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ABSTRACT

The bootstrap is a method for estimating the distribution of an estimator or test statistic by

resampling one’s data or a model estimated from the data.  Under conditions that hold in a wide

variety of econometric applications, the bootstrap provides approximations to distributions of

statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis

tests that are more accurate than the approximations of first-order asymptotic distribution theory.

The reductions in the differences between true and nominal coverage or rejection probabilities can

be very large.  The bootstrap is a practical technique that is ready for use in applications.  This

chapter explains and illustrates the usefulness and limitations of the bootstrap in contexts of interest

in econometrics.  The chapter outlines the theory of the bootstrap, provides numerical illustrations

of its performance, and gives simple instructions on how to implement the bootstrap in applications.

The presentation is informal and expository.  Its aim is to provide an intuitive understanding of how

the bootstrap works and a feeling for its practical value in econometrics.

JEL Classification:  C12, C13, C15
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THE BOOTSTRAP

1.  INTRODUCTION

The bootstrap is a method for estimating the distribution of an estimator or test statistic by

resampling one’s data.  It amounts to treating the data as if they were the population for the purpose

of evaluating the distribution of interest.  Under mild regularity conditions, the bootstrap yields an

approximation to the distribution of an estimator or test statistic that is at least as accurate as the

approximation obtained from first-order asymptotic theory.  Thus, the bootstrap provides a way to

substitute computation for mathematical analysis if calculating the asymptotic distribution of an

estimator or statistic is difficult.  The statistic developed by Härdle et al. (1991) for testing positive-

definiteness of income-effect matrices, the conditional Kolmogorov test of Andrews (1997), Stute’s

(1997) specification test for parametric regression models, and certain functions of time-series data

(Blanchard and Quah 1989, Runkle 1987, West 1990) are examples in which evaluating the

asymptotic distribution is difficult and bootstrapping has been used as an alternative.

In fact, the bootstrap is often more accurate in finite samples than first-order asymptotic

approximations but does not entail the algebraic complexity of higher-order expansions.  Thus, it

can provide a practical method for improving upon first-order approximations.  Such improvements

are called asymptotic refinements.  One use of the bootstrap’s ability to provide asymptotic

refinements is bias reduction.  It is not unusual for an asymptotically unbiased estimator to have a

large finite-sample bias.  This bias may cause the estimator’s finite-sample mean square error to

greatly exceed the mean-square error implied by its asymptotic distribution.  The bootstrap can be

used to reduce the estimator’s finite-sample bias and, thereby, its finite-sample mean-square error.

The bootstrap’s ability to provide asymptotic refinements is also important in hypothesis

testing.  First-order asymptotic theory often gives poor approximations to the distributions of test

statistics with the sample sizes available in applications.  As a result, the nominal probability that a

test based on an asymptotic critical value rejects a true null hypothesis can be very different from

the true rejection probability (RP).1  The information matrix test of White (1982) is a well-known
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example of a test in which large finite-sample errors in the RP can occur when asymptotic critical

values are used (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor 1987).  Other

illustrations are given later in this chapter.  The bootstrap often provides a tractable way to reduce or

eliminate finite-sample errors in the RP’s of statistical tests.

The problem of obtaining critical values for test statistics is closely related to that of

obtaining confidence intervals.  Accordingly, the bootstrap can also be used to obtain confidence

intervals with reduced errors in coverage probabilities.  That is, the difference between the true and

nominal coverage probabilities is often lower when the bootstrap is used than when first-order

asymptotic approximations are used to obtain a confidence interval.

The bootstrap has been the object of much research in statistics since its introduction by

Efron (1979).  The results of this research are synthesized in the books by Beran and Ducharme

(1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992a), Mammen (1992),

and Shao and Tu (1995).  Hall (1994), Horowitz (1997), Maddala and Jeong (1996) and Vinod

(1993) provide reviews with an econometric orientation.  This chapter covers a broader range of

topics than do these reviews.  Topics that are treated here but only briefly or not at all in the reviews

include bootstrap consistency, subsampling, bias reduction, time-series models with unit roots,

semiparametric and nonparametric models, and certain types of non-smooth models.  Some of these

topics are not treated in existing books on the bootstrap.

The purpose of this chapter is to explain and illustrate the usefulness and limitations of the

bootstrap in contexts of interest in econometrics.  Particular emphasis is given to the bootstrap’s

ability to improve upon first-order asymptotic approximations.  The presentation is informal and

expository.  Its aim is to provide an intuitive understanding of how the bootstrap works and a

feeling for its practical value in econometrics.  The discussion in this chapter does not provide a

mathematically detailed or rigorous treatment of the theory of the bootstrap.  Such treatments are

available in the books by Beran and Ducharme (1991) and Hall (1992a) as well as in journal articles

that are cited later in this chapter.
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It should be borne in mind throughout this chapter that although the bootstrap often provides

smaller biases, smaller errors in the RP’s of tests, and smaller errors in the coverage probabilities of

confidence intervals than does first-order asymptotic theory, bootstrap bias estimates, RP’s, and

confidence intervals are, nonetheless, approximations and not exact.  Although the accuracy of

bootstrap approximations is often very high, this is not always the case.  Even when theory indicates

that it provides asymptotic refinements, the bootstrap’s numerical performance may be poor.  In

some cases, the numerical accuracy of bootstrap approximations may be even worse than the

accuracy of first-order asymptotic approximations.  This is particularly likely to happen with

estimators whose asymptotic covariance matrices are “nearly singular,” as in instrumental-variables

estimation with poorly correlated instruments and regressors.  Thus, the bootstrap should not be

used blindly or uncritically.

However, in the many cases where the bootstrap works well, it essentially removes getting

the RP or coverage probability right as a factor in selecting a test statistic or method for constructing

a confidence interval.  In addition, the bootstrap can provide dramatic reductions in the finite-

sample biases and mean-square errors of certain estimators.

The remainder of this chapter is divided into five sections.  Section 2 explains the bootstrap

sampling procedure and gives conditions under which the bootstrap distribution of a statistic is a

consistent estimator of the statistic’s asymptotic distribution.  Section 3 explains when and why the

bootstrap provides asymptotic refinements.  This section concentrates on data that are simple

random samples from a distribution and statistics that are either smooth functions of sample

moments or can be approximated with asymptotically negligible error by such functions (the

smooth function model).  Section 4 extends the results of Section 3 to dependent data and statistics

that do not satisfy the assumptions of the smooth function model. Section 5 presents Monte Carlo

evidence on the numerical performance of the bootstrap in a variety of settings that are relevant to

econometrics, and Section 6 presents concluding comments.



4

For applications-oriented readers who are in a hurry, the following list of bootstrap dos and

don’ts summarizes the main practical conclusions of this chapter.

Bootstrap Dos and Don’ts

1.  Do use the bootstrap to estimate the probability distribution of an asymptotically pivotal

statistic or the critical value of a test based on an asymptotically pivotal statistic whenever such a

statistic is available.  (Asymptotically pivotal statistics are defined in Section 2.  Sections 3.2-3.5

explain why the bootstrap should be applied to asymptotically pivotal statistics.)

2.  Don’t use the bootstrap to estimate the probability distribution of a non-asymptotically-

pivotal statistic such as a regression slope coefficient or standard error if an asymptotically

pivotal statistic is available.

3.  Do recenter the residuals of an overidentified model before applying the bootstrap to

the model.  (Section 3.7 explains why recentering is important and how to do it.)

4.  Don't apply the bootstrap to models for dependent data, semi- or nonparametric

estimators, or non-smooth estimators without first reading Section 4 of this chapter.

______________________________________________________________________________

2.  THE BOOTSTRAP SAMPLING PROCEDURE AND ITS CONSISTENCY

The bootstrap is a method for estimating the distribution of a statistic or a feature of the

distribution, such as a moment or a quantile.  This section explains how the bootstrap is

implemented in simple settings and gives conditions under which it provides a consistent

estimator of a statistic’s asymptotic distribution.  This section also gives examples in which the

consistency conditions are not satisfied and the bootstrap is inconsistent.

The estimation problem to be solved may be stated as follows.  Let the data be a random

sample of size n from a probability distribution whose cumulative distribution function (CDF) is F0.

Denote the data by {Xi: i = 1, ..., n}.  Let F0 belong to a finite- or infinite-dimensional family of

distribution functions, ℑ.  Let F denote a general member of ℑ.  If ℑ is a finite-dimensional family
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indexed by the parameter θ whose population value is θ0, write F0(x, θ0) for P(X ≤ x) and F(x, θ) for

a general member of the parametric family.  Let Tn = Tn(X1, … , Xn) be a statistic (that is, a function

of the data).  Let Gn(τ, F0) ≡ P(Tn ≤ τ) denote the exact, finite-sample CDF of Tn   Let Gn(⋅, F)

denote the exact CDF of Tn when the data are sampled from the distribution whose CDF is F.

Usually, Gn(τ, F) is a different function of τ for different distributions F.  An exception occurs if

Gn(⋅, F) does not depend on F, in which case Tn is said to be pivotal.  For example, the t statistic for

testing a hypothesis about the mean of a normal population is independent of unknown population

parameters and, therefore, is pivotal.  The same is true of the t statistic for testing a hypothesis about

a slope coefficient in a normal linear regression model.  Pivotal statistics are not available in most

econometric applications, however, especially without making strong distributional assumptions

(e.g., the assumption that the random component of a linear regression model is normally

distributed).  Therefore, Gn(⋅, F) usually depends on F, and Gn(⋅, F0) cannot be calculated if, as is

usually the case in applications, F0 is unknown.  The bootstrap is a method for estimating Gn(⋅, F0)

or features of Gn(⋅, F0) such as its quantiles when F0 is unknown.

Asymptotic distribution theory is another method for estimating Gn(⋅, F0).  The asymptotic

distributions of many econometric statistics are standard normal or chi-square, possibly after

centering and normalization, regardless of the distribution from which the data were sampled.

Such statistics are called asymptotically pivotal, meaning that their asymptotic distributions do

not depend on unknown population parameters.  Let G∞(⋅, F0) denote the asymptotic distribution

of Tn.  Let G∞(⋅, F) denote the asymptotic CDF of Tn when the data are sampled from the

distribution whose CDF is F. If Tn is asymptotically pivotal, then G∞(⋅, F) ≡ G∞(⋅) does not

depend on F.  Therefore, if n is sufficiently large, Gn(⋅, F0) can be estimated by G∞(⋅) without

knowing F0.  This method for estimating Gn(⋅, F0) is often easy to implement and is widely used.

However, as was discussed in Section 1, G∞(⋅) can be a very poor approximation to Gn(⋅, F0) with

samples of the sizes encountered in applications.
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Econometric parameter estimators usually are not asymptotically pivotal (that is, their

asymptotic distributions usually depend on one or more unknown population parameters), but

many are asymptotically normally distributed.  If an estimator is asymptotically normally

distributed, then its asymptotic distribution depends on at most two unknown parameters, the

mean and the variance, that can often be estimated without great difficulty.  The normal

distribution with the estimated mean and variance can then be used to approximate the unknown

Gn(⋅, F0) if n is sufficiently large.

The bootstrap provides an alternative approximation to the finite-sample distribution of a

statistic Tn(X1, … , Xn).  Whereas first-order asymptotic approximations replace the unknown

distribution function Gn with the known function G∞, the bootstrap replaces the unknown

distribution function F0 with a known estimator.  Let Fn denote the estimator of F0.  Two possible

choices of Fn are:

(1)  The empirical distribution function (EDF) of the data:

F x
n

I X xn i
i

n

( ) ( )= ≤
=
∑1

1

,

where I is the indicator function.  It follows from the Glivenko-Cantelli theorem that Fn(x) →

F0(x) as n →  ∞  uniformly over x almost surely.

(2)  A parametric estimator of F0.  Suppose that F0(⋅) = F(⋅, θ0) for some finite-dimensional

θ0 that is estimated consistently by θn.  If F(⋅, θ) is a continuous function of θ in a neighborhood

of θ0, then F(x, θn) →  F(x, θ0) as n →  ∞  at each x.  The convergence is in probability or almost

sure according to whether θn →  θ0 in probability or almost surely.

Other possible Fn’s are discussed in Section 3.7.

Regardless of the choice of Fn, the bootstrap estimator of Gn(⋅, F0) is Gn(⋅, Fn). Usually,

Gn(⋅, Fn) cannot be evaluated analytically.  It can, however, be estimated with arbitrary accuracy by

carrying out a Monte Carlo simulation in which random samples are drawn from Fn.  Thus, the
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bootstrap is usually implemented by Monte Carlo simulation.  The Monte Carlo procedure for

estimating Gn(τ, F0) is as follows

Monte Carlo Procedure for Bootstrap Estimation of Gn(τ, F0)

Step 1:  Generate a bootstrap sample of size n, {Xi*:  i = 1, … , n}, by sampling the

distribution corresponding to Fn randomly.  If Fn is the EDF of the estimation data set, then the

bootstrap sample can be obtained by sampling the estimation data randomly with replacement.

Step 2:  Compute Tn* ≡ Tn(X1*, … , Xn*).

Step 3:  Use the results of many repetitions of steps 1 and 2 to compute the empirical

probability of the event Tn* ≤ τ (that is, the proportion of repetitions in which this event occurs).

______________________________________________________________________________

Procedures for using the bootstrap to compute other statistical objects are described in Sections 3.1

and 3.3.  Brown (1999) and Hall (1992a, Appendix II) discuss simulation methods that take

advantage of techniques for reducing sampling variation in Monte Carlo simulation.  The essential

characteristic of the bootstrap, however, is the use of Fn to approximate F0 in Gn(⋅, F0), not the

method that is used to evaluate Gn(⋅, Fn).

Since Fn and F0 are different functions, Gn(⋅, Fn) and Gn(⋅, F0) are also different functions

unless Tn is pivotal.  Therefore, the bootstrap estimator Gn(⋅, Fn) is only an approximation to the

exact finite-sample CDF of Tn, Gn(⋅, F0).  Section 3 discusses the accuracy of this approximation.

The remainder of this section is concerned with conditions under which Gn(⋅, Fn) satisfies the

minimal criterion for adequacy as an estimator of Gn(⋅, F0), namely consistency.  Roughly speaking,

Gn(⋅, Fn) is consistent if it converges in probability to the asymptotic CDF of Tn, G∞(⋅, F0), as n →

∞ .  Section 2.1 defines consistency precisely and gives conditions under which it holds.  Section 2.2

describes some resampling procedures that can be used to estimate Gn(⋅, F0) when the bootstrap is

not consistent.
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2.1  Consistency of the Bootstrap

Suppose that Fn is a consistent estimator of F0.  This means that at each x in the support of

X, Fn(x) →  F0(x) in probability or almost surely as n →  ∞ .  If F0 is a continuous function, then it

follows from Polya’s theorem that Fn →  F0 in probability or almost surely uniformly over x.

Thus, Fn and F0 are uniformly close to one another if n is large.  If, in addition, Gn(τ, F)

considered as a functional of F is continuous in an appropriate sense, it can be expected that

Gn(τ, Fn) is close to Gn(τ, F0) when n is large.  On the other hand, if n is large, then Gn(⋅, F0) is

uniformly close to the asymptotic distribution G∞(⋅, F0) if G∞(⋅, F0) is continuous.  This suggests

that the bootstrap estimator Gn(⋅, Fn) and the asymptotic distribution G∞(⋅, F0) should be

uniformly close if n is large and suitable continuity conditions hold.  The definition of

consistency of the bootstrap formalizes this idea in a way that takes account of the randomness of

the function Gn(⋅, Fn).  Let ℑ denote the space of permitted distribution functions.

Definition 2.1:  Let Pn denote the joint probability distribution of the sample {Xi:  i = 1,

… , n}.  The bootstrap estimator Gn(⋅, Fn) is consistent if for each ε > 0 and F0 ∈  ℑ

lim sup ( , ) ( , )
n

n n nP G F G F
→ ∞ ∞− >L

NM
O
QP =

τ
τ τ ε0 0 .

A theorem by Beran and Ducharme (1991) gives conditions under which the bootstrap

estimator is consistent.  This theorem is fundamental to understanding the bootstrap.  Let ρ

denote a metric on the space ℑ of permitted distribution functions.

Theorem 2.1 (Beran and Ducharme 1991):  Gn(⋅, Fn) is consistent if for any ε > 0 and F0 ∈

ℑ:  (i) lim [ ( , ) ] ;
n

n nP F F
→ ∞

> =ρ ε0 0  (ii) G∞(τ, F) is a continuous function of τ for each F ∈  ℑ; and

(iii) for any τ and any sequence {Hn} ∈  ℑ such that lim ( , )
n

nH F
→ ∞

=ρ 0 0 , Gn(τ, Hn) →  G∞(τ, F0).

The following is an example in which the conditions of Theorem 2.1 are satisfied:
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Example 2.1 (The distribution of the sample average):  Let ℑ be the set of distribution

functions F corresponding to populations with finite variances.  Let X  be the average of the

random sample {Xi:  i = 1, … , n}.  Define T n Xn = −1 2/ ( )µ , where µ = E(X).  Let Gn(τ, F0) =

P n Xn
1 2/ ( )− ≤µ τ .  Consider using the bootstrap to estimate Gn(τ, F0).  Let Fn be the EDF of

the data.  Then the bootstrap analog of Tn is Tn* = n X X1 2/ ( * )− , where X *  is the average of a

random sample of size n drawn from Fn (the bootstrap sample).  The bootstrap sample can be

obtained by sampling the data {Xi} randomly with replacement.  Tn* is centered at X  because X

is the mean of the distribution from which the bootstrap sample is drawn.  The bootstrap

estimator of Gn(τ, F0) is Gn(τ, Fn) = P n X Xn * ( * )/1 2 − ≤τ , where Pn* is the probability

distribution induced by the bootstrap sampling process. Gn(τ, Fn) satisfies the conditions of

Theorem 2.1 and, therefore, is consistent.  Let ρ be the Mallows metric.2  The Glivenko-Cantelli

theorem and the strong law of large numbers imply that condition (i) of Theorem 2.1 is satisfied.

The Lindeberg-Levy central limit theorem implies that Tn is asymptotically normally distributed.

The cumulative normal distribution function is continuous, so condition (ii) holds.  By using

arguments similar to those used to prove the Lindeberg-Levy theorem, it can be shown that

condition (iii) holds. z

A theorem by Mammen (1992) gives necessary and sufficient conditions for the bootstrap

to consistently estimate the distribution of a linear functional of F0 when Fn is the EDF of the

data.  This theorem is important because the conditions are often easy to check, and many

estimators and test statistics of interest in econometrics are asymptotically equivalent to linear

functionals of some F0. Hall (1990) and Gill (1989) give related theorems.

Theorem 2.2 (Mammen 1992):  Let {Xi:  i = 1, … , n} be a random sample from a

population.  For a sequence of functions gn and sequences of numbers tn and σn, define
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g n g Xn n ii

n= −
=∑1

1
( )  and T g tn n n n= −( ) / σ .  For the bootstrap sample {Xi*:  i = 1, … , n},

define g n g Xn n ii

n
* ( *)= −

=∑1
1

 and T g gn n n n* ( * ) /= − σ .  Let Gn(τ) = P(Tn ≤ τ) and Gn*(τ) =

P*(Tn* ≤ τ), where P* is the probability distribution induced by bootstrap sampling.  Then Gn*(⋅)

consistently estimates Gn if and only if Tn →  d  N(0,1).  z

If E[gn(X)] and Var[gn(X)] exist for each n, then the asymptotic normality condition of

Theorem 2.2 holds with t E gn n= ( )  and σn nVar g2 = ( )  or σn n i ni

n
n g X g2 2 2

1
= −−

=∑ [ ( ) ] . Thus,

consistency of the bootstrap estimator of the distribution of the centered, normalized sample

average in Example 2.1 follows trivially from Theorem 2.2.

The bootstrap need not be consistent if the conditions of Theorem 2.1 are not satisfied and

is inconsistent if the asymptotic normality condition of Theorem 2.2 is not satisfied.  In particular,

the bootstrap tends to be inconsistent if F0 is a point of discontinuity of the asymptotic

distribution function G∞(τ, ⋅) or a point of superefficiency.  Section 2.2 describes resampling

methods that can sometimes be used to overcome these difficulties.

The following examples illustrate conditions under which the bootstrap is inconsistent.

The conditions that cause inconsistency in the examples are unusual in econometric practice.  The

bootstrap is consistent in most applications.  Nonetheless, inconsistency sometimes occurs, and it

is important to be aware of its causes.  Donald and Paarsch (1996), Flinn and Heckman (1982),

and Heckman, Smith, and Clements (1997) describe econometric applications that have features

similar to those of some of the examples, though the consistency of the bootstrap in these

applications has not been investigated.

