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Abstract—The finite-sample properties of matching and weighting esti-
mators, often used for estimating average treatment effects, are analyzed.
Potential and feasible precision gains relative to pair matching are exam-
ined. Local linear matching (with and without trimming),k-nearest-
neighbor matching, and particularly the weighting estimators performed
worst. Ridge matching, on the other hand, leads to an approximately 25%
smaller MSE than does pair matching. In addition, ridge matching is least
sensitive to the design choice.

I. Introduction

MATCHING estimators are frequently applied in treat-
ment evaluation to estimate average treatment effects.

In this paper, the finite-sample properties of different match-
ing and weighting estimators are analyzed. When selection
is on the observables, for estimating treatment effects it is
necessary to adjust for the different distributions of the
observed characteristics in the treated and the nontreated
population. By doing so, the causal effect is separated from
the effect due to nonrandom selection into treatment. Sev-
eral nonparametric estimators have been suggested for this.

Pair matching, which is most frequently used in applica-
tions, proceeds by finding for each treated observation a
nontreated observation with identical (or very similar) char-
acteristics. This aligns the distributions of the characteristics
in the treated and the matched comparison sample. Finding
matches that are identical with respect to all relevant co-
variates, however, can be difficult if the number of covari-
ates is large. Nevertheless, as proposed by Rosenbaum and
Rubin (1983), matching on the (one-dimensional)propen-
sity score suffices to adjust for the differences in the ob-
served covariates.

Matching only one nontreated observation to each treated
observation is obviously inefficient, and alternative match-
ing estimators have been suggested. Heckman, Ichimura,
and Todd (1997, 1998) proposed local polynomial match-
ing, which includes kernel matching and local linear match-
ing. An alternative approach to matching is based on
weighting the nontreated observations by the propensity
score, as suggested in Imbens (2000).

Asymptotic properties of these matching and weighting
estimators have been examined by Hahn (1998), Heckman
et al. (1998), Abadie and Imbens (2001), Ichimura and

Linton (2002), and Hirano, Imbens, and Ridder (2003). The
finite-sample properties of these estimators, however, have
not been subject to extensive investigation. For their prac-
tical use, it would be important to know which estimator
performs best under which conditions. In addition, many of
these estimators require the choice of bandwidth parame-
ters, and guidance is needed on how to select these.

In this paper the finite-sample properties are investigated
for pair matching, kernel matching, local linear matching,
k-nearest-neighbor (k-NN) matching, and the weighting
estimator. Moreover, the effect of trimming, as suggested by
Heckman et al. (1997, 1998), is examined. In addition, an
alternative matching estimator based on nonparametric
ridge regression is proposed and analyzed. Thisridge
matching estimator is motivated by the observation that
local linear regression can be very unreliable in regions of
sparse data. Trimming the observations in regions with few
comparisons, as in Heckman, Ichimura, and Todd (1997,
1998), is one way to sidestep this problem. Ridge matching,
on the other hand, seeks to stabilize the estimator through
ridge regression (Seifert and Gasser, 1996, 2000).

The Monte Carlo simulations consist of two parts: First,
the mean squared error of the various estimators is simu-
lated at their optimal bandwidth values. These results show
the potential of each estimator, independent of the particular
bandwidth selector. They also indicate how large the im-
provement in mean squared error vis-a`-vis the benchmark
pair-matching estimator could be at most. Thereafter, the
mean squared error is examined when the bandwidth is
chosen by cross-validation. Cross-validation is a convenient
approach to selecting the bandwidth value and turns out to
work reasonably well for some estimators. Ridge matching
very often performs best among all estimators (with a mean
squared error approximately 25% lower than for pair match-
ing) and is robust to the simulation design. Local linear
matching (with and without trimming) andk-NN matching
are more susceptible to the simulation design and can often
be worse than pair matching. The weighting estimator is
very unreliable and has a larger MSE than pair matching in
all simulations.

II. Matching Estimators

When evaluating the effect of a treatment, interest often
lies in the estimation of average treatment effects. LetY i

0

and Yi
1 denote thepotential outcomes, whereYi

1 is the
outcome if the individual receives treatment, andY i

0 the
outcome if he or she does not. LetDi � {0, 1} indicate
treatment receipt. The average treatment effect on the
treated is

E�Y1�D � 1� � E�Y 0�D � 1�.
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Whereas the first term can be estimated by the mean
outcome among the treated individuals, the term E[Y 0�D �
1] is counterfactual. Identifying this counterfactual mean is
fundamental to treatment evaluation. Generally, E[Y 0�D �
1] is not equal to E[Y 0�D � 0] if treatment selection is
nonrandom. Nevertheless, conditional on all confounding
factors X, that is, all factors that influenced the potential
outcome and the decision to participate in treatment, D is
independent of Y 0:

Y 0 �O D�X, (1)

and the counterfactual mean is identified as E[Y 0�D � 1] �
E[E[Y 0�X, D � 0]�D � 1], provided the support of X
among the treated is contained in the support of X among
the nontreated. If X contains only a few variables, the
counterfactual mean can be estimated using nonparametric
regression of Y on X in the nontreated sample. However, if
X is high-dimensional, nonparametric regression can be
difficult. Rosenbaum and Rubin (1983) have shown that the
dimension of the estimation problem can be reduced sub-
stantially in that the counterfactual mean is also identified as

E�Y 0�D � 1�

� � E�Y�p�X� � �, D � 0� � fp�D�1��� d�,
(2)

where p( x) � P (D � 1�X � x) is the one-dimensional
propensity score, and fp�D�1 is the density of p(X) in the
treated population.

Consider a sample of i.i.d. observations {Yi, Di, pi}i�1
n ,

where pi � p(Xi). Denote the number of treated observa-
tions by n1, and the number of control observations by n0.
A variety of propensity-score matching estimators have
been proposed for estimating the counterfactual mean,
which can be characterized as

E�Y 0�D̂ � 1� �
1

n1
�

i:Di�1

m̂� pi�, (3)

where m̂(�) is an estimate of the mean outcome in the
nontreated population conditional on the propensity score:
m(�) � E[Y�p(X) � �, D � 0]. The matching estimators
differ in how they estimate m(�). The most prevalent
estimator is pair matching, which proceeds by finding for
each treated observation a control observation with identical
(or very similar) value of p, that is, it uses first-nearest-
neighbor regression to estimate m(�).

Heckman et al. (1997, 1998) suggested estimating m(�)
by local polynomial regression: Kernel matching estimates
m(�) by Nadaraya-Watson regression, whereas local linear
matching is based on a local linear regression estimator.

Heckman, Ichimura, and Todd (1997) advocated local linear
regression for its well-known optimality properties.1

In small samples, however, local linear regression often
leads to a very rugged curve in regions of sparse or clustered
data (Seifert & Gasser, 1996). To deal with this erratic
behavior, Heckman et al. (1997, 1998) implement a trim-
ming procedure to discard the nonparametric regression
results in regions where the density of the propensity score
in the nontreated population is small. The trimmed matching
estimator is

E�Y 0�D̂ � 1� �
¥i:Di�1 m̂� pi� � 1� f̂p�D�0� pi� � ��

¥i:Di�1 1� f̂p�D�0� pi� � ��
, (4)

where � is set so that, for example, 2% or 5% of the treated
observations are trimmed.

Trimming, however, is a very rough solution for the
small-sample problems of local linear regression. Various
approaches to stabilize the local linear estimator in finite
samples have been developed. A simple but promising
approach is local linear ridge regression, which modifies the
local linear estimator by adding a ridge term to its denom-
inator to avoid near-zero denominators. The regression
estimator of Seifert and Gasser (1996, 2000) is

m̂��� �
T0

S0
�

T1 � �� � p� �

S2 � rh�� � p� � , (5)

where

Sa��� � �
j:Dj�0

� pj � p� �aK�pj � �

h � ,

Ta��� � �
j:Dj�0

Yj� pj � p� �aK�pj � �

h � ,

and

p� � �
j:Dj�0

pjK�pj � �

h �� �
j:Dj�0

K�pj � �

h � .

