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Whereas the first term can be estimated by the mean
outcome among the treated individuals, the term E[Y|D =
1] is counterfactual . Identifying this counterfactual mean is
fundamental to treatment evaluation. Generally, E[Y9D =
1] is not equal to E[Y?D = Q] if treatment selection is
nonrandom. Nevertheless, conditional on al confounding
factors X, that is, all factors that influenced the potential
outcome and the decision to participate in treatment, D is
independent of YO:

Y°| DX, (1)

and the counterfactual mean isidentified asE[Y?|D = 1] =
E[E[Y9X, D = Q]|D = 1], provided the support of X
among the treated is contained in the support of X among
the nontreated. If X contains only a few variables, the
counterfactual mean can be estimated using nonparametric
regression of Y on X in the nontreated sample. However, if
X is high-dimensional, nonparametric regression can be
difficult. Rosenbaum and Rubin (1983) have shown that the
dimension of the estimation problem can be reduced sub-
stantially in that the counterfactual mean is also identified as

E[YOD = 1]

(2)
= J E[Y|p(X) = p, D = 0] * fyp_1(p) dp,

where p(x) = P (D = 1|X = x) is the one-dimensional
propensity score, and f,p-1 is the density of p(X) in the
treated population.

Consider a sample of i.i.d. observations {Y;, D, pi} -1,
where p; = p(X;). Denote the number of treated observa-
tions by n;, and the number of control observations by nq.
A variety of propensity-score matching estimators have
been proposed for estimating the counterfactual mean,
which can be characterized as

—_— 1
E[YOD=1]= _~ X f(p), (3

lipi=1

where m(p) is an estimate of the mean outcome in the
nontreated population conditional on the propensity score:
m(p) = E[Y|p(X) = p, D = 0]. The matching estimators
differ in how they estimate m(p). The most prevalent
estimator is pair matching, which proceeds by finding for
each treated observation a control observation with identical
(or very similar) value of p, that is, it uses first-nearest-
neighbor regression to estimate m(p).

Heckman et al. (1997, 1998) suggested estimating m(p)
by local polynomial regression: Kernel matching estimates
m(p) by Nadaraya-Watson regression, whereas local linear
matching is based on a local linear regression estimator.

Heckman, Ichimura, and Todd (1997) advocated local linear
regression for its well-known optimality properties.t

In small samples, however, local linear regression often
leadsto avery rugged curve in regions of sparse or clustered
data (Seifert & Gasser, 1996). To deal with this erratic
behavior, Heckman et al. (1997, 1998) implement a trim-
ming procedure to discard the nonparametric regression
results in regions where the density of the propensity score
in the nontreated population is small. The trimmed matching
estimator is

i:pi=1 M(p;) - l[fp\DZO( pi) > 7]
2ipi-1 1[fp\D:O( pi) > 7] '

where 7 is set so that, for example, 2% or 5% of the treated
observations are trimmed.

Trimming, however, is a very rough solution for the
small-sample problems of local linear regression. Various
approaches to stabilize the local linear estimator in finite
samples have been developed. A simple but promising
approach islocal linear ridge regression, which modifies the
local linear estimator by adding a ridge term to its denom-
inator to avoid near-zero denominators. The regression
estimator of Seifert and Gasser (1996, 2000) is

:E+ Tl'(p_b)
S S+rhlp—-p

— >
E[YD = 1] = (4)

: (5)

s = S - pk(™ ),

j:Dj=0

T(p)= 2 \q(pj—r»aK(pi;p),

j:Dj=0

and

o ij(p, : p) S K(p, : p).
j:Dj=0 j:Dj=0

The bandwidth value h converges to 0 with growing sample
size, and K(-) is a kernel weighting function. The constant
r is the ridge parameter that ensures nonzero denominators.
According to the rule of thumb of Seifert and Gasser (2000),
r is set to 1 for the Epanechnikov kermnel and to [4V2m [
$2(u) du]=! ~ 0.35 for the Gaussian kernel. Inserting
equation (5) in (3) gives the ridge matching estimator.

In the Monte Carlo simulations, 11 different matching
estimators are compared: pair matching, kernel matching
(with Epanechnikov and Gaussian kerndl), local linear match-
ing and trimmed local linear matching (with Epanechnikov

1 See, for example, Fan (1992, 1993), Hastie and Loader (1992) and Fan
et a. (1997).
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and Gaussian kernel), ridge matching (with Epanechnikov
and Gaussian kernel), and two variants of k-NN matching.
In the first variant of k-NN matching, the standard k-NN
regression estimator is used [which estimates m(p) by the
average outcome of the k selected neighbors]. In the second
variant, m(p) is estimated by a weighted average outcome
of the k neighbors, where the neighbors are weighted
according to their distance to p (using Epanechnikov
weights).

An alternative approach to estimating the counterfactual
mean is based on weighting by the propensity score ratio, as
suggested in Imbens (2000). The weighting estimator is

Pi
1-p°

— 1
ElYID=1]= - 2

lipi=0

(6)

Because the ratio p;/(1 — p;) can become very large for
values of p; close to 1, some form of trimming or capping
is necessary in finite samples. In the simulations, a ceiling ©
for the ratio p;i/(1 — p;) is examined (that is, ratios larger
than T are set to T). In addition, a trimming rule, viz.
deleting the observations with the largest ratios, was con-
sidered, but performed worse.

I11. Monte Carlo Study

A. Smulation Design

The design of the Monte Carlo study consists of two
parts. the distributions of the propensity score in the treated
population ( f,p-1) and the nontreated population ( fyp-0)
(see figure 1), and the specification of m(p), that is, the
conditional expectation function of Y given the propensity
score (figure 2). The distribution of the propensity scoresin
figure 1 is driven by the distribution of X and the specifi-
cation of the propensity score p(x). To have asimple design
that, at the same time, allows one to generate very different
shapes of f,p-; and fyp-o, the covariate X is chosen to be
one-dimensional and drawn from the Johnson Sg distribu-
tion (see figure A1), and the propensity score is specified as
alinear function p(x) = a + Bx. (Details are given in the
appendix.) Through the choice of different values for « and
B, very different shapes of f,p-, and fyp—o can be gener-
ated, as demonstrated in Figure 1. Anincrease in « shiftsthe
average value of the propensity score upwards, so that the
number of treated relative to the number of nontreated
increases. Through the parameter 3, the spread of the
propensity score values is controlled.

Figure 1 shows the five different distributions of the
propensity score that are used in the Monte Carlo simula-
tions. [ The support of the propensity scoreis (o, a + ) and
thus varies with o and B. Figure 1 displays the densities of
the rescaled propensity score, whichisscaled by (p — a)/p
so that its support is always (0,1). This ensures that the
support is compatible with the regression curves in figure 2
for al designs. In the simulations, this rescaled propensity

score is used.] The designs are chosen to illustrate different
degrees of overlapping density mass and to represent dif-
ferent ratios of control to treated observations.? In the first
three designs, the population mean of the propensity scoreis
0.5, that is, the expected ratio of control to treated observa
tionsis1: 1. Inthefourth design theratiois4: 1; in the last
designitis 1: 4. The fourth design is most pertinent to the
estimation of the average treatment effect on the treated
when the pool of control observations is large. However, if
interest lies also in the average treatment effect or in the
average treatment effect on the nontreated, or if multiple
treatments are to be evaluated, the estimation of the coun-
terfactual means involves settings where the numbers of
treated and control observations are of similar magnitude
and/or where the treated greatly exceed the controls.