Example 2.2 (Heavy-tailed distributions):  Let F0 be the standard Cauchy distribution and

{Xi} be a random sample from this distribution.  Set T Xn = , the sample average.  Then Tn has

the standard Cauchy distribution.  Let Fn be the EDF of the sample.  A bootstrap analog of Tn is

T X mn n* *= − , where X *  is the average of a bootstrap sample that is drawn randomly with
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replacement from the data {Xi} and mn is a median or trimmed mean of the data.  The asymptotic

normality condition of Theorem 2.2 is not satisfied, and the bootstrap estimator of the distribution

of Tn is inconsistent.  Athreya (1987) and Hall (1990) provide further discussion of the behavior

of the bootstrap with heavy-tailed distributions. z

Example 2.3 (The distribution of the square of the sample average):  Let {Xi:  i = 1, … , n}

be a random sample from a distribution with mean µ and variance σ2 .  Let X  denote the sample

average.  Let Fn be the EDF of the sample.  Set T n Xn = −1 2 2 2/ ( )µ  if µ ≠ 0  and T nXn = 2

otherwise.  Tn is asymptotically normally distributed if µ ≠ 0 , but Tn / σ2  is asymptotically chi-

square distributed with one degree of freedom if µ = 0 .  The bootstrap analog of Tn is

T n X Xn
a* [( *) ]= −2 2 , where a = 1/2 if µ ≠ 0  and a = 1 otherwise.  The bootstrap estimator of

Gn(τ, F0) = P(Tn ≤ τ) is Gn(τ, Fn) = Pn*(Tn* ≤ τ).  If µ ≠ 0, then Tn is asymptotically equivalent to

a normalized sample average that satisfies the asymptotic normality condition of Theorem 2.2.

Therefore, Gn(⋅, Fn) consistently estimates G∞(⋅, F0) if µ ≠ 0.  If µ = 0, then Tn is not a sample

average even asymptotically, so Theorem 2.2 does not apply.  Condition (iii) of Theorem 2.1 is

not satisfied, however, if µ = 0, and it can be shown that the bootstrap distribution Gn(⋅,Fn) does

not consistently estimate G∞(⋅, F0) (Datta 1995).  z

The following example is due to Bickel and Freedman (1981).

Example 2.4:  (Distribution of the maximum of a sample):  Let {Xi:  i = 1, … , n} be a

random sample from a distribution with absolutely continuous CDF F0 and support [0, θ0].  Let θn

= max(X1, … , Xn), and define T nn n= −( )θ θ0 .  Let Fn be the EDF of the sample.  The bootstrap

analog of Tn is T nn n n* ( * )= −θ θ , where θn*  is the maximum of the bootstrap sample {Xi*} that

is obtained by sampling {Xi} randomly with replacement.  The bootstrap does not consistently

estimate Gn(-τ, F0) = Pn(Tn ≤ -τ) (τ ≥ 0).  To see why, observe that Pn*(Tn* = 0) = 1 - (1 - 1/n)n →

1 -  e-1 as n →  ∞ .  It is easily shown, however, that the asymptotic distribution of Tn is
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G F f∞ − = − −( , ) exp[ ( )]τ τ θ0 01 , where f(x) = dF(x)/dx is the probability density function of X.

Therefore, P(Tn = 0) →  0, and the bootstrap estimator of Gn(⋅, F0) is inconsistent.  z

Example 2.5 (Parameter on a boundary of the parameter space): The bootstrap does not

consistently estimate the distribution of a parameter estimator when the true parameter point is on

the boundary of the parameter space.  To illustrate, consider estimation of the population mean µ

subject to the constraint µ ≥ 0.  Estimate µ by m XI Xn = >( )0 , where X  is the average of the

random sample {Xi:  i = 1, … , n}.  Set T n mn n= −1 2/ ( )µ .  Let Fn be the EDF of the sample.  The

bootstrap analog of Tn is T n m mn n n* ( * )/= −1 2 , where mn*  is the estimator of µ that is obtained

from a bootstrap sample.  The bootstrap sample is obtained by sampling {Xi} randomly with

replacement.  If µ > 0 and Var(X) < ∞ , then Tn is asymptotically equivalent to a normalized

sample average and is asymptotically normally distributed.  Therefore, it follows from Theorem

2.2 that the bootstrap consistently estimates the distribution of Tn.  If µ = 0, then the asymptotic

distribution of Tn is censored normal, and it can be proved that the bootstrap distribution Gn(⋅, Fn)

does not estimate Gn(⋅, F0) consistently (Andrews 1997b).  z

The next section describes resampling methods that often are consistent when the bootstrap

is not.  They provide consistent estimators of Gn(⋅, F0) in each of the foregoing examples.

2.2  Alternative Resampling Procedures

This section describes two resampling methods whose requirements for consistency are

weaker than those of the bootstrap.  Each is based on drawing subsamples of size m < n from the

original data.  In one method, the subsamples are drawn randomly with replacement.  In the other,

the subsamples are drawn without replacement.  These subsampling methods often estimate

Gn(⋅, F0) consistently even when the bootstrap does not.  They are not perfect substitutes for the

bootstrap, however, because they tend to be less accurate than the bootstrap when the bootstrap is

consistent.
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In the first subsampling method, which will be called replacement subsampling, a

bootstrap sample is obtained by drawing m < n observations from the estimation sample {Xi:  i =

1, … , n}.  In other respects, it is identical to the standard bootstrap based on sampling Fn.  Thus,

the replacement subsampling estimator of Gn(⋅, F0) is Gm(⋅, Fn).  Swanepoel (1986) gives

conditions under which the replacement bootstrap consistently estimates the distribution of Tn in

Example 2.4 (the distribution of the maximum of a sample).  Andrews (2000) gives conditions

under which it consistently estimates the distribution of Tn in Example 2.5 (parameter on the

boundary of the parameter space).  Bickel, et al. (1997) provide a detailed discussion of the

consistency and rates of convergence of replacement bootstrap estimators.  To obtain some

intuition into why replacement subsampling works, let Fmn be the EDF of a sample of size n

drawn from the empirical distribution of the estimation data.  Observe that if m →  ∞ , n →  ∞ , and

m/n →  0, then the random sampling error of Fn as an estimator of F0 is smaller than the random

sampling error of Fmn as an estimator of Fn.  This makes the subsampling method less sensitive

than the bootstrap to the behavior of Gn(⋅, F) for F’s in a neighborhood of F0 and, therefore, less

sensitive to violations of continuity conditions such as condition (iii) of Theorem 2.1.

The method of subsampling without replacement will be called non-replacement

subsampling.  This method has been investigated in detail by Politis and Romano (1994, 1999),

who show that it consistently estimates the distribution of a statistic under very weak conditions.

In particular, the conditions required for consistency of the non-replacement subsampling

estimator are much weaker than those required for consistency of the bootstrap estimator.  Politis

et al. (1997) extend the subsampling method to heteroskedastic time series.

To describe the non-replacement subsampling method, let tn = tn(X1, … , Xn) be an

estimator of the population parameter θ, and set Tn = ρ(n)(tn - θ), where the normalizing factor

ρ(n) is chosen so that Gn(τ, F0) = P(Tn ≤ τ) converges to a nondegenerate limit G∞(τ, F0) at

continuity points of the latter.  In example 2.1 (estimating the distribution of the sample average),
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for instance, θ is the population mean, tn = X , and ρ(n) = n1/2.  Let { X j mi j
: ,...,= 1 } be a subset

of m < n observations taken from the sample {Xi: i = 1, … , n}.  Define Nmn = ( )m
n to be the total

number of subsets that can be formed.  Let tm, k denote the estimator tm evaluated at the k’th

subset.  The non-replacement subsampling method estimates Gn(τ, F0) by

(2.1)     G
N

I m t tnm
nm

m k n
k

Nnm

( ) [ ( )( ) ],τ ρ τ≡ − ≤
=
∑1

1

.

The intuition behind this method is as follows.  Each subsample { X i j
} is a random sample of

size m from the population distribution whose CDF is F0.  Therefore, Gm(⋅, F0) is the exact

sampling distribution of ρ(m)(tm - θ), and

(2.2)     G F E I m tm m( , ) { [ ( )( ) ]}τ ρ θ τ0 = − ≤ .

The quantity on the right-hand side of (2.2) cannot be calculated in an application because F0 and

θ are unknown.  Equation (2.1) is the estimator of the right-hand side of (2.2) that is obtained by

replacing the population expectation by the average over subsamples and θ by tn.  If n is large but

m/n is small, then random fluctuations in tn are small relative to those in tm.  Accordingly, the

sampling distributions of ρ(m)(tm - tn) and ρ(m)(tm - θ) are close.  Similarly, if Nmn is large, the

average over subsamples is a good approximation to the population average.  These ideas are

formalized in the following theorem of Politis and Romano (1994).

Theorem 2.3:  Assume that Gn(τ, F0) →  G∞(τ, F0) as n →  ∞  at each continuity point of the

latter function.  Also assume that ρ(m)/ρ(n) →  0, m →  ∞ , and m/n →  0 as n →  ∞ .  Let τ be a

continuity point of G∞(τ, F0).  Then:  (i) Gnm(τ) →  p G∞(τ, F0);  (ii) if G∞(⋅, F0) is continuous, then

sup ( ) ( , )
τ

τ τG G Fnm
p− →∞ 0 0 ;
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(iii) let cn(1 - α) = inf{τ :  Gnm(τ) ≥ 1 - α} and c(1 - α, F0) = inf{τ :  G∞(τ, F0) ≥ 1 - α}.  If

G∞(⋅, F0) is continuous at c(1 - α, F0), then P n t cn n[ ( )( ) ( )]ρ θ α α− ≤ − → −1 1 , and the

asymptotic coverage probability of the confidence interval [tn - ρ(n)-1cn(1 - α), ∞ ) is 1 - α.

Essentially, this theorem states that if Tn has a well-behaved asymptotic distribution, then

the non-replacement subsampling method consistently estimates this distribution.  The non-

replacement subsampling method also consistently estimates asymptotic critical values for Tn and

asymptotic confidence intervals for tn.

In practice, Nnm is likely to be very large, which makes Gnm hard to compute.  This problem

can be overcome by replacing the average over all Nnm subsamples with the average over a

random sample of subsamples (Politis and Romano 1994).  These can be obtained by sampling

the data {Xi:  i = 1, … , n} randomly without replacement.

It is not difficult to show that the conditions of Theorem 2.3 are satisfied in all of the

statistics considered in Examples 2.1, 2.2, 2.4, and 2.5.  The conditions are also satisfied by the

statistic considered in Example 2.3 if the normalization constant is known.  Bertail et al. (1999)

describe a subsampling method for estimating the normalization constant ρ(n) when it is

unknown and provide Monte Carlo evidence on the numerical performance of the non-

replacement subsampling method with an estimated normalization constant.  In each of the

foregoing examples, the replacement subsampling method works because the subsamples are

random samples of the true population distribution of X, rather than an estimator of the population

distribution.  Therefore, replacement subsampling, in contrast to the bootstrap, does not require

assumptions such as condition (iii) of Theorem 2.1 that restrict the behavior of Gn(⋅, F) for F’s in

a neighborhood of F0.

The non-replacement subsampling method enables the asymptotic distributions of statistics

to be estimated consistently under very weak conditions.  However, the standard bootstrap is

typically more accurate than non-replacement subsampling when the former is consistent.
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Suppose that Gn(⋅, F0) has an Edgeworth expansion through O(n-1/2), as is the case with the

distributions of most asymptotically normal statistics encountered in applied econometrics.  Then,

as will be discussed in Section 3, |Gn(τ, Fn) - Gn(τ, F0)|, the error made by the bootstrap estimator

of Gn(τ, F0), is at most O(n-1/2) almost surely.  In contrast, the error made by the non-replacement

subsampling estimator, |Gnm(τ) - Gn(τ, F0)|, is no smaller than Op(n-1/3) (Politis and Romano 1994,

1999).3 Thus, the standard bootstrap estimator of Gn(τ, F0) is more accurate than the non-

replacement subsampling estimator in a setting that arises frequently in applications.  Similar

results can be obtained for statistics that are asymptotically chi-square distributed.  Thus, the

standard bootstrap is more attractive than the non-replacement subsampling method in most

applications in econometrics.  The subsampling method may be used, however, if characteristics

of the sampled population or the statistic of interest cause the standard bootstrap estimator to be

inconsistent.  Non-replacement subsampling may also be useful in situations where checking the

consistency of the bootstrap is difficult.  Examples of this include inference about the parameters

of certain kinds of structural search models (Flinn and Heckman 1982), auction models (Donald

and Paarsch 1996), and binary-response models that are estimated by Manski’s (1975, 1985)

maximum score method.

3.  ASYMPTOTIC REFINEMENTS

The previous section described conditions under which the bootstrap yields a consistent

estimator of the distribution of a statistic.  Roughly speaking, this means that the bootstrap gets

the statistic’s asymptotic distribution right, at least if the sample size is sufficiently large.  As was

discussed in Section 1, however, the bootstrap often does much more than get the asymptotic

distribution right.  In a large number of situations that are important in applied econometrics, it

provides a higher-order asymptotic approximation to the distribution of a statistic.  This section

explains how the bootstrap can be used to obtain asymptotic refinements.  Section 3.1 describes

the use of the bootstrap to reduce the finite-sample bias of an estimator.  Section 3.2 explains how
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the bootstrap obtains higher-order approximations to the distributions of statistics.  The results of

Section 3.2 are used in Sections 3.3 and 3.4 to show how the bootstrap obtains higher-order

refinements to the rejection probabilities of tests and the coverage probabilities of confidence

intervals.  Sections 3.5-3.7 address additional issues associated with the use of the bootstrap to

obtain asymptotic refinements.  It is assumed throughout this section that the data are a simple

random sample from some distribution.  Methods for implementing the bootstrap and obtaining

asymptotic refinements with time-series data are discussed in Section 4.1.

3.1  Bias Reduction

This section explains how the bootstrap can be used to reduce the finite-sample bias of an

estimator.  The theoretical results are illustrated with a simple numerical example.  To minimize the

complexity of the discussion, it is assumed that the inferential problem is to obtain a point estimate

of a scalar parameter θ that can be expressed as a smooth function of a vector of population

moments.  It is also assumed that θ can be estimated consistently by substituting sample moments in

place of population moments in the smooth function.  Many important econometric estimators,

including maximum-likelihood and generalized-method-of-moments estimators, are either functions

of sample moments or can be approximated by functions of sample moments with an approximation

error that approaches zero very rapidly as the sample size increases.  Thus, the theory outlined in

this section applies to a wide variety of estimators that are important in applications.

To be specific, let X be a random vector, and set µ = E(X).  Assume that the true value of θ

is θ0 = g(µ), where g is a known, continuous function.  Suppose that the data consist of a random

sample {Xi:  i = 1, ..., n} of X.  Define the vector X n X ii

n= −
=∑1

1
.  Then θ is estimated

consistently by

(3.1)     θn g X= ( ) .
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If θn has a finite mean, then E E g Xn( ) [ ( )]θ = .  However, E g X g[ ( )] ( )≠ µ  in general unless g is

a linear function.  Therefore, E(θn) ≠ θ0, and θn is a biased estimator of θ.  In particular, E(θn) ≠ θ0 if

θn is any of a variety of familiar maximum likelihood or generalized method of moments estimators.

To see how the bootstrap can reduce the bias of θn, suppose that g is four times

continuously differentiable in a neighborhood of µ and that the components of X have finite fourth

absolute moments.  Let G1 denote the vector of first derivatives of g and G2 denote the matrix of

second derivatives.  A Taylor series expansion of the right-hand side of (3.1) about X = µ  gives

(3.2)     θ θ µ µ µ µ µn nG X X G X R− = ′ − + − ′ − +0 1 2
1
2

( ) ( ) ( ) ( )( ) ,

where Rn is a remainder term that satisfies E(Rn) = O(n-2).  Therefore, taking expectations on both

sides of (3.2) gives

(3.3)     E E X G X O nn( ) [( ) ( )( )] ( ).θ θ µ µ µ− = − ′ − + −
0 2

21
2

The first term on the right-hand side of (3.3) has size O(n-1).  Therefore, through O(n-1) the bias of

θn is

(3.4)     B E X G Xn = − ′ −1
2 2[( ) ( )( )]µ µ µ .

Now consider the bootstrap.  The bootstrap samples the empirical distribution of the data.

Let { *: ,..., }X i ni = 1  be a bootstrap sample that is obtained this way.  Define X n X ii

n
* *= −

=∑1
1

to be the vector of bootstrap sample means.  The bootstrap estimator of θ is θn g X* ( *)= .

Conditional on the data, the true mean of the distribution sampled by the bootstrap is X .  

Therefore, X  is the bootstrap analog of µ, and θn g X= ( )  is the bootstrap analog of θ0.  The

bootstrap analog of (3.2) is

(3.5)     θ θn n nG X X X X X G X X X R* ( ) ( * ) ( * ) ( )( * ) *− = ′ − + − ′ − +1 2
1
2

,
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where Rn* is the bootstrap remainder term.  Let E* denote the expectation under bootstrap

sampling, that is, the expectation relative to the empirical distribution of the estimation data.  Let

Bn* ≡ E*(θn* - θn) denote the bias of θn* as an estimator of θn.  Taking E* expectations on both

sides of (3.5) shows that

(3.6)     B E X X G X X X O nn* *[( * ) ( )( * )] ( )= − ′ − + −1
2 2

2

almost surely.  Because the distribution that the bootstrap samples is known, Bn* can be computed

with arbitrary accuracy by Monte Carlo simulation.  Thus, Bn* is a feasible estimator of the bias of

θn.  The details of the simulation procedure are described below.

By comparing (3.4) and (3.6), it can be seen that the only differences between Bn and the

leading term of Bn* are that X  replaces µ in Bn* and the empirical expectation, E*, replaces the

population expectation, E.  Moreover, E(Bn*) = Bn + O(n-2)  Therefore, through O(n-1), use of the

bootstrap bias estimate Bn* provides the same bias reduction that would be obtained if the infeasible

population value Bn could be used.  This is the source of the bootstrap's ability to reduce the bias of

θn.  The resulting bias-corrected estimator of θ  is θn - Bn*.  It satisfies E(θn - θ0 - Bn*) = O(n-2).

Thus, the bias of the bias-corrected estimator is O(n-2), whereas the bias of the uncorrected

estimator θn is O(n-1). 4

The Monte Carlo procedure for computing Bn* is as follows:

Monte Carlo Procedure for Bootstrap Bias Estimation

B1.  Use the estimation data to compute θn.

B2.  Generate a bootstrap sample of size n by sampling the estimation data randomly with

replacement.  Compute θn g X* ( *)= .

B3.  Compute E*θn* by averaging the results of many repetitions of step B2.  Set Bn* =

E*θn* - θn.

________________________________________________________________________________
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To implement this procedure it is necessary to choose the number of repetitions, m, of step

B2.  It usually suffices to choose m sufficiently large that the estimate of E*θn* does not change

significantly if m is increased further.  Andrews and Buchinsky (2000) discuss more formal

methods for choosing the number of bootstrap replications.5

The following simple numerical example illustrates the bootstrap's ability to reduce bias.

Examples that are more realistic but also more complicated are presented in Horowitz (1998a).

Example 3.1 (Horowitz 1998a):  Let X ~ N(0, 6) and n = 10.  Let g(µ) = exp(µ).  Then θ0 =

1, and θn X= exp( ) .  Bn and the bias of θn - Bn* can be found through the following Monte Carlo

procedure:

MC1. Generate an estimation data set of size n by sampling from the N(0,6) distribution.

Use this data set to compute θn.

MC2. Compute Bn* by carrying out steps B1-B3.  Form θn - Bn*.

MC3. Estimate E(θn - θ0) and E(θn - Bn* - θ0) by averaging the results of many repetitions of

steps MC1-MC2.  Estimate the mean square errors of θn and θn - Bn* by averaging the realizations

of (θn - θ0)2 and (θn - Bn* - θ0)2.

The following are the results obtained with 1000 Monte Carlo replications and 100

repetitions of step B2 at each Monte Carlo replication:

 Bias               Mean-Square Error

θn  0.356 1.994

θn - Bn* -0.063 1.246

In this example, the bootstrap reduces the magnitude of the bias of the estimator of θ by nearly a

factor of 6.  The mean-square estimation error is reduced by 38 percent.  z
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3.2  The Distributions of Statistics

This section explains why the bootstrap provides an improved approximation to the finite-

sample distribution of an asymptotically pivotal statistic.  As before, the data are a random sample

{Xi:  i = 1, … , n} from a probability distribution whose CDF is F0.  Let Tn = Tn(X1, ..., Xn) be a

statistic.  Let Gn(τ, F0) = P(Tn ≤ τ) denote the exact, finite-sample CDF of Tn.  As was discussed in

Section 2, Gn(τ, F0) cannot be calculated analytically unless Tn is pivotal.  The objective of this

section is to obtain an approximation to Gn(τ, F0) that is applicable when Tn is not pivotal.

To obtain useful approximations to Gn(τ, F0), it is necessary to make certain assumptions

about the form of the function Tn(X1, … , Xn).  It is assumed in this section that Tn is a smooth

function of sample moments of X or sample moments of functions of X (the smooth function

model).  Specifically, T n H Z Z Hn J Z ZJ
= −1 2

1 1

/ [ ( ,..., ) ( ,..., )]µ µ , where the scalar-valued function

H is smooth in a sense that is defined precisely below, Z n Z Xj j ii

n= −
=∑1
1

( )  for each j = 1, … , J

and some nonstochastic function Zj, and µZ jj
E Z= ( ) .  After centering and normalization, most

estimators and test statistics used in applied econometrics are either smooth functions of sample

moments or can be approximated by such functions with an approximation error that is

asymptotically negligible.6  The ordinary least squares estimator of the slope coefficients in a linear

mean-regression model and the t statistic for testing a hypothesis about a coefficient are exact

functions of sample moments.  Maximum-likelihood and generalized-method-of-moments

estimators of the parameters of nonlinear models can be approximated with asymptotically

negligible error by smooth functions of sample moments if the log-likelihood function or moment

conditions have sufficiently many derivatives with respect to the unknown parameters.

