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ABSTRACT

Thebootstrap is a method for estimating the distribution of an estimator or test statistic by
resampling one' s data or amodd estimated from the data. Under conditions that hold in awide
variety of econometric applications, the bootstrap provides approximations to distributions of
statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis
tests that are more accurate than the approximations of first-order asymptotic distribution theory.
Thereductions in the differences between true and nominal coverage or rgection probabilities can
bevery large. Thebootstrap is a practical techniquethat is ready for usein applications. This
chapter explains and illustrates the usefulness and limitations of the bootstrap in contexts of interest
in econometrics. The chapter outlines the theory of the bootstrap, provides numerical illustrations
of its performance, and gives simple instructions on how to implement the bootstrap in applications.
The presentation is informal and expository. Itsaimisto provide an intuitive understanding of how

the bootstrap works and a feding for its practical value in econometrics.
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THE BOOTSTRAP
1. INTRODUCTION

Thebootstrap is a method for estimating the distribution of an estimator or test statistic by
resampling one sdata. It amounts to treating the data as if they were the population for the purpose
of evaluating the distribution of interest. Under mild regularity conditions, the bootstrap yidds an
approximation to the distribution of an estimator or test statistic that is at least as accurate as the
approximation obtained from first-order asymptotic theory. Thus, the bootstrap provides away to
substitute computation for mathematical analysisif calculating the asymptotic distribution of an
estimator or statistic is difficult. The statistic developed by Hardle et al. (1991) for testing positive-
definiteness of income-effect matrices, the conditional Kolmogorov test of Andrews (1997), Stute's
(1997) specification test for parametric regression models, and certain functions of time-series data
(Blanchard and Quah 1989, Runkle 1987, West 1990) are examples in which evaluating the
asymptotic distribution is difficult and bootstrapping has been used as an alternative.

In fact, the bootstrap is often more accurate in finite samples than first-order asymptotic
approximations but does not entail the algebraic complexity of higher-order expansions. Thus, it
can provide a practical method for improving upon first-order approximations. Such improvements
are called asymptotic refinements. One use of the bootstrap’ s ability to provide asymptotic
refinements is bias reduction. It is not unusual for an asymptotically unbiased estimator to have a
largefinite-sample bias. This bias may cause the estimator’s finite-sample mean square error to
greatly exceed the mean-square error implied by its asymptotic distribution. The bootstrap can be
used to reduce the estimator’ s finite-sample bias and, thereby, its finite-sample mean-square error.

The bootstrap’s ability to provide asymptatic refinements is al'so important in hypothesis
testing. First-order asymptotic theory often gives poor approximations to the distributions of test
statistics with the sample sizes available in applications. Asaresult, the nominal probability that a
test based on an asymptotic critical value regects atrue null hypothesis can be very different from

the true rejection probability (RP).! The information matrix test of White (1982) is a well-known



example of atest in which large finite-sample errors in the RP can occur when asymptotic critical
values are usaed (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor 1987). Other
illustrations are given later in this chapter. The bootstrap often provides a tractable way to reduce or
eiminate finite-sample errors in the RP' s of statistical tests.

The problem of obtaining critical values for test statisticsis closaly related to that of
obtaining confidence intervals. Accordingly, the bootstrap can also be used to obtain confidence
intervals with reduced errors in coverage probabilities. That is, the difference between the true and
nominal coverage probabilitiesis often lower when the bootstrap is used than when first-order
asymptotic approximations are used to obtain a confidence interval.

The bootstrap has been the object of much research in statistics since its introduction by
Efron (1979). Theresults of this research are synthesized in the books by Beran and Ducharme
(1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992a), Mammen (1992),
and Shao and Tu (1995). Hall (1994), Horowitz (1997), Maddala and Jeong (1996) and Vinod
(1993) provide reviews with an econometric orientation. This chapter covers a broader range of
topics than do thesereviews. Topics that aretreated here but only briefly or not at all in the reviews
include bootstrap consistency, subsampling, bias reduction, time-series modds with unit roots,
semiparametric and nonparametric models, and certain types of non-smooth models. Some of these
topics are not treated in existing books on the bootstrap.

The purpose of this chapter isto explain and illustrate the usefulness and limitations of the
bootstrap in contexts of interest in econometrics. Particular emphasisis given to the bootstrap’s
ability to improve upon first-order asymptotic approximations. The presentation isinformal and
expository. Itsaimisto provide an intuitive understanding of how the bootstrap works and a
feding for its practical valuein econometrics. The discussion in this chapter does not provide a
mathematically detailed or rigorous treatment of the theory of the bootstrap. Such treatments are
availablein the books by Beran and Ducharme (1991) and Hall (1992a) aswdl asin journal articles

that are cited later in this chapter.