The bandwidth value h converges to 0 with growing sample
size, and K� is a kernel weighting function. The constant
r is the ridge parameter that ensures nonzero denominators.
According to the rule of thumb of Seifert and Gasser (2000),
r is set to 5

16
for the Epanechnikov kernel and to [4�2	 


�2(u) du]�1 
 0.35 for the Gaussian kernel. Inserting
equation (5) in (3) gives the ridge matching estimator.

In the Monte Carlo simulations, 11 different matching
estimators are compared: pair matching, kernel matching
(with Epanechnikov and Gaussian kernel), local linear match-
ing and trimmed local linear matching (with Epanechnikov

1 See, for example, Fan (1992, 1993), Hastie and Loader (1992) and Fan
et al. (1997).
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and Gaussian kernel), ridge matching (with Epanechnikov
and Gaussian kernel), and two variants of k-NN matching.
In the first variant of k-NN matching, the standard k-NN
regression estimator is used [which estimates m(�) by the
average outcome of the k selected neighbors]. In the second
variant, m(�) is estimated by a weighted average outcome
of the k neighbors, where the neighbors are weighted
according to their distance to � (using Epanechnikov
weights).

An alternative approach to estimating the counterfactual
mean is based on weighting by the propensity score ratio, as
suggested in Imbens (2000). The weighting estimator is

E�Y 0�D̂ � 1� �
1

n1
�

i:Di�0

Yi

pi

1 � pi
. (6)

Because the ratio pi/(1 � pi) can become very large for
values of pi close to 1, some form of trimming or capping
is necessary in finite samples. In the simulations, a ceiling c�
for the ratio pi/(1 � pi) is examined (that is, ratios larger
than c� are set to c� ). In addition, a trimming rule, viz.
deleting the observations with the largest ratios, was con-
sidered, but performed worse.

III. Monte Carlo Study

A. Simulation Design

The design of the Monte Carlo study consists of two
parts: the distributions of the propensity score in the treated
population ( fp�D�1) and the nontreated population ( fp�D�0)
(see figure 1), and the specification of m( p), that is, the
conditional expectation function of Y given the propensity
score (figure 2). The distribution of the propensity scores in
figure 1 is driven by the distribution of X and the specifi-
cation of the propensity score p( x). To have a simple design
that, at the same time, allows one to generate very different
shapes of fp�D�1 and fp�D�0, the covariate X is chosen to be
one-dimensional and drawn from the Johnson SB distribu-
tion (see figure A1), and the propensity score is specified as
a linear function p( x) � � � �x. (Details are given in the
appendix.) Through the choice of different values for � and
�, very different shapes of fp�D�1 and fp�D�0 can be gener-
ated, as demonstrated in Figure 1. An increase in � shifts the
average value of the propensity score upwards, so that the
number of treated relative to the number of nontreated
increases. Through the parameter �, the spread of the
propensity score values is controlled.

Figure 1 shows the five different distributions of the
propensity score that are used in the Monte Carlo simula-
tions. [The support of the propensity score is (�, � � �) and
thus varies with � and �. Figure 1 displays the densities of
the rescaled propensity score, which is scaled by ( p � �)/�
so that its support is always (0,1). This ensures that the
support is compatible with the regression curves in figure 2
for all designs. In the simulations, this rescaled propensity

score is used.] The designs are chosen to illustrate different
degrees of overlapping density mass and to represent dif-
ferent ratios of control to treated observations.2 In the first
three designs, the population mean of the propensity score is
0.5, that is, the expected ratio of control to treated observa-
tions is 1 : 1. In the fourth design the ratio is 4 : 1; in the last
design it is 1 : 4. The fourth design is most pertinent to the
estimation of the average treatment effect on the treated
when the pool of control observations is large. However, if
interest lies also in the average treatment effect or in the
average treatment effect on the nontreated, or if multiple
treatments are to be evaluated, the estimation of the coun-
terfactual means involves settings where the numbers of
treated and control observations are of similar magnitude
and/or where the treated greatly exceed the controls.

The first three designs, where the control-treated ratio is
1 : 1, vary in the discrepancy between the two densities
fp�D�1 and fp�D�0. The differences in the two densities
determine how challenging the estimation setting is for the
matching estimator. If the two densities are rather different,
the matching estimator (3) needs to estimate m( p) often in
regions where there are only very few control observations.
In design 1, for example, a substantial amount of the
probability mass of the treated is located to the right of 0.8,
where there is only little probability mass of the nontreated.
Hence nonparametric regression in these regions is rather
imprecise. In design 3, on the other hand, the two densities
are very similar, and nonparametric regression should be
more precise at all relevant locations. Design 2 is midway
between design 1 and design 3 and will allow us to deter-
mine whether the measures of closeness reported below are
monotonic in the shape.

A useful measure of the distance between these two
densities is the Kullback-Leibler information criterion
(KLIC), which is defined as (Kullback and Leibler, 1951;
Kullback, 1959)

KLIC � � �ln
fp�D�1���

fp�D�0���
� fp�D�1��� d�,

where the integral is taken over the common support of
fp�D�0 and fp�D�1. The KLIC is equal to 0 if the two densities
are identical, and it increases with the discrepancy between
the two distributions. The KLIC is attractive here because it
weights the discrepancy in the densities by the probability
mass among the treated, analogously to the weighting for
the counterfactual mean (2). Hence regions where fp�D�0 is
small (and fp�D�1/fp�D�0 is large) contribute significantly to
an increase in the discrepancy measure only when fp�D�1

itself is large, that is, when there are many treated observa-
tions for whom m( p) needs to be estimated. In regions
where fp�D�1 is small, the density ratio hardly matters at all.

2 The support of fp�D�1 and fp�D�0 is identical in all designs.
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Table 1 displays the values of the KLIC and the control-
treated ratio for the different designs. These two parameters are
indicative of the level of difficulty of the estimation setting.
Whereas a larger KLIC indicates that the shapes of the two
densities are more different, so that the matching estimator
more often needs to estimate m(p) in regions with few control
observations, the control-treated ratio indicates the absolute
number of control observations available. For a given sample
size (n0 � n1), a larger control-treated ratio implies that more
observations on Y are available to estimate m(p). In contrast, if
the control-treated ratio is 1 : 4, as in design 5, there are very
few nontreated observations to estimate m(p).

The second part of the design of the Monte Carlo simu-
lations concerns the specification of m( p). Six different
regression curves with different degrees of nonlinearity are
considered (figure 2 and table A1). The first regression
curve is a straight line. The second has a conspicuous local
nonlinearity,3 and the third is mildly nonlinear throughout.

The fourth and the fifth curve are concave in shape, and the
latter has some additional nonlinear structure. The sixth
curve is highly nonlinear.4 A mean-zero, uniform error term
with standard deviation 0.1 is added as noise to these
curves.

Though it was straightforward to interpret the KLIC and
the control-treated ratio, in that a higher KLIC or a lower
control-treated ratio makes the estimation setting more de-
manding (that is, increases the MSE), such an interpretation
is less obvious for the regression curve m( p). Although
curves with greater curvature imply a larger local bias for
the nonparametric regression estimator, these biases may
partly cancel when the matching estimator takes the average
of the estimated m̂( pi). Hence, more pronounced nonlin-
earities in itself will not necessarily increase the MSE. They
may favor one estimator over the other, though. The straight
line m1, for instance, is more suited to local linear regres-
sion.

Rather than the type of the nonlinearities, it might be
more important where they are located. If they are situated
in regions where the density in the treated population is low,
they are less relevant. To analyze the effect of nonlinearities
on the relative performance of the various estimators, the
regression curves are chosen such that the nonlinearities are
located mostly to the right of the center, because that is the

3 This regression curve might represent a situation where the potential
outcome depends discontinuously on some confounding variables X that
are itself strongly related to the propensity score. Consider, for example,
a treatment whose expected potential outcome is discontinuous in age.