The first three designs, where the control-treated ratio is
1: 1, vary in the discrepancy between the two densities
fop=1 and fyp-o. The differences in the two densities
determine how challenging the estimation setting is for the
matching estimator. If the two densities are rather different,
the matching estimator (3) needs to estimate m( p) often in
regions where there are only very few control observations.
In design 1, for example, a substantial amount of the
probability mass of the treated is located to the right of 0.8,
where there is only little probability mass of the nontreated.
Hence nonparametric regression in these regions is rather
imprecise. In design 3, on the other hand, the two densities
are very similar, and nonparametric regression should be
more precise at al relevant locations. Design 2 is midway
between design 1 and design 3 and will allow us to deter-
mine whether the measures of closeness reported below are
monotonic in the shape.

A useful measure of the distance between these two
densities is the Kullback-Leibler information criterion
(KLIC), which is defined as (Kullback and Leibler, 1951,
Kullback, 1959)

fioe
KLIC :j(lnfz:zig;)fpol(p) dp,

where the integral is taken over the common support of
fop=0 andfyp-1. TheKLICisequal to Oif the two densities
are identical, and it increases with the discrepancy between
the two distributions. The KLIC is attractive here because it
weights the discrepancy in the densities by the probability
mass among the treated, analogously to the weighting for
the counterfactual mean (2). Hence regions where f,p—¢ is
small (and fpp=1/fpp=o is large) contribute significantly to
an increase in the discrepancy measure only when f,p-1
itself islarge, that is, when there are many treated observa-
tions for whom m(p) needs to be estimated. In regions
where fy -1 is small, the density ratio hardly matters at all.

2 The support of fyp-; and f,p—o isidentical in al designs.
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FIGURE 1.—DENSITIES OF THE PROPENSITY SCORE: fpp=1 AND fyp=o
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TaBLE 1.—KLIC AND THE CONTROL-TREATED RATIO

Design « B Control-treated Ratio KLIC
1 0 1 11 0.73
2 0.15 0.7 11 0.42
3 0.30 04 11 0.23
4 0 0.4 41 0.58
5 0.6 0.4 14 0.77

Note: The control-treated ratio is the ratio of the expected numbers of controls and treated:
E[nol/E[n4].

Table 1 displays the vaues of the KLIC and the control-
treated ratio for the different designs. These two parametersare
indicative of the level of difficulty of the estimation setting.
Whereas a larger KLIC indicates that the shapes of the two
densities are more different, so that the matching estimator
more often needs to estimate m(p) in regions with few control
observations, the control-treated ratio indicates the absolute
number of control observations available. For a given sample
size (ng + ny), alarger control-treated ratio implies that more
observationson Y are available to estimate m(p). In contrast, if
the control-treated ratio is 1 : 4, asin design 5, there are very
few nontreated observations to estimate m(p).

The second part of the design of the Monte Carlo simu-
lations concerns the specification of m(p). Six different
regression curves with different degrees of nonlinearity are
considered (figure 2 and table Al). The first regression
curve is a straight line. The second has a conspicuous local
nonlinearity,® and the third is mildly nonlinear throughout.

3 This regression curve might represent a situation where the potential
outcome depends discontinuously on some confounding variables X that
are itself strongly related to the propensity score. Consider, for example,
a treatment whose expected potential outcome is discontinuous in age.

The fourth and the fifth curve are concave in shape, and the
latter has some additional nonlinear structure. The sixth
curve is highly nonlinear.* A mean-zero, uniform error term
with standard deviation 0.1 is added as noise to these
curves.

Though it was straightforward to interpret the KLIC and
the control-treated ratio, in that a higher KLIC or a lower
control-treated ratio makes the estimation setting more de-
manding (that is, increases the MSE), such an interpretation
is less obvious for the regression curve m(p). Although
curves with greater curvature imply a larger local bias for
the nonparametric regression estimator, these biases may
partly cancel when the matching estimator takes the average
of the estimated m(p;). Hence, more pronounced nonlin-
earitiesin itself will not necessarily increase the MSE. They
may favor one estimator over the other, though. The straight
line my, for instance, is more suited to local linear regres-
sion.

Rather than the type of the nonlinearities, it might be
more important where they are located. If they are situated
in regions where the density in the treated population is low,
they are lessrelevant. To analyze the effect of nonlinearities
on the relative performance of the various estimators, the
regression curves are chosen such that the nonlinearities are
located mostly to the right of the center, because that is the

(For example, the treatment might consist of three programs: one for 10-
to 15-year-olds, one for 16- to 17-year-olds, and one for 18- to 20-year-
olds, and only the program for the 16- to 17-year-olds, isbeneficial.) If age
is also the main determinant of the participation decision, a shape like
regression curve 2 could result.

4 Regression curves 2 and 6 are taken from Fan and Gijbels (1992).
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FIGURE 2.—REGRESSION CURVES m(p)
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region where much of the density of the treated lies but
rather little of the density of the controls.

In the following sections the Monte Carlo results for
these different designs are presented. The mean squared
error is simulated for the various estimators for three dif-
ferent sample sizes: 100, 400, and 1600 observations. Pair
matching is considered as the benchmark estimator, and the
MSE of the other estimators is analyzed relative to that of
pair matching. Because all other matching estimators de-
pend on the choice of a bandwidth value, the Monte Carlo
results consist of two parts. In section I11B the potential
efficiency gains are considered: The MSE of the matching
estimators at their optimal bandwidth values is compared
with the MSE of pair matching. This gives an indication by
how much the MSE could be reduced if the optimal band-
width were known. Because the optimal bandwidth is un-
known in practice, section [11C examines the finite-sample
performance when the bandwidth is chosen by cross-
validation. This gives a feasible estimator that is easy to
implement.

B. Potential Efficiency Gains

Table 2 provides the simulated M SE for sample size 100.
In the first column the MSE of pair-matching is given. The
first seven rows provide the results for the first density
design (first graph in figure 1), the second seven rows
represent the second density design, and so on. Within each
block, the first six rows correspond to the results for the six
regression curves m; to mg, and the seventh row shows the
average result for these six curves. Examining the results for
the first three density designs (where the control-treated

ratio is 1 : 1), the MSE of pair matching decreases from
design 1 to design 3 for all regression curves. Hence, it is
smaller when the shapes of fyp-1 and fyp—o are more
similar (and the KLIC is smaller). On the other hand, the
MSE becomes larger when the control-treated ratio differs
from 1 : 1, particularly when the number of treated obser-
vations predominates (design 5).

The dependence of the MSE of pair matching on the
density design and the regression curve, however, is not of
particular concern in this paper. It is rather of interest how
the choice of the best estimator depends on the density
design and the regression curve. Therefore, the MSE of the
other estimators is always presented relative to the MSE of
pair matching (in percent), that is, a value above 100
indicates that pair matching is more precise, and a value
below 100 indicates the reverse. The subsequent columns of
table 2 provide the results for the different matching esti-
mators. kernel matching, local linear matching, and ridged
local linear matching, each with Epanechnikov kernel and
with Gaussian kernel. These are followed by k-NN match-
ing and Epanechnikov-weighted k-NN matching. Finally,
the results for the weighting estimator are given. (In each
row of Table 2, the smallest entries are underlined.) Table 2
presents the MSE for the matching estimators at their
simulated optimal bandwidth values. For each estimator and
for each Monte Carlo design, the MSE is simulated at 60
different bandwidth values, and the minimum of these
simulated MSE is given.®

5For kernel and (ridged) local linear matching the bandwidth grid is
0.01v1.2972 for g = 1,..., 59 and . For k-NN matching the
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TABLE 2—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OuTCOME AT OPTIMAL BANDWIDTH VALUE, SAMPLE SizE 100

MSE Relative to That of Pair Matching (%)