It should be borne in mind throughout this chapter that although the bootstrap often provides
smaller biases, smaller errorsin the RP' s of tests, and smaller errors in the coverage probabilities of
confidence intervals than does first-order asymptotic theory, bootstrap bias estimates, RP's, and
confidence intervals are, nonetheess, approximations and not exact. Although the accuracy of
bootstrap approximations is often very high, thisis not always the case. Even when theory indicates
that it provides asymptotic refinements, the bootstrap’s numerical performance may be poor. In
some cases, the numerical accuracy of bootstrap approximations may be even worse than the
accuracy of first-order asymptotic approximations. Thisis particularly likely to happen with
estimators whaose asymptotic covariance matrices are “ nearly singular,” as in instrumental-variables
estimation with poorly corrdated instruments and regressors. Thus, the bootstrap should not be
used blindly or uncritically.

However, in the many cases where the bootstrap works well, it essentially removes getting
the RP or coverage probability right as a factor in sdecting a test statistic or method for constructing
aconfidenceinterval. In addition, the bootstrap can provide dramatic reductionsin thefinite-
sample biases and mean-square errors of certain estimators.

Theremainder of this chapter is divided into five sections. Section 2 explains the bootstrap
sampling procedure and gives conditions under which the bootstrap distribution of a statisticis a
consistent estimator of the statistic’s asymptotic distribution. Section 3 explains when and why the
bootstrap provides asymptotic refinements. This section concentrates on data that are simple
random samples from a distribution and statistics that are either smooth functions of sample
moments or can be approximated with asymptotically negligible error by such functions (the
smooth function modd). Section 4 extends the results of Section 3 to dependent data and statistics
that do not satisfy the assumptions of the smooth function model. Section 5 presents Monte Carlo
evidence on the numerical performance of the bootstrap in a variety of settings that are relevant to

econometrics, and Section 6 presents concluding comments.



For applications-oriented readers who arein a hurry, the following list of bootstrap dos and

don’ts summarizes the main practical conclusions of this chapter.

Bootstrap Dos and Don’ts

1. Do usethe bootstrap to estimate the probability distribution of an asymptotically pivotal
statistic or the critical value of atest based on an asymptotically pivotal statistic whenever such a
statistic is available. (Asymptotically pivotal statistics are defined in Section 2. Sections 3.2-3.5
explain why the bootstrap should be applied to asymptotically pivotal statistics.)

2. Don’'t usethe bootstrap to estimate the probability distribution of a non-asymptotically-
pivotal statistic such as a regression slope coefficient or standard error if an asymptotically
pivotal statistic is available.

3. Do recenter theresiduals of an overidentified model before applying the bootstrap to
the modd. (Section 3.7 explains why recentering is important and how to do it.)

4. Don't apply the bootstrap to models for dependent data, semi- or nonparametric

estimators, or non-smooth estimators without first reading Section 4 of this chapter.

2. THE BOOTSTRAP SAMPLING PROCEDURE AND ITSCONSISTENCY
The bootstrap is a method for estimating the distribution of a statistic or a feature of the

distribution, such as a moment or a quantile. This section explains how the bootstrap is
implemented in simple settings and gives conditions under which it provides a consistent
estimator of a statistic’s asymptatic distribution. This section also gives examples in which the
consistency conditions are not satisfied and the bootstrap is inconsistent.

The estimation problem to be solved may be stated as follows. Let the data be a random
sample of size n from a probability distribution whose cumulative distribution function (CDF) is Fo.
Denctethedataby {X:i=1, .., n}. Let Fybeong to afinite- or infinite-dimensional family of

distribution functions, A. Let F denote a general member of A. If A is afinite-dimensional family



indexed by the parameter q whose population value is go, Write Fo(X, qo) for P(X £ x) and F(x, q) for
a general member of the parametric family. Let T, = T,(Xy, ..., X,) bea dtatistic (that is, a function
of thedata). Let Gy(t, Fo) © P(T, £ t) denote the exact, finitee.sample CDF of T, Let G,(%F)
denote the exact CDF of T,, when the data are sampled from the distribution whose CDF is F.
Usually, Gy(t, F) isadifferent function of t for different distributions F. An exception occurs if
Gn(% F) does not depend on F, in which case T, is said to be pivotal. For example, thet statistic for
testing a hypothesis about the mean of a normal population is independent of unknown population
parameters and, therefore, is pivotal. The sameistrue of thet statistic for testing a hypothesis about
a slope coefficient in a normal linear regression modd. Pivotal statistics are not available in most
econometric applications, however, especially without making strong distributional assumptions
(e.g., theassumption that the random component of a linear regression model is normally
distributed). Therefore, Gh(% F) usually depends on F, and G, (% Fo) cannot be calculated if, asis
usually the casein applications, Fq is unknown. The bootstrap is a method for estimating Gn(% Fo)
or features of G,(% Fo) such asits quantiles when Fq is unknown.