Some important econometric estimators and test statistics do not satisfy the assumptions of

the smooth function model.  Quantile estimators, such as the least-absolute-deviations (LAD)

estimator of the slope coefficients of a median-regression model do not satisfy the assumptions of
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the smooth function model because their objective functions are not sufficiently smooth.

Nonparametric density and mean-regression estimators and semiparametric estimators that require

kernel or other forms of smoothing also do not fit within the smooth function model.  Bootstrap

methods for such estimators are discussed in Section 4.3.

Now return to the problem of approximating Gn(τ, F0).  First-order asymptotic theory

provides one approximation.  To obtain this approximation, write H Z Z H ZJ( ,..., ) ( )1 = , where Z

= ( ,..., )Z ZJ1 ′.  Define µZ E Z= ( ) , ∂ = ∂ ∂H z H z z( ) ( ) / , and Ω = − − ′E Z ZZ Z[( )( ) ]µ µ

whenever these quantities exist.  Assume that:

SFM:  (i) T n H Z Hn Z= −1 2/ [ ( ) ( )]µ , where H(z) is 6 times continuously partially

differentiable with respect to any mixture of components of z in a neighborhood of µZ.  (ii)

∂ ≠H Z( )µ 0 .  (iii) The expected value of the product of any 16 components of Z exists.7

Under assumption SFM, a Taylor series approximation gives

(3.7)     n H Z H H n Z oZ Z Z p
1 2 1 2 1/ /[ ( ) ( )] ( ) ( ) ( )− = ∂ ′ − +µ µ µ .

Application of the Lindeberg-Levy central limit theorem to the right hand side of (3.7) shows that

n H Z H N VZ
d1 2 0/ [ ( ) ( )] ( , )− →µ , where V H HZ Z= ∂ ′( ) ( )µ µΩ∂ .  Thus, the asymptotic CDF of

Tn is G F V∞ =( , ) ( / )/τ τ0
1 2Φ , where Φ  is the standard normal CDF.  This is just the usual result of

the delta method.  Moreover, it follows from the Berry-Esséen theorem that

     sup| ( , ) ( , )| ( )/

τ
τ τG F G F O nn 0 0

1 2− =∞
− .

Thus, under assumption SFM of the smooth function model, first-order asymptotic approximations

to the exact finite-sample distribution of Tn make an error of size O(n-1/2).8

Now consider the bootstrap.  The bootstrap approximation to the CDF Tn is Gn(⋅, Fn).  Under

the smooth function model with assumption SFM, it follows from Theorem 3.2 that the bootstrap is

consistent.  Indeed, it is possible to prove the stronger result that sup | ( , ) ( , )|τ τ τG F G Fn n − →∞ 0 0
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almost surely.  This result insures that the bootstrap provides a good approximation to the

asymptotic distribution of Tn if n is sufficiently large.  It says nothing, however, about the accuracy

of Gn(⋅, Fn) as an approximation to the exact finite-sample distribution function Gn(⋅, F0).  To

investigate this question, it is necessary to develop higher-order asymptotic approximations to

Gn(⋅, F0) and Gn(⋅, Fn).  The following theorem, which is proved in Hall (1992a), provides an

essential result.

Theorem 3.1:  Let assumption SFM hold.  Assume also that

(3.8)     lim sup [exp( )]
t

E t Z
→ ∞

′ <ι 1 ,

where ι= − 1 .  Then

(3.9)     G F G F
n

g F
n

g F
n

g F O nn ( , ) ( , ) ( , ) ( , ) ( , ) ( )/τ τ τ τ τ0 0 1 2 1 0 2 0 3/2 3 0
21 1 1= + + + +∞

−

uniformly over τ  and

(3.10)     G F G F
n

g F
n

g F
n

g F O nn n n n n n( , ) ( , ) ( , ) ( , ) ( , ) ( )/τ τ τ τ τ= + + + +∞
−1 1 1

1 2 1 2 3/2 3
2

uniformly over τ almost surely.  Moreover, g1 and g3 are  even, differentiable functions of their first

arguments, g2 is an odd, differentiable, function of its first argument, and G∞, g1, g2, and g3 are

continuous functions of their second arguments relative to the supremum norm on the space of

distribution functions.

If Tn is asymptotically pivotal, then G∞ is the standard normal distribution function.

Otherwise, G∞(⋅, F0) is the N(0,V) distribution function, and G∞(⋅, Fn) is the N(0,Vn) distribution

function, where Vn is the quantity obtained from V by replacing population expectations and

moments with expectations and moments relative to Fn.

Condition (3.8) is called the Cramér condition.  It is satisfied if the random vector Z has a

probability density with respect to Lebesgue measure.9
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It is now possible to evaluate the accuracy of the bootstrap estimator Gn(τ, Fn) as an

approximation to the exact, finite-sample CDF Gn(τ, F0).  It follows from (3.9) and (3.10) that

( . ) ( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )] ( )

/311
1

1

0 0 1 2 1 1 0

2 2 0
3/2

G F G F G F G F
n

g F g F

n
g F g F O n

n n n n n

n

τ τ τ τ τ τ

τ τ

− = − + −

+ − +

∞ ∞

−

almost surely uniformly over τ.  The leading term on the right-hand side of (3.11) is [G∞(τ, Fn) -

G∞(τ, F0)].  The size of this term is O(n-1/2) almost surely uniformly over τ because Fn - F0 = O(n-1/2)

almost surely uniformly over the support of F0.  Thus, the bootstrap makes an error of size O(n-1/2)

almost surely, which is the same as the size of the error made by first-order asymptotic

approximations.  In terms of rate of convergence to zero of the approximation error, the bootstrap

has the same accuracy as first-order asymptotic approximations.  In this sense, nothing is lost in

terms of accuracy by using the bootstrap instead of first-order approximations, but nothing is gained

either.

Now suppose that Tn is asymptotically pivotal.  Then the asymptotic distribution of Tn is

independent of F0, and G∞(τ, Fn) = G∞(τ,, F0) for all τ.  Equations (3.9) and (3.10) now yield

( . ) ( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )] ( )

/312
1

1

0 1 2 1 1 0

2 2 0
3/2

G F G F
n

g F g F

n
g F g F O n

n n n n

n

τ τ τ τ

τ τ

− = −

+ − + −

almost surely.  The leading term on the right-hand side of (3.12) is n-1/2[g1(τ, Fn) - g1(τ, F0)].  It

follows from continuity of g1 with respect to its second argument that this term has size O(n-1)

almost surely uniformly over τ.  Now the bootstrap makes an error of size O(n-1), which is smaller

as n →  ∞  than the error made by first-order asymptotic approximations.  Thus, the bootstrap is more

accurate than first-order asymptotic theory for estimating the distribution of a smooth

asymptotically pivotal statistic.
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If Tn is asymptotically pivotal, then the accuracy of the bootstrap is even greater for

estimating the symmetrical distribution function P(|Tn| ≤ τ) = Gn(τ, F0) - Gn(-τ, F0).  This quantity is

important for obtaining the RP’s of symmetrical tests and the coverage probabilities of symmetrical

confidence intervals.  Let Φ  denote the standard normal distribution function.  Then, it follows from

(3.9) and the symmetry of g1, g2, and g3 in their first arguments that

G F G F G F G F
n

g F O n

n
g F O n

n n( , ) ( , ) [ ( , ) ( , )] ( , ) ( )

( . ) ( ) ( , ) ( ).

τ τ τ τ τ

τ τ

0 0 0 0 2 0
2

2 0
2

2

313 2 1
2

− − = − − + +

= − + +

∞ ∞
−

−Φ

Similarly, it follows from (3.10) that

G F G F G F G F
n

g F O n

n
g F O n

n n n n n n n

n

( , ) ( , ) [ ( , ) ( , )] ( , ) ( )

( . ) ( ) ( , ) ( )

τ τ τ τ τ

τ τ

− − = − − + +

= − + +

∞ ∞
−

−

2

314 2 1
2

2
2

2
2Φ

almost surely.  The remainder terms in (3.13) and (3.14) are O(n-2) and not O(n-3/2) because the

O(n-3/2) term of an Edgeworth expansion, n g F− 3/2
3( , )τ , is an even function that, like g1, cancels

out in the subtractions used to obtain (3.13) and (3.14) from (3.9) and (3.10).  Now subtract (3.13)

from (3.14) and use the fact that Fn - F0 = O(n-1/2) almost surely to obtain

( . ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )] ( )

( )

315

2

0 0

2 2 0
2

3/2

G F G F G F G F

n
g F g F O n

O n

n n n n n n

n

τ τ τ τ

τ τ

− − − − −

= − +

=

−

−

almost surely if Tn is asymptotically pivotal.  Thus, the error made by the bootstrap approximation

to the symmetrical distribution function P(|Tn| ≤ τ) is O(n-3/2) compared to the error of O(n-1) made

by first-order asymptotic approximations.
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In summary, when Tn is asymptotically pivotal, the error of the bootstrap approximation to a

one-sided distribution function is

(3.16)     G F G F O nn n n( , ) ( , ) ( )τ τ− = −
0

1

almost surely uniformly over τ.  The error in the bootstrap approximation to a symmetrical

distribution function is

(3.17)     [ ( , ) ( , )] [ ( , ) ( , )] ( )G F G F G F G F O nn n n n n nτ τ τ τ− − − − − = −
0 0

3/2

almost surely uniformly over τ.  In contrast, the errors made by first-order asymptotic

approximations are O(n-1/2) and O(n-1), respectively, for one-sided and symmetrical distribution

functions.  Equations (3.16) and (3.17) provide the basis for the bootstrap’s ability to reduce the

finite-sample errors in the RP’s of tests and the coverage probabilities of confidence intervals.

Section 3.3 discusses the use of the bootstrap in hypothesis testing.  Confidence intervals are

discussed in Section 3.4.

3.3  Bootstrap Critical Values for Hypothesis Tests

This section shows how the bootstrap can be used to reduce the errors in the RP’s of

hypothesis tests relative to the errors made by first-order asymptotic approximations.

Let Tn be a statistic for testing a hypothesis H0 about the sampled population.  Assume that

under H0, Tn is asymptotically pivotal and satisfies assumptions SFM and (3.8).  Consider a

symmetrical, two-tailed test of H0.  This test rejects H0 at the α level if |Tn| > zn,α/2, where zn,α/2, the

exact, finite-sample, α-level critical value, is the 1 - α/2 quantile of the distribution of Tn.10  The

critical value solves the equation

(3.18)     G z F G z Fn n n n( , ) ( , ), / , /α α α2 0 2 0 1− − = − .

Unless Tn is exactly pivotal, however, equation (3.18) cannot be solved in an application because F0

is unknown.  Therefore, the exact, finite-sample critical value cannot be obtained in an application if

Tn is not pivotal.
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First-order asymptotic approximations obtain a feasible version of (3.18) by replacing Gn

with G∞.  Thus, the asymptotic critical value, z∞ ,α/2, solves

(3.19)     G z F G z F∞ ∞ ∞ ∞− − = −( , ) ( , ), / , /α α α2 0 2 0 1 .

Since G∞ is the standard normal distribution when Tn is asymptotically pivotal, z∞ ,α/2 can be obtained

from tables of standard normal quantiles.  Combining (3.13), (3.18), and (3.19) gives

     [ ( , ) ( , )] [ ( , ) ( , )] ( ), / , / , / , /G z F G z F G z F G z F O nn n∞ ∞ ∞ ∞ ∞ ∞
−− − − − − =α α α α2 0 2 0 2 0 2 0

1 ,

which implies that zn,α/2 - z∞ ,α/2 = O(n-1).  Thus, the asymptotic critical value approximates the exact

finite sample critical value with an error whose size is O(n-1).

The bootstrap obtains a feasible version of (3.18) by replacing F0 with Fn.  Thus, the

bootstrap critical value, zn,α/2*, solves

(3.20)     G z F G z Fn n n n n n( *, ) ( *, ), / , /α α α2 2 1− − = − .11

Equation (3.20) usually cannot be solved analytically, but zn,α/2* can be estimated with any desired

accuracy by Monte Carlo simulation.  To illustrate, suppose, as often happens in applications, that

Tn is an asymptotically normal, Studentized estimator of a parameter θ whose value under H0 is θ0.

That is,

T
n

sn
n

n
= −1 2

0
/ ( )θ θ

,

where θn is the estimator of θ, n1/2(θn - θ0) →  d N(0, σ2) under H0 and sn
2 is a consistent estimator of

σ2.  Then the Monte Carlo procedure for evaluating zn,α/2* is as follows:

________________________________________________________________________________

Monte Carlo Procedure for Computing the Bootstrap Critical Value

T1.  Use the estimation data to compute θn.

T2.  Generate a bootstrap sample of size n by sampling the distribution corresponding to Fn.

For example, if Fn is the EDF of the data, then the bootstrap sample can be obtained by sampling

the data randomly with replacement.  If Fn is parametric so that Fn(⋅) = F(⋅, θn) for some function F,
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then the bootstrap sample can be generated by sampling the distribution whose CDF is F(⋅, θn).

Compute the estimators of θ and σ from the bootstrap sample.  Call the results θn* and sn*.  The

bootstrap version of Tn is T n sn n n n* ( * ) / */= −1 2 θ θ .

T3.  Use the results of many repetitions of T2 to compute the empirical distribution of |Tn*|.

Set zn,α/2* equal to the 1 - α quantile of this distribution.

________________________________________________________________________________

The foregoing procedure does not specify the number of bootstrap replications that should be

carried out in step T3.  In practice, it often suffices to choose a value sufficiently large that further

increases have no important effect on zn,α/2*.  Hall (1986a) and Andrews and Buchinsky (2000)

describe the results of formal investigations of the problem of choosing the number of bootstrap

replications.  Repeatedly estimating θ in step T2 can be computationally burdensome if θn is an

extremum estimator.  Davidson and MacKinnon (1999a) and Andrews (1999) show that the

computational burden can be reduced by replacing the extremum estimator with an estimator that is

obtained by taking a small number of Newton or quasi-Newton steps from the θn value obtained in

step T1.

To evaluate the accuracy of the bootstrap critical value zn,α/2* as an estimator of the exact

finite-sample critical value zn,α/2, combine (3.13) and (3.18) to obtain

(3.21)     2 1
2

12 2 2 0
2Φ ( ) ( , ) ( ), / , /z

n
g z F O nn nα α α− + = − + − .

Similarly, combining (3.14) and (3.20) yields,

(3.22)     2 1
2

12 2 2
2Φ ( *) ( *, ) ( ), / , /z

n
g z F O nn n nα α α− + = − + −

almost surely.  Equations (3.21) and (3.22) can be solved to yield Cornish-Fisher expansions for

zn,α/2 and zn,α/2*.  The results are (Hall 1992a, p. 111)

(3.23)     z z
n

g z F
z

O nn, / , /
, /

, /

( , )
( )

( )α α
α

αφ2 2
2 2 0

2

21= − +∞
∞

∞

− ,
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where φ is the standard normal density function, and

(3.24)     z z
n

g z F
z

O nn
n

, / , /
, /

, /
*

( , )
( )

( )α α
α

αφ2 2
2 2

2

21= − +∞
∞

∞

−

almost surely.  It follows from (3.23) and (3.24) that

(3.25)     z z O nn n, / , /* ( )α α2 2
3/2= + −

almost surely.  Thus, the bootstrap critical value for a symmetrical, two-tailed test differs from the

exact, finite-sample critical value by O(n-3/2) almost surely.  The bootstrap critical value is more

accurate than the asymptotic critical value, z∞ ,α/2, whose error is O(n-1).

Now consider the rejection probability of the test based on Tn when H0 is true.  With the

exact but infeasible α-level critical value, the RP is P(|Tn| > zn,α/2) = α..  With the asymptotic critical

value, the RP is

P T z G z F G z F

O n

n n n(| | ) [ ( , ) ( , )]

( . ) ( ),

, / , / , /> = − − −

= +

∞ ∞ ∞

−

α α α

α

2 2 0 2 0

1

1

3 26

where the last line follows from setting τ = z∞ ,α/2 in (3.13).  Thus, with the asymptotic critical value,

the true and nominal RP’s differ by O(n-1).

Now consider the RP with the bootstrap critical value, P(|Tn| ≥ zn,α/2*).  Because zn,α/2* is a

random variable, P(|Tn| ≥ zn,α/2*) ≠ 1 - [Gn(zn,α/2*, F0) - Gn(-zn,α/2*, F0)].  This fact complicates the

calculation of the difference between the true and nominal RP’s with the bootstrap critical value.

The calculation is outlined in the Appendix of this chapter.  The result is that

(3.27)     P T z O nn n(| | *) ( ), /> = + −
α α2

2 .

In other words, the nominal RP of a symmetrical, two-tailed test with a bootstrap critical value

differs from the true RP by O(n-2) when the test statistic is asymptotically pivotal.  In contrast, the

difference between the nominal and true RP’s is O(n-1) when the asymptotic critical value is used.
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The bootstrap does not achieve the same accuracy for one-tailed tests.  For such tests, the

difference between the nominal and true RP’s with a bootstrap critical value is usually O(n-1),

whereas the difference with asymptotic critical values is O(n-1/2).  See Hall (1992a, pp. 102-103) for

details.  There are, however, circumstances in which the difference between the nominal and true

RP’s with a bootstrap critical value is O(n-3/2).  Hall (1992a, pp. 178-179) shows that this is true for

a one-sided t test of a hypothesis about a slope (but not intercept) coefficient in a homoskedastic,

linear, mean-regression model.  Davidson and MacKinnon (1999b) show that it is true whenever Tn

is asymptotically independent of g2(z∞ ,α/2,Fn).  They further show that many familiar test statistics

satisfy this condition.

Tests based on statistics that are asymptotically chi-square distributed behave like

symmetrical, two-tailed tests.  Therefore, the differences between their nominal and true RP’s under

H0 are O(n-1) with asymptotic critical values and O(n-2) with bootstrap critical values.

Singh (1981), who considered a one-tailed test of a hypothesis about a population mean,

apparently was the first to show that the bootstrap provides a higher-order asymptotic

approximation to the distribution of an asymptotically pivotal statistic.  Singh's test was based on

the standardized sample mean.  Early papers giving results on higher-order approximations for

Studentized means and for more general hypotheses and test statistics include Babu and Singh

(1983, 1984), Beran (1988) and Hall (1986b, 1988).

3.4  Confidence Intervals

Let θ be a population parameter whose true but unknown value is θ0.  Let θn be a

n1/2-consistent, asymptotically normal estimator of θ, and let sn be a consistent estimator of the

standard deviation of the asymptotic distribution of n1/2(θn - θ0).  Then an asymptotic 1 - α

confidence interval for θ0 is θn - z∞ ,α/2sn/n1/2 ≤ θ0 ≤ θn + z∞ ,α/2sn/n1/2.  Define Tn = n1/2(θn - θ0)/sn.  Then

the coverage probability of the asymptotic confidence interval is P(|Tn| ≤ z∞ ,α/2).  It follows from
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(3.26) that the difference between the true coverage probability of the interval and the nominal

coverage probability, 1 - α, is O(n-1).

If Tn satisfies the assumptions of Theorem 3.1, then the difference between the nominal and

true coverage probabilities of the confidence interval can be reduced by replacing the asymptotic

critical value with the bootstrap critical value zn,α/2*.  With the bootstrap critical value, the

confidence interval is θn - zn,α/2*sn/n1/2 ≤ θ0 ≤ θn + zn,α/2*sn/n1/2.  The coverage probability of this

interval is P(|Tn| ≤ zn,α/2*).  By (3.27), P(|Tn| ≤ zn,α/2*) = 1 - α + O(n-2), so the true and nominal

coverage probabilities differ by O(n-2) when the bootstrap critical value is used, whereas they differ

by O(n-1) when the asymptotic critical value is used.

Analogous results can be obtained for one-sided and equal-tailed confidence intervals.  With

asymptotic critical values, the true and nominal coverage probabilities of these intervals differ by

O(n-1/2).  With bootstrap critical values, the differences are O(n-1).  In special cases such as the slope

coefficients of homoskedastic, linear, mean-regressions, the differences with bootstrap critical

values are O(n-3/2).

The bootstrap’s ability to reduce the differences between the true and nominal coverage

probabilities of a confidence interval is illustrated by the following example, which is an extension

of Example 3.1.

Example 3.2 (Horowitz 1998a):  This example uses Monte Carlo simulation to compare the

true coverage probabilities of asymptotic and bootstrap nominal 95% confidence intervals for θ0 in

the model of Example 3.1.  The Monte Carlo procedure is:

MC4:  Generate an estimation data set of size n = 10 by sampling from the N(0,6)

distribution.  Use this data set to compute θn.

MC5:  Compute zn,α/2* by carrying out steps T2-T3 of Section 3.3.  Determine whether θ0 is

contained in the confidence intervals based on the asymptotic and bootstrap critical values.
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MC6:  Determine the empirical coverage probabilities of the asymptotic and bootstrap

confidence intervals from the results of 1000 repetitions of steps MC4-MC5.