1000x

p Kernel Local Linear Ridge k-NN Weighting
M lsjgror Matching Matching Matching Matching Estimator
Design Curve Matching Epa Gauss Epa Gauss Epa Gauss — Epa — Opt.
1 m 177 90.4 83.9 58.6 58.2 58.5 57.6 84.6 80.4 2555 1175
m; 2.86 67.6 83.8 109.6 105.9 64.1 814 98.7 100.8 922 520
m3 154 69.3 66.5 65.2 64.5 64.9 61.3 68.8 66.5 2528 1337
my 181 92.9 83.9 67.6 63.0 69.4 713 934 89.7 958 633
ms 1.96 83.3 82.6 73.7 705 731 76.6 96.0 91.2 1033 623
ms 215 67.2 711 100.6 80.5 74.0 77.3 81.1 81.1 1111 671
2.01 785 78.6 79.2 73.7 67.3 70.9 87.1 85.0 1518 827
2 my 1.30 7.7 77.0 70.0 718 705 718 824 79.8 812 654
m; 1.83 81.8 80.9 116.4 94.8 745 80.1 97.4 89.9 435 387
m3 111 66.9 67.3 63.4 63.4 63.8 62.6 73.2 70.7 885 755
my 1.06 73.4 70.0 69.0 66.6 68.7 64.6 85.2 83.9 449 413
ms 1.07 735 724 733 69.6 71.3 68.9 85.2 81.6 475 422
M 157 735 718 68.0 62.8 62.4 69.7 85.3 85.6 452 396
133 74.4 73.2 76.7 715 68.5 69.6 84.8 81.9 585 504
3 my 119 73.7 74.0 74.0 76.0 68.0 70.8 74.6 75.4 326 312
m; 1.58 81.3 817 92.0 86.5 74.7 77.8 89.8 87.5 224 227
m3 0.95 66.4 65.3 64.7 64.8 62.9 62.6 721 69.8 371 370
my 0.83 64.9 64.1 61.0 61.2 62.9 60.1 731 70.4 157 153
ms 0.84 64.5 63.5 63.6 61.3 63.0 60.2 76.8 74.6 163 161
ms 1.40 715 70.0 59.2 57.6 57.6 62.9 84.3 81.6 210 204
113 70.4 69.8 69.1 67.9 64.8 65.7 784 76.6 242 238
4 my 2.08 67.3 68.3 711 70.7 68.3 66.3 68.2 70.5 198 190
m; 3.03 58.8 57.7 59.9 57.3 571 56.7 78.6 68.5 106 108
m3 175 56.3 57.8 46.1 457 43.8 43.9 64.6 63.9 226 224
my 1.56 53.3 52.6 36.1 34.7 35.8 336 61.0 59.9 126 125
ms 157 51.1 51.7 35.1 35.8 315 345 63.5 59.1 131 132
M 2.85 42.6 41.8 28.9 28.8 29.3 279 69.0 63.7 107 105
214 54.9 55.0 46.2 455 44.3 438 67.5 64.3 149 147
5 my 2.23 105.8 88.7 61.2 61.6 65.3 64.3 97.5 91.9 2243 804
m; 454 78.8 77.0 81.5 82.3 753 77.6 9.4 84.7 667 336
m3 1.88 91.8 817 93.7 120.2 80.5 82.9 97.8 88.6 2156 952
my 2.29 88.7 87.3 764 83.0 76.9 78.1 95.4 95.4 771 424
ms 2.49 86.5 87.8 78.8 84.6 76.1 78.9 96.6 92.9 755 392
ms 3.07 83.0 89.1 150.1 1839 75.6 924 95.3 92.2 920 441
2.75 89.1 85.3 90.3 102.6 75.0 79.0 96.5 91.0 1252 558

Note: The first two columns indicate the design of the propensity score densities and the regression curve, respectively. MSE of pair matching is multiplied by 1000. MSE of all other estimators is given relative
to MSE of pair matching. In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epaindicates Epanechnikov kernel; Gauss indicates
Gaussian kernel. The MSE of the matching estimators is given at the simulated optimal bandwidth value, which is simulated over a grid of 60 different values (30 values for k-NN matching). Simulations are based

on 10,000 replications.

Inspecting these relative MSE across the different de-
signs, it is seen that the relative performance of all matching
estimators depends strongly on the density design and, in
particular, on the control-treated ratio: Whereas the relative
M SE of the matching estimators decreases somewhat when
the propensity score densities become more similar (from
design 1 to 3), the MSE is much lower when the control-
treated ratio is high (design 4) and higher when the ratio of
controlsto treated islow (design 5). In design 4, the number
of control observationsis approximately 80, and the number
of treated is around 20. Pair matching performs very poorly

bandwidth grid containsonly 30 values: 1, . . ., 21, 25, 29, .. ., 53, e«. For
bandwidth o no local smoothing takes place and local linear regression
corresponds to OLS. For larger sample sizes the bandwidth grid for k-NN
matching is adopted to include larger numbers of neighbors.

in this situation (the MSE of the other matching estimators
is often 50% lower), because it uses the observations on Y
for the 20 matched control observations only, whereas the
other matching estimators use all control observations. In
design 5, on the other hand, the control-treated ratio is
reversed, and pair matching uses the 20 controls multiple
times for matching to the 80 treated observations. Conse-
quently, the loss of information due to pair matching is
much smaller, and the MSE of the other matching estima-
torsis only 10% to 25% lower than for pair matching.
Whereas the design of the propensity score densities
showed a clear effect on the relative precision of aternative
matching estimators, the shape of the regression curve
seems to be less important. On average, the relative MSE
tends to be somewhat larger for regression curve 2 (with the
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conspicuous local peak) and dightly smaller for regression
curve 3 (with mild nonlinearities). Nevertheless, the ater-
native estimators perform better than pair matching in all
designs. In general, ridge matching performs best, followed
by local linear matching. Ridge matching isin most designs
the best estimator, and in those designs where it is not, it is
usually not much worse than the best estimator. In addition,
ridge matching is in al designs better than pair matching.
Local linear matching also performs well in many situa-
tions, but can be worse than pair matching in other situa-
tions. Although it sometimes performs a little better than
ridge matching, it can be much worse in other designs. In
general, local linear matching seems to be more sensitive to
the density design and the regression curve, performing well
in some situations (for example, when the regression curve
is linear) but poorly in others (for example, for regression
curve 2 with the local peak). Kernel matching, on the other
hand, is less sensitive to the simulation design, but performs
worse than ridge matching in almost al designs. The choice
of the kernel function, for these three matching estimators,
is of lesser importance. For ridge matching, the Epanechni-
kov kernel is dlightly preferable to the Gaussian kernel. For
kernel matching it is the Gaussian kernel.

The k-NN matching estimator is in many designs the
worst of all matching estimators.® In all designs it has a
larger MSE than ridge matching. k-NN matching with
Epanechnikov weights performs somewhat better, but is still
always worse than ridge matching. Findly, in the last two
columns the relative MSE of the weighting estimator is
given. The M SE of the simple weighting estimator is always
larger than the MSE of pair matching and can be up to 25
times larger. The MSE of the capped weighting estimator
with optimal capping rule is given in the last column. The
optimal cap is implemented by simulating the MSE for 60
different caps (C = 1, ..., 60) and choosing the minimum
of these. However, even with this optimal cap, the capped
weighting estimator is clearly worse than pair-matching in
al designs.

Table A2 shows the simulation results for sample size
400. The results are largely similar to those for sample size
100, with all matching estimators becoming somewhat more
precise relative to pair-matching. Particularly the k-NN
matching estimators improve their relative position. Never-
theless, the unweighted k-NN matching estimator is still the
worst among al matching estimators in many of the de-
signs; and ridge matching is still the best estimator in
generd. The relative M SE of the weighting estimator wors-
ens with increasing sample size, and this trend is continued
for sample size 1600 (not shown in the tables).