Asymptotic distribution theory is another method for estimating G, (% Fo). The asymptotic
distributions of many econometric statistics are standard normal or chi-square, possibly after
centering and normalization, regardless of the distribution from which the data were sampled.
Such statistics are called asymptotically pivotal, meaning that their asymptotic distributions do
not depend on unknown population parameters. Let Gy (% Fo) denote the asymptotic distribution
of T,. Let Gy(% F) denote the asymptotic CDF of T, when the data are sampled from the
distribution whose CDF isF. If T, is asymptotically pivotal, then Gy (% F) © Gy (% does not
depend on F. Therefore, if nis sufficiently large, Gn(% Fo) can be estimated by Gy (¥ without
knowing Fo,. This method for estimating Gn(% Fo) is often easy to implement and is widely used.
However, as was discussed in Section 1, Gy (% can be a very poor approximation to G,(% Fo) with

samples of the sizes encountered in applications.



Econometric parameter estimators usually are not asymptotically pivotal (that is, their
asymptotic distributions usually depend on one or more unknown population parameters), but
many are asymptotically normally distributed. If an estimator is asymptotically normally
distributed, then its asymptotic distribution depends on at most two unknown parameters, the
mean and the variance, that can often be estimated without great difficulty. The normal
distribution with the estimated mean and variance can then be used to approximate the unknown
Gn(% Fo) if nissufficiently large.

The bootstrap provides an alternative approximation to the finite-sample distribution of a
statistic Ta(Xy, ..., Xy). Whereas first-order asymptotic approximations replace the unknown
distribution function G, with the known function Gy, the bootstrap replaces the unknown
distribution function Fo with a known estimator. Let F, denote the estimator of Fo. Two possible
choices of F, are:

(1) Theempirical distribution function (EDF) of the data:

FA0) =28 10X £3).

Nz
where | istheindicator function. It follows from the Glivenko-Cantelli theorem that F,(x) ®
Fo(x) asn® ¥ uniformly over x ailmost surely.

(2) A parametric estimator of Fo. Suppose that Fo(® = F(% qo) for some finite-dimensional
o that is estimated consistently by q,. If F(% ) is a continuous function of g in a neighborhood
of go, then F(X, g,) ® F(X, go) asn® ¥ at each x. The convergenceis in probability or almost
sure according to whether g, ® (o in probability or almost surely.

Other possible F,'s are discussed in Section 3.7.

Regardless of the choice of F,, the bootstrap estimator of Gn(% Fo) is Gn(% Fp). Usualy,

Gn(% Fp) cannot be evaluated analytically. It can, however, be estimated with arbitrary accuracy by

carrying out a Monte Carlo simulation in which random samples are drawn from F,. Thus, the



bootstrap is usually implemented by Monte Carlo simulation. The Monte Carlo procedure for

estimating Gy(t, Fo) isasfollows

Monte Carlo Procedure for Bootstrap Estimation of Gu(t, Fo)

Step 1: Generate a bootstrap sample of sizen, {X*: i =1, ..., n}, by sampling the
distribution corresponding to F, randomly. If F, isthe EDF of the estimation data set, then the
bootstrap sample can be obtained by sampling the estimation data randomly with replacement.

Step 2: Compute Tp* © T,(X*, ..., Xo¥).

Step 3: Use the results of many repetitions of steps 1 and 2 to compute the empirical

probability of theevent T,* £t (that is, the proportion of repetitions in which this event occurs).

Procedures for using the bootstrap to compute other statistical objects are described in Sections 3.1
and 3.3. Brown (1999) and Hall (1992a, Appendix I1) discuss simulation methods that take

advantage of techniques for reducing sampling variation in Monte Carlo smulation. The essential
characteristic of the bootstrap, however, isthe use of F, to approximate Fq in G,(% Fo), not the
method that is used to evaluate G,(% Fy).

