153
(2014)

[283] Zaixin Lu, Wei Zhang, Weili Wu, Joonmo Kim, Bin Fu: The com-
plexity of influence maximization problem in the deterministic linear
threshold model. J. Comb. Optim. 24(3): 374-378 (2012)

216 NP-hard Problems

[284] Zaixin Lu, Wei Zhang, Weili Wu, Bin Fu, Ding-Zhu Du: Approxima-
tion and Inapproximation for the Influence Maximization Problem in
Social Networks under Deterministic Linear Threshold Model. ICDCS
Workshops 2011: 160-165

[285] Jianxiong Guo, Weili Wu: Continuous Profit Maximization: A Study
of Unconstrained Dr-Submodular Maximization. IEEE Trans. Com-
put. Soc. Syst. 8(3): 768-779 (2021)

[286] Bin Liu, Xiao Li, Huijuan Wang, Qizhi Fang, Junyu Dong, Weili Wu:
Profit Maximization problem with Coupons in social networks. Theor.
Comput. Sci. 803: 22-35 (2020)

[287] Tiantian Chen, Bin Liu, Wenjing Liu, Qizhi Fang, Jing Yuan, Weil-
i Wu: A random algorithm for profit maximization in online social
networks. Theor. Comput. Sci. 803: 36-47 (2020)

[288] Bin Liu, Yuxia Yan, Qizhi Fang, Junyu Dong, Weili Wu, Huijuan
Wang: Maximizing profit of multiple adoptions in social networks with
a martingale approach. J. Comb. Optim. 38(1): 1-20 (2019)

[289] Yuqing Zhu, Deying Li, Ruidong Yan, Weili Wu, Yuanjun Bi: Maxi-
mizing the Influence and Profit in Social Networks. IEEE Trans. Com-
put. Soc. Syst. 4(3): 54-64 (2017)

[290] Yuqing Zhu, Zaixin Lu, Yuanjun Bi, Weili Wu, Yiwei Jiang, Deying Li:
Influence and Profit: Two Sides of the Coin. ICDM 2013: 1301-1306

[291] Bin Liu, Xiao Li, Huijuan Wang, Qizhi Fang, Junyu Dong, Weili Wu:
Profit Maximization Problem with Coupons in Social Networks. AAIM
2018: 49-61

[292] A.A. Ageev and M. Svirdenko, Pipage rounding: a new method of
constructing algorithms with proven performance guarantee, Journal
of Combinatorial Optimization, 8 (2004) 307-328.

[293] Bellare, M., Goldreich, O., and Sudan, M., Free bits and nonapprox-
imability, Proc. 36th FOCS, 1995, pp.422-431.

[294] Dimitris Bertsimas, Chung-Piaw Teo, Rakesh Vohra: On dependen-
t randomized rounding algorithms, Oper. Res. Lett. 24(3): 105-114
(1999).

NP-hard Problems 217

[295] Bland, G. G. [1977], New finite pivoting rules of the simplex method,
Mathematics of Operations Research Vol 2, 103-107.

[296] J. Bar-LLan, G. Kortsarz and D. Prleg, Generalized submodular cover
problem and applications, Theoretical Computer Science, 250 (2001)
179-200.

[297] Gruia Calinescu, Chandra Chekuri, Martin P?, Jan Vondr?: Maxi-
mizing a Submodular Set Function Subject to a Matroid Constraint,
IPCO 2007: 182-196.

[298] Charnes, A. [1952], Optimality and degeneracy in linear programming,
Econometrica 20, 160-170.

[299] Jing-Chao Chen: Iterative Rounding for the Closest String Problem
CoRR abs/0705.0561: (2007).

[300] Cheriyan, J.; Vempala, S.; Vetta, A.: Network design via iterative
rounding of setpair relaxations, Combinatorica, Volume 26, Issue 3,
p.255-275 (2006)

[301] Chvátal, V. [1979], A greedy heuristic for the set-covering problem,
Mathematics of Operations Research, 4: 233-235.

[302] Dantzig, G.B. [1951], Maximization of a linear function of variables
subject to linear inequalities, Chap. XXI of Activity Analysis of Pro-
duction and Allocation, (Cowles Commission Monograph 13), T.C.
Koopmans (ed.), John-Wiley, New York, 1951.