The empirical coverage probability of the asymptotic confidence interval was 0.886 in this

experiment, whereas the empirical coverage probability of the bootstrap interval was 0.943.  The

asymptotic coverage probability is statistically significantly different from the nominal probability

of 0.95 (p < 0.01), whereas the bootstrap coverage probability is not (p > 0.10).  z

3.5  The Importance of Asymptotically Pivotal Statistics

The arguments in Sections 3.2-3.4 show that the bootstrap provides higher-order asymptotic

approximations to distributions, RP’s of tests, and coverage probabilities of confidence intervals

based on smooth, asymptotically pivotal statistics.  These include test statistics whose asymptotic

distributions are standard normal or chi-square and, thus, most statistics that are used for testing

hypotheses about the parameters of econometric models.  Models that satisfy the required

smoothness conditions include linear and nonlinear mean-regression models, error-components

mean-regression models for panel data, logit and probit models that have at least one continuously

distributed explanatory variable, and tobit models.  The smoothness conditions are also satisfied by

parametric sample-selection models in which the selection equation is a logit or probit model with

at least one continuously distributed explanatory variable.  Asymptotically pivotal statistics based

on median-regression models do not satisfy the smoothness conditions.  Bootstrap methods for such

statistics are discussed in Section 4.3.  The ability of the bootstrap to provide asymptotic

refinements for smooth, asymptotically pivotal statistics provides a powerful argument for using

them in applications of the bootstrap.

The bootstrap may also be applied to statistics that are not asymptotically pivotal, but it does

not provide higher-order approximations to their distributions.  Estimators of the structural

parameters of econometric models (e.g., slope and intercept parameters, including regression

coefficients; standard errors, covariance matrix elements, and autoregressive coefficients) usually
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are not asymptotically pivotal.  The asymptotic distributions of centered structural parameter

estimators are often normal with means of zero but have variances that depend on the unknown

population distribution of the data.  The errors of bootstrap estimates of the distributions of statistics

that are not asymptotically pivotal converge to zero at the same rate as the errors made by first-order

asymptotic approximations.12

Higher-order approximations to the distributions of statistics that are not asymptotically

pivotal can be obtained through the use of bootstrap iteration (Beran 1987, 1988; Hall 1992a) or

bias-correction methods (Efron 1987).  Bias correction methods are not applicable to symmetrical

tests and confidence intervals.  Bootstrap iteration is discussed in Section 4.4.  Bootstrap iteration is

highly computationally intensive, which makes it unattractive when an asymptotically pivotal

statistic is available.

3.6  The Parametric Versus the Nonparametric Bootstrap

The size of the error in the bootstrap estimate of a RP or coverage probability is determined

by the size of Fn - F0.  Thus, Fn should be the most efficient available estimator.  If F0 belongs to a

known parametric family F(⋅, θ), F(⋅, θn) should be used to generate bootstrap samples, rather than

the EDF.  Although the bootstrap provides asymptotic refinements regardless of whether F(⋅, θn) or

the EDF is used, the results of Monte Carlo experiments have shown that the numerical accuracy of

the bootstrap tends to be much higher with F(⋅, θn) than with the EDF.  If the objective is to test a

hypothesis H0 about θ, further gains in efficiency and performance can be obtained by imposing the

constraints of H0 when obtaining the estimate θn.

To illustrate, consider testing the hypothesis H0: β1 = 0 in the Box-Cox regression model

(3.28)     Y X U( )λ β β= + +0 1 ,
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where Y(λ) is the Box-Cox (1964) transformation of Y, X is an observed, scalar explanatory variable,

U is an unobserved random variable, and β0 and β1 are parameters.  Suppose that U N~ ( , )0 2σ .13

Then bootstrap sampling can be carried out in the following ways:

1. Sample (Y, X) pairs from the data randomly with replacement.

2. Estimate λ, β0, and β1 in (3.28) by maximum likelihood, and obtain residuals $U .

Generate Y values from Y b b X Un
n= + + +[ ( *) ] /λ λ

0 1
11 , where λn, b0, and b1 are the estimates of λ,

β0, and β1; and U* is sampled randomly with replacement from the $U .

3. Same as method 2 except U* is sampled randomly from the distribution N(0, sn
2),

where sn
2 is the maximum likelihood estimate of σ2 .

4. Estimate λ, β0, and σ2  in (3.28) by maximum likelihood subject to the constraint β1

= 0.  Then proceed as in method 2.

5. Estimate λ, β0, and σ2  in (3.28) by maximum likelihood subject to the constraint β1

= 0.  Then proceed as in method 3.

In methods 2-5, the values of X may be fixed in repeated samples or sampled independently

of $U  from the empirical distribution of X.

Method 1 provides the least efficient estimator of Fn and typically has the poorest numerical

accuracy.  Method 5 has the greatest numerical accuracy.  Method 3 will usually have greater

numerical accuracy than method 2.  If the distribution of U is not assumed to belong to a known

parametric family, then methods 3 and 5 are not available, and method 4 will usually have greater

numerical accuracy than methods 1-2.  Of course, parametric maximum likelihood cannot be used

to estimate β0, β1, and λ if the distribution of U is not specified parametrically.

If the objective is to obtain a confidence interval for β1 rather than to test a hypothesis,

methods 4 and 5 are not available.  Method 3 will usually provide the greatest numerical accuracy if

the distribution of U is assumed to belong to a known parametric family, and method 2 if not.
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One reason for the relatively poor performance of method 1 is that it does not impose the

condition E(UX = x) = 0.  This problem is discussed further in Section 5.2, where heteroskedastic

regression models are considered.

3.7  Recentering

The bootstrap provides asymptotic refinements for asymptotically pivotal statistics because,

under the assumptions of the smooth function model, sup τ |Gn(τ, Fn) - Gn(τ, F0)| converges to zero

as n →  ∞  more rapidly than sup τ |G∞(τ, F0) - Gn(τ, F0)|.  One important situation in which this does

not necessarily happen is generalized method of moments (GMM) estimation of an overidentified

parameter when Fn is the EDF of the sample.

To see why, let θ0 be the true value of a parameter θ that is identified by the moment

condition Eh(X, θ) = 0.  Assume that dim(h) > dim(θ).  If, as is often the case in applications, the

distribution of X is not assumed to belong to a known parametric family, the EDF of X is the most

obvious candidate for Fn.  The sample analog of Eh(X, θ) is then

E h X
n

h X i
i

n

* ( , ) ( , ),θ θ=
=
∑1

1

where E* denotes the expectation relative to Fn.  The sample analog of θ0 is θn, the GMM estimator

of θ.  In general, E*h(X, θn) ≠ 0 in an overidentified model, so bootstrap estimation based on the

EDF of X implements a moment condition that does not hold in the population the bootstrap

samples.  As a result, the bootstrap estimator of the distribution of the statistic for testing the

overidentifying restrictions is inconsistent (Brown et al. 1997).  The bootstrap does consistently

estimate the distributions of n1/2(θn - θ0) (Hahn 1996) and the t statistic for testing a hypothesis about

a component of θ.  However, it does not provide asymptotic refinements for the RP of the t test or

the coverage probability of a confidence interval.
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This problem can be solved by basing bootstrap estimation on the recentered moment

condition E*h*(X, θn) = 0, where

(3.29)     h X h X
n

h X i n
i

n

*( , ) ( , ) ( , )θ θ θ= −
=
∑1

1

.

Hall and Horowitz (1996) show that the bootstrap with recentering provides asymptotic refinements

for the RP’s of t tests of hypotheses about components of θ and the test of overidentifying

restrictions.  The bootstrap with recentering also provides asymptotic refinements for confidence

intervals.  Intuitively, the recentering procedure works by replacing the misspecified moment

condition E*h(X, θ) = 0 with the condition E*h*(X, θ) = 0, which does hold in the population that

the bootstrap samples.

Freedman (1981) recognized the need for recentering residuals in regression models without

intercepts.  See, also, Efron (1979).

Brown et al. (1997) propose an alternative approach to recentering.  Instead of replacing h

with h* for bootstrap estimation, they replace the empirical distribution of X with an empirical

likelihood estimator that is constructed so that E*h(X, θn) = 0.14  The empirical likelihood estimator

assigns a probability mass πni to observation Xi (i = 1, … , n).  The πni’s are determined by solving

the problem

maximize

subject to:

1π π
π

π θ π π

n nn
ni

i

n

ni i n
i

n

ni
i

n

nih X

,...,
: log

( , ) ; ;

=

= =

∑

∑ ∑= = ≥

1

1 1

0 1 0

In general, the solution to this problem yields πni ≠ n-1, so the empirical likelihood estimator of the

distribution of X is not the same as the empirical distribution.  Brown et al. (1997) implement the

bootstrap by sampling {Xi} with probability weights πni instead of randomly with replacement.

They argue that the bootstrap is more accurate with empirical-likelihood recentering than with
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recentering by (3.29) because the empirical-likelihood estimator of the distribution of X is

asymptotically efficient under the moment conditions Eh(X,θ) = 0.  With either method of

recentering, however, the differences between the nominal and true RP’s of symmetrical tests and

between the nominal and true coverage probabilities of symmetrical confidence intervals are O(n-2).

Thus, the differences between the errors made with the two recentering methods are likely to be

small with samples of the sizes typically encountered in applications.

Brown et al. (1997) develop the empirical-likelihood recentering method only for simple

random samples.  Kitamura (1997) has shown how to carry out empirical-likelihood estimation with

dependent data.  It is likely, therefore, that empirical-likelihood recentering can be extended to

GMM estimation with dependent data.  The recentering method based on (3.29) requires no

modification for use with dependent data (Hall and Horowitz 1996).  Section 4.1 provides further

discussion of the use of the bootstrap with dependent data.

4.  EXTENSIONS

This section explains how the bootstrap can be used to obtain asymptotic refinements in

certain situations where the assumptions of Section 3 are not satisfied.  Section 4.1 treats dependent

data.  Section 4.2 treats kernel density and nonparametric mean-regression estimators.  Section 4.3

shows how the bootstrap can be applied to certain non-smooth estimators.  Section 4.4 describes

how bootstrap iteration can be used to obtain asymptotic refinements without an asymptotically

pivotal statistic.  Section 4.5 discusses additional special problems that can arise in implementing

the bootstrap.  Section 4.6 discusses the properties of bootstrap critical values for testing a

hypothesis that is false.

4.1  Dependent Data

With dependent data, asymptotic refinements cannot be obtained by using independent

bootstrap samples.  Bootstrap sampling must be carried out in a way that suitably captures the
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dependence of the data-generation process.  This section describes several methods for doing this.

It also explains how the bootstrap can be used to obtain asymptotic refinements in GMM estimation

with dependent data.  At present, higher-order asymptotic approximations and asymptotic

refinements are available only when the data-generation process is stationary and strongly

geometrically mixing.  Except when stated otherwise, it is assumed here that this requirement is

satisfied.  Non-stationary data-generation processes are discussed in Section 4.1.3.

4.1.1  Methods for Bootstrap Sampling with Dependent Data

Bootstrap sampling that captures the dependence of the data can be carried out relatively

easily if there is a parametric model, such as an ARMA model, that reduces the data-generation

process to a transformation of independent random variables.  For example, suppose that the series

{Xt} is generated by the stationary, invertible, finite-order ARMA model

(4.1)     A L X B L Ut t( , ) ( , )α β=

where A and B are known functions, L is the backshift operator, α and β are vectors of parameters,

and {Ut} is a sequence of independently and identically distributed (iid) random variables.  Let αn

and βn be n1/2-consistent, asymptotically normal estimators of α and β, and let { $ }U t  be the centered

residuals of the estimated model (4.1).  Then a bootstrap sample {Xt*} can be generated as

A L X B L Un t n t( , ) * ( , ) *α β= ,

where {Ut*} is a random sample from the empirical distribution of the residuals { $ }U t .  If the

distribution of Ut is assumed to belong to a known parametric family (e.g., the normal distribution),

then {Ut*} can be generated by independent sampling from the estimated parametric distribution.

Bose (1988) provides a rigorous discussion of the use of the bootstrap with autoregressions.  Bose

(1990) treats moving average models.

When there is no parametric model that reduces the data-generation process to independent

sampling from some probability distribution, the bootstrap can be implemented by dividing the data



39

into blocks and sampling the blocks randomly with replacement.  The block bootstrap is important

in GMM estimation with dependent data, because the moment conditions on which GMM

estimation is based usually do not specify the dependence structure of the GMM residuals.  The

blocks may be non-overlapping (Carlstein 1986) or overlapping (Hall 1985, Künsch 1988, Politis

and Romano 1994).  To describe these blocking methods more precisely, let the data consist of

observations {Xi:  i = 1, … , n}.  With non-overlapping blocks of length l, block 1 is observations

{Xj:  j = 1, … , l}, block 2 is observations {Xl + j:  j = 1, … , l}, and so forth.  With overlapping blocks

of length l, block 1 is observations {Xj:  j = 1, … , l}, block 2 is observations {Xj + 1:  j = 1, … , l}, and

so forth.  The bootstrap sample is obtained by sampling blocks randomly with replacement and

laying them end-to-end in the order sampled.  It is also possible to use overlapping blocks with

lengths that are sampled randomly from the geometric distribution (Politis and Romano 1994).  The

block bootstrap with random block lengths is also called the stationary bootstrap because the

resulting bootstrap data series is stationary, whereas it is not with overlapping or non-overlapping

blocks of fixed (non-random) lengths.

Regardless of the blocking method that is used, the block length (or average block length in

the stationary bootstrap) must increase with increasing sample size n to make bootstrap estimators

of moments and distribution functions consistent.  The asymptotically optimal block length is

defined as the one that minimizes the asymptotic mean-square error of the block bootstrap

estimator.  The asymptotically optimal block length and its rate of increase with increasing n

depend on what is being estimated.  Hall et al. (1995) showed that with either overlapping or non-

overlapping blocks with non-random lengths, the asymptotically optimal block-length is l ~ nr,

where r = 1/3 for estimating bias or variance, r = 1/4 for estimating a one-sided distribution function

(e.g., P(Tn ≤ τ)), and r = 1/5 for estimating a symmetrical distribution function (e.g., P(|Tn| ≤ τ)).

Hall et al. (1995) also show that overlapping blocks provide somewhat higher estimation efficiency

than non-overlapping ones.  The efficiency difference is likely to be very small in applications,

however.  For estimating a two-sided distribution function, for example, the root-mean-square
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estimation error (RMSE) with either blocking method is O(n-6/5).  The numerical difference between

the RMSE’s can be illustrated by considering the case of a normalized sample average. Let

T Xn = −( ) /µ σ , where X  is the sample average of observations {Xi}, µ = E X( ) , and

σ2 =Var X( ) .  Then the results of Hall, et al. (1995) imply that for estimating P(|Tn| ≤ τ), the

reduction in asymptotic RMSE from using overlapping blocks instead of nonoverlapping ones is

less than 10 percent.

Lahiri (1999) investigated the asymptotic efficiency of the stationary bootstrap.  He showed

that the asymptotic relative efficiency of the stationary bootstrap compared to the block bootstrap

with non-random block lengths is always less than one and can be arbitrarily close to zero.  More

precisely, let RMSESB and RMSENR, respectively, denote the asymptotic RMSE’s of the stationary

bootstrap and the block bootstrap with overlapping or non-overlapping blocks with non-random

lengths.  Then RMSENR/ RMSESB < 1 always and can be arbitrarily close to zero.  Thus, at least in

terms of asymptotic RMSE, the stationary bootstrap is unattractive relative to the block bootstrap

with fixed-length blocks.

Implementation of the block bootstrap in an application requires a method for choosing the

block length with a finite sample.  Hall, et al. (1995) describe a subsampling method for doing this

when the block lengths are non-random.  The idea of the method is to use subsamples to create an

empirical analog of the mean-square error of the bootstrap estimator of the quantity of interest.  Let

ψ  denote this quantity (e.g., a two-sided distribution function).  Let ψ n be the bootstrap estimator of

ψ  that is obtained using a preliminary block-length estimate.  Let m < n.  Let ψ m, i(l′) (i = 1, … , n -

m) denote the bootstrap estimates of ψ  that are computed using all the n - m runs of length m in the

data and block length l′.  Let lm be the value of l′ that minimizes [ ( ' ) ],ψ ψm i ni
l −∑ 2 .  The

estimator of the asymptotically optimal block length is (n/m)rlm, where r = 1/3 for estimating bias or

variance, r = 1/4 for estimating a one-sided distribution function, and r = 1/5 for estimating a two-

sided distribution function
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Kreiss (1992) and Bühlmann (1997) have proposed an alternative to blocking for use when

the data-generation process can be represented as an infinite-order autoregression.  In this method,

called the sieve bootstrap, the infinite-order autoregression is replaced by an approximating

autoregression with a finite-order that increases at a suitable rate as n →  ∞ .  The coefficients of the

finite-order autoregression are estimated, and the bootstrap is implemented by sampling the

centered residuals from the estimated finite-order model.  Bühlmann (1997) gives conditions under

which this procedure yields consistent estimators of variances and distribution functions.

Bühlmann (1998) shows that the sieve bootstrap provides an asymptotic refinement for estimating

the CDF of the t statistic for testing a one-sided hypothesis about the trend function in an AR(∞ )

process with a deterministic trend.  Choi and Hall (2000) show that the error in the coverage

probability of a one-sided confidence interval based on the sieve bootstrap for an AR(∞ ) process is

1( )O n ε− +  for any 0ε > , which is only slightly larger than the error of 1( )O n−  that is available

when the data are a random sample.

If the data are generated by a Markov process, then the bootstrap can be implemented by

sampling the process generated by a nonparametric estimate of the Markov transition density.  This

approach has been investigated by Rajarshi (1990), Datta and McCormick (1995), and Paparoditis

and Politis (2000).  Its ability to achieve asymptotic refinements for Studentized statistics is

unknown.

4.1.2  Asymptotic Refinements in GMM Estimation with Dependent Data

This section discusses the use of the block bootstrap to obtain asymptotic refinements in

GMM estimation with dependent data.  Lahiri (1992) showed that the block bootstrap provides

asymptotic refinements through O(n-1/2) for normalized sample moments and for a Studentized

sample moment with m-dependent data.  Hall and Horowitz (1996) showed that the block bootstrap

provides asymptotic refinements through O(n-1) for symmetrical tests and confidence intervals
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based on GMM estimators.  Their methods can also be used to show that the bootstrap provides

refinements through O(n-1/2) for one-sided tests and confidence intervals.  Hall and Horowitz (1996)

do not assume that the data-generation process is m-dependent15.

Regardless of whether overlapping or nonoverlapping blocks are used, block bootstrap

sampling does not exactly replicate the dependence structure of the original data-generation process.

For example, if nonoverlapping blocks are used, bootstrap observations that belong to the same

block are deterministically related, whereas observations that belong to different blocks are

independent.  This dependence structure is unlikely to be present in the original data-generation

process.  As a result, the finite-sample covariance matrices of the asymptotic forms of parameter

estimators obtained from the original sample and from the bootstrap sample are different.  The

practical consequence of this difference is that asymptotic refinements through O(n-1) cannot be

obtained by applying the “usual” formulae for test statistics to the block-bootstrap sample.  It is

necessary to develop special formulae for the bootstrap versions of test statistics.  These formulae

contain factors that correct for the differences between the asymptotic covariances of the original-

sample and bootstrap versions of test statistics without distorting the higher-order terms of

asymptotic expansions that produce refinements.

Lahiri (1992) derived the bootstrap version of a Studentized sample mean for m-dependent

data.  Hall and Horowitz (1996) derived formulae for the bootstrap versions of the GMM

symmetrical, two-tailed t statistic and the statistic for testing overidentifying restrictions.  As an

illustration of the form of the bootstrap statistics, consider the GMM t statistic for testing a

hypothesis about a component of a parameter θ that is identified by the moment condition Eh(X, θ)

= 0.  Hall and Horowitz (1996) showed that the corrected formula for the bootstrap version of the

GMM t statistic is

T S S Tn n b n* ( / ) ~= ,
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where ~Tn  is the “usual” GMM t statistic applied to the bootstrap sample, Sn is the “usual” GMM

standard error of the estimate of the component of θ  that is being tested, and Sb is the exact standard

deviation of the asymptotic form of the bootstrap estimate of this component.  Sn is computed from

the original estimation sample, not the bootstrap sample.  Hansen (1982) gives formulae for the

usual GMM t statistic and standard error.  Sb can be calculated because the process generating

bootstrap data is known exactly.  An analogous formula is available for the bootstrap version of the

statistic for testing overidentifying restrictions but is much more complicated algebraically than the

formula for the t statistic.  See Hall and Horowitz (1996) for details.

At present, the block bootstrap is known to provide asymptotic refinements for symmetrical

tests and confidence intervals based on GMM estimators only if the residuals {h(Xi, θ0):  i = 1,2,...}

at the true parameter point, θ0, are uncorrelated after finitely many lags.  That is,

(4.2)     E h X h X i j Mi j[ ( , ) ( , )' ] | |θ θ0 0 0= − >   if 

for some M < ∞ .16  This restriction is not equivalent to m-dependence because it does not preclude

correlations among higher powers of components of h that persist at arbitrarily large lags (e.g.,

stochastic volatility).  Although the restriction is satisfied in many econometric applications (see,

e.g., Hansen 1982, Hansen and Singleton 1982), there are others in which relaxing it would be

useful.  The main problem in doing so is that without (4.2), it is necessary to use a kernel-type

estimator of the GMM covariance matrix (see, e.g., Newey and West 1987, 1994; Andrews 1991,

Andrews and Monahan 1992).  Kernel-type estimators are not functions of sample moments and

converge at rates that are slower than n-1/2.  However, present results on the existence of asymptotic

expansions that achieve O(n-1) accuracy with dependent data apply only to functions of sample

moments that have n-1/2 rates of convergence (Götze and Hipp 1983, 1994).  It will be necessary to

extend existing theory of asymptotic expansions with dependent data before (4.2) can be relaxed for

symmetrical tests and confidence intervals.
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Condition (4.2) is not needed for one-sided tests and confidence intervals, where the

bootstrap provides only O(n-1/2) refinements.  Götze and Künsch (1996) and Lahiri (1996) give

conditions under which the moving-block-bootstrap approximation to the distribution of a statistic

that is Studentized with a kernel-type variance estimator is accurate through Op(n-1/2).  When the

conditions are satisfied,

(4.3)     sup| ( ) * ( * )| ( )/

τ
τ τP T P T o nn n p≤ − ≤ = − 1 2 ,

where Tn* is the bootstrap analog of the Studentized statistic Tn, and the moving block bootstrap is

used to generate bootstrap samples.  In Götze and Künsch (1996), Tn is the Studentized form of a

smooth function of sample moments.  In Lahiri (1996), Tn is a Studentized statistic for testing a

hypothesis about a slope coefficient in a linear mean-regression model.  Achieving the result (4.3)

requires, among other things, use of a suitable kernel or weight function in the variance estimator.