(For example, the treatment might consist of three programs: one for 10-
to 15-year-olds, one for 16- to 17-year-olds, and one for 18- to 20-year-
olds, and only the program for the 16- to 17-year-olds, is beneficial.) If age
is also the main determinant of the participation decision, a shape like
regression curve 2 could result.

4 Regression curves 2 and 6 are taken from Fan and Gijbels (1992).

TABLE 1.—KLIC AND THE CONTROL-TREATED RATIO

Design � � Control-treated Ratio KLIC

1 0 1 1:1 0.73
2 0.15 0.7 1:1 0.42
3 0.30 0.4 1:1 0.23

4 0 0.4 4:1 0.58
5 0.6 0.4 1:4 0.77

Note: The control-treated ratio is the ratio of the expected numbers of controls and treated:
E[n0]/E[n1].

FIGURE 1.—DENSITIES OF THE PROPENSITY SCORE: fp�D�1 AND fp�D�0
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region where much of the density of the treated lies but
rather little of the density of the controls.

In the following sections the Monte Carlo results for
these different designs are presented. The mean squared
error is simulated for the various estimators for three dif-
ferent sample sizes: 100, 400, and 1600 observations. Pair
matching is considered as the benchmark estimator, and the
MSE of the other estimators is analyzed relative to that of
pair matching. Because all other matching estimators de-
pend on the choice of a bandwidth value, the Monte Carlo
results consist of two parts. In section IIIB the potential
efficiency gains are considered: The MSE of the matching
estimators at their optimal bandwidth values is compared
with the MSE of pair matching. This gives an indication by
how much the MSE could be reduced if the optimal band-
width were known. Because the optimal bandwidth is un-
known in practice, section IIIC examines the finite-sample
performance when the bandwidth is chosen by cross-
validation. This gives a feasible estimator that is easy to
implement.

B. Potential Efficiency Gains

Table 2 provides the simulated MSE for sample size 100.
In the first column the MSE of pair-matching is given. The
first seven rows provide the results for the first density
design (first graph in figure 1), the second seven rows
represent the second density design, and so on. Within each
block, the first six rows correspond to the results for the six
regression curves m1 to m6, and the seventh row shows the
average result for these six curves. Examining the results for
the first three density designs (where the control-treated

ratio is 1 : 1), the MSE of pair matching decreases from
design 1 to design 3 for all regression curves. Hence, it is
smaller when the shapes of fp�D�1 and fp�D�0 are more
similar (and the KLIC is smaller). On the other hand, the
MSE becomes larger when the control-treated ratio differs
from 1 : 1, particularly when the number of treated obser-
vations predominates (design 5).

The dependence of the MSE of pair matching on the
density design and the regression curve, however, is not of
particular concern in this paper. It is rather of interest how
the choice of the best estimator depends on the density
design and the regression curve. Therefore, the MSE of the
other estimators is always presented relative to the MSE of
pair matching (in percent), that is, a value above 100
indicates that pair matching is more precise, and a value
below 100 indicates the reverse. The subsequent columns of
table 2 provide the results for the different matching esti-
mators: kernel matching, local linear matching, and ridged
local linear matching, each with Epanechnikov kernel and
with Gaussian kernel. These are followed by k-NN match-
ing and Epanechnikov-weighted k-NN matching. Finally,
the results for the weighting estimator are given. (In each
row of Table 2, the smallest entries are underlined.) Table 2
presents the MSE for the matching estimators at their
simulated optimal bandwidth values: For each estimator and
for each Monte Carlo design, the MSE is simulated at 60
different bandwidth values, and the minimum of these
simulated MSE is given.5

5 For kernel and (ridged) local linear matching the bandwidth grid is
0.01�1.2g�2 for g � 1, . . . , 59 and �. For k-NN matching the

FIGURE 2.—REGRESSION CURVES m( p)
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Inspecting these relative MSE across the different de-
signs, it is seen that the relative performance of all matching
estimators depends strongly on the density design and, in
particular, on the control-treated ratio: Whereas the relative
MSE of the matching estimators decreases somewhat when
the propensity score densities become more similar (from
design 1 to 3), the MSE is much lower when the control-
treated ratio is high (design 4) and higher when the ratio of
controls to treated is low (design 5). In design 4, the number
of control observations is approximately 80, and the number
of treated is around 20. Pair matching performs very poorly

in this situation (the MSE of the other matching estimators
is often 50% lower), because it uses the observations on Y
for the 20 matched control observations only, whereas the
other matching estimators use all control observations. In
design 5, on the other hand, the control-treated ratio is
reversed, and pair matching uses the 20 controls multiple
times for matching to the 80 treated observations. Conse-
quently, the loss of information due to pair matching is
much smaller, and the MSE of the other matching estima-
tors is only 10% to 25% lower than for pair matching.

Whereas the design of the propensity score densities
showed a clear effect on the relative precision of alternative
matching estimators, the shape of the regression curve
seems to be less important. On average, the relative MSE
tends to be somewhat larger for regression curve 2 (with the

bandwidth grid contains only 30 values: 1, . . . , 21, 25, 29, . . . , 53, �. For
bandwidth � no local smoothing takes place and local linear regression
corresponds to OLS. For larger sample sizes the bandwidth grid for k-NN
matching is adopted to include larger numbers of neighbors.

TABLE 2.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME AT OPTIMAL BANDWIDTH VALUE, SAMPLE SIZE 100

Design Curve

1000�
MSE for

Pair
Matching

MSE Relative to That of Pair Matching (%)

Kernel
Matching

Local Linear
Matching

Ridge
Matching

k-NN
Matching

Weighting
Estimator

Epa Gauss Epa Gauss Epa Gauss — Epa — Opt.

1 m1 1.77 90.4 83.9 58.6 58.2 58.5 57.6 84.6 80.4 2555 1175
m2 2.86 67.6 83.8 109.6 105.9 64.1 81.4 98.7 100.8 922 520
m3 1.54 69.3 66.5 65.2 64.5 64.9 61.3 68.8 66.5 2528 1337
m4 1.81 92.9 83.9 67.6 63.0 69.4 71.3 93.4 89.7 958 633
m5 1.96 83.3 82.6 73.7 70.5 73.1 76.6 96.0 91.2 1033 623
m6 2.15 67.2 71.1 100.6 80.5 74.0 77.3 81.1 81.1 1111 671

2.01 78.5 78.6 79.2 73.7 67.3 70.9 87.1 85.0 1518 827

2 m1 1.30 77.7 77.0 70.0 71.8 70.5 71.8 82.4 79.8 812 654
m2 1.83 81.8 80.9 116.4 94.8 74.5 80.1 97.4 89.9 435 387
m3 1.11 66.9 67.3 63.4 63.4 63.8 62.6 73.2 70.7 885 755
m4 1.06 73.4 70.0 69.0 66.6 68.7 64.6 85.2 83.9 449 413
m5 1.07 73.5 72.4 73.3 69.6 71.3 68.9 85.2 81.6 475 422
m6 1.57 73.5 71.8 68.0 62.8 62.4 69.7 85.3 85.6 452 396

1.33 74.4 73.2 76.7 71.5 68.5 69.6 84.8 81.9 585 504

3 m1 1.19 73.7 74.0 74.0 76.0 68.0 70.8 74.6 75.4 326 312
m2 1.58 81.3 81.7 92.0 86.5 74.7 77.8 89.8 87.5 224 227
m3 0.95 66.4 65.3 64.7 64.8 62.9 62.6 72.1 69.8 371 370
m4 0.83 64.9 64.1 61.0 61.2 62.9 60.1 73.1 70.4 157 153
m5 0.84 64.5 63.5 63.6 61.3 63.0 60.2 76.8 74.6 163 161
m6 1.40 71.5 70.0 59.2 57.6 57.6 62.9 84.3 81.6 210 204