[303] Lisa Fleischer, Kamal Jain, David P. Williamson, An iterative round-
ing 2-approximation algorithm for the element connectivity problem,
42nd Annual IEEE Symposium on Foundations of Computer Science,
2001.

[304] Harold N. Gabow, Suzanne Gallagher: Iterated rounding algorithms
for the smallest k-edge connected spanning subgraph. SODA 2008:
550-559.

[305] Harold N. Gabow, Michel X. Goemans, Evá Tardos, David P.
Williamson: Approximating the smallest k-edge connected spanning
subgraph by LP-rounding, Networks 53(4): 345-357 (2009).

[306] Dongdong Ge, Yinyu Ye, Jiawei Zhang, the fixed-hub single allocation
problem: a geometric rounding approach, working paper, 2007.

218 NP-hard Problems

[307] Dongdong Ge, Simai Hey, Zizhuo Wang, Yinyu Ye, Shuzhong Zhang,
Geometric rounding: a dependent rounding scheme for allocation
problems, working paper, 2008.

[308] M. X. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and
D. P. Williamson: Approximation algorithms for network design prob-
lems, SODA, 1994 pp.223-232.

[309] M.X. Goemans and D.P. Williamson, New 3
4 -approximation algorithm-

s for the maximum satisfiability problem, SIAM Journal on Discrete
Mathematics, 7 (1994) 656-666.

[310] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, Aravind S-
rinivasan: Dependent rounding and its applications to approximation
algorithms. J. ACM 53(3): 324-360 (2006).

[311] D. Gusfield and L. Pitt, A bounded approximation for the minimum
cost 2-sat problem, Algorithmica,8 (1992) 103-117.

[312] Hochbaum, D.S. [1997], Approximating covering and packing prob-
lems: set cover, vertex cover, independent set, and related problems,
in D.S. Hochbaum (ed.) Approximation Algorithms for NP-Hard Prob-
lems, PWS Publishing Company, Boston, pp.94-143.

[313] K. Jain, A factor 2 approximation algorithm for the generalized Steiner
network problem, Combinatorica 21 (2001), pp. 39-60.

[314] D.S. Johnson, Approximation algorithms for combinatorial problems,
Journal of Computer and System Sciences, 9 (1974) 256-278.

[315] Karmarkar, N. [1984], A new polynomial-time algorithm for linear
programming, Proc. 16th STOC, 302-311.

[316] Khachiyan, L.G. [1979], A polynomial algorithm for linear program-
ming, Doklad. Akad. Nauk. USSR Sec. 244, 1093-1096.

[317] Klee, V.L. and Minty, G.J. [1972], How good is the simplex algorithm,
in O. Shisha (ed.) Inequalities 3, Academic, New York.

[318] J.K. Lenstra, D.B. Shmoys and E. Tardos, Approximation algorithm-
s for scheduling unrelated parallel machines, Mathematical Program-
ming, 46 (1990) 259-271.

[319] Lovasz, L. [1975], On the ratio of optimal integral and fractional covers,
Discrete Mathematics, 13: 383-390.

NP-hard Problems 219

[320] V. Melkonian and E. Tardos, Algorithms for a network design problem
with crossing supermodular demands, Networks 43, (2004), 256.265.

[321] G.L. Namhause and L.E. Trotter, Vertex packings: structural proper-
ties and algorithms, Math. Program. 8 (1975) 232-??.

[322] Wolsey, L.A. [1980], Heuristic analysis, linear programming and
branch and bound, Mathematical Programming Study 13: 121-134.

[323] Laurence A. Wolsey: Maximizing real-valued submodular function:
primal and dual heuristics for location problems, Math. of Operations
Research 7 (1982) 410-425.

[324] M. Yannakakis, On the approximation of maximum satisfiability, Jour-
nal of Algorithms, 3 (1994) 475-502.