Götze and Künsch (1996) show that (4.3) holds with a rectangular or quadratic kernel but not with a

triangular one.

4.1.3  The Bootstrap with Non-Stationary Processes

The foregoing results assume that the data-generation process is stationary.  Most research to

date on using the bootstrap with non-stationary data has been concerned with establishing

consistency of bootstrap estimators of distribution functions, not with obtaining asymptotic

refinements.  An exception is Lahiri (1992), who gives conditions under which the bootstrap

estimator of the distribution of the normalized sample average of non-stationary data differs from

the true distribution by o(n-1/2) almost surely.  Thus, under Lahiri’s conditions, the bootstrap is more

accurate than first-order asymptotic approximations.  Lahiri’s result requires a priori knowledge of

the covariance function of the data and does not apply to Studentized sample averages.  Moreover

Lahiri assumes the existence of the covariance function, so his result does not apply to unit-root

processes.
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The consistency of the bootstrap estimator of the distribution of the slope coefficient or

Studentized slope coefficient in a simple unit-root model has been investigated by Basawa et al.

(1991a, 1991b), Datta (1996), and Ferretti and Romo (1996).  The model is

(4.4)     X X U i ni i i= + =−β 1 1 2; , ,..., ,

where X0 = 0 and {Ui} is an iid sequence with E Ui( ) = 0  and E Ui( )2 2= < ∞σ .  Let bn denote the

ordinary least squares estimator of β in (4.4):

(4.5)     b
X X

X
n

i i
i

n

i
i

n=
−

=

−
=

∑

∑

1
1

1
2

1

.

Let β0 denote the true but unknown value of β.  Consider using the bootstrap to estimate the

sampling distribution of (bn - β0) or the t statistic for testing H0:  β = β0.  It turns out that when β0 =

1 is possible, the consistency of the bootstrap estimator is much more sensitive to how the bootstrap

sample is drawn than when it is known that |β0| < 1.

Basawa et al. (1991a) investigate the consistency of a bootstrap estimator of the distribution

of the t statistic in the special case that U ~ N(0,1).  In this case, the t statistic is

(4.6)     t X bn i
i

n

n=
F
HG

I
KJ −−

=
∑ 1

2

1

1 2

0

/

( )β .

In Basawa et al. (1991a), the bootstrap sample {Xi*:  i = 1, … , n} is generated recursively from the

estimated model

(4.7)     X b X Ui n i i* * *= +− 1 ,

where X0* = 0 and {Ui*} is an independent random sample from the N(0,1) distribution.  The

bootstrap version of the t statistic is

t X b bi
i

n

n n* ( *) ( * )
/

=
L
NMM

O
QPP

−−
=
∑ 1

2

1

1 2

,
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where bn* is obtained by replacing Xi with Xi* in (4.5).  Basawa et al. (1991a) show that the

bootstrap distribution function Pn*(t* ≤ τ) does not consistently estimate the population distribution

function Pn(t ≤ τ).  This result is not surprising.  The asymptotic distribution of t is discontinuous at

β0 = 1.  Therefore, condition (iii) of Theorem 2.1 is not satisfied if the set of data-generation

processes under consideration includes ones with and without β0 = 1.

This problem can be overcome by specifying that β0 = 1, thereby removing the source of the

discontinuity.  Basawa et al. (1991b) investigate the consistency of the bootstrap estimator of the

distribution of the statistic Zn ≡ n(bn - 1) for testing the unit-root hypothesis H0:  β0 = 1 in (4.4).  The

bootstrap sample is generated by the recursion

(4.8)     X X Ui i i* * *= +− 1 ,

where X0* = 0 and {Ui*} is a random sample from the centered residuals of (4.4) under H0.  The

centered residuals are $U X X Ui i i= − −− 1 , where U n X Xi ii

n= −−
−=∑1

11
( ) .  The bootstrap

analog of Zn is Zn* = n(bn* - 1), where bn* is obtained by replacing Xi with Xi* in (4.5).  Basawa et

al. (1991b) show that if H0 is true, then |Pn*(Zn* ≤ z) - Pn(Zn ≤ z)| = op(1) uniformly over z.

The discontinuity problem can be overcome without the restriction β0 = 1 by using bootstrap

samples consisting of m < n observations (Datta 1996).  This approach has the advantage of

yielding a confidence interval for β0 that is valid for any β0 ∈  (-∞ , ∞ ).  Consider model (4.4) with

the additional assumption that E|Ui|2 + δ < ∞  for some δ > 0.  Let bn be the ordinary least squares

estimator of β, and define tn as in (4.6).  Let $ ( )U X b X n X b Xi i n i i n ii

n= − − −−
−

−=∑1
1

11
 (i = 1, … ,

n) denote the centered residuals from the estimated model, and let {Ui*:  i = 1, … , m} be a random

sample of { $ }U i  for some m < n.  The bootstrap sample is generated by the recursion (4.7) but with i

= 1, … , m instead of i = 1, … , n.  Let bm* denote the ordinary least squares estimator of β that is

obtained from the bootstrap sample.  Define the bootstrap version of tn by
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t X b bm i
i

m

m n* ( *) ( * )
/

=
L
NMM

O
QPP

−−
=
∑ 1

2

1

1 2

.

Datta (1996) proves that if [m(log log n)2]/n →  0 as n →  ∞ , then |Pm*(tm* ≤ τ) - Pn(tn ≤ τ)| = o(1)

almost surely as n  →  ∞  uniformly over z for any β0 ∈  (-∞ , ∞ ).

Ferretti and Romo consider a test of H0: β0 = 1 in (4.4).  Let bn be the ordinary least squares

estimator of β, and let

(4.9)     σn i n i
i

n

n
X b X2

1
2

1

1= − −
=
∑ ( ) .

The test statistic is

(4.10)     ~ ( )
/

t X bn
n

i
i

n

n=
F
HG

I
KJ −−

=
∑1

11
2

1

1 2

σ
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The bootstrap sample is generated from the centered residuals of the estimated model by using the

recursion (4.8).  Let bn* denote the ordinary least squares estimator of β  that is obtained from the

bootstrap sample.  The bootstrap version of the test statistic, ~ *tn , is obtained by replacing Xi and bn

with Xi* and bn* in (4.9) and (4.10).  Ferretti and Romo (1996) show that

| * (~* ) (~ )| ( )P t P t on n n n≤ − ≤ =τ τ 1  almost surely as n →  ∞ .  Ferretti and Romo (1996) also show

how this result can be extended to the case in which {Ui} in (4.4) follows an AR(1) process.

The results of Monte Carlo experiments (Li and Maddala 1996, 1997) suggest that the

differences between the true and nominal RP’s of tests of hypotheses about integrated or

cointegrated data-generation processes are smaller with bootstrap-based critical values than with

asymptotic ones.  At present, however, there are no theoretical results on the ability of the bootstrap

to provide asymptotic refinements for tests or confidence intervals when the data are integrated or

cointegrated.
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4.2  Kernel Density and Regression Estimators

This section describes the use of the bootstrap to carry out inference about kernel

nonparametric density and mean-regression estimators.  These are not smooth functions of sample

moments, even approximately, so the results of Section 3 do not apply to them.  In particular, kernel

density and mean-regression estimators converge more slowly than n-1/2, and their distributions have

unconventional asymptotic expansions that are not in powers of n-1/2.  Consequently, the sizes of the

asymptotic refinements provided by the bootstrap are also not powers of n-1/2.  Sections 4.2.1-4.2.3

discuss bootstrap methods for nonparametric density estimation.  Nonparametric mean regression is

discussed in Section 4.2.4.

4.2.1  Nonparametric Density Estimation

Let f denote the probability density function (with respect to Lebesgue measure) of the scalar

random variable X.  The problem addressed in this section is inferring f from a random sample of X,

{Xi:  i = 1, … , n}, without assuming that f belongs to a known, finite-dimensional family of

functions.  Point estimation of f can be carried out by the kernel method.  The kernel estimator of

f(x) is

f x
nh

K
x X

hn
n

i

ni

n

( ) = −F
HG

I
KJ=

∑1

1

,

where K is a kernel function with properties that are discussed below and {hn:  n = 1, 2, … } is a

strictly positive sequence of bandwidths.

The properties of kernel density estimators are described by Silverman (1986), among others.

To state the properties that are relevant here, let r ≥ 2 be an even integer.  Assume that f has r

bounded, continuous derivatives in a neighborhood of x.  Let K be a bounded function that is

symmetrical about 0 and has support [-1,1].17  In addition, let K satisfy



49
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Also define bn(x) = E[fn(x) - f(x)] and σn nx Var f x2 ( ) [ ( )]= .  Then

b x h
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The fastest possible rate of convergence of fn(x) to f(x) is achieved by setting hn ∝ n-1/(2r + 1).  When

this happens, fn(x) - f(x) = Op[n-r/(2r + 1)], bn(x) ∝ n-r/(2r + 1), and σn x( )  ∝ n-r/(2r + 1).

A Studentized statistic that is asymptotically pivotal and can be used to test a hypothesis

about f(x) or form a confidence interval for f(x) can be obtained from (4.13) if suitable estimators of

σn x2 ( )  and bn(x) are available. The need for estimating an asymptotic variance is familiar.  An

estimator of σn x2 ( )  can be formed by replacing f(x) with fn(x) on the right-hand side of (4.12).

However, the asymptotic expansions required to obtain asymptotic refinements are simpler if

σn x2 ( )  is estimated by a sample analog of the exact, finite-sample variance of fn(x) instead of a
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sample analog of (4.12), which is the variance of the asymptotic distribution of fn(x).  A sample

analog of the exact finite-sample variance of fn(x) is given by

s x
nh

K
x X

h
f x

nn
n

i

ni

n
n2

2

2

1

21
( )

( )
( )= −F

HG
I
KJ −

=
∑ .

If hn →  0 and nhn →  ∞  as n →  ∞ , then ( )[ ( ) ( )] ( )nh s x x On n n p
2 2 1− =σ  as n →  ∞ .  Define the

Studentized form of Zn by

(4.14)     t
f x E f x

s xn
n n

n
= −( ) [ ( )]

( )
.

Then tn is the asymptotic t statistic for testing a hypothesis about E[fn(x)] or forming a confidence

interval for E[fn(x)].  The asymptotic distribution of tn is N(0,1).  However, unless the asymptotic

bias bn(x) is negligibly small, tn cannot be used to test a hypothesis about f(x) or form a confidence

interval for f(x).  Because σn x− 1( )  = O[(nhn)1/2] and s xn
− 1( )  = Op[(nhn)1/2], bn(x) is negligibly small

only if (nhn)1/2bn(x) = o(1) as n →  ∞ .  The problem of asymptotic bias cannot be solved by replacing

E[fn(x)] with f(x) on the right-hand side of (4.14) because the asymptotic distribution of the resulting

version of tn is not centered at 0 unless bn(x) is negligibly small.  Section 4.2.2 discusses ways to

deal with asymptotic bias.

4.2.2  Asymptotic Bias and Methods for Controlling It

Asymptotic bias is a characteristic of nonparametric estimators that is not shared by

estimators that are smooth functions of sample moments.  As has just been explained, asymptotic

bias may prevent tn from being suitable for testing a hypothesis about f(x) or constructing a

confidence interval for f(x).  Asymptotic bias also affects the performance of the bootstrap.  To see

why, let {Xi*:  i = 1, … , n} be a bootstrap sample that is obtained by sampling the data {Xi}

randomly with replacement.  Then the bootstrap estimator of f is

(4.14)     f x
nh

K
x X

hn
n

i
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.
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The bootstrap analog of s xn
2 ( )  is
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Define the bootstrap analog of tn by

t
f x f x

s xn
n n

n
*

* ( ) ( )
* ( )

= −
.

It is clear from (4.14) that E*[fn*(x) - fn(x)] = 0.  Thus, fn*(x) an unbiased estimator of fn(x) in a finite

sample as well as asymptotically, whereas fn(x) is an asymptotically biased estimator of f(x). It can

be shown that the bootstrap distribution of tn* converges in probability to N(0,1).  Therefore, despite

the unbiasedness of fn*(x), tn* is a bootstrap t statistic for testing a hypothesis about E[fn(x)] or

forming a confidence interval for E[fn(x)].  It is not a bootstrap t statistic for testing a hypothesis

about f(x) or forming a confidence interval for f(x) unless bn(x) is negligibly small.

There are two ways to overcome the difficulties posed by asymptotic bias so that tn and tn*

become statistics for testing hypotheses about f(x) and forming confidence intervals for f(x) instead

of E[fn(x)].  One is the method of explicit bias removal.  It consists of forming an estimator of

b xn ( ) , say $ ( )b xn , that can be subtracted from fn(x) to form the asymptotically unbiased estimator

f x b xn n( ) $ ( )− .  The other method is undersmoothing.  This consists of setting hn ∝ n-κ with κ >

1/(2r + 1).  With undersmoothing, (nhn)1/2bn(x) = op(1) as n →  ∞ , so that bn(x) is asymptotically

negligible.  Neither method is compatible with achieving the fastest rate of convergence of a point-

estimator of f(x).  With undersmoothing, the rate of convergence of fn(x) is that of σn x( ) .  This is

n-(1 - κ)/2), which is slower than n-r/(2r + 1).  Explicit bias removal with hn ∝ n-1/(2r + 1) and rate of

convergence n-r/(2r + 1) for fn(x) requires f(x) to have more than r derivatives.  When f(x) has the

required number of derivatives, the fastest possible rate of convergence of fn(x) is n-s/(2s + 1) for some

s > r.  This rate is achieved with hn ∝ n-1/(2s + 1), but the resulting estimator of f(x) is asymptotically

biased.  Thus, regardless of the method that is used to remove asymptotic bias, testing a hypothesis
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about f(x) or forming a confidence interval requires using a bandwidth sequence that converges

more rapidly than the one that maximizes the rate of convergence of a point estimator of f(x).

Nonparametric point estimation and nonparametric interval estimation or testing of hypotheses are

different tasks that require different degrees of smoothing.

Hall (1992b) compares the errors in the coverage probabilities of bootstrap confidence

intervals with undersmoothing and explicit bias removal.  He shows that when the number of

derivatives of f(x) is held constant, undersmoothing achieves a smaller error in coverage probability

than does explicit bias removal.  This conclusion also applies to the rejection probabilities of

hypothesis tests; the difference between true and nominal rejection probabilities can be made

smaller with undersmoothing than with explicit bias removal.  Thus, undersmoothing is the better

method for handling asymptotic bias when the aim is to minimize differences between true and

nominal rejection and coverage probabilities of bootstrap-based hypothesis tests and confidence

intervals.  Accordingly, undersmoothing is used for bias removal in the remainder of this section.

4.2.3  Asymptotic Refinements

The argument showing that the bootstrap provides asymptotic refinements for tests of

hypotheses and confidence intervals in nonparametric density estimation is similar to that made in

Section 3 for the smooth function model.  The main step is proving that the distributions of tn and

tn* have Edgeworth expansions that are identical up to a sufficiently small remainder.  The result is

stated in Theorem 4.1, which is proved in Hall (1992a, pp. 268-282).

Theorem 4.1:  Assume that f has r bounded, continuous derivatives in a neighborhood of x.

Let hn →  0 and (nhn)/(log n) →  ∞  as n →  ∞ .  Let K be a bounded function that is symmetrical about

0, has support [-1,1], and satisfies (4.11) for some r ≥ 2.  Also, assume that there is a partition of

[-1,1], u0 = -1 < u1 < …  < um = 1 such that K′ exists, is bounded, and is either strictly positive or

strictly negative on each interval (uj, uj + 1).  Then there are even functions q1 and q3 and an odd

function q2 such that
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uniformly over τ.  Moreover, there are even functions qn1 and qn3 and an odd function qn2 such that

qnj(τ) - qj(τ) →  0 as n →  ∞  uniformly over τ almost surely (j = 1, … , 3), and
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uniformly over τ almost surely.

Hall (1992a, pp. 211-216) gives explicit expressions for the functions qj and qnj.

To see the implications of Theorem 4.1, consider a symmetrical test of a hypothesis about

f(x).  The results that will be obtained for this test also apply to symmetrical confidence intervals.

Let the hypothesis be H0:  f(x) = f0.  A symmetrical test rejects H0 if |fn(x) - f0| is large.  Suppose that

nhn
r + 1 →  0 as n →  ∞ .  This rate of convergence of hn insures that the asymptotic bias of fn(x) has

a negligibly small effect on the error made by the higher-order approximation to the distribution

of tn that is used to obtain asymptotic refinements.18  It also makes the effects of asymptotic bias

sufficiently small that tn can be used to test H0.  Rejecting H0 if |fn(x) - f0| is large is then

equivalent to rejecting H0 if |tn| is large, thereby yielding a symmetrical t test of H0.

Now suppose that the critical value of the symmetrical t test is obtained from the

asymptotic distribution of tn, which is N(0,1).  The asymptotic α-level critical value of the

symmetrical t test is zα/2, the 1 - α/2 quantile of the standard normal distribution.  Theorem 4.1

shows that P(|tn| > zα/2) = α + O[(nhn)-1].  In other words, when the asymptotic critical value is

used, the difference between the true and nominal rejection probabilities of the symmetrical t test

is O[(nhn)-1].

Now consider the symmetrical t test with a bootstrap critical value.  The bootstrap α-level

critical value, zn,α/2*, satisfies P*(|tn*| ≥zn,α/2*) = α.  By Theorem 4.1,

(4.16)     P t P t o nhn n n* (| * | ) (| | ) [( ) ]> − > = −τ τ 1
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almost surely uniformly over τ.  It can also be shown that P(|tn| > zn,α/2*) = α + o[(nhn)-1].  Thus,

with the bootstrap critical value, the difference between the true and nominal rejection

probabilities of the symmetrical t test is o[(nhn)-1].  The bootstrap reduces the difference between

the true and nominal rejection probabilities because it accounts for the effects of the O[(nhn)-1]

term of the Edgeworth expansion of the distribution of tn.  First-order asymptotic approximations

ignore this term.  Thus, the bootstrap provides asymptotic refinements for hypothesis tests and

confidence intervals based on a kernel nonparametric density estimator provided that the

bandwidth hn converges sufficiently rapidly to make the asymptotic bias of the density estimator

negligibly small.

The conclusion that first-order asymptotic approximations make an error of size O[(nhn)-1]

assumes that nhn
r + 1 →  0.  If this condition is not satisfied, the error made by first-order

approximations is dominated by the effect of asymptotic bias and is larger than O[(nhn)-1]  This

result is derived at the end of this section.

The bootstrap can also be used to obtain asymptotic refinements for one-sided and equal-

tailed tests and confidence intervals.  For one-sided tests and confidence intervals with bootstrap

critical values, the differences between the true and nominal rejection and coverage probabilities

are O[(nhn)-1 + (nhn)1/2hn
r].  These are minimized by setting hn ∝ n-3/(2r + 3), in which case the errors

are O[n-2r/(2r + 3)].  For equal-tailed tests and confidence intervals with bootstrap critical values, the

differences between the true and nominal rejection probabilities and coverage probabilities are

O[(nhn)-1 +nhn
2r + 1 + hn

r].  These are minimized by setting hn ∝ n-1/(r + 1), in which case the errors

are O[n-r/(r + 1)].  In contrast, the error made by first-order asymptotic approximations is O[(nhn)-1/2]

in both the one-sided and equal-tailed cases.  Hall (1992a, pp. 220-224) provides details and a

discussion of certain exceptional cases in which smaller errors can be achieved.  In contrast to the

situation with the smooth function model, the orders of refinement achievable in nonparametric

density estimation are different for one-sided and equal-tailed tests and confidence intervals.
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The Error Made by First-Order Asymptotics when nhn
r + 1 Does Not Converge to 0:

The effects of having hn →  0 too slowly are most easily seen by assuming that σn x( )  is known

so that tn is replaced by

Z
f x f x b x

xn
n n

n
= − −( ) ( ) ( )

( )σ
.