In total, these simulation results reveal that the potential
precision gains can be substantial. On average, ridge match-
ing is approximately 35% more precise than pair matching

61t cannot be worse than pair matching, for pair-matching is equal to
k-NN matching with k = 1.

indesigns 1 to 3, 55% in design 4, and 25% in design 5 (for
sample sizes 100 and 400).

C. Cross-validation Bandwidth Choice

The previous section examined the MSE at the optimal
bandwidth value. Those results indicated the potential for
precision gains, that is, the maximum reductions in MSE
that could be achieved by the different estimators. In this
section, feasible precision gains are analyzed, when the
bandwidth is chosen by cross-validation. Cross-validation is
awidely used bandwidth selector for nonparametric regres-
sion, and although it will not lead to asymptotically optimal
bandwidth choices for the matching estimator, it is worth-
while to examine its usefulness in this setting. Cross-
validation chooses the bandwidth as

h® =argmin >, [Y,— m (p)l

h i:Di=0

where m_;(p) is the estimate with observation i removed
from the sample.”

Table 3 shows the relative MSE for sample size 100,
when the bandwidth is chosen by cross-validation. (The
structure of the table is identica to that of table 2.) In
addition, the results for trimmed local linear matching are
shown.® In Table 3 it is striking how sensitive the perfor-
mance of many matching estimators is to the distribution of
the propensity score. The relative MSE of kernel, local
linear, and k-NN matching decreases substantially (and by
much more than would be expected from table 2) from
design 1 to design 3. The MSE of kernel matching is
reduced from approximately 95% in design 1 (where the
controls and treated differ sharply in their propensity scores)
to approximately 75% in design 3 (where the propensity
score densities are very similar). The relative improvement
is even more drastic for local linear matching and k-NN
matching, which both perform very poorly in designs 1 and
2. The particularly poor performance of local linear match-
ing is ameliorated a little when trimming is introduced.
Trimming discards treated observations from the sample if
they are located in regions where there are few control
observations. Table 3 gives the MSE of the trimmed local
linear matching estimator (for Epanechnikov and for Gauss-
ian kernel) for three different trimming rules: The 2%, 5%,
or 10%, respectively, of the treated observations with the
smallest values of fpp—o( p;) are deleted.® The trimmed local

7 For kernel and (ridged) local linear matching the bandwidth search grid
is0.01 x 1.29"forg =1, ..., 29 and . For k-NN matching the grid

8 In the Monte Carlo simulations, trimming was implemented for all the
other matching estimators as well. Here the trimming results are shown
only for local linear matching, because for al other estimators trimming
aways led to an increase in MSE. The other results are available from the
author.

91n the simulations, trimming has been carried out on the basis of the
true density function f,p—o and on the basis of the estimated density
function fyp—o. The results were similar and often slightly better for
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linear matching estimator has a significantly lower MSE in
designs 1 and 2 than the nontrimmed estimator. However, its
MSE is still very often higher than for pair matching. In
addition, it is not clear how the trimming level should be
chosen in practice. Whereas atrimming level of 10% would
often be the best choicein design 1 and design 5, atrimming
level of 2% or 5% would be preferable in designs 2 and 3.
In design 4, a trimming level of 10% would lead to sub-
stantially worse results than no trimming at al. Ridge
matching, in contrast, is notably less sensitive to design
choice. Its M SE decreases only dlightly, from approximately
80% in design 1 to approximately 75% in design 3. In
design 4 it is approximately 70%, and in design 5 approx-
imately 90%.

In design 4 (where the number of controls greatly exceeds
the number of treated), all estimators perform well and their
relative MSE are very similar: approximately 70%. In such
a situation, trimming seems not to be useful for local linear
matching (particularly in larger samples; see tables A3 and
A4). In design 5, on the other hand, where the control
observations are scarce, only ridge matching consistently
dominates pair matching. All other estimators are usually
worse than pair matching. Ridge matching with Epanech-
nikov kernel is, in fact, the only estimator that is never
worse than pair matching in any of the designs. In addition,
ridge matching is often the best estimator in designs 1, 2,
and 5, and where it is not, it is usualy not much worse.
Indeed, this holds not only for the more demanding designs
1, 2, and 5, but also for the more favorable designs 3 and 4.

Whereas the density design strongly influences the rela
tive performance of all matching estimators, the pattern is
less clear-cut with respect to the shape of the regression
curve m(p). For regression curve my, ridge matching is the
best estimator in all density designs. Nevertheless, the
relative MSE of ridge matching is, in general, only very
little affected by the shape of the regression curve. The
(nontrimmed) local linear matching estimators perform, as
expected, relatively better for the straight regression line
(my), whereas the k-NN matching estimators perform rel-
atively better for regression curves mz and mg. These
patterns, however, are weak and much less pronounced than
the dependence on the density design. The differences with
respect to the choice of the kernel function are also not very
conclusive. In general, the Epanechnikov kernel is some-
what better suited for ridge matching, and the Gaussian
works dlightly better for kernel matching.

Tables A3 and A4 provide the simulation results for
sample size 400 and 1600, respectively. With increasing
sample size all estimators, except k-NN matching, become
more precise in comparison with pair matching. Therelative
MSE of k-NN matching decreases for designs 2 and 3, but
increases substantially for some regression curves in de-
signs 1 and 5. Loca linear matching (without trimming)

foip=o- Table 3 reports only the results based on the estimated density
function.

improves significantly with larger sample size, and with
1600 observations it comes close to ridge matching and
kernel matching in designs 2, 3, and 4. In the more demand-
ing designs 1 and 5, however, it is still often substantially
worse than pair matching. Trimming improves the local
linear matching estimator in designs 1 and 5, but not enough
to dominate the pair-matching estimator. In addition, the
optimal trimming level needs to be found in practice, as the
appropriate trimming depends on the sample size. Whereas
5% trimming is best in designs 1 and 5 for sample size 400,
it would lead to worse results than no trimming for sample
size 1600. With 1600 observations, 2% trimming would be
appropriate for designs 1 and 5, and no trimming for designs
2, 3, and 4. But even with appropriate trimming, local linear
matching is still usually worse than ridge matching.

The relative MSE of kernel matching decreases when the
sample size isincreased from 100 to 400. A further increase
to sample size 1600 affects its MSE only alittle, except for
design 5. Kernel matching is the best estimator for various
regression curvesin designs 2, 3, and 4, and it hasthe lowest
MSE in designs 3 and 4 with respect to the average over all
six regression curves. On the other hand, kernel matching
can be worse than pair matching in designs 1 and 5, even
with 1600 observations.

Finally, ridge matching is still the most appealing of all
estimators. Although its merits are less compelling in larger
samples than they were with 100 observations, it is till
most often the estimator with the lowest MSE. Even when
it is worse than kernel matching, the difference is usually
not large. In addition, ridge matching isleast sensitive to the
design choice and the shape of the regression curve m(p).
As a rough measure of its robustness to the simulation
design, the standard deviation of the relative M SE for the 30
different simulation designs (5 density designs times 6
regression curves) has been computed from Table A3. This
standard deviation is only 6.1 for ridge matching with
Epanechnikov kernel, whereasit is 15.1 for kernel matching
with Gaussian kernel and far higher for al other estimators.
Also, the range between the smallest and the largest MSE is
much smaller for ridge matching. Hence, the performance
of ridge matching relative to pair matching is much more
stable than it is for the other estimators. In addition, it isthe
only estimator whose M SE never exceeded the M SE of pair
matching in any simulation. In total, ridge matching is
approximately 25% more precise than pair matching. When
the number of control observations is much larger than the
number of treated (design 4), the MSE of ridge matching is
approximately 30% lower than the MSE of pair matching.
In the reverse situation, when the number of treated pre-
dominates (design 5), the precision gains are smaller and
depend on the sample size. If the sample is small (approx-
imately 80 treated and 20 control observations), the preci-
sion gains are around 10%, and they increase to approxi-
mately 30% for sample size 1600 (with approximately 320
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TABLE 3.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OuTCcOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS VALIDATION, SAMPLE SizE 100