1.13 70.4 69.8 69.1 67.9 64.8 65.7 78.4 76.6 242 238

4 m1 2.08 67.3 68.3 71.1 70.7 68.3 66.3 68.2 70.5 198 190
m2 3.03 58.8 57.7 59.9 57.3 57.1 56.7 78.6 68.5 106 108
m3 1.75 56.3 57.8 46.1 45.7 43.8 43.9 64.6 63.9 226 224
m4 1.56 53.3 52.6 36.1 34.7 35.8 33.6 61.0 59.9 126 125
m5 1.57 51.1 51.7 35.1 35.8 31.5 34.5 63.5 59.1 131 132
m6 2.85 42.6 41.8 28.9 28.8 29.3 27.9 69.0 63.7 107 105

2.14 54.9 55.0 46.2 45.5 44.3 43.8 67.5 64.3 149 147

5 m1 2.23 105.8 88.7 61.2 61.6 65.3 64.3 97.5 91.9 2243 804
m2 4.54 78.8 77.0 81.5 82.3 75.3 77.6 96.4 84.7 667 336
m3 1.88 91.8 81.7 93.7 120.2 80.5 82.9 97.8 88.6 2156 952
m4 2.29 88.7 87.3 76.4 83.0 76.9 78.1 95.4 95.4 771 424
m5 2.49 86.5 87.8 78.8 84.6 76.1 78.9 96.6 92.9 755 392
m6 3.07 83.0 89.1 150.1 183.9 75.6 92.4 95.3 92.2 920 441

2.75 89.1 85.3 90.3 102.6 75.0 79.0 96.5 91.0 1252 558

Note: The first two columns indicate the design of the propensity score densities and the regression curve, respectively. MSE of pair matching is multiplied by 1000. MSE of all other estimators is given relative
to MSE of pair matching. In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates
Gaussian kernel. The MSE of the matching estimators is given at the simulated optimal bandwidth value, which is simulated over a grid of 60 different values (30 values for k-NN matching). Simulations are based
on 10,000 replications.
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conspicuous local peak) and slightly smaller for regression
curve 3 (with mild nonlinearities). Nevertheless, the alter-
native estimators perform better than pair matching in all
designs. In general, ridge matching performs best, followed
by local linear matching. Ridge matching is in most designs
the best estimator, and in those designs where it is not, it is
usually not much worse than the best estimator. In addition,
ridge matching is in all designs better than pair matching.
Local linear matching also performs well in many situa-
tions, but can be worse than pair matching in other situa-
tions. Although it sometimes performs a little better than
ridge matching, it can be much worse in other designs. In
general, local linear matching seems to be more sensitive to
the density design and the regression curve, performing well
in some situations (for example, when the regression curve
is linear) but poorly in others (for example, for regression
curve 2 with the local peak). Kernel matching, on the other
hand, is less sensitive to the simulation design, but performs
worse than ridge matching in almost all designs. The choice
of the kernel function, for these three matching estimators,
is of lesser importance. For ridge matching, the Epanechni-
kov kernel is slightly preferable to the Gaussian kernel. For
kernel matching it is the Gaussian kernel.

The k-NN matching estimator is in many designs the
worst of all matching estimators.6 In all designs it has a
larger MSE than ridge matching. k-NN matching with
Epanechnikov weights performs somewhat better, but is still
always worse than ridge matching. Finally, in the last two
columns the relative MSE of the weighting estimator is
given. The MSE of the simple weighting estimator is always
larger than the MSE of pair matching and can be up to 25
times larger. The MSE of the capped weighting estimator
with optimal capping rule is given in the last column. The
optimal cap is implemented by simulating the MSE for 60
different caps (c� � 1, . . . , 60) and choosing the minimum
of these. However, even with this optimal cap, the capped
weighting estimator is clearly worse than pair-matching in
all designs.

Table A2 shows the simulation results for sample size
400. The results are largely similar to those for sample size
100, with all matching estimators becoming somewhat more
precise relative to pair-matching. Particularly the k-NN
matching estimators improve their relative position. Never-
theless, the unweighted k-NN matching estimator is still the
worst among all matching estimators in many of the de-
signs; and ridge matching is still the best estimator in
general. The relative MSE of the weighting estimator wors-
ens with increasing sample size, and this trend is continued
for sample size 1600 (not shown in the tables).

In total, these simulation results reveal that the potential
precision gains can be substantial. On average, ridge match-
ing is approximately 35% more precise than pair matching

in designs 1 to 3, 55% in design 4, and 25% in design 5 (for
sample sizes 100 and 400).

C. Cross-validation Bandwidth Choice

The previous section examined the MSE at the optimal
bandwidth value. Those results indicated the potential for
precision gains, that is, the maximum reductions in MSE
that could be achieved by the different estimators. In this
section, feasible precision gains are analyzed, when the
bandwidth is chosen by cross-validation. Cross-validation is
a widely used bandwidth selector for nonparametric regres-
sion, and although it will not lead to asymptotically optimal
bandwidth choices for the matching estimator, it is worth-
while to examine its usefulness in this setting. Cross-
validation chooses the bandwidth as

hCV � arg min
h

�
i:Di�0

�Yi � m̂�i�pi��
2,

where m̂�i(�) is the estimate with observation i removed
from the sample.7

Table 3 shows the relative MSE for sample size 100,
when the bandwidth is chosen by cross-validation. (The
structure of the table is identical to that of table 2.) In
addition, the results for trimmed local linear matching are
shown.8 In Table 3 it is striking how sensitive the perfor-
mance of many matching estimators is to the distribution of
the propensity score. The relative MSE of kernel, local
linear, and k-NN matching decreases substantially (and by
much more than would be expected from table 2) from
design 1 to design 3. The MSE of kernel matching is
reduced from approximately 95% in design 1 (where the
controls and treated differ sharply in their propensity scores)
to approximately 75% in design 3 (where the propensity
score densities are very similar). The relative improvement
is even more drastic for local linear matching and k-NN
matching, which both perform very poorly in designs 1 and
2. The particularly poor performance of local linear match-
ing is ameliorated a little when trimming is introduced.
Trimming discards treated observations from the sample if
they are located in regions where there are few control
observations. Table 3 gives the MSE of the trimmed local
linear matching estimator (for Epanechnikov and for Gauss-
ian kernel) for three different trimming rules: The 2%, 5%,
or 10%, respectively, of the treated observations with the
smallest values of fp�D�0( pi) are deleted.9 The trimmed local

6 It cannot be worse than pair matching, for pair-matching is equal to
k-NN matching with k � 1.

7 For kernel and (ridged) local linear matching the bandwidth search grid
is 0.01 � 1.2g�1 for g � 1, . . . , 29 and �. For k-NN matching the grid
is 1, . . . , 21, 25, 29, . . . , 53, �.

8 In the Monte Carlo simulations, trimming was implemented for all the
other matching estimators as well. Here the trimming results are shown
only for local linear matching, because for all other estimators trimming
always led to an increase in MSE. The other results are available from the
author.

9 In the simulations, trimming has been carried out on the basis of the
true density function fp�D�0 and on the basis of the estimated density
function f̂p�D�0. The results were similar and often slightly better for
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linear matching estimator has a significantly lower MSE in
designs 1 and 2 than the nontrimmed estimator. However, its
MSE is still very often higher than for pair matching. In
addition, it is not clear how the trimming level should be
chosen in practice. Whereas a trimming level of 10% would
often be the best choice in design 1 and design 5, a trimming
level of 2% or 5% would be preferable in designs 2 and 3.
In design 4, a trimming level of 10% would lead to sub-
stantially worse results than no trimming at all. Ridge
matching, in contrast, is notably less sensitive to design
choice. Its MSE decreases only slightly, from approximately
80% in design 1 to approximately 75% in design 3. In
design 4 it is approximately 70%, and in design 5 approx-
imately 90%.