Since F, and Fy are different functions, G,(% F,) and G,(% Fo) are also different functions
unless T, is pivotal. Therefore, the bootstrap estimator Gn(% F) is only an approximation to the
exact finite-sample CDF of Ty, Gn(% Fo). Section 3 discusses the accuracy of this approximation.
Theremainder of this section is concerned with conditions under which Gy (% F,)) satisfiesthe
minimal criterion for adequacy as an estimator of G,(% Fo), namely consistency. Roughly speaking,
Gn(% Fp) is consistent if it converges in probability to the asymptotic CDF of T, Gy (% Fg), asn ®
¥ . Section 2.1 defines consistency precisdy and gives conditions under which it holds. Section 2.2
describes some resampling procedures that can be used to estimate Gn(% Fo) when the bootstrap is

not consistent.



2.1 Consistency of the Bootstrap

Suppose that F, is a consistent estimator of Fo. This means that at each x in the support of
X, Fn(X) ® Fo(X) in probability or almost suredly asn® ¥. If Fqisa continuous function, then it
follows from Polya’s theorem that F, ® Fq in probability or almost surely uniformly over x.
Thus, F, and Fq are uniformly close to one ancther if nislarge. If, in addition, Gy(t, F)
considered as a functional of F is continuous in an appropriate sense, it can be expected that
Gi(t, Fp) iscloseto Gi(t, Fg) when nislarge. On theother hand, if nislarge, then G, (% Fo) is
uniformly close to the asymptotic distribution Gy (% Fo) if Gy (% Fo) is continuous. This suggests
that the bootstrap estimator G,(% Fr) and the asymptotic distribution Gy (% Fo) should be
uniformly closeif nislarge and suitable continuity conditions hold. The definition of
consistency of the bootstrap formalizes this idea in a way that takes account of the randomness of
the function G,(x F.,). Let A denote the space of permitted distribution functions.

Definition 2.1: Let P, denote the joint probability distribution of the sample { X;: i =1,

..., N}. The bootstrap estimator G,(% F,) is consistent if for eachne>0and FoT A

lim Pn[sup|Gn(t JF) - Gy (t,Ry) >e}=0.
n® ¥ t

A theorem by Beran and Ducharme (1991) gives conditions under which the bootstrap
estimator is consistent. This theorem is fundamental to understanding the bootstrap. Letr
denote a metric on the space A of permitted distribution functions,

Theorem 2.1 (Beran and Ducharme 1991): G,(% F,) is consistent if for anye>0and Fq |

A: (i) I(i@nl P[r (F,,Fy) >€] =0; (ii) Gy(t, F) isa continuous function of t for each FT A; and
n
(iii) for any t and any sequence{H,} T A such that I(i@nl r (Hy,Fo) =0, Gu(t, Hy) ® Gy(t, Fo).
n

Thefollowing is an example in which the conditions of Theorem 2.1 are satisfied:



Example 2.1 (The distribution of the sample average): Let A bethe set of distribution
functions F corresponding to populations with finite variances. Let X bethe average of the

random sample{X;: i =1, ..., n}. Define T, =n”2()_(- m) , where m= E(X). Let Gu(t, Fo) =

Pnﬂ:nﬂz()_( -mEt J] . Consider using the bootstrap to estimate G,(t, Fo). Let F, bethe EDF of

thedata. Then the bootstrap analog of T, is Ty* = nY?(X *- X), where X * istheaverageof a
random sample of size n drawn from F,, (the bootstrap sample). The bootstrap sample can be

obtained by sampling the data { X;} randomly with replacement. T,* is centered at X because X

is the mean of the distribution from which the bootstrap sampleis drawn. The bootstrap

estimator of Gy(t, Fo) is Gu(t, Fr) = P, * [n”z(i *. X)Et ] , where P,* is the probability

distribution induced by the bootstrap sampling process. Gy(t, Fn) satisfies the conditions of
Theorem 2.1 and, therefore, is consistent. Let r be the Mallows metric.? The Glivenko-Cantelli
theorem and the strong law of large numbers imply that condition (i) of Theorem 2.1 is satisfied.
The Lindeberg-Levy central limit theorem implies that T, is asymptotically normally distributed.
The cumulative normal distribution function is continuous, so condition (ii) holds. By using
arguments similar to those used to prove the Lindeberg-Levy theorem, it can be shown that
condition (iii) holds. I

A theorem by Mammen (1992) gives necessary and sufficient conditions for the bootstrap
to consistently estimate the distribution of alinear functional of Fo when F, is the EDF of the
data. Thistheoremisimportant because the conditions are often easy to check, and many
estimators and test statistics of interest in econometrics are asymptotically equivalent to linear
functionals of some F,. Hall (1990) and Gill (1989) give related theorems.