[325] Wenguo Yang, Jianmin Ma, Yi Li, Ruidong Yan, Jing Yuan, Weili
Wu, Deying Li: Marginal Gains to Maximize Content Spread in Social
Networks. IEEE Trans. Comput. Soc. Syst. 6(3): 479-490 (2019)

[326] Yapu Zhang, Jianxiong Guo, Wenguo Yang, Weili Wu: Targeted Acti-
vation Probability Maximization Problem in Online Social Networks.
IEEE Trans. Netw. Sci. Eng. 8(1): 294-304 (2021)

[327] Ruidong Yan, Yi Li, Weili Wu, Deying Li, Yongcai Wang: Rumor
Blocking through Online Link Deletion on Social Networks. ACM
Trans. Knowl. Discov. Data 13(2): 16:1-16:26 (2019)

[328] Guangmo Amo Tong, Ding-Zhu Du, Weili Wu: On Misinformation
Containment in Online Social Networks. NeurIPS 2018: 339-349

[329] Ruidong Yan, Deying Li, Weili Wu, Ding-Zhu Du, Yongcai Wang:
Minimizing Influence of Rumors by Blockers on Social Networks: Al-
gorithms and Analysis. IEEE Trans. Netw. Sci. Eng. 7(3): 1067-1078
(2020)

[330] Jianming Zhu, Smita Ghosh, Weili Wu: Robust rumor blocking prob-
lem with uncertain rumor sources in social networks. World Wide Web
24(1): 229-247 (2021)

[331] Jianxiong Guo, Yi Li, Weili Wu: Targeted Protection Maximization in
Social Networks. IEEE Trans. Netw. Sci. Eng. 7(3): 1645-1655 (2020)

220 NP-hard Problems

[332] Jianxiong Guo, Tiantian Chen, Weili Wu: A Multi-Feature Diffusion
Model: Rumor Blocking in Social Networks. IEEE/ACM Trans. Netw.
29(1): 386-397 (2021)

[333] Yapu Zhang, Wenguo Yang, Weili Wu, Yi Li: Effector Detection Prob-
lem in Social Networks. IEEE Trans. Comput. Soc. Syst. 7(5): 1200-
1209 (2020)

[334] Luobing Dong, Qiumin Guo, Weili Wu: Speech corpora subset selec-
tion based on time-continuous utterances features. J. Comb. Optim.
37(4): 1237-1248 (2019)

[335] Luobing Dong, Qiumin Guo, Weili Wu, Meghana N. Satpute: A se-
mantic relatedness preserved subset extraction method for language
corpora based on pseudo-Boolean optimization. Theor. Comput. Sci.
836: 65-75 (2020)

[336] Jianxiong Guo, Weili Wu: A Novel Scene of Viral Marketing for Com-
plementary Products. IEEE Trans. Comput. Soc. Syst. 6(4): 797-808
(2019)

[337] Wenguo Yang, Jing Yuan, Weili Wu, Jianmin Ma, Ding-Zhu Du: Max-
imizing Activity Profit in Social Networks. IEEE Trans. Comput. Soc.
Syst. 6(1): 117-126 (2019)

[338] Jianming Zhu, Smita Ghosh, Weili Wu: Group Influence Maximization
Problem in Social Networks. IEEE Trans. Comput. Soc. Syst. 6(6):
1156-1164 (2019)

[339] Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu, Jing Yuan: So-
cial Influence Maximization in Hypergraph in Social Networks. IEEE
Trans. Netw. Sci. Eng. 6(4): 801-811 (2019)

[340] U. Feige and R. Izsak, Welfare maximization and the supermodular
degree, in ACM ITCS, 2013, pp. 247C256.

[341] M. Feldman and R. Izsak, Constrained monotone function maximiza-
tion and the supermodular degree, in ACM-SIAM SODA, 2014.

[342] M. Narasimhan and J. Bilmes, A submodular-supermodular procedure
with applications to discriminative structure learning, In Proc. UAI
(2005).

NP-hard Problems 221

[343] R. Iyer and J. Bilmes, Algorithms for Approximate Minimization of
the Difference between Submodular Functions, In Proc. UAI (2012).

[344] R. Iyer and J. Bilmes, Submodular Optimization Subject to Submod-
ular Cover and Submodular Knapsack Constraints, In Advances of
NIPS (2013).

[345] Chenchen Wu, Yishui Wang, Zaixin Lu, P.M. Pardalos, Dachuan X-
u, Zhao Zhang, Ding-Zhu Du, Solving the degree-concentrated fault-
tolerant spanning subgraph problem by DC programming, submitted
for publication.

[346] Takanori Maehara, Kazuo Murota: A framework of discrete DC pro-
gramming by discrete convex analysis. Math. Program. 152(1-2): 435-
466 (2015).