MSE Relative to That of Pair Matching (%)

Kernel Local Linear Matching with Local Linear Matching with Ridge k-NN

Matching Epanechnikov Kernel Gauss Kernel Matching Matching
Design Curve Epa Gauss —  Trim2% Trim5% Trim10% —  Trim2% Trim5% Trim10% Epa Gauss — Epa
1 my 1048 965 105.8 104.1 107.9 126.0 109.2 103.8 105.6 121.5 762 714 1628 146.1
m; 735 926 168.2 158.0 146.6 129.8 258.8 2221 188.8 150.0 701 919 1373 1191
m; 783 749 2120 191.3 171.6 150.1 276.1 234.1 199.5 164.5 784 773 1065 99.3
my 1194 1181 1075 95.9 90.4 94.7 129.6 109.5 97.9 96.3 846 836 2115 196.7
ms 112.2 1113 1336 116.2 103.1 95.6 180.4 145.8 119.9 102.5 879 894 1739 1616
mg 824 837 197.0 185.5 1732 155.6 36553  306.7 263.2 211.6 818 862 930 843
951 962 154.0 141.8 132.1 125.3 218.2 187.0 162.5 141.1 798 833 1475 1345
2 m; 849 834 877 89.5 101.2 139.1 83.8 88.1 102.3 144.4 772 761 1060 99.9
m; 86.3 87.7 1418 132.1 125.8 123.0 176.6 156.3 1429 135.2 835 86.6 113.6 102.8
ms 725 721 1204 107.8 102.1 108.3 109.1 97.0 935 103.1 732 733 842 827
my 875 863 96.7 78.9 75.4 93.3 100.9 79.6 72.6 85.1 729 719 1383 1313
ms 885 874 1225 98.8 87.0 92.3 124.5 96.4 81.7 84.8 772 780 1257 116.2
mg 79.7 816 1235 112.3 105.0 103.2 149.8 128.6 115.4 109.1 79.8 817 877 849
832 831 1154 103.2 99.4 109.9 124.1 107.7 101.4 110.3 773 779 1093 103.0
3 my 755 751 807 85.2 99.0 137.6 778 84.2 100.0 140.9 717 756 807 782
m; 84.6 844 1127 106.1 105.2 112.0 134.1 125.2 122.6 130.3 825 836 955 897
m; 700 69.7 825 78.1 814 99.8 739 73.7 79.3 100.6 702 707 745 737
my 709 700 935 72.3 68.1 86.1 102.2 76.0 65.5 735 703 692 886 865
ms 709 69.2 1025 79.9 71.0 80.7 103.4 785 67.4 71.4 741 728 871 812
mg 799 792 938 86.6 86.6 975 94.5 87.1 87.2 98.5 765 784 859 842
753 746 943 84.7 85.2 102.3 97.7 87.4 87.0 102.5 752 751 854 822
4 m; 700 701 731 83.8 90.3 114.9 724 83.2 89.5 114.3 729 719 707 717
m; 718 715  79.7 814 83.0 90.8 82.7 81.8 82.7 89.3 766 764 80.6 810
ms 638 636 655 70.6 739 88.6 62.7 69.2 729 88.9 624 628 670 647
my 587 570 751 68.0 711 88.3 72.3 63.0 65.0 79.4 65.7 630 644 614
ms 604 600 724 67.6 70.5 87.9 705 62.1 63.4 75.3 623 630 649 618
mg 756 766 745 77.1 79.3 90.0 715 729 749 85.7 758 755 800 797
67.7 675 734 74.7 78.0 934 720 72.0 74.7 88.8 69.3 688 713 70.0
5 my 126.3 99.1 1377 133.2 1339 151.0 90.9 92.1 100.8 129.6 915 824 1483 1344
m; 87.0 982 1185 111.9 105.6 101.7 86.8 84.3 83.6 88.9 751 931 1274 1089
m; 1168 1021 2237 203.9 184.1 164.2 149.4 144.5 144.9 155.0 979 907 1611 1420
my 106.3 108.3 149.8 128.4 109.3 92.3 1149 102.6 924 83.2 936 954 1428 1355
ms 99.4 1022 156.8 134.6 114.1 94.2 121.1 107.6 95.9 84.3 89.8 937 1263 1209
mg 914 949 229.1 213.8 195.1 168.5 258.9 240.1 221.4 200.3 941 101.7 1434 1214
1045 100.8 169.3 154.3 140.3 128.7 137.0 1285 123.2 1235 90.3 928 1416 1272

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross-validation of the nonparametric regression estimator, over a

grid of 30 different values. Simulations are based on 10,000 replications.

non-treated observations). With respect to the shape of the
regression curve, no consistent pattern can be detected.

IV. Conclusions

In this paper the finite-sample properties of various
propensity-score matching estimators of the counterfactual
mean (which is the central ingredient in the computation of
average treatment effects) have been analyzed. First, the
potential efficiency gains of alternative matching estimators
Vis-aVvis pair matching were assessed, that is, it was exam-
ined by how much the M SE could be reduced if the optimal
bandwidth was known. In general, ridge matching demon-
strated the largest potential. In the designs where the num-
bers of treated and control observations were approximately

equal, its MSE was approximately 35% lower. It was
approximately 55% lower when the control observations
exceeded the number of treated by 4 : 1, and approximately
25% lower when the ratio was 1 : 4. Almost regardless of
the Monte Carlo design, ridge matching was usually the best
estimator, particularly in small samples.

Though these simulations indicated the potential for pre-
cision gains, in practice a data-driven bandwidth choice is
necessary to select the bandwidth value. A handy and
easy-to-implement bandwidth selector is cross validation of
the nonparametric regression estimator. Although cross-
validation will not lead to asymptotically optimal bandwidth
choices, it seems to work well in practice for some estima-
tors, at least for the sample sizes considered. In the rather
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facile simulation designs (similar characteristics of treated
and control populations, or a large control-to-treated ratio),
kernel matching was often the best estimator, immediately
followed by ridge matching. In more demanding situations
(small sample size, large differencesin the characteristics of
treated and control populations, or a smal number of
control observations), however, kernel matching performed
usualy worse than ridge matching and sometimes even
worse than pair-matching. Ridge matching with Epanech-
nikov kernel was often the estimator with smallest MSE,
particularly in the more demanding designs. In addition, its
relative MSE was least sensitive to the simulation design,
and it was always lower than for pair matching. Hence, for
practical guidance on estimator choice, ridge matching
seems to be a good choice in most situations. (If the
control-treated ratio is large, kernel matching is aso an
option.) The precision gains of ridge matching did not
depend much on the shape of the regression curve and also
not much on the shapes of the propensity score densities, but
were affected somewhat by the control-to-treated ratio. For
approximately equal numbers of controls and treated, ridge
matching was approximately 25% more precise than pair
matching. For a control-treated ratio of 4 : 1, the reductions
in MSE were approximately 30%, but they were approxi-
mately 10-30% (depending on sample size) for a ratio of
1: 4. (To put these figures in perspective, a reduction in
MSE of 25% means that pair matching would require
approximately 33% more observations to achieve the same
precision.) Although these reductions in MSE are substan-
tial, they do not reach the potential precision gains. Partic-
ularly in the designs where the control observations ex-
ceeded the treated by 4 : 1, the potentia for further
improvement through a better bandwidth choice seems
greatest. In all other designs, the differences between the
potential and the feasible precision gains are not very large
and the development of a superior bandwidth selector might
be difficult.

