Matlab Programming Help

Online Help:

1. http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
2. http://www.math.ufl.edu/help/matlab-tutorial/
3. http://www.ag.unr.edu/moeltner/Matlab\ Tutorial/Matlab\ Tutorial.pdf

Programming Basic

1. Input and output statement: output is written first.

Example 1:
$X=Y+1$
Define X as $\mathrm{Y}+1$.
X can be a scalar, vector, matrix. To do so, you have to define it first. For scalar case, you don't need to do so.

Code	Meaning
$\mathrm{Y}=1$	Variable Y is defined as 1
$\mathrm{Y}=1+\mathrm{Y}$	Variable Y is defined as $1+1$, so that Y becomes 2
$\mathrm{X}=\mathrm{Y}+1$	Variable X is defined as $2+1$
$\mathrm{Y}=$ zeros $(1,2)$	Y becomes a 1×2 null vector. $\mathrm{Y}=(0,0)$
$\mathrm{Y}(1,1)=1$	$\mathrm{Y}=(1,2)$
$\mathrm{Y}(1,2)=2$	

2. Do Loop

Suppose that you want to add the sequence of numbers. Let's program this.
Ex2. $X=1+2+3+4+5+\ldots+10$
Sol 1: Write as
$X=1+2+3+4+5+6+7+8+9+10$
Sol 2: Write as
$X=1$
$x=x+2$
$X=X+3$
$x=x+10$
Sol 3: Use "For" statement

```
X = 0; 隹 Assign 1 to X. Need ";" to continue program it.
For i = 1:10; Start Do loop. First assign i to be 1, and increase it
X = X + i;
by 1 up to 10.
X becomes X + i,
Repeat this until i = 10
```

Let $X=\left[\begin{array}{lllllllll}1 & 3 & 4 & 2 & 2 & 4 & 2 & 5\end{array}\right] ;$ That is, X is a 10×1 vector. Calculate its mean by using For statement

$Z=0 ;$	Assign 1 to Z.
For $i=1: 10 ;$	
$Z=Z+X(i) ;$	Start Do loop. First assign i to be 1, and increase it
by 1 up to 10.	
Znd; becomes Z + X(i),	
	Repeat this until $i=10$

Exercise: For Statement

1. Add 1 through 100
2. Multiply 1 through 20
3. $2 \times 4 \times 6 \times 8 \times \ldots \times 20$
4. $X(1) X Y(1)+X(2) X Y(2)+\ldots+X(n) X Y(n)$

3. IF Statement

Format:
IF condition statement End
Example: $X=\left[\begin{array}{llll}1 & -2 & 3 & -4\end{array}\right]$
We want to change X to index such that $Y=0$ if $X>0, Y=10 . W$.
$Y=X ;$
For i = 1:4;
if $X(i)>0 ; Y(i)=0 ; ~ e n d ;$
if $X(i)<0 ; Y(i)=1 ; ~ e n d ;$
end;

Exercise: IF Statement

1. $X=\left[\begin{array}{llll}1 & 3 & 4 & 8\end{array}\right]$. Find the maximum of X.
2. Find the minimum of X
3. Sort X.

4. Data (Matrix \& Vector) Modification

```
Ex: A = [1 2; 3 4] implies A = 1 2
```

Type the following commends.

1. A^{\prime}
2. $\operatorname{sum}(A)$
3. $\operatorname{sum}\left(A^{\prime}\right)$
4. $\operatorname{sum}\left(A^{\prime}\right)^{\prime}$
5. diag(A)
6. $\operatorname{sum}(\operatorname{diag}(A))$
7. inv(A)
8. $A(1,2)$
9. $A(1,1)$
10. $A(2,1)$
11. $A(:, 1)$
12. $A(1,:)$
13. $A(:)$
14. $A(:$, end $)$

Expression

.* element by element product
./ element by element division
\ inverse
.^ element by element power
Type $A=[12 ; 34] ; B=[11 ; 23] ;$

1. a
2. A
3. b
4. B
5. A. *B
6. A./B
7. $A \backslash B$
8. $\operatorname{Inv}(A) * B$
9. $A^{\prime *} A$
10. $B^{\prime *} B$
11. $\operatorname{Inv}(A) .{ }^{*} A$
12. $\operatorname{Inv}(A) * A$

Ex $b=[23]$. You want to calculate $A-b=1-22-3$ 3-2 4-3

Important Functions

Type A $=[-34 ; 13 ; 2$ 2]

1. a
2. A
3. mean (A)
4. $\operatorname{sum}(A)$
5. sort(A)
6. $[B, i d]=\operatorname{sort}(A)$
7. $\max (A)$
8. $\min (A)$
9. $\operatorname{std}(A)$
10. $\operatorname{var}(A)$
11. $\operatorname{cov}(A)$
12. $\operatorname{abs}(\mathrm{A})$

5. Function Statement

Format
Function output = functionname(inputs)
Example: Average
Function $y=m y m e a n(x)$
t = length (x);
$y=0 ;$
for $i=1: t ;$
$y=y+x(i) ;$
end;

Then in the main program, you can recall `mymean'.
z = mymean (x);

In Fortran, this function statement is called as `subroutine' program.
In Gauss, it is called as 'proc' program.
Matlab library contains many function statements.

Assignment 1: Download X and Y variables from the class homepage.
A. Sort X from smallest to largest
B. Sort Y from largest to smallest
C. Calculate mean and variance of X and Y.
D. Calculate correlation between X and Y
E. Make functions (mymean, myvar, mycorr) and use them to calculate C,D and E.
F. Program OLS function.

Input $=x$ and y. both them are $T x 1$ vectors.
Regression: $y=b x+u$.
output:
$b=\operatorname{inv}\left(x^{\prime} x\right)^{*} x^{\prime} y$
R^{\wedge} 2,
ordinary t-value.
Function $[b, r 2, t b]=\operatorname{myols}(y, x)$