[347] W. H. Cunningham. Decomposition of submodular functions. Combi-
natorica, 3(1):53C68, 1983.

[348] Yuqing Zhu, Zaixin Lu, Yuanjun Bi, Weili Wu, Yiwei Jiang, Deying Li:
Influence and Profit: Two Sides of the Coin. ICDM 2013: 1301-1306.

[349] Yingfan L. Du, Hongmin W. Du: A new bound on maximum indepen-
dent set and minimum connected dominating set in unit disk graphs.
J. Comb. Optim. 30(4): 1173-1179 (2015).

[350] S. Fujishige. Submodular functions and optimization, volume 58. El-
sevier Science, 2005.

[351] Wei Lu, Wei Chen, Laks V.S. Lakshmanan, From competition to
complementarity: comparative influence diffusion and maximization,
Proc. the VLDB Endowsment, Vol 9, No. 2: 60-71 (2015).

[352] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, Xuren Zhou, Robus
influence maximization, KDD’16, San Francisco, CA, USA, 2016,

[353] Zhefeng Wang, Yu Yang, Jian Pei, and Enhong Chen, Activity max-
imization by effective information diffusion in social networks, arXiv:
1610.07754v1 [cs.SI] 25 Oct 2016.

[354] Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu, and Jing Yuan
Social influence maximization in hypergraph in social networks, IEEE
Transactions on Network Science and Engineering, online.

222 NP-hard Problems

[355] Lidan Fan, Zaixin Lu, Weili Wu, Bhavani M. Thuraisingham, Huan
Ma, Yuanjun Bi: Least Cost Rumor Blocking in Social Networks.
ICDCS 2013: 540-549.

[356] Lidan Fan, Weili Wu: Rumor Blocking. Encyclopedia of Algorithms
2016: 1887-1892.

[357] Guangmo Amo Tong, Weili Wu, Ding-Zhu Du: Distributed Rumor
Blocking in Social Networks: A Game Theoretical Analysis, IEEE
Transactions on Computational Social Systems, online 2018.

[358] Xin Chen, Qingqin Nong, Yan Feng, Yongchang Cao, Suning Gong,
Qizhi Fang, Ker-I Ko: Centralized and decentralized rumor blocking
problems. J. Comb. Optim. 34(1): 314-329 (2017).

[359] Guangmo Amo Tong, Weili Wu, Ling Guo, Deying Li, Cong Liu, Bin
Liu, Ding-Zhu Du: An efficient randomized algorithm for rumor block-
ing in online social networks. INFOCOM 2017: 1-9.

[360] Lidan Fan, Weili Wu, Xuming Zhai, Kai Xing, Wonjun Lee, Ding-
Zhu Du: Maximizing rumor containment in social networks with con-
strained time. Social Netw. Analys. Mining 4(1): 214 (2014).

[361] Ailian Wang, Weili Wu, Junjie Chen: Social Network Rumors Spread
Model Based on Cellular Automata. MSN 2014: 236-242.

[362] Lidan Fan, Weili Wu, Kai Xing, Wonjun Lee: Precautionary rumor
containment via trustworthy people in social networks. Discrete Math.,
Alg. and Appl. 8(1) (2016).

[363] Ling Gai, Hongwei Du, Lidong Wu, Junlei Zhu, Yuehua Bu: Blocking
Rumor by Cut. J. Comb. Optim. 36(2): 392-399 (2018).

[364] S. Fujishige. Submodular functions and optimization, volume 58. El-
sevier Science, 2005.

[365] Anton Barhan, Andrey Shakhomirov: Methods for Sentiment Analy-
sis of Twitter Messages, Proceeding of the 12th Conference of Fruct
Association, 2012, pp. 216-222.

[366] Jeff Edmonds, Kirk Pruhs: Scalably scheduling processes with arbi-
trary speedup curves. ACM Trans. Algorithms 8(3): 28 (2012).

NP-hard Problems 223

[367] Baoyuan Wu, Siwei Lyu, Bernard Ghanem: Constrained Submodular
Minimization for Missing Labels and Class Imbalance in Multi-label
Learning. AAAI 2016: 2229-2236.

[368] Jianxiong Guo, Weili Wu: Viral marketing with complementary prod-
ucts, in this book.