Theorem 2.2 (Mammen 1992): Let {Xi: i =1, ..., n} bearandom samplefroma

population. For a sequence of functions g, and sequences of numberst, and s, define



On =n'1é inzlgn(xi) and T, =(0, - t,)/s ,. For thebootstrap sample {X*: i =1, ..., n},

define g =n"*Q " g,(X*) and T =(G;* - Tn)/S . Let Gylt) = P(T,£1) and Gy (t) =

P*(T,* £1), where P* isthe probability distribution induced by bootstrap sampling. Then G.*(3
consistently estimates G, if and only if T, ® ¢ N(0,1). I

If E[gn(X)] and Var[gn(X)] exist for each n, then the asymptotic normality condition of
Theorem 2.2 holds with t, = E(g,,) and s 2=Var(g,) ors2=n23 inzl[gn(xi) - 9,]°. Thus,

consistency of the bootstrap estimator of the distribution of the centered, normalized sample
average in Example 2.1 follows trivially from Theorem 2.2.

The bootstrap need not be consistent if the conditions of Theorem 2.1 are not satisfied and
isinconsistent if the asymptotic normality condition of Theorem 2.2 is not satisfied. In particular,
the bootstrap tends to be inconsistent if Fq is a point of discontinuity of the asymptotic
distribution function Gy(t, ¥ or a point of superefficiency. Section 2.2 describes resampling
methods that can sometimes be used to overcome these difficulties.

The following examples illustrate conditions under which the bootstrap is inconsistent.
The conditions that cause inconsistency in the examples are unusual in econometric practice. The
bootstrap is consistent in most applications. Nonetheless, inconsistency sometimes occurs, and it
isimportant to be aware of its causes. Donald and Paarsch (1996), Flinn and Heckman (1982),
and Heckman, Smith, and Clements (1997) describe econometric applications that have features
similar to those of some of the examples, though the consistency of the bootstrap in these
applications has not been investigated.

Example 2.2 (Heavy-tailed distributions): Let Fq be the standard Cauchy distribution and
{X;} bearandom sample from this distribution. Set T,, = X , the sample average. Then T, has
the standard Cauchy distribution. Let F, bethe EDF of the sample. A bootstrap analog of T, is

T,* = X* - m,, where X* isthe average of a bootstrap sample that is drawn randomly with

10



replacement from the data { Xi} and m, is a median or trimmed mean of the data. The asymptotic
normality condition of Theorem 2.2 is not satisfied, and the bootstrap estimator of the distribution
of T,isinconsistent. Athreya (1987) and Hall (1990) provide further discussion of the behavior
of the bootstrap with heavy-tailed distributions. I

Example 2.3 (The distribution of the square of the sample average): Let {X: i =1, ..., n}
be a random sample from a distribution with mean mand variance s . Let X denote the sample
average. Let F, bethe EDF of thesample. Set T, =nY2(X?2- n?) if m1 0 and T, =nX?
otherwise. T, isasymptotically normally distributed if m* O, but T,/s 2 isasymptotically chi-
square distributed with one degree of freedom if m=0. The bootstrap analog of T, is
T.*=n[(X*)?- X?],wherea=1/2if m 0 and a= 1 otherwise. The bootstrap estimator of

Gn(t, Fo) =P(Th £1) iIsGy(t, Fy) = P*(Ty* £1). If m* O, then T, is asymptotically equivalent to
anormalized sample average that satisfies the asymptotic normality condition of Theorem 2.2.
Therefore, Gn(% F,) consistently estimates Gy (% Fo) if m® 0. If m= 0, then T,, is not a sample
average even asymptotically, so Theorem 2.2 does not apply. Condition (iii) of Theorem 2.1 is
not satisfied, however, if m= 0, and it can be shown that the bootstrap distribution G,(xF,) does
not consistently estimate Gy (% Fo) (Datta 1995). 1

The following example is due to Bickdl and Freedman (1981).