In design 4 (where the number of controls greatly exceeds
the number of treated), all estimators perform well and their
relative MSE are very similar: approximately 70%. In such
a situation, trimming seems not to be useful for local linear
matching (particularly in larger samples; see tables A3 and
A4). In design 5, on the other hand, where the control
observations are scarce, only ridge matching consistently
dominates pair matching. All other estimators are usually
worse than pair matching. Ridge matching with Epanech-
nikov kernel is, in fact, the only estimator that is never
worse than pair matching in any of the designs. In addition,
ridge matching is often the best estimator in designs 1, 2,
and 5, and where it is not, it is usually not much worse.
Indeed, this holds not only for the more demanding designs
1, 2, and 5, but also for the more favorable designs 3 and 4.

Whereas the density design strongly influences the rela-
tive performance of all matching estimators, the pattern is
less clear-cut with respect to the shape of the regression
curve m( p). For regression curve m2, ridge matching is the
best estimator in all density designs. Nevertheless, the
relative MSE of ridge matching is, in general, only very
little affected by the shape of the regression curve. The
(nontrimmed) local linear matching estimators perform, as
expected, relatively better for the straight regression line
(m1), whereas the k-NN matching estimators perform rel-
atively better for regression curves m3 and m6. These
patterns, however, are weak and much less pronounced than
the dependence on the density design. The differences with
respect to the choice of the kernel function are also not very
conclusive. In general, the Epanechnikov kernel is some-
what better suited for ridge matching, and the Gaussian
works slightly better for kernel matching.

Tables A3 and A4 provide the simulation results for
sample size 400 and 1600, respectively. With increasing
sample size all estimators, except k-NN matching, become
more precise in comparison with pair matching. The relative
MSE of k-NN matching decreases for designs 2 and 3, but
increases substantially for some regression curves in de-
signs 1 and 5. Local linear matching (without trimming)

improves significantly with larger sample size, and with
1600 observations it comes close to ridge matching and
kernel matching in designs 2, 3, and 4. In the more demand-
ing designs 1 and 5, however, it is still often substantially
worse than pair matching. Trimming improves the local
linear matching estimator in designs 1 and 5, but not enough
to dominate the pair-matching estimator. In addition, the
optimal trimming level needs to be found in practice, as the
appropriate trimming depends on the sample size. Whereas
5% trimming is best in designs 1 and 5 for sample size 400,
it would lead to worse results than no trimming for sample
size 1600. With 1600 observations, 2% trimming would be
appropriate for designs 1 and 5, and no trimming for designs
2, 3, and 4. But even with appropriate trimming, local linear
matching is still usually worse than ridge matching.

The relative MSE of kernel matching decreases when the
sample size is increased from 100 to 400. A further increase
to sample size 1600 affects its MSE only a little, except for
design 5. Kernel matching is the best estimator for various
regression curves in designs 2, 3, and 4, and it has the lowest
MSE in designs 3 and 4 with respect to the average over all
six regression curves. On the other hand, kernel matching
can be worse than pair matching in designs 1 and 5, even
with 1600 observations.

Finally, ridge matching is still the most appealing of all
estimators. Although its merits are less compelling in larger
samples than they were with 100 observations, it is still
most often the estimator with the lowest MSE. Even when
it is worse than kernel matching, the difference is usually
not large. In addition, ridge matching is least sensitive to the
design choice and the shape of the regression curve m( p).
As a rough measure of its robustness to the simulation
design, the standard deviation of the relative MSE for the 30
different simulation designs (5 density designs times 6
regression curves) has been computed from Table A3. This
standard deviation is only 6.1 for ridge matching with
Epanechnikov kernel, whereas it is 15.1 for kernel matching
with Gaussian kernel and far higher for all other estimators.
Also, the range between the smallest and the largest MSE is
much smaller for ridge matching. Hence, the performance
of ridge matching relative to pair matching is much more
stable than it is for the other estimators. In addition, it is the
only estimator whose MSE never exceeded the MSE of pair
matching in any simulation. In total, ridge matching is
approximately 25% more precise than pair matching. When
the number of control observations is much larger than the
number of treated (design 4), the MSE of ridge matching is
approximately 30% lower than the MSE of pair matching.
In the reverse situation, when the number of treated pre-
dominates (design 5), the precision gains are smaller and
depend on the sample size. If the sample is small (approx-
imately 80 treated and 20 control observations), the preci-
sion gains are around 10%, and they increase to approxi-
mately 30% for sample size 1600 (with approximately 320

f̂p�D�0. Table 3 reports only the results based on the estimated density
function.
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non-treated observations). With respect to the shape of the
regression curve, no consistent pattern can be detected.

IV. Conclusions

In this paper the finite-sample properties of various
propensity-score matching estimators of the counterfactual
mean (which is the central ingredient in the computation of
average treatment effects) have been analyzed. First, the
potential efficiency gains of alternative matching estimators
vis-à-vis pair matching were assessed, that is, it was exam-
ined by how much the MSE could be reduced if the optimal
bandwidth was known. In general, ridge matching demon-
strated the largest potential. In the designs where the num-
bers of treated and control observations were approximately

equal, its MSE was approximately 35% lower. It was
approximately 55% lower when the control observations
exceeded the number of treated by 4 : 1, and approximately
25% lower when the ratio was 1 : 4. Almost regardless of
the Monte Carlo design, ridge matching was usually the best
estimator, particularly in small samples.

Though these simulations indicated the potential for pre-
cision gains, in practice a data-driven bandwidth choice is
necessary to select the bandwidth value. A handy and
easy-to-implement bandwidth selector is cross validation of
the nonparametric regression estimator. Although cross-
validation will not lead to asymptotically optimal bandwidth
choices, it seems to work well in practice for some estima-
tors, at least for the sample sizes considered. In the rather

TABLE 3.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS VALIDATION, SAMPLE SIZE 100

Design Curve

MSE Relative to That of Pair Matching (%)

Kernel
Matching

Local Linear Matching with
Epanechnikov Kernel

Local Linear Matching with
Gauss Kernel

Ridge
Matching

k-NN
Matching

Epa Gauss — Trim 2% Trim 5% Trim 10% — Trim 2% Trim 5% Trim 10% Epa Gauss — Epa

1 m1 104.8 96.5 105.8 104.1 107.9 126.0 109.2 103.8 105.6 121.5 76.2 71.4 162.8 146.1
m2 73.5 92.6 168.2 158.0 146.6 129.8 258.8 222.1 188.8 150.0 70.1 91.9 137.3 119.1
m3 78.3 74.9 212.0 191.3 171.6 150.1 276.1 234.1 199.5 164.5 78.4 77.3 106.5 99.3
m4 119.4 118.1 107.5 95.9 90.4 94.7 129.6 109.5 97.9 96.3 84.6 83.6 211.5 196.7
m5 112.2 111.3 133.6 116.2 103.1 95.6 180.4 145.8 119.9 102.5 87.9 89.4 173.9 161.6
m6 82.4 83.7 197.0 185.5 173.2 155.6 355.3 306.7 263.2 211.6 81.8 86.2 93.0 84.3

95.1 96.2 154.0 141.8 132.1 125.3 218.2 187.0 162.5 141.1 79.8 83.3 147.5 134.5

2 m1 84.9 83.4 87.7 89.5 101.2 139.1 83.8 88.1 102.3 144.4 77.2 76.1 106.0 99.9
m2 86.3 87.7 141.8 132.1 125.8 123.0 176.6 156.3 142.9 135.2 83.5 86.6 113.6 102.8
m3 72.5 72.1 120.4 107.8 102.1 108.3 109.1 97.0 93.5 103.1 73.2 73.3 84.2 82.7
m4 87.5 86.3 96.7 78.9 75.4 93.3 100.9 79.6 72.6 85.1 72.9 71.9 138.3 131.3
m5 88.5 87.4 122.5 98.8 87.0 92.3 124.5 96.4 81.7 84.8 77.2 78.0 125.7 116.2
m6 79.7 81.6 123.5 112.3 105.0 103.2 149.8 128.6 115.4 109.1 79.8 81.7 87.7 84.9