[369] Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu, Jing Yuan: Social
influence maximization in hypergraph in social networks, IEEE Trans.
Network Science and Engineering, online, 2018.

[370] Guangmo Amo Tong, Ding-Zhu Du, Weili Wu: On Misinformation
Containment in Online Social Networks. NeurIPS 2018: 339-349.

[371] U. Feige and R. Izsak, Welfare maximization and the supermodular
degree, in ACM ITCS, 2013, pp. 247C256.

[372] M. Feldman and R. Izsak, Constrained monotone function maximiza-
tion and the supermodular degree, in ACM-SIAM SODA, 2014.

[373] Moran Feldman, Rani Izsak: Building a good team: Secretary prob-
lems and the supermodular degree. SODA 2017: 1651-1670.

[374] R. Iyer and J. Bilmes, Submodular Optimization Subject to Submod-
ular Cover and Submodular Knapsack Constraints, In Advances of
NIPS (2013).

[375] Wenruo Bai, Jeffrey A. Bilmes: Greed is Still Good: Maximizing
Monotone Submodular+Supermodular (BP) Functions. ICML 2018:
314-323.

[376] Peng-Jun Wan, Ding-Zhu Du, Panos M. Pardalos, Weili Wu: Greedy
approximations for minimum submodular cover with submodular cost.
Comp. Opt. and Appl. 45(2): 463-474 (2010)

[377] Hongjie Du, Weili Wu, Wonjun Lee, Qinghai Liu, Zhao Zhang, Ding-
Zhu Du: On minimum submodular cover with submodular cost. J.
Global Optimization 50(2): 229-234 (2011).

[378] M. Narasimhan and J. Bilmes, A submodular-supermodular procedure
with applications to discriminative structure learning, In Proc. UAI
(2005).

[379] R. Iyer and J. Bilmes, Algorithms for Approximate Minimization of
the Difference between Submodular Functions, In Proc. UAI (2012).

224 NP-hard Problems

[380] Chenchen Wu, Yishui Wang, Zaixin Lu, P.M. Pardalos, Dachuan X-
u, Zhao Zhang, Ding-Zhu Du, Solving the degree-concentrated fault-
tolerant spanning subgraph problem by DC programming, submitted
for publication.

[381] Takanori Maehara, Kazuo Murota: A framework of discrete DC pro-
gramming by discrete convex analysis. Math. Program. 152(1-2): 435-
466 (2015).

[382] Wei Lu, Wei Chen, Laks V.S. Lakshmanan, From competition to
complementarity: comparative influence diffusion and maximization,
Proc. the VLDB Endowsment, Vol 9, No. 2: 60-71 (2015).

[383] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, Xuren Zhou, Robus
influence maximization, KDD’16, San Francisco, CA, USA, 2016,

[384] Zhefeng Wang, Yu Yang, Jian Pei, and Enhong Chen, Activity max-
imization by effective information diffusion in social networks, arXiv:
1610.07754v1 [cs.SI] 25 Oct 2016.

[385] Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, Weili Wu:
Maximize the Probability of Union-Influenced in Social Networks. CO-
COA 2021: 288-301

[386] Luobing Dong, Meghana N. Satpute, Weili Wu, Ding-Zhu Du: Two-
Phase Multidocument Summarization Through Content-Attention-
Based Subtopic Detection. IEEE Trans. Comput. Soc. Syst. 8(6):
1379-1392 (2021)

[387] Yapu Zhang, Jianxiong Guo, Wenguo Yang, Weili Wu: Mixed-case
community detection problem in social networks: Algorithms and
analysis. Theor. Comput. Sci. 854: 94-104 (2021)

[388] Qiufen Ni, Smita Ghosh, Chuanhe Huang, Weili Wu, Rong Jin: Dis-
count allocation for cost minimization in online social networks. J.
Comb. Optim. 41(1): 213-233 (2021)

[389] Shuyang Gu, Chuangen Gao, Ruiqi Yang, Weili Wu, Hua Wang,
Dachuan Xu: A general method of active friending in different dif-
fusion models in social networks. Soc. Netw. Anal. Min. 10(1): 41
(2020)

[390] Jianxiong Guo, Weili Wu: Discount advertisement in social platform:
algorithm and robust analysis. Soc. Netw. Anal. Min. 10(1): 57 (2020)