Example 2.4: (Distribution of the maximum of asample): Let {X;: i=1,...,n} bea
random sample from a distribution with absolutely continuous CDF F, and support [0, qo]. Let g,
= max(Xy, ..., Xn), and define T, =n(q, - q,) - Let F, bethe EDF of the sample. The bootstrap
analog of T,is T,* =n(q,* - q,,) , where g,* is the maximum of the bootstrap sample { Xi*} that
is obtained by sampling { X;} randomly with replacement. The bootstrap does not consistently
estimate Gn(-t, Fo) = Py(To £ -t) (t 3 0). Toseewhy, observethat P*(T,* =0)=1-(1- 1/n)"®

1- etasn® ¥. Itis easily shown, however, that the asymptotic distribution of T, is

11



Gy (-t,FRy)=1- exp[-tf(qy)] , wheref(x) = dF(x)/dx is the probability density function of X.
Therefore, P(T, = 0) ® 0, and the bootstrap estimator of Gn(% Fo) isinconsistent. I

Example 2.5 (Parameter on a boundary of the parameter space): The bootstrap does not
consistently estimate the distribution of a parameter estimator when the true parameter point is on

the boundary of the parameter space. Toillustrate, consider estimation of the population mean m

subject to the constraint m® 0. Estimate mby m, = XI (X >0), where X isthe average of the
randomsample{X;: i=1,...,n}. S& T, =n”2(r‘q1 - m . Let F, bethe EDF of thesample. The

bootstrap analog of T, is T,* =nY?(m* - m,), where m* is the estimator of mthat is obtained

from a bootstrap sample. The bootstrap sample is obtained by sampling { X} randomly with
replacement. If m> 0 and Var(X) < ¥, then T, is asymptotically equivalent to a normalized
sample average and is asymptotically normally distributed. Therefore, it follows from Theorem
2.2 that the bootstrap consistently estimates the distribution of T,. If m= 0, then the asymptotic
distribution of T, is censored normal, and it can be proved that the bootstrap distribution G(% Fy)
does not estimate G, (% Fo) consistently (Andrews 1997b). 1

The next section describes resampling methods that often are consistent when the bootstrap

isnot. They provide consistent estimators of G,(% Fo) in each of the foregoing examples.

2.2 Alternative Resampling Procedures
This section describes two resampling methods whose requirements for consistency are
weaker than those of the bootstrap. Each is based on drawing subsamples of size m < n from the
original data. I1n one method, the subsamples are drawn randomly with replacement. In the other,
the subsamples are drawn without replacement. These subsampling methods often estimate
Gn(% Fg) consistently even when the bootstrap does not. They are not perfect substitutes for the
bootstrap, however, because they tend to be less accurate than the bootstrap when the bootstrap is

consistent.

12



In the first subsampling method, which will be called replacement subsampling, a
bootstrap sample is obtained by drawing m < n observations from the estimation sample { X;: i =
1, ..., n}. Inother respects, it isidentical to the standard bootstrap based on sampling F,. Thus,
the replacement subsampling estimator of Gn(% Fo) is Gm(% Fn). Swanepod (1986) gives
conditions under which the replacement bootstrap consistently estimates the distribution of T, in
Example 2.4 (the distribution of the maximum of a sample). Andrews (2000) gives conditions
under which it consistently estimates the distribution of T, in Example 2.5 (parameter on the
boundary of the parameter space). Bickd, et al. (1997) provide a detailed discussion of the
consistency and rates of convergence of replacement bootstrap estimators. To obtain some
intuition into why replacement subsampling works, let Fr,,, be the EDF of a sample of sizen
drawn from the empirical distribution of the estimation data. Observethat if m® ¥, n® ¥, and
m/n® O, then the random sampling error of F, as an estimator of Fy is smaller than the random
sampling error of Fn,, as an estimator of F,. This makes the subsampling method less sensitive
than the bootstrap to the behavior of G,(x F) for F'sin a neighborhood of Fq and, therefore, less
sensitive to violations of continuity conditions such as condition (iii) of Theorem 2.1.

The method of subsampling without replacement will be called non-replacement
subsampling. This method has been investigated in detail by Politis and Romano (1994, 1999),
who show that it consistently estimates the distribution of a statistic under very weak conditions.
In particular, the conditions required for consistency of the non-replacement subsampling
estimator are much weaker than those required for consistency of the bootstrap estimator. Politis
et al. (1997) extend the subsampling method to heteroskedastic time series.