The performance of local linear matching with cross-
validation bandwidth selection, on the other hand, was
deceptive. Although trimming improved its M SE, it was still
clearly worse than ridge matching in most designs. Hence,
trimming seems not to be the best response to the variance
problems of the local linear regression estimator. In addi-
tion, it might be difficult in practice to determine the optimal
trimming level. k-NN matching was aso not very success-
ful. Findly, the weighting estimator turned out be worst of
al. Even with an optimal capping rule, it is far worse than
pair matching in al of the designs.
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APPENDIX

1. Generation of the Propensity-Score Distributions

To have a simple but versatile design for the generation of different
distributions of the propensity score (fyp-; and fyp-o), the propensity
score is specified as p(x) = a + Bx, where X is one-dimensiona and
distributed symmetrically in (0, 1). The parameters o and B are chosen
such that 0 < p(x) < 1. The propensity-score values thus range from «
to a + B. Denote the expected value of the propensity score by Py; it is
given by P, = E[p(X)] = « + B/2. Let P, denote the size of the
nontreated population: P, = 1 — P;. For this specification, the ensuing
densities fyp-; and fp-o are thus

foo-1(p) = 55 fx(p;‘x),

1-p p—a
fp\DZO(p):ﬁ'fx 5 for a<p<a+pB,

and accordingly the ratio of the two densities is given by

fp\Dzl(P) _ P E
fp\D:o(P) 1-pP; '

Hence in a design where the treated and nontreated populations are of
equa size (P, = Py), the ratio fyp_1/fyp-oislat p = 0.5 and close to
1 in its neighborhood. To be able to generate large differences between
fop=1 and fp—o (and thus a large value of the KLIC, asin the first graph
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2. The Regression Curves

TABLE A1.—REGRESSION CURVES m(p)

my(p) = 0.15 + 0.7p

my(p) = 0.1 + £ + gexp[—zoO(p - 079

mg(p) = 0.8 — 2(p — 0.9)2 — 5(p — 0.7)3 — 10(p — 0.6)*°
my(p) = 0.2 + V1 — p — 0.6(0.9 — p)?

ms(p) = 0.2 + V1 — p — 0.6(0.9 — p)2 — 0.1p cos(30p)
me(p) = 0.4 + 0.25 sin(8p — 5) + 0.4 exp[—16(4p — 2.5)7]

of figure 1) requires that the distribution of X have substantial probability
massin its tails. In addition, to ensure that the support of X isidentical in
the treated and the nontreated population, lim, | o fx(X) and lim, ; , fx(X) should
be both 0. The Johnson S; family provides aconvenient distribution satisfying
these properties, which is depicted in figure Al. Its density is

f _; }|2( X > .
x(x)—z\gx(lix)exp 2l 0<x<l1;

see Johnson, Kotz, and Balakrishnan (1994, p. 37,y = 0, 8 = V0.5) or
Johnson (1949).
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TABLE A2.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OuTCOME AT OPTIMAL BANDWIDTH VALUE, SAMPLE SizE 400

MSE Relative to That of Pair Matching (%)

1000f>< Kernel Local Linear Ridge k-NN Weighting
MiEairor Matching Matching Matching Matching Estimator
Design Curve Matching Epa Gauss Epa Gauss Epa Gauss — Epa — Opt.
1 m 0.46 771 734 55.1 54.7 56.2 59.2 75.6 74.6 2422 1455
m; 0.56 76.9 76.9 125.2 104.6 75.2 77.2 78.6 74.8 1192 830
m3 0.44 58.2 58.2 53.8 52.6 56.0 53.4 58.7 522 2225 1509
my 0.44 89.2 7.7 60.1 59.4 58.1 60.8 89.3 83.0 972 798
ms 0.43 75.6 74.0 73.0 72.6 72.2 64.2 73.7 71.6 1160 863
ms 0.56 59.8 59.0 79.5 79.2 733 73.9 76.1 72.3 1089 806
0.48 72.8 69.9 74.5 70.5 65.2 64.8 75.3 714 1510 1044
2 my 0.34 713 74.1 735 70.2 66.4 715 715 72.2 786 735
m; 0.42 80.6 79.6 75.3 76.8 69.7 74.0 83.2 76.5 467 459
m3 0.28 64.7 64.0 63.5 60.7 61.2 58.0 67.1 64.3 878 848
my 0.26 68.3 69.4 68.1 63.8 68.6 63.8 75.5 71.6 459 451
ms 0.25 68.7 69.9 714 66.3 70.5 64.8 72.0 68.4 483 465
ms 0.38 724 68.3 63.2 66.0 59.5 70.6 82.7 80.7 461 440
0.32 710 70.9 69.2 67.3 66.0 67.1 75.3 72.3 589 566
3 m 0.30 72.7 725 70.7 70.2 741 715 77.2 74.0 324 319
m; 0.39 78.6 79.3 711 73.7 75.3 76.5 80.7 81.1 225 223
m3 0.24 67.0 65.2 60.6 60.1 60.0 59.5 67.0 65.5 365 355
my 0.20 63.0 62.8 58.8 60.6 57.0 59.0 68.8 63.7 154 154
ms 0.21 63.2 64.3 60.2 60.8 60.7 575 66.1 65.0 161 157
ms 0.35 70.0 66.2 59.8 60.7 59.3 64.9 79.1 80.2 210 205
0.28 69.1 68.4 63.5 64.4 64.4 64.8 731 716 240 236
4 my 0.50 70.4 69.6 718 70.0 72.7 68.8 711 69.9 198 199
m; 0.74 61.0 64.2 58.1 59.1 60.4 60.8 76.7 69.5 110 109
m3 0.43 59.2 60.4 46.7 45.9 47.0 50.6 63.8 61.8 228 233
my 0.40 57.4 57.7 338 341 320 34.6 60.4 61.2 128 126
ms 0.39 56.8 53.5 333 33.7 325 335 62.2 59.1 131 134
ms 0.67 46.4 50.5 279 284 29.1 27.2 69.7 64.9 109 109
0.52 58.5 59.3 453 452 45.6 459 67.3 64.4 151 152
5 m 0.52 875 79.1 59.6 58.0 58.5 59.5 84.4 83.7 2269 1209
m; 0.64 7.7 89.2 159.9 130.1 83.9 89.9 98.1 99.7 1192 758
m3 0.47 67.4 68.2 68.3 68.8 68.8 65.4 68.2 67.9 2108 1287
my 0.53 92.3 83.5 675 68.0 79.1 71.6 91.3 97.5 786 565
ms 0.48 96.9 82.2 84.6 86.0 85.7 728 94.5 95.8 927 617
ms 0.57 75.2 77.6 1116 93.5 76.5 89.9 79.7 80.5 1157 782
0.54 82.9 80.0 91.9 84.1 75.4 74.9 86.0 875 1407 870

Note: The first two columns indicate the design of the propensity-score densities and the regression curve, respectively. MSE of pair matching is multiplied by 1000. MSE of all other estimators given relative
to MSE of pair-matching. In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates
Gaussian kernel. The MSE of the matching estimators is given at the simulated optimal bandwidth value, which is simulated over a grid of 60 different values (30 values for k-NN matching). Simulations are based
on 5000 replications.
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TABLE A3.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS-VALIDATION, SAMPLE Size 400

MSE Relative to That of Pair Matching (%)