83.2 83.1 115.4 103.2 99.4 109.9 124.1 107.7 101.4 110.3 77.3 77.9 109.3 103.0

3 m1 75.5 75.1 80.7 85.2 99.0 137.6 77.8 84.2 100.0 140.9 77.7 75.6 80.7 78.2
m2 84.6 84.4 112.7 106.1 105.2 112.0 134.1 125.2 122.6 130.3 82.5 83.6 95.5 89.7
m3 70.0 69.7 82.5 78.1 81.4 99.8 73.9 73.7 79.3 100.6 70.2 70.7 74.5 73.7
m4 70.9 70.0 93.5 72.3 68.1 86.1 102.2 76.0 65.5 73.5 70.3 69.2 88.6 86.5
m5 70.9 69.2 102.5 79.9 71.0 80.7 103.4 78.5 67.4 71.4 74.1 72.8 87.1 81.2
m6 79.9 79.2 93.8 86.6 86.6 97.5 94.5 87.1 87.2 98.5 76.5 78.4 85.9 84.2

75.3 74.6 94.3 84.7 85.2 102.3 97.7 87.4 87.0 102.5 75.2 75.1 85.4 82.2

4 m1 70.0 70.1 73.1 83.8 90.3 114.9 72.4 83.2 89.5 114.3 72.9 71.9 70.7 71.7
m2 77.8 77.5 79.7 81.4 83.0 90.8 82.7 81.8 82.7 89.3 76.6 76.4 80.6 81.0
m3 63.8 63.6 65.5 70.6 73.9 88.6 62.7 69.2 72.9 88.9 62.4 62.8 67.0 64.7
m4 58.7 57.0 75.1 68.0 71.1 88.3 72.3 63.0 65.0 79.4 65.7 63.0 64.4 61.4
m5 60.4 60.0 72.4 67.6 70.5 87.9 70.5 62.1 63.4 75.3 62.3 63.0 64.9 61.8
m6 75.6 76.6 74.5 77.1 79.3 90.0 71.5 72.9 74.9 85.7 75.8 75.5 80.0 79.7

67.7 67.5 73.4 74.7 78.0 93.4 72.0 72.0 74.7 88.8 69.3 68.8 71.3 70.0

5 m1 126.3 99.1 137.7 133.2 133.9 151.0 90.9 92.1 100.8 129.6 91.5 82.4 148.3 134.4
m2 87.0 98.2 118.5 111.9 105.6 101.7 86.8 84.3 83.6 88.9 75.1 93.1 127.4 108.9
m3 116.8 102.1 223.7 203.9 184.1 164.2 149.4 144.5 144.9 155.0 97.9 90.7 161.1 142.0
m4 106.3 108.3 149.8 128.4 109.3 92.3 114.9 102.6 92.4 83.2 93.6 95.4 142.8 135.5
m5 99.4 102.2 156.8 134.6 114.1 94.2 121.1 107.6 95.9 84.3 89.8 93.7 126.3 120.9
m6 91.4 94.9 229.1 213.8 195.1 168.5 258.9 240.1 221.4 200.3 94.1 101.7 143.4 121.4

104.5 100.8 169.3 154.3 140.3 128.7 137.0 128.5 123.2 123.5 90.3 92.8 141.6 127.2

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross-validation of the nonparametric regression estimator, over a
grid of 30 different values. Simulations are based on 10,000 replications.
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facile simulation designs (similar characteristics of treated
and control populations, or a large control-to-treated ratio),
kernel matching was often the best estimator, immediately
followed by ridge matching. In more demanding situations
(small sample size, large differences in the characteristics of
treated and control populations, or a small number of
control observations), however, kernel matching performed
usually worse than ridge matching and sometimes even
worse than pair-matching. Ridge matching with Epanech-
nikov kernel was often the estimator with smallest MSE,
particularly in the more demanding designs. In addition, its
relative MSE was least sensitive to the simulation design,
and it was always lower than for pair matching. Hence, for
practical guidance on estimator choice, ridge matching
seems to be a good choice in most situations. (If the
control-treated ratio is large, kernel matching is also an
option.) The precision gains of ridge matching did not
depend much on the shape of the regression curve and also
not much on the shapes of the propensity score densities, but
were affected somewhat by the control-to-treated ratio. For
approximately equal numbers of controls and treated, ridge
matching was approximately 25% more precise than pair
matching. For a control-treated ratio of 4 : 1, the reductions
in MSE were approximately 30%, but they were approxi-
mately 10–30% (depending on sample size) for a ratio of
1 : 4. (To put these figures in perspective, a reduction in
MSE of 25% means that pair matching would require
approximately 33% more observations to achieve the same
precision.) Although these reductions in MSE are substan-
tial, they do not reach the potential precision gains. Partic-
ularly in the designs where the control observations ex-
ceeded the treated by 4 : 1, the potential for further
improvement through a better bandwidth choice seems
greatest. In all other designs, the differences between the
potential and the feasible precision gains are not very large
and the development of a superior bandwidth selector might
be difficult.

The performance of local linear matching with cross-
validation bandwidth selection, on the other hand, was
deceptive. Although trimming improved its MSE, it was still
clearly worse than ridge matching in most designs. Hence,
trimming seems not to be the best response to the variance
problems of the local linear regression estimator. In addi-
tion, it might be difficult in practice to determine the optimal
trimming level. k-NN matching was also not very success-
ful. Finally, the weighting estimator turned out be worst of
all. Even with an optimal capping rule, it is far worse than
pair matching in all of the designs.
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APPENDIX

1. Generation of the Propensity-Score Distributions

To have a simple but versatile design for the generation of different
distributions of the propensity score ( fp�D�1 and fp�D�0), the propensity
score is specified as p( x) � � � �x, where X is one-dimensional and
distributed symmetrically in (0, 1). The parameters � and � are chosen
such that 0 � p( x) � 1. The propensity-score values thus range from �
to � � �. Denote the expected value of the propensity score by P1; it is
given by P1 � E[ p(X)] � � � �/ 2. Let P0 denote the size of the
nontreated population: P0 � 1 � P1. For this specification, the ensuing
densities fp�D�1 and fp�D�0 are thus

fp�D�1��� �
�

�P1
� fX�� � �

� � ,

fp�D�0��� �
1 � �

�P0
� fX�� � �

� � for � � � � � � �,

and accordingly the ratio of the two densities is given by

fp�D�1���

fp�D�0���
�

�

1 � �

P0

P1
.

Hence in a design where the treated and nontreated populations are of
equal size (P1 � P0), the ratio fp�D�1/fp�D�0 is 1 at � � 0.5 and close to
1 in its neighborhood. To be able to generate large differences between
fp�D�1 and fp�D�0 (and thus a large value of the KLIC, as in the first graph
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2. The Regression Curves

of figure 1) requires that the distribution of X have substantial probability
mass in its tails. In addition, to ensure that the support of X is identical in
the treated and the nontreated population, limx20 fX(x) and limx11 fX(x) should
be both 0. The Johnson SB family provides a convenient distribution satisfying
these properties, which is depicted in figure A1. Its density is

fX� x� �
1

2�	x�1 � x�
exp	�

1

4
ln2� x

1 � x�
, 0 � x � 1;

see Johnson, Kotz, and Balakrishnan (1994, p. 37, � � 0, � � �0.5) or
Johnson (1949).

TABLE A1.—REGRESSION CURVES m( p)

m1(�) � 0.15 � 0.7�
m2(�) � 0.1 � �

2
� 1

2
exp[�200(� � 0.7)2]

m3(�) � 0.8 � 2(� � 0.9)2 � 5(� � 0.7)3 � 10(� � 0.6)10

m4(�) � 0.2 � �1 � � � 0.6(0.9 � �)2

m5(�) � 0.2 � �1 � � � 0.6(0.9 � �)2 � 0.1� cos(30�)
m6(�) � 0.4 � 0.25 sin(8� � 5) � 0.4 exp[�16(4� � 2.5)2]

FIGURE A1.—DENSITY OF fX
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TABLE A2.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME AT OPTIMAL BANDWIDTH VALUE, SAMPLE SIZE 400

Design Curve

1000�
MSE for

Pair
Matching

MSE Relative to That of Pair Matching (%)

Kernel
Matching

Local Linear
Matching

Ridge
Matching

k-NN
Matching

Weighting
Estimator

Epa Gauss Epa Gauss Epa Gauss — Epa — Opt.

