
1 Panel Robust Variance Estimator
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and its associated -statistic becomes
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Consider two regressors: First let

 =  0
̂ = [1̂ 2̂]

where

 = (1   )
0

Then calculate
P

=1 
0
 which is  ×  matrix.

Read Lecture note in Econometric I and find out the potential issue on this panel robust

variance estimator.

2 Monte Carlo Studies

2.1 Why Do We need MC?

1. Verify asymptotic results. If an econometric theory is correct, the asymptotic results

should be replicatable by means of Monte Carlo studies.

(a) Large sample theory: / or  must be very large. At least  = 500

(b) Generalize assumptions. See if a change in an assumption makes any difference in

asymptotic results.

2. Examine finite sample performance. In finite sample, asymptotic results are just ap-

proximation. We don’t know if or not an econometric theory works well in the finite

sample.

(a) Useful to compare with various estimators.

(b) MSE and Bias become important to the estimation methods.

(c) Size and Power become issues on various testing procedures & covariance estimation.
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2.2 How to do MC

1. Need a data generating process (DGP), and distributional assumption.

(a) DGP depends on an econometric theory and its assumptions.

(b) Need to generate pseudo random variables from a certain distribution

2.2.1 Example 1: Verifying asymptotic result of OLSE

DGP:

Model:  = +  + 

Now we take a particular case like

 ∼  (0 1)   ∼  (0 )

where  =  = 0

Step by Step procedure

1. Find out the parameters of interest. (here we are interested in consistency of OLSE)

2. Generate  pseudo random variables of   and  Since  =  = 0  = 

3. Calculate OLSE for  and  (plus the estimates of parameters of interest)

4. Repeat 2 and 3  times. record all ̂

5. calculate mean of ̂ and variance of them. (how do we know the convergence rate?)

6. Repeat 2-5 by changing 

2.2.2 Example 2: Verifying asymptotic result of OLSE Testing

DGP:

Model:  = +  + 

Now we take a particular case like

 ∼  (0 1)   ∼  (0 )

where  =  = 0

2



Step by Step procedure

1. Find out the parameters of interest. (−statistic)

2. Generate  pseudo random variables of   and  And calculate  ratio for  and 

3. Repeat 2 and 3  times. record all 
̂


4. Sort 
̂
and find out the lower and upper 2.5% values. Compare them with the asymptotic

critical value.

5. Repeat 2-4 by changing 

2.2.3 Exercise 1: Use NW estimator and calculate  ratio. Compare the size and

power of the tests (ordinary and NW t-ratios)

Asymptotic theory: Both of them are consistent. The ordinary  ratio becomes more efficient.

Why?

Size of the test Change step 4 in Example 2 as follows:

Let

t∗ =
¯̄̂
t
¯̄

sort ∗. Find when ∗  196 And 1− ∗ becomes the size of the test.

Power of the test Change  = 001 005 01 02

Repeat the above procedures, and find 1− ∗ This becomes the power of the test.

2.2.4 Exercise 2: Re-do Bertrand et al.
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3 Review Asymptotic Theory

3.1 Most Basic Theory
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3.2 Addition Constant term
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First let
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4 Power of the Test (Local Alternative Approach)

Consider the model

 =  + 

and under the null hypothesis, we have

 = 

Now we want to analyze the power of the test asymptotically. Under the alternative, we have

 =  + 

where  6= 0
Suppose that we are interested in comparing two estimates, let say OLSE and FGLSE (̂1

and ̂2). Then we have

√

³
̂1 − 

´
r

³
̂1

´ →  (0 1) +

³
−12

´
or √


³
̂1 − 

´
r

³
̂1
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³
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´
Hence as long as  6= 0 the power of the test goes to one. In other words, the dominant term
becomes the second term (

√
)

Similary, we have

√

³
̂2 − 

´
r

³
̂2

´ →  (0 1) +
√
+

³
−12

´

Hence we can’t compare two tests.