To describe the non-replacement subsampling method, let t, = t,(Xy, ..., X,) bean
estimator of the population parameter g, and set T, = r (n)(t, - q), where the normalizing factor
r (n) is chosen so that G(t, Fo) = P(T, £ t) converges to a nondegenerate limit Gy(t, Fo) at

continuity points of the latter. In example 2.1 (estimating the distribution of the sample average),

13



for instance, q is the population mean, t,= X, andr (n) = n"% Let{ Xij: j=1,...,m} beasubset

of m< n observations taken from thesample { Xi:i =1, ..., n}. Define Ny, = (”m) to be the total

number of subsets that can be formed. Let ty, « denote the estimator t,, evaluated at the k' th
subset. The non-replacement subsampling method estimates G(t, Fo) by

nm

a Hr (m)(tmy - th) £1].

nm k=1

1%

N

(21)  Gum(t)°

The intuition behind this method is as follows. Each subsample { Xij } isarandom sample of

size m from the population distribution whose CDF is Fo. Therefore, G,(% Fo) is the exact
sampling distribution of r (m)(t,, - g), and
(22)  Gu(t,Fo)=E{I[r (M(ty,-q)£L]}.
The quantity on the right-hand side of (2.2) cannot be calculated in an application because Fy and
g areunknown. Equation (2.1) isthe estimator of the right-hand side of (2.2) that is obtained by
replacing the population expectation by the average over subsamples and g by t,. If nislarge but
nvn is small, then random fluctuations in t, are small relative to thosein t,,. Accordingly, the
sampling distributions of r (m)(t., - t,) and r (M)(t, - q) areclose. Similarly, if Ny, islarge, the
average over subsamplesis a good approximation to the population average. Theseideas are
formalized in the following theorem of Politis and Romano (1994).

Theorem 2.3: Assumethat Gy(t, Fo) ® Gy(t, Fg) asn ® ¥ at each continuity point of the
latter function. Also assumethatr (m)/r(n)® O, M® ¥,andmM/n® Oasn® ¥. Lett bea
continuity point of Gy (t, Fo). Then: (i) Gum(t) ® PGy(t, Fo); (ii) if Gy(% Fo) is continuous, then

Slt'lp|Gnm(t)' Gy (t 1F0)|® Po;

14



(i) letcy(1-a) = inf{t : Gu(t)3 1-a} andc(l-a, Fo) =inf{t : Gy(t,Fo)® 1-a}. If
Gy (% Fo) iscontinuous at ¢(1 - a, Fg), then P[r (n)(t, - q) £c,(1- a)]® 1- a, and the

asymptotic coverage probability of the confidence interval [t, - r (n)"c.(1 - a), ¥) is1-a.

Essentially, this theorem states that if T, has a well-behaved asymptotic distribution, then
the non-replacement subsampling method consistently estimates this distribution. The non-
replacement subsampling method also consistently estimates asymptotic critical values for T, and
asymptotic confidence intervals for t,.

In practice, Nny, is likely to be very large, which makes G, hard to compute. This problem
can be overcome by replacing the average over all Ny, subsamples with the average over a
random sample of subsamples (Politis and Romano 1994). These can be obtained by sampling
thedata{X: i =1, ..., n} randomly without replacement.

It is not difficult to show that the conditions of Theorem 2.3 are satisfied in all of the
statistics considered in Examples 2.1, 2.2, 2.4, and 2.5. The conditions are also satisfied by the
statistic considered in Example 2.3 if the normalization constant is known. Bertail et al. (1999)
describe a subsampling method for estimating the normalization constant r (n) when it is
unknown and provide Monte Carlo evidence on the numerical performance of the non-
replacement subsampling method with an estimated normalization constant. In each of the
foregoing examples, the replacement subsampling method works because the subsamples are
random samples of the true population distribution of X, rather than an estimator of the population
distribution. Therefore, replacement subsampling, in contrast to the bootstrap, does not require
assumptions such as condition (iii) of Theorem 2.1 that restrict the behavior of G,(% F) for F'sin
a neighborhood of Fo.

The non-replacement subsampling method enables the asymptotic distributions of statistics
to be estimated consistently under very weak conditions. However, the standard bootstrap is

typically more accurate than non-replacement subsampling when the former is consistent.
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Suppose that G,(% Fo) has an Edgeworth expansion through O(n?), as is the case with the
distributions of most asymptotically normal statistics encountered in applied econometrics. Then,
aswill be discussed in Section 3, |Gi(t, Fy) - Gi(t, Fo)|, the error made by the bootstrap estimator
of Gu(t, Fo), isat most O(n"?) almost surely. In contrast, the error made by the non-replacement
subsampling estimator, |Gnm(t) - Gn(t, Fo)|, is no smaller than Op(n'”3) (Politis and Romano 1994,
1999).3 Thus, the standard bootstrap estimator of Gy(t, Fo) is more accurate than the non-
replacement subsampling estimator in a setting that arises frequently in applications. Similar
results can be obtained for statistics that are asymptotically chi-square distributed. Thus, the
standard bootstrap is more attractive than the non-replacement subsampling method in most
applications in econometrics. The subsampling method may be used, however, if characteristics
of the sampled population or the statistic of interest cause the standard bootstrap estimator to be
inconsistent. Non-replacement subsampling may also be useful in situations where checking the
consistency of the bootstrap is difficult. Examples of this include inference about the parameters
of certain kinds of structural search models (Flinn and Heckman 1982), auction models (Donald
and Paarsch 1996), and binary-response models that are estimated by Manski’'s (1975, 1985)

maximum score method.