1 m1 0.46 77.1 73.4 55.1 54.7 56.2 59.2 75.6 74.6 2422 1455
m2 0.56 76.9 76.9 125.2 104.6 75.2 77.2 78.6 74.8 1192 830
m3 0.44 58.2 58.2 53.8 52.6 56.0 53.4 58.7 52.2 2225 1509
m4 0.44 89.2 77.7 60.1 59.4 58.1 60.8 89.3 83.0 972 798
m5 0.43 75.6 74.0 73.0 72.6 72.2 64.2 73.7 71.6 1160 863
m6 0.56 59.8 59.0 79.5 79.2 73.3 73.9 76.1 72.3 1089 806

0.48 72.8 69.9 74.5 70.5 65.2 64.8 75.3 71.4 1510 1044

2 m1 0.34 71.3 74.1 73.5 70.2 66.4 71.5 71.5 72.2 786 735
m2 0.42 80.6 79.6 75.3 76.8 69.7 74.0 83.2 76.5 467 459
m3 0.28 64.7 64.0 63.5 60.7 61.2 58.0 67.1 64.3 878 848
m4 0.26 68.3 69.4 68.1 63.8 68.6 63.8 75.5 71.6 459 451
m5 0.25 68.7 69.9 71.4 66.3 70.5 64.8 72.0 68.4 483 465
m6 0.38 72.4 68.3 63.2 66.0 59.5 70.6 82.7 80.7 461 440

0.32 71.0 70.9 69.2 67.3 66.0 67.1 75.3 72.3 589 566

3 m1 0.30 72.7 72.5 70.7 70.2 74.1 71.5 77.2 74.0 324 319
m2 0.39 78.6 79.3 71.1 73.7 75.3 76.5 80.7 81.1 225 223
m3 0.24 67.0 65.2 60.6 60.1 60.0 59.5 67.0 65.5 365 355
m4 0.20 63.0 62.8 58.8 60.6 57.0 59.0 68.8 63.7 154 154
m5 0.21 63.2 64.3 60.2 60.8 60.7 57.5 66.1 65.0 161 157
m6 0.35 70.0 66.2 59.8 60.7 59.3 64.9 79.1 80.2 210 205

0.28 69.1 68.4 63.5 64.4 64.4 64.8 73.1 71.6 240 236

4 m1 0.50 70.4 69.6 71.8 70.0 72.7 68.8 71.1 69.9 198 199
m2 0.74 61.0 64.2 58.1 59.1 60.4 60.8 76.7 69.5 110 109
m3 0.43 59.2 60.4 46.7 45.9 47.0 50.6 63.8 61.8 228 233
m4 0.40 57.4 57.7 33.8 34.1 32.0 34.6 60.4 61.2 128 126
m5 0.39 56.8 53.5 33.3 33.7 32.5 33.5 62.2 59.1 131 134
m6 0.67 46.4 50.5 27.9 28.4 29.1 27.2 69.7 64.9 109 109

0.52 58.5 59.3 45.3 45.2 45.6 45.9 67.3 64.4 151 152

5 m1 0.52 87.5 79.1 59.6 58.0 58.5 59.5 84.4 83.7 2269 1209
m2 0.64 77.7 89.2 159.9 130.1 83.9 89.9 98.1 99.7 1192 758
m3 0.47 67.4 68.2 68.3 68.8 68.8 65.4 68.2 67.9 2108 1287
m4 0.53 92.3 83.5 67.5 68.0 79.1 71.6 91.3 97.5 786 565
m5 0.48 96.9 82.2 84.6 86.0 85.7 72.8 94.5 95.8 927 617
m6 0.57 75.2 77.6 111.6 93.5 76.5 89.9 79.7 80.5 1157 782

0.54 82.9 80.0 91.9 84.1 75.4 74.9 86.0 87.5 1407 870

Note: The first two columns indicate the design of the propensity-score densities and the regression curve, respectively. MSE of pair matching is multiplied by 1000. MSE of all other estimators given relative
to MSE of pair-matching. In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates
Gaussian kernel. The MSE of the matching estimators is given at the simulated optimal bandwidth value, which is simulated over a grid of 60 different values (30 values for k-NN matching). Simulations are based
on 5000 replications.
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TABLE A3.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS-VALIDATION, SAMPLE SIZE 400

Design Curve

MSE Relative to That of Pair Matching (%)

Kernel
Matching

Local Linear Matching with
Epanechnikov Kernel

Local Linear Matching with
Gauss Kernel

Ridge
Matching

k-NN
Matching

Epa Gauss — Trim 2% Trim 5% Trim 10% — Trim 2% Trim 5% Trim 10% Epa Gauss — Epa

1 m1 92.7 90.3 74.8 76.2 98.1 186.2 76.3 76.7 99.0 189.1 66.0 64.5 196.9 192.1
m2 78.3 78.3 136.5 122.9 106.3 93.1 279.1 210.1 151.7 107.4 78.4 80.3 114.7 105.9
m3 63.5 64.1 130.5 109.6 94.2 100.4 165.9 125.6 98.0 97.4 74.0 72.4 81.8 73.3
m4 119.6 114.0 91.7 76.5 88.3 169.0 90.4 75.5 90.5 179.1 71.3 67.5 327.0 301.5
m5 83.9 76.3 109.1 97.7 101.2 161.0 209.1 143.0 113.9 162.7 80.3 75.7 220.7 194.1
m6 72.3 78.1 122.0 110.1 94.9 83.3 255.7 189.6 134.8 97.6 73.9 81.7 81.9 77.6

85.1 83.5 110.8 98.8 97.2 132.2 179.4 136.8 114.6 138.4 74.0 73.7 170.5 157.4

2 m1 80.7 83.8 75.4 85.8 135.1 304.6 74.0 84.6 132.2 295.7 72.7 72.4 106.6 106.2
m2 79.0 79.0 90.0 86.1 89.7 108.5 105.5 93.6 95.8 115.9 78.9 79.2 84.5 83.7
m3 66.3 65.4 77.5 75.8 87.3 148.4 79.4 74.2 83.2 139.8 69.3 67.9 76.5 73.7
m4 81.4 83.8 86.7 67.1 99.9 259.8 82.0 66.2 99.8 253.1 75.6 72.6 140.0 131.5
m5 67.7 67.0 78.6 77.0 114.8 260.5 90.3 75.0 105.9 243.5 70.0 68.6 94.4 88.7
m6 77.0 76.7 87.8 82.6 83.3 100.3 103.4 87.0 84.5 102.5 77.1 78.6 82.0 80.5

75.3 76.0 82.7 79.0 101.7 197.0 89.1 80.1 100.2 191.8 73.9 73.2 97.4 94.0

3 m1 74.6 75.0 73.7 87.3 141.4 300.0 75.0 90.1 146.1 308.1 75.5 73.4 79.7 79.6
m2 79.9 79.7 82.6 85.8 97.9 123.7 86.6 87.7 100.0 126.5 78.9 79.8 81.8 80.4
m3 67.5 66.1 67.5 71.3 90.5 166.2 67.5 71.8 92.0 169.9 68.7 66.6 68.7 68.3
m4 66.5 65.2 85.5 66.6 109.5 289.5 83.1 63.7 105.3 281.8 79.5 77.4 80.6 75.4
m5 63.6 63.5 70.6 73.0 124.5 303.4 76.8 66.6 107.0 271.4 66.7 64.5 67.9 66.6
m6 76.0 75.6 79.1 77.8 83.9 114.6 83.2 79.3 86.4 121.9 76.4 74.3 80.4 77.7