Now, to avoid this, let

 =  +
√


so that  →  as →∞ Then we have

√

³
̂ − 

´
r

³
̂

´ →  ( 1) +

³
−12

´


Hence depending on the value of  we can compare the power of the test (across different

estimates).
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5 Panel Regression

5.1 Regression Types

1. Pooled OLS estimator (POLS)

 = +  +  + 

2. Least squares dummy variables (LSDV) or Withing group (WG) or Fixed effects (FE)

estimator

 =  +  +  + 

3. Random Effect (RE) or PFGLS estimator

 = +  +  +   =  − + 

Let  = (11 12  1  21   )
0  x = (1   )

0  x = (1  )
0  Define

 z and z in the similar way. Let  = ( )0  Then

5.2 Covariance estimators:

1. Ordinary estimator: ̂2 (
0 )

−1

2. White estimator

(a) Cross sectional heteroskedasticity:  ( 0 )
−1 ¡ 1



P
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−1

(b) Time series heteroskedasticity:  ( 0 )
−1
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(c) Cross and Time heteroskedasticity:  ( 0 )
−1
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P
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2
ww
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−1

3. Panel Robust Covariane estimator:  ( 0 )
−1
³
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P
=1w

0
ûû

0
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´
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4. LRV estimator ? Why not?

5.3 Pooled GLS Estimators

̂ =
£
 0 ¡Ω−1 ⊗ 

¢

¤−1 £

 0 ¡Ω−1 ⊗ 
¢

¤
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5.3.1 How to estimate Ω :

1. Time Series Correlation:

(a) AR1: easy to extend. Ω =

⎡⎢⎢⎣
1 −1
...

. . .
...

−1 1

⎤⎥⎥⎦
(b) Unknown. Ω̂ =

1


P
=1 ̂̂ Required small  and large 

2. Cross sectional correlation

(a) Spatial: Easy.

(b) Unknown. Ω̂ =
1


P
=1 ̂̂

5.4 Seemingly Unrelated Regression

̂ =
£
 0 ¡ ⊗Ω−1¢ ¤−1 £

 0 ¡ ⊗Ω−1¢ ¤
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6 Bootstrap

Reference: “The BOOTSTRAP” by Joel L. Horowitz (Chapter 52 in Handbook of Economet-

rics Vol 5)

6.1 What is the bootstrap

It is a method for estimating the distribution of an estimator or test statistics by resampling

the data.

Example 1 (Bias correction) Model

 = + −1 + 

where  is a white noise process. It is well known that E(̂− ) = −1 + 3


+
¡
−2

¢
 Here

I am explaining how to reduce Kendall bias (not eliminating) by using the following bootstrap

procedure.

1. Estimate OLSE for  and  denote them as ̂ and ̂ Get OLS residual ̂ = −̂−̂−1

2. generate  +  random variables from the uniform distribution of  (1  − 1)  Make
them as integers.

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+floor(ind); % make integers. 0.1 = 1.

3. Draw ( +)× 1 vector of ∗ from ̂

esta = e(ind,:);

4. Recentering ∗ to make its mean be zero. Generate pseudo ∗ from ∗  and discard the

first  obs.

esta = esta - mean(esta); ysta = esta;

for i=2:t+k;

ysta(i,:) = ahat+rhohat*ysta(i-1,:) + esta(i,:);

end;

ysta =ysta(k+1:t+k,:);
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5. Estimate ̂∗ and ̂∗ with ∗ 

6. Repeat step 2 and 5  times.

7. Calculate the sample mean of ̂∗ Calculate the bootstrap bias,  = 1


P
=1 ̂

∗
 − ̂

where ̂∗ is the th time bootstrapped point estimate of  Subtract  from ̂

̂mue = ̂−

where mue stands from mean unbiased estimator. Note that

 (̂mue − ) = 
¡
−2

¢


6.2 How the bootstrap works

First let the estimates be a function of  For example, ̂ be ̂  Now define

̂ =

P
̃̃−1P
̃2−1

=  ()  let say

where  is a 2× 1 vector. That is,  = (1 2) and 1 =
1


P
̃̃−1 and 2 =

1


P
̃2−1

From A Tyalor expansion (or Delta method), we have

̂ = +



( − ) +

1

2
( − )

0
µ

2

0

¶
( − ) +
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Now taking expectations yields

 (̂ − ) = 
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1
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since  ( − ) = 0 always.

