Matlab Programming Help

Online Help:

1. http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
2. http://www.math.ufl.edu/help/matlab-tutorial/
3. http://www.ag.unr.edu/moeltner/Matlab\ Tutorial/Matlab\ Tutorial.pdf
4. http://terpconnect.umd.edu/~nsw/ench250/for-mat.htm (Comparison between Matlab and Fortran f77)

Programming Basic

1. Input and output statement: output is written first.

Example 1:
$X=Y+1$
Define X as $\mathrm{Y}+1$.
X can be a scalar, vector, matrix. To do so, you have to define it first. For scalar case, you don't need to do so.

Code	Meaning
$\mathrm{Y}=1$	Variable Y is defined as 1
$\mathrm{Y}=1+\mathrm{Y}$	Variable Y is defined as $1+1$, so that Y becomes 2
$\mathrm{X}=\mathrm{Y}+1$	Variable X is defined as $2+1$
$\mathrm{Y}=$ zeros $(1,2)$	Y becomes a 1x2 null vector. $\mathrm{Y}=(0,0)$
$\mathrm{Y}(1,1)=1$	
$\mathrm{Y}(1,2)=2$	$\mathrm{Y}=(1,2)$

2. Do Loop

Suppose that you want to add the sequence of numbers from 1 to 10. Let's program this.

Ex2. $X=1+2+3+4+5+\ldots+10$
Sol 1: Write as
$X=1+2+3+4+5+6+7+8+9+10$
Sol 2: Write as
$X=1$
$X=X+2$
$x=x+3$
...
$X=X+10$

Sol 3: Use "For" statement

$X=0 ;$	Assign 0 to X. Need ";" to continue program it.
For $i=1: 10 ;$	Start Do loop. First assign i to be 1, and increase it
$X=X+i ;$	by 1 up to 10. X becomes $X+i$, Repeat this until $i=10$

Let $\mathrm{X}=\left[\begin{array}{lllllllll}1 & 3 & 4 & 2 & 2 & 4 & 1 & 23 & 5\end{array}\right] ;$ That is, X is a 10×1 vector. Calculate its mean by using For statement

$Z=0 ;$	Assign 0 to Z.
For $i=1: 10 ;$	
$Z=Z+X(i) ;$	Start Do loop. First assign i to be 1, and increase it
by 1 up to 10.	
Z becomes Z $+X(i)$,	
Repeat this until $i=10$	

Exercise: For Statement

1. Add 1 through 100
2. Multiply 1 through 20
3. $2 \times 4 \times 6 \times 8 \times \ldots \times 20$
4. $X(1) X Y(1)+X(2) X Y(2)+\ldots+X(n) X Y(n)$

3. IF Statement

Format:
IF condition statement End
Example: $\mathrm{X}=\left[\begin{array}{llll}1 & -2 & 3 & -4\end{array}\right]$
We want to change X to index such that $Y=0$ if $X>0, Y=10 . W$.
$Y=X ;$
For i = 1:4;
if $X(i)>0 ; Y(i)=0 ;$ end;
if $X(i)<0 ; Y(i)=1 ;$ end;
end;

Exercise: IF Statement

1. $X=\left[\begin{array}{llll}1 & 3 & 4 & 8\end{array}\right]$. Find the maximum of X.
2. Find the minimum of X
3. Sort X .

4. Data (Matrix \& Vector) Modification

```
Ex: A = [1 2; 3 4] implies A = 1 2
Type the following commends.
    1. A'
    2. sum(A)
    3. sum(A')
    4. sum(A')'
    5. diag(A)
    6. sum(diag(A))
    7. inv(A)
    8. A(1,2)
    9. A(1,1)
    10. A(2,1)
    11. A(:,1)
    12. A(1,:)
    13. A(:)
    14. A(:, end)
```


Expression

. * element by element product
./ element by element division
\ inverse
.^ element by element power
Type $A=[12 ; 34] ; B=[11 ; 23] ;$

1. a
2. A
3. b
4. B
5. A. *B
6. A./B
7. $A \backslash B$
8. $\operatorname{Inv}(A) * B$
9. $A^{\prime *} A$
10. $B^{\prime *} B$
11. $\operatorname{Inv}(A) .{ }^{*} A$
12. $\operatorname{Inv}(A) * A$
$E x b=[23]$. You want to calculate $A-b=1-2$ 2-3 3-2 4-3

Important Functions

Type $A=\left[\begin{array}{llll}-3 & 4 ; & 1 & 2\end{array}\right]$

1. a
2. A
3. mean (A)
4. $\operatorname{sum}(A)$
5. sort(A)
6. [B,id] $=\operatorname{sort}(A)$
7. $\max (A)$
8. $\min (A)$
9. $\operatorname{std}(A)$
10. $\operatorname{var}(A)$
11. $\operatorname{cov}(A)$
12. $\operatorname{abs}(A)$

5. Function Statement

Format
Function output = functionname(inputs)
Example: Average
Function $y=$ mymean (x)
t = length(x);
$y=0 ;$
for $i=1: t ;$
$y=y+x(i) ;$
end;

Then in the main program, you can recall 'mymean'.
z = mymean(x);

In Fortran, this function statement is called as `subroutine' program.
In Gauss, it is called as 'proc' program.
Matlab library contains many function statements.