A symmetrical test of H0 rejects if |fn(x) - f0|/σn(x) is large.  If H0 is true, then
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Each term on the right-hand side of (4.17) has an asymptotic expansion of the form (4.15) except

without the q3 term and the O(n-1) remainder term, which arise from random sampling error in

sn
2(x).  Specifically,
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where p1 is an even function and p2 is an odd function.  Hall (1992a, p. 212) provides a proof and

the details of p1 and p2.  A Taylor series expansion of the right-hand side of (4.18) combined with

bn(x) = O(hn
r) and σn(x) =O[(nhn)-1/2] yields
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The remainder term on the right-hand side of (4.19) is dominated by hn
r, which is the effect of

asymptotic bias, unless nhn
r + 1 →  0.  Thus, the error made by first-order asymptotic

approximations exceeds O[(nhn)-1] unless fn(x) is sufficiently undersmoothed to make the

asymptotic bias bn(x) negligible, which is equivalent to requiring nhn
r + 1 →  0 as n →  ∞ .

4.2.4  Kernel Nonparametric Mean Regression

In nonparametric mean-regression, the aim is to infer the mean of a random variable Y

conditional on a covariate X without assuming that the conditional mean function belongs to a

known finite-dimensional family of functions.  Define G(x) = E(Y|X = x) to be the conditional mean

function.  Let X be a scalar random variable whose distribution has a probability density function f.

This section explains how the bootstrap can be used to obtain asymptotic refinements for tests of

hypotheses about G(x) and confidence intervals that are based on kernel estimation of G..

Let the data consist of a random sample, {Yi, Xi:  i = 1, … , n}, of the joint distribution of (Y,

X).  The kernel nonparametric estimator of G(x) is

G x
nh f x

Y K
x X

hn
n n

i
i

ni

n

( )
( )

= −F
HG

I
KJ=

∑1

1

,

where

f x
nh

K
x X

hn
n

i

ni

n

( ) = −F
HG

I
KJ=

∑1

1

,

K is a kernel function and {hn} a sequence of bandwidths.  The properties of Gn(x) are discussed by

Härdle (1990).  To state the ones that are relevant here, let r ≥ 2 be an even integer.  Assume that G

and f each have r bounded, continuous derivatives in a neighborhood of x.  Let K be a bounded

function that is symmetrical about 0, has support [-1,1], and satisfies (4.11).  Define BK  and AK as in

Section 4.2.1.  Set V(z) = Var(Y|X = z), and assume that this quantity is finite and continuous in a

neighborhood of z = x.  Also define
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The fastest possible rate of convergence of Gn(x) to G(x) is achieved by setting hn ∝ n-1/(2r + 1).  When

this happens, Gn(x) - G(x) = Op[n-r/(2r + 1)], bn(x) ∝ n-r/(2r + 1), and σn x( )  ∝ n-r/(2r + 1).

The issues involved in converting Zn into an asymptotically pivotal statistic that can be used

to test a hypothesis about G(x) or form a confidence interval for G(x) are the same as in kernel

density estimation.  It is necessary to replace σn x( )  with a suitable estimator and to remove the

asymptotic bias bn(x).  As in kernel density estimation, asymptotic bias can be removed to sufficient

order by undersmoothing.  Undersmoothing for a symmetrical test or confidence interval consists of

choosing hn so that nhn
r + 1 →  0 as n →  ∞ .19   

Now consider estimation of σn x2 ( ) .  One possibility is to replace f(x) with fn(x) and V(x)

with a consistent estimator on the right-hand side of (4.20).  The higher-order asymptotics of Gn(x)

are simpler, however, if σn x2 ( )  is estimated by a sample analog of the exact finite-sample variance

of the asymptotic form of Gn(x) - G(x).  With asymptotic bias removed by undersmoothing, the

asymptotic form of Gn(x) - G(x) is

(4.21)     G x G x
nh f x

Y G x K
x X

h
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ni
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p( ) ( )
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1
1

.

The variance of the first term on the right-hand side of (4.21) is then estimated by the following

sample analog, which will be used here to estimate σn x2 ( ) 20:
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Now define

t
G x G x

s xn
n

n
= −( ) ( )

( )
.

With asymptotic bias removed through undersmoothing, tn is asymptotically distributed as N(0,1)

and is an asymptotically pivotal statistic that can be used to test a hypothesis about G(x) and to form

a confidence interval for G(x).  The bootstrap version of tn is

t
G x G x

s xn
n n

n
*

* ( ) ( )
* ( )

= −
,

where Gn*(x) is obtained from Gn(x) by replacing the sample {Yi, Xi} with the bootstrap sample

{Yi*, Xi*}, and sn*(x) is obtained from sn(x) by replacing the sample with the bootstrap sample, fn(x)

with fn*(x), and Gn(x) with Gn*(x).21

The Edgeworth expansions of the distributions of tn and tn* are similar in structure to those of

the analogous statistic for kernel density estimators.  The result for symmetrical tests and

confidence intervals can be stated as follows.  Let E Y X z( | )4 =  be finite and continuous for all z in

a neighborhood of x.  Let K satisfy the conditions of Theorem 4.1.  Then there are functions q and qn

such that qn - q = o(1)  uniformly and almost surely as n →   ∞ ,

(4.22)     P t
nh

q o nhn
n

n(| | ) ( ) ( ) [( ) ]≤ = − + + −τ τ τ2 1
1 1Φ

uniformly over τ, and

P t
nh

q o nhn
n

n n*(| *| ) ( ) ( ) [( ) ]≤ = − + + −τ τ τ2 1
1 1Φ

uniformly over τ almost surely.  It follows that the bootstrap estimator of the distribution of |tn| is

accurate through O[(nhn)-1], whereas first-order asymptotic approximations make an error of this

size.  Let zn,α/2* be the bootstrap α-level critical value of for testing the hypothesis H0:  G(x) = G0.
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Then P*(|tn*| > zn,α/2*) = α, and it can be shown that P(|tn| > zn,α/2*) = α + o[(nhn)-1].  Hall (1992,

Section 4.5) discusses the mathematical details.  Thus, with the bootstrap critical value, the true

and nominal rejection probabilities of a symmetrical t test of H0 differ by o[(nhn)-1].  In contrast, it

follows from (4.22) that the difference is O[(nhn)-1] if first-order asymptotic approximations are

used to obtain the critical value.  The same conclusions hold for the coverage probabilities of

symmetrical confidence intervals for G(x).

4.3  Non-Smooth Estimators

Some estimators are obtained by maximizing or minimizing a function that is

discontinuous or whose first derivative is discontinuous.  Two important examples are Manski’s

(1975, 1985) maximum-score (MS) estimator of the slope coefficients of a binary-response model

and the least-absolute deviations (LAD) estimator of the slope coefficients of a linear median-

regression model.  The objective function of the MS estimator and the first derivative of the

objective function of the LAD estimator are step functions and, therefore, discontinuous.  The

LAD and MS estimators cannot be approximated by smooth functions of sample moments, so

they do not satisfy the assumptions of the smooth function model.  Moreover, the Taylor-series

methods of asymptotic distribution theory do not apply to the LAD and MS estimators, which

greatly complicates the analysis of their asymptotic distributional properties.  As a consequence,

little is known about the ability of the bootstrap to provide asymptotic refinements for hypothesis

tests and confidence intervals based on these estimators.  Indeed it is not known whether the

bootstrap even provides a consistent approximation to the asymptotic distribution of the MS

estimator.

This section explains how the LAD and MS estimators can be smoothed in a way that

greatly simplifies the analysis of their asymptotic distributional properties.  The bootstrap

provides asymptotic refinements for hypothesis tests and confidence intervals based on the

smoothed LAD and MS estimators.  In addition, smoothing accelerates the rate of convergence of
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the MS estimator and simplifies even its first-order asymptotic distribution.  Smoothing does not

change the rate of convergence or first-order asymptotic distribution of the LAD estimator.  The

LAD estimator is treated in Section 4.3.1, and the MS estimator is treated in Section 4.3.2

4.3.1  The LAD Estimator for a Linear Median-Regression Model

A linear median-regression model has the form

(4.23)     Y X U= +β ,

where Y is an observed scalar, X is an observed 1×q vector, β is a q×1 vector of constants, and U

is an unobserved random variable that satisfies median(U|X = x) = 0 almost surely.  Let {Yi, Xi:  i

= 1, … , n} be a random sample from the joint distribution of (Y, X) in (4.23).  The LAD estimator

of β, ~bn , solves

minimize:
b B

n i i
i

n

i i i i
i

n

H b
n

Y X b

n
Y X b I Y X b

∈ =

=

≡ −

= − − > −

∑

∑

~ ( ) | |

( . ) ( )[ ( ) ],

1

4 24
1

2 0 1

1

1

where B is the parameter set and I(⋅) is the indicator function.  Bassett and Koenker (1978) and

Koenker and Bassett (1978) give conditions under which the LAD estimator is n1/2-consistent and

n bn
1 2/ (~ )− β  is asymptotically normal.

~ ( )H bn  has cusps and, therefore, a discontinuous first derivative, at points b such that Yi =

Xib for some i.  This non-smoothness causes the Edgeworth expansion of the LAD estimator to be

non-standard and very complicated (De Angelis et al. 1993).  The bootstrap is known to estimate

the distribution of n bn
1 2/ (~ )− β  consistently (De Angelis et al. 1993, Hahn 1995), but it is not

known whether the bootstrap provides asymptotic refinements for hypothesis tests and confidence

intervals based on ~bn .22
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Horowitz (1998b) suggests removing the cusps in ~Hn  by replacing the indicator function

with a smooth function, thereby producing a modified objective function whose derivatives are

continuous.  The resulting smoothed LAD (SLAD) estimator is first-order asymptotically

equivalent to the unsmoothed LAD estimator but has much simpler higher-order asymptotics.

Specifically, let K be a bounded, differentiable function satisfying K(v) = 0 if v ≤ -1 and K(v) = 1

if v ≥ 1.  Let {hn} be a sequence of bandwidths that converges to 0 as n →  ∞ .  The SLAD

estimator solves

(4.25)     minimize:
b B

n i i
i i

ni

n
H b

n
Y X b K

Y X b
h∈ =

≡ − −F
HG

I
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NMM

O
QPP∑( ) ( )

1
2 1

1

.

K is analogous to the integral of a kernel function for nonparametric density estimation.  K is not

a kernel function itself.

Let bn be a solution to (4.25).  Horowitz (1998b) gives conditions under which

n b b on n p
1 2 1/ ( ~ ) ( )− = .  Thus, the smoothed and unsmoothed LAD estimators are first-order

asymptotically equivalent.  It follows from this asymptotic equivalence and the asymptotic

normality of LAD estimators that n1/2(bn - β) →  d N(0,V), where V = D-1E(X′X)D-1, D =

2E[X′Xf(0|x)], and f(⋅|x) is the probability density function of U conditional on X = x.

A t statistic for testing a hypothesis about a component of β or forming a confidence

interval can be constructed from consistent estimators of D and E(X′X).  D can be estimated

consistently by Dn(bn), where

(4.26)     D b
nh

X X K
Y X b

hn
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i i
i i

ni
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HG

I
KJ=

∑2

1

.

E(X′X) can be estimated consistently by the sample average of X′X.  However, the asymptotic

expansion of the distribution of the t statistic is simpler if E(X′X) is estimated by the sample

analog of the exact finite-sample variance of ∂Hn(b)/∂b at b = β.  This estimator is Tn(bn), where
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It is not difficult to show that V is estimated consistently by Vn ≡ Dn(bn)-1Tn(bn)Dn(bn)-1.  Now let

bnj and βj, respectively, be the j’th components of bn and β (j = 1, … , q).  Let Vnj be the (j, j)

component of Vn.  The t statistic for testing H0:  βj = βj0 is tn = n1/2(bnj - βj0)/Vnj
1/2.  If H0 is true,

then tn →  d N(0,1), so tn is asymptotically pivotal.

To obtain a bootstrap version of tn, let {Yi*, Xi*:  i = 1, … , n} be a bootstrap sample that

is obtained by sampling the data {Yi, Xi} randomly with replacement.  Let bn* be the estimator of

β that is obtained by solving (4.25) with {Yi*, Xi*} in place of {Yi, Xi}.  Let Vnj* be the version of

Vnj that is obtained by replacing bn and {Yi, Xi}, respectively, with bn* and {Yi*, Xi*} in (4.26) and

(4.27).  Then the bootstrap analog of tn is tn* = n1/2(bnj* - bnj)/(Vnj*)1/2.

By using methods similar to those used with kernel density and mean-regression

estimators, it can be shown that under regularity conditions, tn and tn* have Edgeworth

expansions that are identical almost surely through O[(nhn)-1].  Horowitz (1998b) gives the details

of the argument.  In addition, reasoning similar to that used in Section 4.2.3 shows that the

bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based on

the SLAD estimator.  For example, consider a symmetrical t test of H0.  Let zn,α/2* be the

bootstrap α-level critical value for this test.  That is, zn,α/2* satisfies P*(|tn*| > zn,α/2*) = α.  Then

P(|tn| > zn,α/2*) = α + o[(nhn)-1].  In contrast, first-order asymptotic approximations make an error

of size O[(nhn)-1].  This is because first-order approximations ignore a term in the Edgeworth

expansion of the distribution of |tn| whose size is O[(nhn)-1], whereas the bootstrap captures the

effects of this term.

The conditions under which this result holds include:  (1) for almost every x  and every u

in a neighborhood of 0, f(u|x) is r -1 times continuously differentiable with respect to u;  (2) K

satisfies (4.11) and has four bounded, Lipschitz continuous derivatives everywhere; and  (3) hn ∝
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n-κ, where 2/(2r + 1) < κ < 1/3.  Complete regularity conditions are given in Horowitz (1998b).

Condition (3) implies that r ≥ 4.  Therefore, the size of the refinement obtained by the bootstrap is

O(n-c), where 7/9 < c < 1.

The bootstrap also provides asymptotic refinements for one-sided tests and confidence

intervals and for asymptotic chi-square tests of hypotheses about several components of β.  In

addition, it is possible to construct a smoothed version of Powell’s (1984, 1986) censored LAD

estimator and to show that the bootstrap provides asymptotic refinements for tests and confidence

intervals based on the smoothed censored LAD estimator.  Horowitz (1998b) provides details, a

method for choosing hn in applications, and Monte Carlo evidence on the numerical performance

of the t test with bootstrap critical values.

4.3.2  The Maximum Score Estimator for a Binary-Response Model

The most frequently used binary-response model has the form Y I X U= + ≥( )β 0 , where

X is an observed random vector, β is a conformable vector of constants, and U is an unobserved

random variable.  The parameter vector β is identified only up to scale, so a scale normalization is

needed.  Here, scale normalization will be accomplished by assuming that |β1| = 1, where β1 is the

first component of β.  Let 
~β  and ~b  denote the vectors consisting of all components of β and b

except the first.  The maximum-score estimator of β, b b bn n n≡ ′′( ,~ )1 , solves

(4.28)     maximize
b B

n i i
i

n

H b
n

Y I X b
∈ =

= − ≥∑: ~ ( ) ( ) ( )
1

2 1 0
1

,

where {Yi, Xi:  i = 1, … , n} is a random sample from the joint distribution of (Y, X), and B is a

compact parameter set in which the scale normalization  holds

Manski (1975, 1985) shows that if median(U|X = x) = 0 almost surely, the first

component of X is continuously distributed with a non-zero coefficient, and certain other

conditions are satisfied, then ( , ~ )b bn n1
′′ →  β almost surely.  Because bn1 = ±1, bn1 converges to β1
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faster than any power of n.  Cavanagh (1987) and Kim and Pollard (1990) show that ~bn

converges in probability at the rate n-1/3 and that n bn
1 3/ (~ ~

)− β  has a complicated, non-normal

asymptotic distribution.  The MS estimator is important despite its slow rate of convergence and

complicated limiting distribution because it is semiparametric (that is, it does not require the

distribution of U to belong to a known, finite-dimensional family) and it permits the distribution

of U to have arbitrary heteroskedasticity of unknown form provided that the centering assumption

median(U|X = x) = 0 holds.

The asymptotic distribution of the MS estimator is too complex for use in testing

hypotheses about β or constructing confidence intervals.  Manski and Thompson (1986)

suggested using the bootstrap to estimate the mean-square error of the MS estimator and

presented Monte Carlo evidence suggesting that the bootstrap works well for this purpose.

However, it is not known whether the bootstrap consistently estimates the asymptotic distribution

of the MS estimator.

The MS estimator converges slowly and has a complicated limiting distribution because

it is obtained by maximizing a step function.  Horowitz (1992) proposed replacing the indicator

function on the right-hand side of (4.28) by a differentiable function.  The resulting estimator is

called the smoothed maximum score (SMS) estimator.  It solves

(4.29)     maximize
b B

n i
i

ni

n

H b
n

Y K
X b
h∈ =

= − F
HG

I
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1
2 1

1

,

where K is a bounded, differentiable function satisfying K(v) = 0 if v ≤ -1 and K(v) = 1 if v ≥ 1,

and {hn} is a sequence of bandwidths that converges to 0 as n →  ∞ .  As in SLAD estimation, K is

analogous to the integral of a kernel function.  Let 
~β  again be the vector of all components of β

but the first.  Let b b bn n n≡ ′′( ,~ )1  be the SMS estimator of ( ,
~

)β β1 ′′.  Horowitz (1992) gives

conditions under which ( ) (~ ~
) ( , )/nh b h N Vn n n

r d1 2 0− − →β λ , where r ≥ 2 is an integer that is
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related to the number of times that the CDF of U and the density function of Xβ are continuously

differentiable, nhn
2r + 1 is bounded as n →  ∞ , λ is an asymptotic bias, and V is a covariance matrix.

The rate of convergence of the SMS estimator of 
~β  is at least n-2/5 and can be arbitrarily close to

n-1/2 if the CDF of U and density function of Xβ have sufficiently many derivatives.  Thus,

smoothing increases the rate of convergence of the MS estimator.

To obtain an asymptotically pivotal t statistic for testing a hypothesis about a component

of 
~β  or forming a confidence interval, it is necessary to remove the asymptotic bias of ~bn  and

construct a consistent estimator of V.  Asymptotic bias can be removed by undersmoothing.  For

first-order asymptotic approximations, undersmoothing consists of choosing hn so that nhn
2r + 1 →

0 as n →  ∞ .  However, for the reasons explained in the discussion of equation (4.19), the stronger

condition nhn
r + 1 →  0 is needed to obtain asymptotic refinements through O[(nhn)-1].  V can be

estimated consistently by Vn = Qn(bn)-1Dn(bn)Qn(bn)-1, where for any b ∈  B

(4.30)     Q b
nh

Y X X K
X b
nhn

n
i i i
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ni
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KJ=
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and ~X  consists of all components of X but the first.

Now let ~bnj  and 
~β j , respectively, be the j’th components of ~bn  and 

~β .  Let Vnj be the

(j, j) component of Vn.  The t statistic for testing H0:  
~ ~β βj j= 0  is t nh b Vn n nj j nj= −( ) (~ ~

) // /1 2
0

1 2β .

If H0 is true, then tn →  d N(0,1), so tn is asymptotically pivotal.

To obtain a bootstrap version of tn, let {Yi*, Xi*:  i = 1, … , n} be a bootstrap sample that

is obtained by sampling the data {Yi, Xi} randomly with replacement.  Let bn* be the estimator of

β that is obtained by solving (4.29) with {Yi*, Xi*} in place of {Yi, Xi}.  Let Vnj* be the version of
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Vnj that is obtained by replacing bn and {Yi, Xi}, respectively, with bn* and {Yi*, Xi*} in (4.30) and

(4.31).  Then the bootstrap analog of tn is t nh b b Vn n nj n j nj* ( ) (~ * ~ ) / ( *)/ /= −1 2 1 2 .

By using methods similar to those used with kernel density and mean-regression

estimators, it can be shown that tn and tn* have Edgeworth expansions that are identical almost

surely through O[(nhn)-1].  See Horowitz (1998c) for the details of the argument.  It follows that

the bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based

on the SMS estimator.  For a symmetrical t test or confidence interval, the true and nominal

rejection or coverage probabilities differ by o[(nhn)-1] when bootstrap critical values are used,

whereas they differ by O[(nhn)-1] when first-order asymptotic critical values are used.  First-order

approximations ignore a term in the Edgeworth expansion of the distribution of |tn| whose size is

O[(nhn)-1], whereas the bootstrap captures the effects of this term.

The conditions under which this result holds include:  (1) the CDF of U conditional on X

and the density of Xβ  conditional on X have sufficiently many derivatives;  (2) K satisfies (4.11)

for some r ≥ 8; and  (3) hn ∝ n-κ, where 1/(r + 1) < κ < 1/7.  Complete regularity conditions are

given in Horowitz (1998c).  Conditions (2) and (3) imply that the size of the refinement obtained

by the bootstrap is O(n-c), where 6/7 < c < 1.  The bootstrap also provides asymptotic refinements

for one-sided tests and confidence intervals and for asymptotic chi-square tests of hypotheses

about several components of 
~β .  Horowitz (1998c) discusses methods for choosing hn in

applications and gives Monte Carlo evidence on the numerical performance of the t test with

bootstrap critical values.

4.4  Bootstrap Iteration

The discussion of asymptotic refinements in this chapter has emphasized the importance of

applying the bootstrap to asymptotically pivotal statistics.  This section explains how the bootstrap

can be used to create an asymptotic pivot when one is not available.  Asymptotic refinements can be
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obtained by applying the bootstrap to the bootstrap-generated asymptotic pivot.  The computational

procedure is called bootstrap iteration or prepivoting because it entails drawing bootstrap samples

from bootstrap samples as well as using the bootstrap to create an asymptotically pivotal statistic.

The discussion here concentrates on the use of prepivoting to test hypotheses (Beran 1988).  Beran

(1987) explains how to use prepivoting to form confidence regions.  Hall (1986b) describes an

alternative approach to bootstrap iteration.