The first term in the above becomes 
¡
−1

¢
, that is −1 + 3


 We want to eliminate this

part (not reduce it). The bootstrapped ̂∗ becomes

̂∗ = ̂ +



(∗ − ) +

1

2
(∗ − )

0
µ

2

0

¶
(∗ − ) +

¡
−2
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where ∗ = (∗1  

∗
2)  and 

∗
1 =

1


P
̃∗̃

∗
−1 etc. Note that we generate 

∗
 from ̂  ̂

∗
 can be

expanded around ̂ not around the true value of  Now taking expectation ∗ in the sense

that

∗ →  as  →∞

10



Then we have

∗ (̂∗ − ̂ ) =
1

2
∗ (∗ − )

0
µ

2

0

¶
(∗ − ) +

¡
−2

¢
= ∗

Note that in general

∗ =  +
¡
−2

¢
hence we have

̂mue = ̂ −∗ = ̂ −∗ (̂∗ − ̂ )

6.3 Bootstrapping Critical Value

Example 2. (Using the same example 1) Generate -ratio for ̂∗  times. Sort them,

and find 95% critical value from the bootstrapped t-ratio. Compare it with the actual t-ratio.

Asymptotic Refinement Notation:

0 is the true cumulative density function. For an example, cdf of normal distribution.

 is the t-statistic of 

 is the sample t-statistic of ̂ where  is the sample size.

 (  0) =  ( ≤ ). That is the function  is the true CDF of 

 (  0) =  ( ≤ )  The function  is the exact finite sample CDF of 

Asymptotically  →  as  → ∞ Denote that  (  ) is the bootstrapped function

for ∗ where  is the finite sample CDF

Definition: Pivotal statistics If  (  0) does not depend on 0 then  is said to be

pivotal.

Example 3 (exact finite sample CDF for AR(1) with a unknown constant) From

Tanaka (1983, Econometrica), the exact finite sample CDF for ̂ is given by

 (̂ ≤ ) = Φ () +
 ()√



2+ 1p
1− 2

+
¡
−1

¢
where Φ is the CDF of normal distribution and  is PDF of normal. Here Tanaka assumes 0

is normal. That is,  is distributed as normal. Of course, if  has a different distribution,
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the exact finite sample PDF is unknown. However, ̂ is pivotal since as  →∞ its limiting

distribution goes to Φ () 

Now under some regularity conditions (see Theorem 3.1 Horowitz), we have

 (  0) =  (  0) +
1√

1 (  0) +

1


2 (  0) +

1

32
3 (  0) +

¡
−2

¢
uniformly over  

Meanwhile the bootstrapped 
̂
has the following properties

 (  ) =  (  ) +
1√

1 (  ) +

1


2 (  ) +

1

32
3 (  ) +

¡
−2

¢

When 
̂

is not a pivotal statistic In this case, we have

 (  0)− (  ) = [ (  0)− (  )] +
1√

[1 (  0)− 1 (  )] +

¡
−1

¢
Note that  (  0) −  (  ) = 

¡
−12

¢
. Hence the bootstrap makes an error of size


¡
−12

¢
 Also note that  (  0) also makes an error of size 

¡
−12

¢
 so that the boot-

strap does not reduce (neither increase) the size of the error.

When 
̂

is a pivotal In this case, we have

 (  0)− (  ) = 0

by definition. Then we have

 (  0)− (  ) =
1√

[1 (  0)− 1 (  )] +

¡
−1

¢
and 1 (  0)− 1 (  ) = 

¡
−12

¢
 Hence we have

 (  0)− (  ) = 
¡
−1

¢


which implies that the bootstrap reduces the size of an error.

6.4 Exercise: Sieve Bootstrap

(Read Li and Maddala, 1997)

Consider the following cross sectional regression

 = +  +  (3)

We want to test the null hypothesis of  = 0We suspect that  and  are serially correlated,

but not cross correlated. Consider the following sieve bootstrap procedure
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1. Run (3) and get ̂ ̂, and ̂

2. Run the following regression"




#
=

"


0

#
+

"
 0

0 

#"




#
+

"




#

and get ̂ ̂ ̂ and their residuals of ̂ and ̂ Recentering them.

3. Generate pseudo ∗ and ∗

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+floor(ind); % make integers. 0.1 = 1.

F = [ehat espi]; % ̂ and ̂

Fsta = F(ind,:); % use the same ind. Important!

repeat what you learnt before....

4. Generate ∗ under the null,

∗ = ̂+ ∗

5. Run (3) with ∗ and ∗ and get the bootstrapped critical value.
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