Kernel Local Linear Matching with Local Linear Matching with Ridge k-NN
Matching Epanechnikov Kernel Gauss Kernel Matching Matching
Design Curve Epa Gauss —  Trim2% Trim5% Trim10% —  Trim2% Trim5% Trim10% Epa Gauss — Epa
1 my 927 903 748 76.2 98.1 186.2 76.3 76.7 99.0 189.1 66.0 645 1969 192.1
my 783 783 1365 1229 106.3 93.1 2791 2101 151.7 107.4 784 803 1147 1059
mg 635 641 1305  109.6 94.2 100.4 1659 1256 98.0 97.4 740 724 818 733
m,; 1196 1140 917 76.5 88.3 169.0 90.4 755 90.5 179.1 713 675 327.0 3015
ms 839 763 109.1 97.7 101.2 161.0 209.1 1430 1139 162.7 80.3 757 2207 1941
Me 723 781 1220 1101 94.9 83.3 2557  189.6 134.8 97.6 739 817 819 776
851 835 1108 98.8 97.2 132.2 1794 1368 114.6 1384 740 737 1705 1574
2 my 80.7 838 754 85.8 135.1 304.6 74.0 84.6 1322 295.7 727 724 1066 106.2
my 790 790 900 86.1 89.7 108.5 105.5 93.6 95.8 1159 789 792 845 837
mg 66.3 654 775 75.8 87.3 148.4 79.4 74.2 83.2 139.8 69.3 679 765 737
my 814 838 867 67.1 99.9 259.8 82.0 66.2 99.8 253.1 756 726 1400 1315
ms 677 670 786 77.0 114.8 260.5 90.3 75.0 105.9 2435 70.0 686 944 887
ms 770 767 878 82.6 83.3 100.3 1034 87.0 84.5 1025 771 786 82.0 805
753 760 827 79.0 101.7 197.0 89.1 80.1 100.2 191.8 739 732 974 940
3 my 746 750 737 87.3 1414 300.0 75.0 90.1 146.1 308.1 755 734 79.7 79.6
my 799 797 826 85.8 97.9 1237 86.6 87.7 100.0 126.5 789 798 81.8 804
mg 675 661 675 71.3 90.5 166.2 67.5 71.8 92.0 169.9 68.7 66.6 68.7 68.3
my 665 652 855 66.6 109.5 289.5 83.1 63.7 105.3 281.8 795 774 80.6 754
ms 636 635 706 73.0 1245 303.4 76.8 66.6 107.0 2714 66.7 645 679 66.6
Me 76.0 756 791 77.8 83.9 114.6 83.2 79.3 86.4 1219 764 743 804 T77.7
713 708 765 76.9 108.0 216.2 78.7 76.6 106.1 213.2 743 727 765 747
4 my 700 710 716 80.3 107.9 190.5 69.9 78.8 107.0 191.7 709 729 735 713
my 780 786 769 79.8 85.4 96.2 75.6 78.6 83.9 94.7 776 787 787 771
mg 63.7 639 662 70.1 79.5 1111 63.3 67.7 78.0 111.8 634 659 66.3 65.4
my 589 588 755 68.0 96.8 206.7 68.9 64.8 94.9 205.4 685 674 649 62.6
ms 589 592 621 69.0 100.4 194.1 64.0 66.7 95.4 188.1 609 594 61.0 59.9
ms 761 754 779 80.1 85.2 99.4 75.7 775 82.5 96.3 774 755 798 794
676 678 717 745 92.5 149.7 69.6 72.3 90.3 148.0 69.8 70.0 70.7 69.33
5 m; 1037 930 964 97.9 127.1 247.7 90.3 92.8 124.2 2475 753 715 1785 169.5
my 850 911 2812 2557 219.9 182.7 3850 3158 249.5 197.6 823 89.0 1669 1298
mg 749 71.0 2086 1764 145.3 146.3 2177 1721 1385 144.2 811 79.8 101.6 101.0
m, 1202 1219 1084 81.4 74.9 119.3 1204 85.4 75.0 1184 780 737 2493 2551
ms 1195 1049 1715 12838 95.4 1133 2195 1463 98.8 1147 895 86.0 221.7 199.8

mg 80.3 833 2265 2006 166.1 1345 4042 3179 238.2 176.1 784 849 89.0 828
97.3 942 1821  156.8 138.1 157.3 2395 188.4 154.0 166.4 80.8 80.8 167.8 156.3

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross-validation of the nonparametric regression estimator, over a
grid of 30 different values. Simulations are based on 5000 replications.
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TABLE A4.—MEAN SQUARED ERROR OF ESTIMATED COUNTERFACTUAL MEAN OUTCOME (RELATIVE TO MSE OF PAIR MATCHING):
BANDWIDTH VALUE CHOSEN BY CROSS VALIDATION, SAMPLE Size 1600

MSE Relative to That of Pair Matching (%)

Kernel Local Linear Matching with Local Linear Matching with Ridge k-NN

Matching Epanechnikov Kernel Gauss Kernel Matching Matching
Design Curve Epa Gauss —  Trim2% Trim5% Trim10% —  Trim2% Trim5% Trim10% Epa Gauss — Epa
1 my 933 9.0 634 81.7 182.9 541.9 54.9 71.9 172.3 5356 627 622 327.3 2729
my 715 712 1019 85.1 75.8 895 1411 92.9 84.4 1043 769 753 747  79.6
mg 614 620 104.6 76.8 744 147.9 91.1 722 774 1527 730 750 528 650
m, 1183 1261 854 77.2 1855 594.3 74.6 74.0 185.3 588.6 693 63.3 3998 5514
ms 739 735 1041 97.6 174.6 457.4 89.5 925 1785 461.3 792 726 1209 1458
Me 722 711 1102 88.9 72.8 770 1272 82.7 66.2 747 737 840 1017 1127
81.8 833 949 84.6 127.7 318.0 96.4 81.0 127.3 3195 725 721 1795 2046
2 my 819 802 751 1184 324.9 10415 68.6 98.2 2724 9050 738 675 106.0 1189
my 762 741 769 84.5 109.1 176.5 80.2 82.4 102.1 160.7 79.7 764 824 864
mg 629 648 69.2 74.9 1174 335.5 721 81.3 126.1 339.0 679 643 585 836
my 825 814 892 77.1 279.1 1023.3 94.6 717 272.6 10429 879 870 1342 1313
ms 671 660 661 1055 289.8 859.9 68.6 1075 276.3 8123 649 634 85.0 654
ms 80.1 764 774 77.2 81.6 1233 77.9 75.8 79.1 1234 780 759 1038 80.0
751 738 757 89.6 200.3 593.3 77.0 86.2 188.1 5639 754 724 95.0 943
3 my 769 770 742 1243 358.7 10384 756 1224 327.2 9190 730 733 639 900
my 785 783 799 86.3 117.2 182.7 755 84.7 1158 1798 796 814 923 829
mg 631 662 719 87.7 157.0 440.1 68.8 83.2 1485 4100 664 701 644  62.5
my 69.9 656 919 89.6 368.0 1271.0 86.5 83.0 3313 11392 865 816 89.7 783
ms 621 639 622 1217 356.0 1076.7 60.3  108.9 311.0 9429 628 60.8 674 674
Me 773 760 739 75.5 84.1 159.4 771 78.4 90.3 1830 729 785 773 828
713 712 757 97.5 240.2 694.7 73.9 93.4 220.7 629.1 736 743 758 773
4 my 759 797 764  100.1 199.3 523.0 73.7  100.6 205.9 5468 69.8 70.0 811 764
my 809 768 776 81.2 89.7 110.2 74.5 77.0 84.5 1019 770 790 699 735
mg 653 664 66.0 70.5 89.3 177.9 69.3 74.9 96.5 1917 647 607 536 658
my 625 603 773 80.1 227.0 738.0 67.5 734 226.0 7446 753 791 771 748
ms 576 589 647 93.3 210.1 546.4 65.6 96.0 212.2 5512 613 630 628 62.2
ms 803 765 746 77.6 82.7 101.3 80.4 83.1 87.9 1066 770 780 821 795
704 698 728 83.8 149.7 366.1 718 84.2 152.2 3738 709 716 711 720
5 my 89.1 900 764 1023 243.2 743.1 78.6 98.4 239.8 7615 659 69.2 1986 2157
my 762 805 1503 1257 127.4 209.0 2817  189.7 149.1 2092 800 76.7 1003 849
mg 66.1 639 130.0 103.1 1133 2948 1526  106.1 110.0 2787 712 741 792 982
m,; 1286 1186 1044 73.2 152.3 493.0 84.8 68.1 159.9 4958 725 68.6 4429 3230
ms 86.2 741 1020 92.7 166.4 5100 177.3 93.3 146.6 481.3 773 73.0 1660 1458
Me 68.6 761 117.0 94.1 74.9 1131 2368 1378 86.6 1233 724 813 563 772
858 839 1133 98.5 146.3 3938 168.7 1155 148.7 3916 732 738 1739 1575