Let Tn be a statistic for testing a hypothesis H0 about a sampled population whose CDF is F0.

Assume that under H0, Tn satisfies assumptions SFM and (3.8) of the smooth function model.

Define F = F0 if H0 is true, and define F to be the CDF of a distribution that satisfies H0 otherwise.

Let G F P Tn F n( , ) ( )τ τ≡ ≤  denote the exact, finite-sample CDF of Tn under sampling from the

population whose CDF is F.  Suppose that H0 is rejected if Tn is large.  Then the exact α-level

critical value of Tn, znα, is the solution to Gn(znα, F) = 1 - α  under H0.  An exact α-level test based on

Tn can be obtained by rejecting H0 if Gn(Tn, F) > 1 - α.  Thus, if F were known, gn ≡ Gn(Tn, F) could

be used as a statistic for testing H0.  Prepivoting is based on the idea of using gn as a test statistic.

A test based on gn cannot be implemented in an application unless Tn is pivotal because F

and, therefore, gn are unknown.  A feasible test statistic can be obtained by replacing F with an

estimator Fn that imposes the restrictions of H0 and is n1/2-consistent for F0 if H0 is true.

Replacing F with Fn produces the bootstrap statistic gn* = Gn(Tn, Fn).  Gn(⋅, Fn) and, therefore,

Gn(Tn, Fn) can be estimated with arbitrary accuracy by carrying out a Monte Carlo simulation in

which random samples are drawn from Fn.  Given any τ, let H F P gn F n( , ) ( * )τ τ0 0
= ≤  =

P G T FF n n n0
[ ( , ) ]≤τ .  An exact test based on gn* rejects H0 at the α level if Hn(gn*, F0) >1 -  α.

This test cannot be implemented because F0 is unknown.  If the bootstrap is consistent, however,

the asymptotic distribution of gn* is uniform on [0,1].  Therefore, H0 is rejected at the asymptotic

α level if gn* > 1 - α.  Now observe that gn* is asymptotically pivotal even if Tn is not; the

asymptotic distribution of gn* is U[0,1] regardless of F0.  This suggests that asymptotic
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refinements can be obtained by carrying out a second stage of bootstrap sampling in which the

bootstrap is used to estimate the finite-sample distribution of gn*.

The second stage of bootstrapping consists of drawing samples from each of the first-stage

bootstrap samples that are used to compute gn*.  Suppose that there are M first-stage samples.

The m’th such sample yields a bootstrap version of Tn, say Tnm, and an estimator Fnm of Fn that is

consistent with H0.  Fnm can be sampled repeatedly to obtain Gn(⋅, Fnm), the EDF of Tn under

sampling from Fnm, and gnm ≡ Gn(Tnm, Fnm).  Now estimate Hn(⋅, F0) by Hn(⋅, Fn), which is the EDF

of gnm (m = 1, … , M).  The iterated bootstrap test rejects H0 at the α  level if Hn(gn*, Fn) > 1 - α.

Beran (1988) shows that when prepivoting and bootstrap iteration are applied to a statistic

Tn, the true and nominal probabilities of rejecting a correct null hypothesis differ by o(n-1/2) for a

one-sided test and o(n-1) for a symmetrical test even if Tn is not asymptotically pivotal.  By

creating an asymptotic pivot in the first stage of bootstrapping, prepivoting and bootstrap iteration

enable asymptotic refinements to be obtained for a non-asymptotically-pivotal Tn.  The same

conclusions apply to the coverage probabilities of confidence intervals.  Beran (1988) presents the

results of Monte Carlo experiments that illustrate the numerical performance of this procedure.

The computational procedure for carrying out prepivoting and bootstrap iteration is given

by Beran (1988) and is as follows:

1.  Obtain Tn and Fn from the estimation data {Xi:  i = 1, … , n}, which are assumed to be a

random sample of a possibly vector-valued random variable X.

2.  Let χ1, … , χM be M bootstrap samples of size n that are drawn from the population

whose distribution is Fn. Let Fnm denote the estimate of Fn that is obtained from χm.  Let Tnm be

the version of Tn that is obtained from χm.  The EDF of {Tnm:  m = 1, … , M} estimates Gn(⋅, Fn).

Set g M I T Tn nm nm

M
* ( )= ≤−

=∑1
1

.

3.  For each m, let χm,1, … , χm,K be K further bootstrap samples of size n, each drawn from

the population whose CDF is Fnm.  Let Tnmk be the version of Tn that is obtained from χmk.  Set
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G T F K I T Tn nm nm nmk nmk

K
( , ) ( )= ≤−

=∑1
1

.  Each of the Gn(Tnm, Fnm) (m = 1, … , n} is a second-

stage estimate of gn.  Estimate Hn(gn*, F0) by H g F M I G T F gn n n n nm nm nm

M
( *, ) [ ( , ) *]= ≤−

=∑1
1

.

Reject H0 at the α level if Hn(gn*, Fn) > 1 - α.

4.5  Special Problems

The bootstrap provides asymptotic refinements because it amounts to a one-term Edgeworth

expansion.  The bootstrap cannot be expected to perform well when an Edgeworth expansion

provides a poor approximation to the distribution of interest.  An important case of this is

instrumental-variables estimation with poorly correlated instruments and regressors.  It is well

known that first-order asymptotic approximations are especially poor in this situation (Hillier 1985,

Nelson and Startz 1990ab, Phillips 1983).  The bootstrap does not offer a solution to this problem.

With poorly correlated instruments and regressors, Edgeworth expansions of estimators and test

statistics involve denominator terms that are close to zero.  As a result, the higher-order terms of the

expansions may dominate the lower-order ones for a given sample size, in which case the bootstrap

may provide little improvement over first-order asymptotic approximations.  Indeed, with small

samples the numerical accuracy of the bootstrap may be even worse than that of first-order

asymptotic approximations.

The bootstrap also does not perform well when the variance estimator used for

Studentization has a high variance itself.  This problem can be especially severe when the

parameters being estimated or tested are variances or covariances of a distribution.  This happens,

for example, in estimation of covariance structures of economic processes (Abowd and Card 1987,

1988; Behrman et al. 1994; Griliches 1979; Hall and Mishkin 1982).  In such cases Studentization

is carried out with an estimator of the variance of an estimated variance.  Imprecise estimation of a

variance also affects the finite-sample performance of asymptotically efficient GMM estimators

because the asymptotically optimal weight matrix is the inverse of the covariance matrix of the



70

GMM residuals.  The finite-sample mean-square error of the asymptotically efficient estimator can

greatly exceed the mean-square error of an asymptotically inefficient estimator that is obtained with

a non-stochastic weight matrix.  Horowitz (1998a) shows that in the case of estimating covariance

structures, this problem can be greatly mitigated by using a trimmed version of the covariance

estimator that excludes “outlier” observations.  See Horowitz (1998a) for details.  Section 5.5

presents a numerical illustration of the effects of trimming.

4.6  The Bootstrap when the Null Hypothesis is False

To understand the power of a test based on a bootstrap critical value, it is necessary to

investigate the behavior of the bootstrap when the null hypothesis being tested, H0, is false.

Suppose that bootstrap samples are generated by a model that satisfies a false H0 and, therefore, is

misspecified relative to the true data-generation process.  If H0 is simple, meaning that it completely

specifies the data-generation process, then the bootstrap amounts to Monte Carlo estimation of the

exact finite-sample critical value for testing H0 against the true data-generation process.  Indeed, the

bootstrap provides the exact critical value, rather than a Monte Carlo estimate, if G(⋅, Fn) can be

calculated analytically.  Tests of simple hypotheses are rarely encountered in econometrics,

however.

In most applications, H0 is composite.  That is, it does not specify the value of a finite- or

infinite-dimensional “nuisance” parameter ψ .  In the remainder of this section, it is shown that a test

of a composite hypothesis using a bootstrap-based critical value is a higher-order approximation to

a certain exact test.  The power of the test with a bootstrap critical value is a higher-order

approximation to the power of the exact test.

Except in the case of a test based on a pivotal statistic, the exact finite-sample distribution of

the test statistic depends on ψ .  Therefore, except in the pivotal case, it is necessary to specify the

value of ψ  to obtain exact finite-sample critical values.  The higher-order approximation to power

provided by the bootstrap applies to a value of ψ  that will be called the pseudo-true value.  To
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define the pseudo-true value, let ψ n be an estimator of ψ  that is obtained under the incorrect

assumption that H0 is true.  Under regularity conditions (see, e.g., Amemiya 1985, White 1982), ψ n

converges in probability to a limit ψ *, and n1/2(ψ n - ψ *) = Op(1).  ψ * is the pseudo-true value of ψ .

Now let Tn be a statistic that is asymptotically pivotal under H0.  Suppose that its exact CDF

with an arbitrary value of ψ  is Gn(⋅,ψ ), and that under H0 its asymptotic CDF is G0(⋅).  Suppose that

bootstrap sampling is carried out subject to the constraints of H0.  Then the bootstrap generates

samples from a model whose parameter value is ψ n, so the exact distribution of the bootstrap

version of Tn is Gn(⋅, ψ n).  Under H0 and subject to regularity conditions, Gn(⋅, ψ n) has an asymptotic

expansion of the form

(4.32)     G z G z n g z o nn n
j

j p
j( , ) ( ) ( , *) ( )/ /ψ ψ= + +− −

0
2 2

uniformly over z, where j = 1 or 2 depending on the symmetry of Tn.  Usually j = 1 if Tn is a statistic

for a one-tailed test and j = 2 if Tn is a statistic for a symmetrical, two-tailed test.  Gn(z, ψ *) has an

expansion identical to (4.32) through O(n-j/2).  Therefore, through Op(n-j/2), bootstrap sampling when

H0 is false is equivalent to generating data from a model that satisfies H0 with pseudo-true values of

the parameters not specified by H0.  It follows that when H0 is false, bootstrap-based critical values

are equivalent through Op(n-j/2) to the critical values that would be obtained if the model satisfying

H0 with pseudo-true parameter values were correct.  Moreover, the power of a test of H0 using a

bootstrap-based critical value is equal through O(n-j/2) to the power against the true data-generation

process that would be obtained by using the exact finite-sample critical value for testing H0 with

pseudo-true parameter values.

5.  MONTE CARLO EXPERIMENTS

This section presents the results of some Monte Carlo experiments that illustrate the

numerical performance of the bootstrap as a means of reducing differences between the true and

nominal rejection probabilities of tests of statistical hypotheses.



72

5.1  The Information-Matrix Test

White’s (1982) information-matrix (IM) test is a specification test for parametric models

estimated by maximum likelihood.  It tests the hypothesis that the Hessian and outer-product forms

of the information matrix are equal.  Rejection implies that the model is misspecified.  The test

statistic is asymptotically chi-square distributed, but Monte Carlo experiments carried out by many

investigators have shown that the asymptotic distribution is a very poor approximation to the true,

finite-sample distribution.  With sample sizes in the range found in applications, the true and

nominal probabilities that the IM test with asymptotic critical values rejects a correct model can

differ by a factor of 10 or more (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor

1987).

Horowitz (1994) reports the results of Monte Carlo experiments that investigate the ability of

the bootstrap to provide improved finite-sample critical values for the IM test, thereby reducing the

distortions of RP’s that occur with asymptotic critical values.  Three forms of the test were used:

the Chesher (1983) and Lancaster (1984) form, White’s (1982) original form, and Orme’s (1990)

ω3.  The Chesher-Lancaster form is relatively easy to compute because, in contrast to the other

forms, it does not require third derivatives of the log-density function or analytic expected values of

derivatives of the log-density.  However, first-order asymptotic theory gives an especially poor

approximation to its finite-sample distribution.  Orme (1990) found through Monte Carlo

experimentation that the distortions of RP’s are smaller with ω3 than with many other forms of the

IM test statistic.  Orme’s ω3 uses expected values of third derivatives of the log-density, however,

so it is relatively difficult to compute.

Horowitz’s (1994) experiments consisted of applying the three forms of the IM test to Tobit

and binary probit models.  Each model had either one or two explanatory variables X that were

obtained by sampling either the N(0,1) or the U[0,1] distribution.  There were 1000 replications in

each experiment.  Other details of the Monte Carlo procedure are described in Horowitz (1994).
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Table 1 summarizes the results of the experiments.  As expected, the differences between empirical

and nominal RP’s are very large when asymptotic critical values are used.  This is especially true

for the Chesher-Lancaster form of the test.  When bootstrap critical values are used, however, the

differences between empirical and nominal RP’s are very small.  The bootstrap essentially

eliminates the distortions of the RP’s of the three forms of the IM test.

5.2  The t Test in a Heteroskedastic Regression Model

In this section, the heteroskedasticity-consistent covariance matrix estimator (HCCME) of

Eicker (1963,1967) and White (1980) is used to carry out a t test of a hypothesis about β in the

model

(5.1)     Y X U= +β .

In this model, U is an unobserved random variable whose probability distribution is unknown and

that may have heteroskedasticity of unknown form.  It is assumed that E(UX = x) = 0 and

Var(UX = x) < ∞  for all x in the support of X.

Let bn be the ordinary least squares (OLS) estimator of β in (5.1), bni and βi be the i'th

components of bn and β, and sni be the square root of the (i,i) element of the HCCME.  The t statistic

for testing H0: βi = βi0 is Tn = (bni - βi0)/sni.  Under regularity conditions, Tn →  d N(0,1) as n →  ∞ .

However, Chesher and Jewitt (1987) have shown that sni
2 can be seriously biased downward.

Therefore, the true RP of a test based on Tn is likely to exceed the nominal RP.  As is shown later in

this section, the differences between the true and nominal RP’s can be very large when n is small.

The bootstrap can be implemented for model (5.1) by sampling observations of (Y,X)

randomly with replacement.  The resulting bootstrap sample is used to estimate β by OLS and

compute Tn*, the t statistic for testing H0*: βi = bni.  The empirical distribution of Tn* is obtained by

repeating this process many times, and the α-level bootstrap critical value for Tn* is estimated from

this distribution.  Since U may be heteroskedastic, the bootstrap cannot be implemented by
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resampling OLS residuals independently of X.  Similarly, one cannot implement the bootstrap by

sampling U from a parametric model because (5.1) does not specify the distribution of U or the

form of any heteroskedasticity.

Randomly resampling (Y,X) pairs does not impose the restriction E(UX = x) = 0 on the

bootstrap sample.  As will be seen later in this section, the numerical performance of the bootstrap

can be improved greatly through the use of an alternative resampling procedure, called the wild

bootstrap, that imposes this restriction.  The wild bootstrap was introduced by Liu (1988) following

a suggestion of Wu (1986).  Mammen (1993) establishes the ability of the wild bootstrap to provide

asymptotic refinements for the model (5.1).  Cao-Abad (1991), Härdle and Mammen (1993), and

Härdle and Marron (1991) use the wild bootstrap in nonparametric regression.

To describe the wild bootstrap, write the estimated form of (5.1) as

Y X b U i ni i n ni= + =; , , ...,1 2

where Yi and Xi are the i’th observed values of Y and X, and Uni is the i’th OLS residual.  For each i

= 1, ..., n, let Fi be the unique 2-point distribution that satisfies E Z Fi( | ) = 0 , E Z F Ui ni( | )2 2= , and

E Z F Ui ni( | )3 3= , where Z is a random variable with the CDF Fi.  Then, Z Uni= −( ) /1 5 2  with

probability ( ) / ( )1 5 2 5+ , and Z Uni= +( ) /1 5 2  with probability 1 1 5 2 5− +( ) / ( ) .  The

wild bootstrap is implemented as follows:

1.  For each i = 1, ..., n, sample Ui* randomly from Fi.  Set Yi* = Xibn + Ui*.

2.  Estimate (5.1) by OLS using the bootstrap sample {Yi*, Xi: i = 1, ..., n}.  Compute the

resulting t statistic, Tn*.

3.  Obtain the empirical distribution of the wild-bootstrap version of Tn* by repeating steps 1

and 2 many times.  Obtain the wild-bootstrap critical value of Tn* from the empirical distribution.

Horowitz (1997) reports the results of a Monte Carlo investigation of the ability of the

bootstrap and wild bootstrap to reduce the distortions in the RP of a symmetrical, two-tailed t test

that occur when asymptotic critical values are used.  The bootstrap was implemented by resampling
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(Y,X) pairs, and the wild bootstrap was implemented as described above.  The experiments also

investigate the RP of the t test when the HCCME is used with asymptotic critical values and when a

jackknife version of the HCCME is used with asymptotic critical values (MacKinnon and White

1985).  MacKinnon and White (1985) found through Monte Carlo experimentation that with the

jackknife HCCME and asymptotic critical values, the t test had smaller distortions of RP than it did

with several other versions of the HCCME.

The experiments use n = 25.  X consists of an intercept and either 1 or 2 explanatory

variables.  In experiments in which X has an intercept and one explanatory variable, β = (1, 0)′.  In

experiments in which X has an intercept and two explanatory variables, β = (1,0,1)′.  The hypothesis

tested in all experiments is H0: β2 = 0.  The components of X were obtained by independent

sampling from a mixture of normal distributions in which N(0,1) was sampled with probability 0.9

and N(2,9) was sampled with probability 0.1.  The resulting distribution of X is skewed and

leptokurtotic.  Experiments were carried out using homoskedastic and heteroskedastic U’s.  When

U was homoskedastic, it was sampled randomly from N(0,1).  When U was heteroskedastic, the U

value corresponding to X = x was sampled from N(0,Ωx), where Ω x = 1 + x2 or Ω x = 1 + x1
2 + x2

2,

depending on whether X consists of 1 or 2 components in addition to an intercept.  Ω x is the

covariance matrix of U corresponding to the random-coefficients model Y X X V= + +β δ , where

V and the components of δ are independently distributed as N(0,1).  There were 1000 Monte Carlo

replications in each experiment.

Table 2 shows the empirical RP’s of nominal 0.05-level t tests of H0.  The differences

between the empirical and nominal RP’s using the HCCME and asymptotic critical values are very

large.  Using the jackknife version of the HCCME or critical values obtained from the bootstrap

greatly reduces the differences between the empirical and nominal RP’s, but the empirical RP’s are

still 2-3 times the nominal ones.  With critical values obtained from the wild bootstrap, the
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differences between the empirical and nominal RP’s are very small.  In these experiments, the wild

bootstrap essentially removes the distortions of RP that occur with asymptotic critical values.

5.3  The t Test in a Box-Cox Regression Model

The t statistic for testing a hypothesis about a slope coefficient in a linear regression model

with a Box-Cox (1964) transformed dependent variable is not invariant to changes in the

measurement units, or scale, of the dependent variable (Spitzer 1984).  The numerical value of the t

statistic and the finite-sample RP’s of the t test with asymptotic critical values vary according to the

measurement units or scale that is used.  As a result, the finite-sample RP’s of the t test with

asymptotic critical values can be far from the nominal RP’s.  The bootstrap provides a better

approximation to the finite-sample distribution and, therefore, better finite-sample critical values.

Horowitz (1997) reports the results of a Monte Carlo investigation of the finite-sample RP of

a symmetrical t test of a hypothesis about a slope coefficient in a linear regression model with a

Box-Cox transformed dependent variable.  The model generating the data is

Y X U( )λ β β= + +0 1 ,

where Y ( )λ  is the Box-Cox transformed value of the dependent variable Y, U ~ N(0,σ2), β0 = 2, β1 =

0 and σ2 = 0.0625.  X was sampled from N(4,4) and was fixed in repeated samples.  The hypothesis

being tested is H0: β1 = 0.  The value of λ is either 0.01 or 1, depending on the experiment, and the

scale of Y was 0.2, 1, or 5.  The sample sizes were n = 50 and 100.  There were 1000 replications in

each experiment.

The results of the experiments are summarized in Table 3.  The empirical critical value of the

t test tends to be much smaller than the asymptotic critical value of 1.96, especially in the

experiments with a scale factor of 5.  As a result, the empirical RP of the t test is usually much

smaller than its nominal RP.  The mean bootstrap critical values, however, are very close to the
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empirical critical values, and the RP’s based on bootstrap critical values are very close to the

nominal ones.

5.5  Estimation of Covariance Structures

In estimation of covariance structures, the objective is to estimate the covariance matrix

of a k×1 vector X subject to restrictions that reduce the number of unique, unknown elements to r

< k(k + 1)/2.  Estimates of the r unknown elements can be obtained by minimizing the weighted

distance between sample moments and the estimated population moments.  Weighting all sample

moments equally produces the equally-weighted minimum distance (EWMD) estimator, whereas

choosing the weights to maximize asymptotic estimation efficiency produces the optimal

minimum distance (OMD) estimator.

The OMD estimator dominates the EWMD estimator in terms of asymptotic efficiency,

but it has been found to have poor finite-sample properties in applications (Abowd and Card

1989).  Altonji and Segal (1994, 1996) carried out an extensive Monte Carlo investigation of the

finite-sample performance of the OMD estimator.  They found that the estimator is badly biased

with samples of the sizes often found in applications and that its finite-sample root-mean-square

estimation error (RMSE) often greatly exceeds the RMSE of the asymptotically inefficient

EWMD estimator.  Altonji and Segal also found that the true coverage probabilities of asymptotic

confidence intervals based on the OMD estimator tend to be much lower than the nominal

coverage probabilities.  Thus, estimation and inference based on the OMD estimator can be

highly misleading with finite samples.