71.3 70.8 76.5 76.9 108.0 216.2 78.7 76.6 106.1 213.2 74.3 72.7 76.5 74.7

4 m1 70.0 71.0 71.6 80.3 107.9 190.5 69.9 78.8 107.0 191.7 70.9 72.9 73.5 71.3
m2 78.0 78.6 76.9 79.8 85.4 96.2 75.6 78.6 83.9 94.7 77.6 78.7 78.7 77.1
m3 63.7 63.9 66.2 70.1 79.5 111.1 63.3 67.7 78.0 111.8 63.4 65.9 66.3 65.4
m4 58.9 58.8 75.5 68.0 96.8 206.7 68.9 64.8 94.9 205.4 68.5 67.4 64.9 62.6
m5 58.9 59.2 62.1 69.0 100.4 194.1 64.0 66.7 95.4 188.1 60.9 59.4 61.0 59.9
m6 76.1 75.4 77.9 80.1 85.2 99.4 75.7 77.5 82.5 96.3 77.4 75.5 79.8 79.4

67.6 67.8 71.7 74.5 92.5 149.7 69.6 72.3 90.3 148.0 69.8 70.0 70.7 69.33

5 m1 103.7 93.0 96.4 97.9 127.1 247.7 90.3 92.8 124.2 247.5 75.3 71.5 178.5 169.5
m2 85.0 91.1 281.2 255.7 219.9 182.7 385.0 315.8 249.5 197.6 82.3 89.0 166.9 129.8
m3 74.9 71.0 208.6 176.4 145.3 146.3 217.7 172.1 138.5 144.2 81.1 79.8 101.6 101.0
m4 120.2 121.9 108.4 81.4 74.9 119.3 120.4 85.4 75.0 118.4 78.0 73.7 249.3 255.1
m5 119.5 104.9 171.5 128.8 95.4 113.3 219.5 146.3 98.8 114.7 89.5 86.0 221.7 199.8
m6 80.3 83.3 226.5 200.6 166.1 134.5 404.2 317.9 238.2 176.1 78.4 84.9 89.0 82.8

97.3 94.2 182.1 156.8 138.1 157.3 239.5 188.4 154.0 166.4 80.8 80.8 167.8 156.3

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross-validation of the nonparametric regression estimator, over a
grid of 30 different values. Simulations are based on 5000 replications.
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TABLE A4.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS VALIDATION, SAMPLE SIZE 1600

Design Curve

MSE Relative to That of Pair Matching (%)

Kernel
Matching

Local Linear Matching with
Epanechnikov Kernel

Local Linear Matching with
Gauss Kernel

Ridge
Matching

k-NN
Matching

Epa Gauss — Trim 2% Trim 5% Trim 10% — Trim 2% Trim 5% Trim 10% Epa Gauss — Epa

1 m1 93.3 96.0 63.4 81.7 182.9 541.9 54.9 71.9 172.3 535.6 62.7 62.2 327.3 272.9
m2 71.5 71.2 101.9 85.1 75.8 89.5 141.1 92.9 84.4 104.3 76.9 75.3 74.7 79.6
m3 61.4 62.0 104.6 76.8 74.4 147.9 91.1 72.2 77.4 152.7 73.0 75.0 52.8 65.0
m4 118.3 126.1 85.4 77.2 185.5 594.3 74.6 74.0 185.3 588.6 69.3 63.3 399.8 551.4
m5 73.9 73.5 104.1 97.6 174.6 457.4 89.5 92.5 178.5 461.3 79.2 72.6 120.9 145.8
m6 72.2 71.1 110.2 88.9 72.8 77.0 127.2 82.7 66.2 74.7 73.7 84.0 101.7 112.7

81.8 83.3 94.9 84.6 127.7 318.0 96.4 81.0 127.3 319.5 72.5 72.1 179.5 204.6

2 m1 81.9 80.2 75.1 118.4 324.9 1041.5 68.6 98.2 272.4 905.0 73.8 67.5 106.0 118.9
m2 76.2 74.1 76.9 84.5 109.1 176.5 80.2 82.4 102.1 160.7 79.7 76.4 82.4 86.4
m3 62.9 64.8 69.2 74.9 117.4 335.5 72.1 81.3 126.1 339.0 67.9 64.3 58.5 83.6
m4 82.5 81.4 89.2 77.1 279.1 1023.3 94.6 71.7 272.6 1042.9 87.9 87.0 134.2 131.3
m5 67.1 66.0 66.1 105.5 289.8 859.9 68.6 107.5 276.3 812.3 64.9 63.4 85.0 65.4
m6 80.1 76.4 77.4 77.2 81.6 123.3 77.9 75.8 79.1 123.4 78.0 75.9 103.8 80.0

75.1 73.8 75.7 89.6 200.3 593.3 77.0 86.2 188.1 563.9 75.4 72.4 95.0 94.3

3 m1 76.9 77.0 74.2 124.3 358.7 1038.4 75.6 122.4 327.2 919.0 73.0 73.3 63.9 90.0
m2 78.5 78.3 79.9 86.3 117.2 182.7 75.5 84.7 115.8 179.8 79.6 81.4 92.3 82.9
m3 63.1 66.2 71.9 87.7 157.0 440.1 68.8 83.2 148.5 410.0 66.4 70.1 64.4 62.5
m4 69.9 65.6 91.9 89.6 368.0 1271.0 86.5 83.0 331.3 1139.2 86.5 81.6 89.7 78.3
m5 62.1 63.9 62.2 121.7 356.0 1076.7 60.3 108.9 311.0 942.9 62.8 60.8 67.4 67.4
m6 77.3 76.0 73.9 75.5 84.1 159.4 77.1 78.4 90.3 183.0 72.9 78.5 77.3 82.8

71.3 71.2 75.7 97.5 240.2 694.7 73.9 93.4 220.7 629.1 73.6 74.3 75.8 77.3

4 m1 75.9 79.7 76.4 100.1 199.3 523.0 73.7 100.6 205.9 546.8 69.8 70.0 81.1 76.4
m2 80.9 76.8 77.6 81.2 89.7 110.2 74.5 77.0 84.5 101.9 77.0 79.0 69.9 73.5
m3 65.3 66.4 66.0 70.5 89.3 177.9 69.3 74.9 96.5 191.7 64.7 60.7 53.6 65.8
m4 62.5 60.3 77.3 80.1 227.0 738.0 67.5 73.4 226.0 744.6 75.3 79.1 77.1 74.8
m5 57.6 58.9 64.7 93.3 210.1 546.4 65.6 96.0 212.2 551.2 61.3 63.0 62.8 62.2
m6 80.3 76.5 74.6 77.6 82.7 101.3 80.4 83.1 87.9 106.6 77.0 78.0 82.1 79.5

70.4 69.8 72.8 83.8 149.7 366.1 71.8 84.2 152.2 373.8 70.9 71.6 71.1 72.0

5 m1 89.1 90.0 76.4 102.3 243.2 743.1 78.6 98.4 239.8 761.5 65.9 69.2 198.6 215.7
m2 76.2 80.5 150.3 125.7 127.4 209.0 281.7 189.7 149.1 209.2 80.0 76.7 100.3 84.9
m3 66.1 63.9 130.0 103.1 113.3 294.8 152.6 106.1 110.0 278.7 71.2 74.1 79.2 98.2
m4 128.6 118.6 104.4 73.2 152.3 493.0 84.8 68.1 159.9 495.8 72.5 68.6 442.9 323.0
m5 86.2 74.1 102.0 92.7 166.4 510.0 177.3 93.3 146.6 481.3 77.3 73.0 166.0 145.8
m6 68.6 76.1 117.0 94.1 74.9 113.1 236.8 137.8 86.6 123.3 72.4 81.3 56.3 77.2

85.8 83.9 113.3 98.5 146.3 393.8 168.7 115.5 148.7 391.6 73.2 73.8 173.9 157.5

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross validation of the nonparametric regression estimator, over a
grid of 30 different values. Simulations are based on 1000 replications.
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