Note: In each row, the estimator with the minimum MSE and all estimators with MSE not larger than 0.5 above the minimum are underlined. Epa indicates Epanechnikov kernel; Gauss indicates Gaussian kernel.
Trim 2% means that estimator is trimmed by deleting the 2% of the observations with lowest density. The bandwidth is chosen by leave-one-out cross validation of the nonparametric regression estimator, over a
grid of 30 different values. Simulations are based on 1000 replications.



This article has been cited by:

1.

4

5.

6.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Stefanie Behncke, Markus Frélich, Michael Lechner. 2010. A Caseworker Like Me - Does The Similarity Between The
Unemployed and Their Caseworkers Increase Job Placements?*. The Economic Journal 120:549, 1430-1459. [CrossRef]

. Christian Volpe Martincus, Jerénimo Carballo. 2010. Entering new country and product markets: does export promotion help?.

Review of World Economics 146:3, 437-467. [CrossRef]

. Weihua An. 2010. BAYESIAN PROPENSITY SCORE ESTIMATORS: INCORPORATING UNCERTAINTIES IN

PROPENSITY SCORES INTO CAUSAL INFERENCE. Sociological Methodology 40:1, 151-189. [CrossRetf]

. Anton Flossmann. 2010. Accounting for missing data in M-estimation: a general matching approach. Empirical Economics 38:1,

85-117. [CrossRef]

Stefanie Behncke, Markus FrAflich, Michael Lechner. 2010. Unemployed and their caseworkers: should they be friends or foes?.
Journal of the Royal Statistical Society: Series A (Statistics in Society) 173:1, 67-92. [CrossRetf]

Inha Oh, Jeong-Dong Lee, Almas Heshmati, Gyoung-Gyu Choi. 2009. Evaluation of credit guarantee policy using propensity
score matching. Small Business Economics 33:3, 335-351. [CrossRef]

. Annette Bergemann, Bernd Fitzenberger, Stefan Speckesser. 2009. Evaluating the dynamic employment effects of training

programs in East Germany using conditional difference-in-differences. journal of Applied Econometrics 24:5, 797-823. [CrossRef]

Michael Rosholm, Lars Skipper. 2009. Is labour market training a curse for the unemployed? Evidence from a social experiment.
Journal of Applied Econometrics 24:2, 338-365. [CrossRef]

Guido W Imbens, Jeffrey M Wooldridge. 2009. Recent Developments in the Econometrics of Program Evaluation. Journal of
Economic Literature 47:1, 5-86. [CrossRef]

Brian C. Briggeman, Charles A. Towe, Mitchell J. Morehart. 2009. Credit Constraints: Their Existence, Determinants, and
Implications for U.S. Farm and Nonfarm Sole Proprietorships. American Journal of Agricultural Economics 91:1, 275-289.
[CrossRef]

Markus Frélich. 2008. Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables. International
Statistical Review 76:2, 214-227. [CrossRef]

Pamela Farley Short, Joseph J. Vasey, John R. Moran. 2008. Long-Term Effects of Cancer Survivorship on the Employment of
Older Workers. Health Services Research 43:1p1, 193-210. [CrossRef]

Jennifer Davis, Heather Lukacs, Marc Jeuland, Alfonso Alvestegui, Betty Soto, Gloria Lizarraga, Alex Bakalian, Wendy Wakeman.
2008. Sustaining the benefits of rural water supply investments: Experience from Cochabamba and Chuquisaca, Bolivia. Wazer
Resources Research 44:12. . [CrossRef]

Daniel J. Henderson, Daniel L. Millimet, Christopher F. Parmeter, Le WangFertility and the health of children: A nonparametric
investigation 21, 167-195. [CrossRef]

Marco Caliendo, Reinhard Hujer, Stephan L. ThomsenThe employment effects of job-creation schemes in Germany: A
microeconometric evaluation 21, 381-428. [CrossRef]

Antonio Bento, Charles Towe, Jacqueline Geoghegan. 2007. The Effects of Moratoria on Residential Development: Evidence
from a Matching Approach. American Journal of Agricultural Economics 89:5, 1211-1218. [CrossRef]

Markus Frolich. 2007. On the inefficiency of propensity score matching. AStA Advances in Statistical Analysis 91:3, 279-290.
[CrossRef]

Markus Frélich. 2007. Propensity score matching without conditional independence assumption?with an application to the gender
wage gap in the United Kingdom. The Econometrics Journal 10:2, 359-407. [CrossRef]

Miana Plesca, Jeffrey Smith. 2007. Evaluating multi-treatment programs: theory and evidence from the U.S. Job Training
Partnership Act experiment. Empirical Economics 32:2-3, 491-528. [CrossRef]

Marvin A. Titus. 2007. Detecting selection bias, using propensity score matching, and estimating treatment effects: an application
to the private returns to a master’s degree. Research in Higher Education 48:4, 487-521. [CrossRef]

Markus Frolich. 2006. Non-parametric regression for binary dependent variables. The Econometrics Journal 9:3, 511-540.
[CrossRef]

Markus Frélich. 2006. Semiparametric estimation of conditional mean functions with missing data. Empirical Economics 31:2,

333-367. [CrossRef]


http://dx.doi.org/10.1111/j.1468-0297.2010.02382.x
http://dx.doi.org/10.1007/s10290-010-0062-x
http://dx.doi.org/10.1111/j.1467-9531.2010.01226.x
http://dx.doi.org/10.1007/s00181-009-0257-y
http://dx.doi.org/10.1111/j.1467-985X.2009.00600.x
http://dx.doi.org/10.1007/s11187-008-9102-5
http://dx.doi.org/10.1002/jae.1054
http://dx.doi.org/10.1002/jae.1048
http://dx.doi.org/10.1257/jel.47.1.5
http://dx.doi.org/10.1111/j.1467-8276.2008.01173.x
http://dx.doi.org/10.1111/j.1751-5823.2008.00045.x
http://dx.doi.org/10.1111/j.1475-6773.2007.00752.x
http://dx.doi.org/10.1029/2007WR006550
http://dx.doi.org/10.1016/S0731-9053(07)00007-2
http://dx.doi.org/10.1016/S0731-9053(07)00013-8
http://dx.doi.org/10.1111/j.1467-8276.2007.01086.x
http://dx.doi.org/10.1007/s10182-007-0035-0
http://dx.doi.org/10.1111/j.1368-423X.2007.00212.x
http://dx.doi.org/10.1007/s00181-006-0095-0
http://dx.doi.org/10.1007/s11162-006-9034-3
http://dx.doi.org/10.1111/j.1368-423X.2006.00196.x
http://dx.doi.org/10.1007/s00181-005-0019-4

23. Richard Blundell, Lorraine Dearden, Barbara Sianesi. 2005. Evaluating the effect of education on earnings: models, methods and
results from the National Child Development Survey. Journal of the Royal Statistical Society: Series A (Statistics in Society) 168:3,
473-512. [CrossRef]


http://dx.doi.org/10.1111/j.1467-985X.2004.00360.x