Horowitz (1998a) reports the results of a Monte Carlo investigation the ability of the

bootstrap to reduce the bias and RMSE of the OMD estimator and reduce the differences between

true and nominal coverage probabilities of nominal 95% confidence intervals based on this

estimator.  The data-generation processes used in the Monte Carlo experiments were taken from

Altonji and Segal (1994).  In each experiment, X has 10 components, and the sample size is n =
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500.  The j’th component of X, Xj (j = 1, … , 10) is generated by Xj = (Zj + ρZj + 1)/(1 + ρ2)1/2,

where Z1, … , Z11 are iid random variables with means of 0 and variances of 1, and ρ = 0.5.  The

Z’s are sampled from five different distributions depending on the experiment.  These are U[0,1],

N(0,1), Student t with 10 degrees of freedom, exponential, and lognormal.  It is assumed that ρ is

known and that the components of X are known to be identically distributed and to follow MA(1)

processes.  The estimation problem is to infer the scalar parameter θ that is identified by the

moment conditions Var(Xj) = θ (j = 1, … , 10) and Cov(Xj, Xj - 1) = ρθ/(1 + ρ2) (j = 2, … , 10).

Experiments were carried out with the EWMD and OMD estimators as well as a version of the

OMD estimator that uses a trimmed estimator of the asymptotically optimal weight matrix.  See

Horowitz (1998a) for an explanation of the trimming procedure.

The results of the experiments are summarized in Table 4.  The OMD estimator, θn,OMD is

biased and its RMSE exceeds that of the EWMD estimator, θn,EWMD for all distributions of Z

except the uniform.  Moreover, the coverage probabilities of confidence intervals based on θn OMD

with asymptotic critical values are far below the nominal value of 0.95 except in the experiment

with uniform Z’s.  Bootstrap bias reduction greatly reduces both the bias and RMSE of θn,OMD.  In

addition, the use of bootstrap critical values greatly reduces the errors in the coverage

probabilities of confidence intervals based on θn,OMD.  In the experiments with normal, Student t,

or uniform Z’s, the bootstrap essentially eliminates the bias of θn,OMD and the errors in the

coverage probabilities of the confidence intervals.  Moreover, the RMSE of the bias-corrected

θn,OMD in these experiments is 12-50% less than that of θn,EWMD.

When Z is exponential or lognormal, the bootstrap reduces but does not eliminate the bias

of θn,OMD and the errors in the coverage probabilities of confidence intervals.  Horowitz (1998a)

shows that the poor performance of the bootstrap in these cases is caused by imprecise estimation

of the OMD weight and covariance matrices.  This problem is largely eliminated through the use

of the trimmed estimator of these matrices.  With trimming, θn,OMD with exponential or lognormal
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Z’s has a RMSE that is the same as or less than that of the EWMD estimator, and the empirical

coverage probabilities of confidence intervals are close to the nominal values.

6.  CONCLUSIONS

The bootstrap consistently estimates the asymptotic distributions of econometric

estimators and test statistics under conditions that are sufficiently general to accommodate most

applications.  Subsampling methods usually can be used in place of the standard bootstrap when

the latter is not consistent.  Together, the bootstrap and subsampling methods provide ways to

substitute computation for mathematical analysis if analytical calculation of the asymptotic

distribution of an estimator or test statistic is difficult or impossible.

Under conditions that are stronger than those required for consistency but still general

enough to accommodate a wide variety of econometric applications, the bootstrap reduces the

finite-sample biases of estimators and provides a better approximation to the finite-sample

distribution of an estimator or test statistic than does first-order asymptotic theory.  The

approximations of first-order asymptotic theory are often quite inaccurate with samples of the

sizes encountered in applications.  As a result, the true and nominal probabilities that a test rejects

a correct hypothesis can be very different when critical values based on first-order

approximations are used.  Similarly, the true and nominal coverage probabilities of confidence

intervals based on asymptotic critical values can be very different.  The bootstrap can provide

dramatic reductions in the differences between true and nominal rejection and coverage

probabilities of tests and confidence intervals.  In many cases of practical importance, the

bootstrap essentially eliminates finite-sample errors in rejection and coverage probabilities.

This chapter has also emphasized the need for care in applying the bootstrap.  The

importance of asymptotically pivotal statistics for obtaining asymptotic refinements has been

stressed.  Proper attention also must be given to matters such as recentering, correction of test

statistics in the block bootstrap for dependent data, smoothing, and choosing the distribution from
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which bootstrap samples are drawn.  These qualifications do not, however, detract from the

importance of the bootstrap as a practical tool for improving inference in applied econometrics.
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APPENDIX:  Informal Derivation of (3.27)

To derive (3.27), write P(|Tn| ≥ zn,α/2*) in the form

( . ) (| | *) [ ( *) ( *) ]

{ [ ( * ) ] [ ( * ) ]}.

, / , / , /

, / . / , / , / , / , /

A 1 1

1

2 2 2

2 2 2 2 2 2

P T z P T z P T z

P T z z z P T z z z

n n n n n n

n n n n

> = − ≤ − ≤−

= − − − ≤ − + − ≤−∞ ∞ ∞ ∞

α α α

α α α α α α

With an error whose size is almost surely O(n-2), (zn,α/2* - z∞ ,α/2) on the right-hand side of (A.1) can

be replaced with a Cornish-Fisher expansion that retains terms through O(n-3/2).  This expansion can

be obtained by applying the delta method to the difference between (3.23) and (3.24).  The result is

(A.2)     z z
n

g z F
z n

n r Z O nn, / , /
, /

, /
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( , )
( )

( ) ( )α α
α

αφ2 2
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1 2
3

21 1− = − + +∞
∞

∞

− ,

where r3 is a smooth function, r Z3 0( )µ = , and n r Z Op
1 2

3 1/ ( ) ( )=  as n →  ∞ .  Substituting (A.2)

into (A.1) yields
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where
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(A.4)     r z
g z F

z2
2 0( )
( , )
( )

= −
φ

.

The next step is to replace the right-hand side of (A.3) with an Edgeworth approximation.  To do

this, it is necessary to provide a detailed specification of the function g2 in (3.9) and (3.13).  Let κj,n

denote the j’th cumulant of Tn.23  Under assumption SFM, κj,n can be expanded in a power series.

For a statistic such as Tn whose asymptotic distribution has a variance of 1,

κ1
12
1 2

13
3/2

5/2
, / ( )n

k
n

k
n

O n= + + − ,

κ2
22 21, ( )n

k
n

O n= + + − ,

κ3
31
1 2

32
3/2

5/2
, / ( )n

k
n

k
n

O n= + + − ,

and

κ4
41 2

, ( )n
k
n

O n= + − ,

where the coefficients kjk are functions of moments of products of components of Z.  The function

g2 is then

(A.5)     g F k k k k k k2 0 22 12
2

41 12 31
2

31
2 4 21

2
1

24
4 3

1
72

10 15( , ) ( ) ( )( ) ( ) ( )τ τ τ τ τ φτ= − + + + − + − +L
NM

O
QP .

See Hall (1992a, pp. 46-56) for details.  Denote the quantity on the right-hand side of (A.5) by

~ ( , )g2 0τ κ , where κ0 denotes the kjk coefficients that are associated with cumulants of the

distribution of Tn.  Let $κn  denote the kjk coefficients that are associated with cumulants of

T n n r Zn + − 3/2 1 2
3

/ ( ) , and let ~ ( , $ )g n2 τ κ  denote the version of ~g2  that is obtained by replacing κ0

with $κn .  Now replace g2(τ, F0) in (3.13) with ~ ( , $ )g n2 τ κ .  Also, replace τ with

z n r z∞
−

∞+, / , /( )α α2
1

2 2  in (3.13).  Substituting the result into the right-hand side of (A.3) gives the

following Edgeworth approximation to P T zn n(| | *), /> α 2 :
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A Taylor-series expansion of the right-hand side of (A.6) combined with (A.4) and the fact that

2[1 - Φ (z∞ ,α/2)] = α gives

(A.7)     P T z
n

g z g z O nn n n(| | *) [ ~ ( , ) ~ ( , $ )] ( ), / . / . /> = + − +∞ ∞
−

α α αα κ κ2 2 2 0 2 2
22

.

It is not difficult to show that ~ ( , ) ~ ( , $ ) ( ), / , /g z g z o nn2 2 0 2 2
1

∞ ∞
−− =α ακ κ .  (Roughly speaking, this is

because n r Z o n− −=1
3

1( ) ( )  almost surely.)  Therefore, the second term on the right-hand side of

(A.7) is o(n-2), which yields (3.27).
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FOOTNOTES

1  There is not general agreement on the name that should be given to the probability that a test

rejects a true null hypothesis (that is, the probability of a Type I error).  The source of the

problem is that if the null hypothesis is composite, then the rejection probability can be different

for different probability distributions in the null.  Hall (1992, p. 148) uses the word level to denote

the rejection probability at the distribution that was, in fact, sampled.  Beran (1988, p. 696)

defines level to be the supremum of rejection probabilities over all distributions in the null

hypothesis.  Other authors (Lehmann 1959, p. 61; Rao 1973, p. 456) use the word size for the

supremum.  Lehmann defines level as a number that exceeds the rejection probability at all

distributions in the null hypothesis.  In this chapter, the term rejection probability or RP will be

used to mean the probability that a test rejects a true null hypothesis with whatever distribution

generated the data.  The RP of a test is the same as Hall’s definition of level.  The RP is different

from the size of a test and from Beran’s and Lehmann’s definitions of level.

2   The Mallows metric is defined by ρ( , ) inf{ : ~ , ~ }P Q E Y X Y P X Q2 2= − .  The infimum is

over all joint distributions of ( , )Y X  whose marginals are P and Q.  .  Weak convergence of a

sequence of distributions in the Mallows metric implies convergence of the corresponding

sequences of first and second moments. See Bickel and Freedman (1981) for a detailed discussion

of this metric.

3  Hall and Jing (1996) show how certain types of asymptotic refinements can be obtained

through non-replacement subsampling.  The rate of convergence of resulting error is, however,

slower than the rate achieved with the standard bootstrap.

4  If E(θn) does not exist, then the “bias reduction” procedure described here centers a higher-

order approximation to the distribution of θn - θ0.

5  It is not difficult to show that the bootstrap provides bias reduction even if m = 1.  However, the

bias-corrected estimator of θ may have a large variance if m is too small.  The asymptotic

distribution of the bias-corrected estimator is the same as that of the uncorrected estimator if m

increases sufficiently rapidly as n increases.  See Brown (1996) for further discussion.

6  The meaning of asymptotic negligibility in this context may be stated precisely as follows.  Let
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~ ~ ( ,..., )T T X Xn n n= 1  be a statistic, and let T n H Z Z Hn J Z ZJ= −1 2
1 1

/ [ ( ,..., ) ( ,..., )]µ µ .  Then the

error made by approximating ~Tn  with Tn is asymptotically negligible if there is a constant c > 0

such that n P n T T c On n
2 2 1[ | ~ | ] ( )− > =  as n →  ∞ .

7  The proof that the bootstrap provides asymptotic refinements is based on an Edgeworth

expansion of a sufficiently high-order Taylor-series approximation to Tn.  Assumption SFM

insures that H has derivatives and Z has moments of sufficiently high order to obtain the Taylor

series and Edgeworth expansions that are used to obtain a bootstrap approximation to the

distribution of Tn that has an error of size O(n-2).  .  SFM may not be the weakest condition

needed to obtain this result.  It certainly assumes the existence of more derivatives of H and

moments of Z than needed to obtain less accurate approximations.  For example, asymptotic

normality of Tn can be proved if H has only one continuous derivative and Z has only two

moments.  See Hall (1992a, pp. 52-56 and 238-259) for a statement of the regularity conditions

needed to obtain various levels of asymptotic and bootstrap approximations.

8  Some statistics that are important in econometrics have asymptotic chi-square distributions.

Such statistics often satisfy the assumptions of the smooth function model but with ∂ =H Z( )µ 0

and ∂ ∂∂ ′ ≠=
2 0H z z z z Z

( ) / µ .  Versions of the results described here for asymptotically normal

statistics are also available for asymptotic chi-square statistics.  First-order asymptotic

approximations to the finite-sample distributions of asymptotic chi-square statistics typically

make errors of size O(n-1).  Chandra and Ghosh (1979) give a formal presentation of higher-order

asymptotic theory for asymptotic chi-square statistics.

9  More generally, (3.8) is satisfied if the distribution of Z has a non-degenerate absolutely

continuous component in the sense of the Lebesgue decomposition.  There are also circumstances

in which (3.8) is satisfied even when the distribution of Z does not have a non-degenerate

absolutely continuous component.  See Hall (1992a, pp. 66-67) for examples.  In addition, (3.8)

can be modified to deal with econometric models that have a continuously distributed dependent

variable but discrete covariates.  See Hall (1992a, p. 266).

10  Another form of two-tailed test is the equal-tailed test.  An equal tailed test rejects H0 if Tn >

zn,α/2 or Tn < zn,(1 - α/2), where zn,(1 - α/2) is the α/2-quantile of the finite-sample distribution of Tn.  If

the distribution of Tn is symmetrical about 0, then equal-tailed and symmetrical tests are the same.
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Otherwise, they are different.  Most test statistics used in econometrics have symmetrical

asymptotic distributions, so the distinction between equal-tailed and symmetrical tests is not

relevant when the RP is obtained from first-order asymptotic theory.  Many test statistics have

asymmetrical finite-sample distributions, however.  Higher-order approximations to these

distributions, such as the approximation provided by the bootstrap, are also asymmetrical.

Therefore, the distinction between equal-tailed and symmetrical tests is important in the analysis

of asymptotic refinements.  Note that “symmetrical” in a symmetrical test refers to the way in

which the critical value is obtained, not to the finite-sample distribution of Tn, which is

asymmetrical in general.

11  The empirical distribution of the data is discrete, so (3.20) may not have a solution if Fn is the

EDF of the data.  However, Hall (1992a, pp. 283-286) shows that there is a solution at a point αn

whose difference from α decreases exponentially fast as n →  ∞ .  The error introduced into the

analysis by ignoring the difference between αn and α is o(n-2) and, therefore, negligible for

purposes of the discussion in this chapter.

12  Under mild regularity conditions, the constant the multiplies the rate of convergence of the

error of the bootstrap estimate of the distribution function of a non-asymptotically-pivotal statistic

is smaller than the constant that multiplies the rate of convergence of the error that is made by the

normal approximation.  This need not happen, however, with the errors in the RP’s of tests and

coverage probabilities of confidence intervals.  See Beran (1982) and Liu and Singh (1985).

13. Strictly speaking, U cannot be normally distributed unless λ = 0 or 1, but the error made by

assuming normality is negligibly small if the right-hand side of the model has a negligibly small

probability of being negative.  Amemiya and Powell (1981) discuss ways to avoid assuming

normality.

14  The empirical-likelihood estimator is one of a larger class of estimators of F that are described

by Brown et al. (1997) and that impose the restriction E*h(X, θn) = 0.  All estimators in the class

are asymptotically efficient.

15  The regularity conditions required to achieve asymptotic refinements in GMM estimation with

dependent data include the existence of considerably more higher-order moments than are needed

with iid data as well as a modified version of the Cramér condition that takes account of the

dependence.  See Hall and Horowitz (1996) for a precise statement of the conditions.
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16  Tests and confidence regions based on asymptotic chi-square statistics, including the test of

overidentifying restrictions, are symmetrical.  Therefore, restriction (4.2) also applies to them.

17  The results stated in this section do not require assuming that r is even or that K is a

symmetrical function, but these assumptions simplify the exposition and are not highly restrictive

in applications.

18  The asymptotic bias contributes a term of size [(nhn)1/2bn(x)]2 = O(nhn
2r + 1) to the Edgeworth

expansion of the distribution of |tn|.  Because tn* is unbiased, this term is not present in the

expansion of the distribution of |tn*|.  Therefore, the expansions of the distributions of |tn| and |tn*|

agree through O[(nhn)-1] only if nhn
r + 1 →  0 as n →  ∞ .

19  It is also possible to carry out explicit bias removal in kernel mean-regression.  Härdle et al

(1995) compare the methods of explicit bias removal and undersmoothing for a one-sided

confidence interval.  They show that for a one-sided interval, there are versions of the bootstrap

and explicit bias removal that give better coverage accuracy than the bootstrap with

undersmoothing.

20  Hall (1992a, p. 226) proposes an estimator of σn x2 ( )  that is n1/2-consistent when Y is

homoskedastic (that is, Var(Y|X = x) is independent of x).  The estimator used here is consistent

(but not n1/2-consistent) when Y has heteroskedasticity of unknown form.

21   The discussion here assumes that the bootstrap sample is obtained by randomly sampling the

empirical distribution of (Y, X).  If V(z) is a constant (that is, the model is homoskedastic), then

bootstrap sampling can also be carried out by sampling centered regression residuals conditional

on the observed values of X.  See Hall (1992a, Section 4.5).

22   Janas (1993) shows that a smoothed version of the bootstrap provides asymptotic refinements

for a symmetrical t test of a hypothesis about a population median (no covariates).

23  The cumulants of a distribution are coefficients in a power-series expansion of the logarithm of

its characteristic function.  The first three cumulants are the mean, variance, and third moment

about the mean.  The fourth cumulant is the fourth moment about the mean minus three times the

square of the variance.
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TABLE 1

EMPIRICAL REJECTION PROBABILITIES OF NOMINAL 0.05-LEVEL INFORMATION-MATRIX TESTS OF PROBIT AND TOBIT MODELS

                      RP Using                            RP Using

        Distr.   Asymptotic Critical Values         Bootstrap-Based Crit. Values

 N      of X     White   Chesh.-Lan.   Orme          White   Chesh.-Lan.   Orme

Binary Probit Models

 50    N(0,1)    0.385      0.904      0.006         0.064      0.056      0.033

       U(-2,2)   0.498      0.920      0.017         0.066      0.036      0.031

100    N(0,1)    0.589      0.848      0.007         0.053      0.059      0.054

       U(-2,2)   0.632      0.875      0.027         0.058      0.056      0.049

Tobit Models

 50    N(0,1)    0.112      0.575      0.038         0.083      0.047      0.045

       U(-2,2)   0.128      0.737      0.174         0.051      0.059      0.054

100    N(0,1)    0.065      0.470      0.167         0.038      0.039      0.047

       U(-2,2)   0.090      0.501      0.163         0.046      0.052      0.039

1  Source:  Horowitz (1994).
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TABLE 2

EMPIRICAL REJECTION PROBABILITIES OF t TESTS USING HETEROSKEDASTICITY-

CONSISTENT COVARIANCE MATRIX ESTIMATORS 1

n = 25

                           Empirical RP at Nominal 0.05 Level

             1-Variable      1-Variable        2-Variable     2-Variable

Form of     Homoskedastic   Random Coeff.    Homoskedastic   Random Coeff.

 Test          Model           Model            Model           Model

Asymptotic     0.156           0.306            0.192           0.441

Jackknife      0.096           0.140            0.081           0.186

 Bootstrap     0.100           0.103            0.114           0.124

(Y,X) Pairs

  Wild         0.050           0.034            0.062           0.057

Bootstrap

1  Source:  Horowitz (1997).
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TABLE 31

EMPIRICAL REJECTION PROBABILITIES OF t TESTS FOR BOX-COX REGRESSION MODEL 1

Nominal RP = 0.05

                                RP Using

                            Crit. Val. from                      Mean

                 Scale                           Empirical     Bootstrap

   n      λ       Fac.     Asymp.      Boot.     Crit. Val.    Crit. Val.

   50    0.01     0.2      0.048      0.066        1.930         1.860

                  1.0      0.000      0.044        0.911         0.909

                  5.0      0.000      0.055        0.587         0.571

  100    0.01     0.2      0.047      0.053        1.913         1.894

                  1.0      0.000      0.070        1.201         1.165

                  5.0      0.000      0.056        0.767         0.759

   50    1.0      0.2      0.000      0.057        1.132         1.103

                  1.0      0.000      0.037        0.625         0.633

                  5.0      0.000      0.036        0.289         0.287

  100    1.0      0.2      0.000      0.051        1.364         1.357

                  1.0      0.000      0.044        0.836         0.835

                  5.0      0.000      0.039        0.401         0.391

1  Source:  Horowitz (1997).



90

TABLE 4:  RESULTS OF MONTE CARLO EXPERIMENTS WITH ESTIMATORS OF COVARIANCE STRUCTURES

                                                                                          Trimmed
            EWMD        OMD without Bootstrap         OMD with Bootstrap__      ___OMD with Bootstrap___
                                     Coverage                     Coverage                     Coverage
                                     Prob. with                  Prob. with                   Prob. with
                                    Asymptotic                   Bootstrap                    Bootstrap
                                     Critical                     Critical                     Critical
Distr.       RMSE     Bias    RMSE    Value        Bias    RMSE    Value        Bias    RMSE    Value___

Uniform      0.019    0.005   0.015    0.93        0.002   0.014    0.96

Normal       0.024    0.016   0.025    0.85        0.0     0.021    0.95

Student t    0.029    0.024   0.034    0.79        0.002   0.026    0.95

Exponential  0.042    0.061   0.073    0.54        0.014   0.048    0.91       0.004   0.042    0.96

Lognormal    0.138    0.274   0.285    0.03        0.136   0.173    0.76       0.046   0.126    0.91

1 Source: Horowitz (1998a).  Nominal coverage probability is 0.95.  Based on 1000 replications.
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