Assignment 1: Download X and Y variables from the class homepage.
A. Sort X from smallest to largest
B. Sort Y from largest to smallest
C. Calculate mean and variance of X and Y.
D. Calculate correlation between X and Y
E. Make functions (mymean, myvar, mycorr) and use them to calculate C,D and E.
F. Program OLS function.

Input $=x$ and y. both them are $T x 1$ vectors.
Regression: $y=b x+u$.
output:
$b=\operatorname{inv}\left(x^{\prime} x\right)^{*} x^{\prime} y$
R^{\wedge} 2,
ordinary t-value.
Function $[b, r 2, t b]=\operatorname{myols}(y, x)$

Lecture 2: OLS \& GLS

Cross section or Time series data

Model $\mathrm{y}=\mathrm{a}+\mathrm{X} * \mathrm{~b}+\mathrm{u}$
Where X is a matrix (nxk , k is number of regressors), a is scalar, b is a vector.

Define a vector such that
$\mathrm{n}=$ length(y);
$\mathrm{a}=$ ones($\mathrm{n}, 1$);
Next, define a matrix such that

```
Z = [a X];
[n,k] = size(Z);
```


OLS estimator:

bhat = inv(Z'*Z)*Z'*y;

1. Regression residuals: uhat $=\mathrm{y}-\mathrm{Z}$ *bhat;
a. t-ratio needs variance of bhat:
i. IID case:
sigma = uhat.*uhat;
sigma $=$ sum(sigma)/(n-k);
sigma = sigma*inv(Z'*Z);
sigma = diag(sigma);
ii. IDIN case:
uuhat = Z.*repmat(uhat,1,2);
sigma = uuhat'*uuhat;
sigma $=$ sum(sigma)/(n-k);
sigma $=\operatorname{inv(Z^{\prime *}Z)*sigma*inv(Z^{\prime *}Z)*n;~}$
b. R-squares Rbar-squares:

Example file: ex2.m
n = 100;
$y=\operatorname{randn}(n, 1)$;
$x=\operatorname{randn}(n, 1)$;
z = [ones(n,1) x];
b = inv(z'*z)*z'*y;
$u=y-z * b ;$
sig1 $=u^{\prime *} u /(n-2)$;
sig1 = sig1*inv(z'*z);
h = z.*repmat (u, 1, 2) ;
sig2 $=h^{\prime *} h /(n-2)$;
sig2 $=\operatorname{inv}\left(z^{\prime *} z\right)^{*} \operatorname{sig} 2^{*} \operatorname{inv}\left(z^{\prime *} z\right)^{*} n$;
tra1 = b./sqrt(diag(sig1));
tra2 = b./sqrt(diag(sig2));
[tra1 tra2]

GLS Estimator: AR(1) coefficient case

```
n = 100;
y = randn(n,1);
x = randn(n,1);
z = [ones(n,1) x];
b = inv(z'*z)*z'*y;
u = y - z*b;
% estimation of AR(1) coefficient
uy = u(2:n); ux = u(1:n-1);
rho = inv(ux'*ux)*ux'*uy; % or equivalently rho = sum(ux.*uy)/sum(ux.*ux)
e = uy-ux*rho;
ve = var(e);
% constructing co-variance and variance matrix
omega = eye(n).*ve./(1-rho^2);
for i = 1:n;
    for j = i+1:n;
        omega(i,j) = rho^(j-i);
        omega(j,i) = omega(i,j);
    end;
end;
% Cholesky Decomposition
P = chol(omega);
% Pre-multiplying P matrix
ys = P*y;
zs = P*z;
c = inv(zs'*zs)*zs'*ys;
% variance matrix for c
vc = inv(zs'*zs);
% t-values
tra = c./sqrt(diag(vc));
tra
```


Pooled OLS and LSDV

```
clear;
t=2;
n=10;
y = randn(t,n);
x = randn(t,n);
% LSDV
a = ones(t,1);
a = kron(eye(n),a);
vx = x(:);
z = [a vx];
b = inv(z'*z)*z'*y(:);
b
% POLS
a = ones(t,1);
a = repmat(a,1,n);
a = a(:);
z = [a vx];
b = inv(z'*z)*z'*y(:);
b
```


Assignment 3:

A. Suppose that you want to program the following regressions $y(i t)=a _i+c X(i t)+u(i t)$

1. Input must be y and x where X is a nxk matrix
2. Output must include point estimates, their standard errors (ordinary one, panel robust one), r-bar squares etc.
B. Suppose that you want to program the following regressions $Y(i t)=a _i+b z(i)+c X(i t)+u(i t)$
3. Make function for LSDV and POLS
4. Output must include point estimates, their standard errors (ordinary one, panel robust one), r-bar squares etc.