3. ASYMPTOTIC REFINEMENTS

The previous section described conditions under which the bootstrap yields a consistent
estimator of the distribution of a statistic. Roughly speaking, this means that the bootstrap gets
the statistic’s asymptotic distribution right, at least if the sample sizeis sufficiently large. Aswas
discussed in Section 1, however, the bootstrap often does much more than get the asymptotic
distribution right. 1n alarge number of situations that are important in applied econometrics, it
provides a higher-order asymptotic approximation to the distribution of a statistic. This section
explains how the bootstrap can be used to obtain asymptotic refinements. Section 3.1 describes

the use of the bootstrap to reduce the finite-sample bias of an estimator. Section 3.2 explains how
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the bootstrap obtains higher-order approximations to the distributions of statistics. The results of
Section 3.2 are used in Sections 3.3 and 3.4 to show how the bootstrap obtains higher-order
refinements to the rejection probabilities of tests and the coverage probabilities of confidence
intervals. Sections 3.5-3.7 address additional issues associated with the use of the bootstrap to
obtain asymptotic refinements. It is assumed throughout this section that the data are a simple
random sample from some distribution. Methods for implementing the bootstrap and abtaining

asymptotic refinements with time-series data are discussed in Section 4.1.

3.1 Bias Reduction

This section explains how the bootstrap can be used to reduce the finite-sample bias of an
estimator. Thetheoretical results areillustrated with a smple numerical example. To minimizethe
complexity of the discussion, it is assumed that the inferential problem is to obtain a point estimate
of ascalar parameter g that can be expressed as a smooth function of a vector of population
moments. It is also assumed that g can be estimated consistently by substituting sample moments in
place of population moments in the smooth function. Many important econometric estimators,
including maximum-likelihood and generalized-method-of-moments estimators, are either functions
of sample moments or can be approximated by functions of sample moments with an approximation
error that approaches zero very rapidly as the sample sizeincreases. Thus, the theory outlined in
this section applies to a wide variety of estimators that are important in applications.

To be specific, let X be arandom vector, and set m= E(X). Assumethat thetrue value of g

isdo = g(m), where g is a known, continuous function. Suppose that the data consist of a random
sample{X;: i =1, ..., n} of X. Definethevector X =n'1é inzlxi . Thenqisestimated

consistently by

B a,=9(X).
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If g, has a finite mean, then E(q,,) = E[g(X)]. However, E[g(X)]* g(m) ingeneral unlessgis

alinear function. Therefore, E(gn) * o, and g, is a biased estimator of g. In particular, E(qn) * o if
gn isany of avariety of familiar maximum likelihood or generalized method of moments estimators.
To see how the bootstrap can reduce the bias of g, supposethat g isfour times
continuously differentiablein a neighborhood of mand that the components of X have finite fourth
absolute moments. Let G; denote the vector of first derivatives of g and G, denote the matrix of

second derivatives. A Taylor series expansion of the right-hand side of (3.1) about X = m gives

(32 Go- do=GUMEX- M+ (X - MEGM(X- m+R,,

where R, is aremainder term that satisfies E(R,) = O(n®). Therefore, taking expectations on both

sides of (3.2) gives
(33 E@n-90) =%E[(>7- MG, (M(X - m]+0(n"?).
Thefirst term on the right-hand side of (3.3) has size O(n™). Therefore, through O(n™) the bias of
Onis
(34 B, =2 El(X- MG, (m(X- m].

Now consider the bootstrap. The bootstrap samples the empirical distribution of the data.
Let {X*:i=1...,n} beabootstrap samplethat is obtained thisway. Define X* =n- 1é in:1 X*
to be the vector of bootstrap sample means. The bootstrap estimator of gisq* = g(X*).

Conditional on the data, the true mean of the distribution sampled by the bootstrap is X .
Therefore, X isthe bootstrap analog of m and g, = g(X) is the bootstrap analog of go. The

bootstrap analog of (3.2) is

(35) Gy - Oy = Gy(X)EX* - i)+%(>‘<*- X) G, (X)(X* - X)+ Ry,
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where R.* is the bootstrap remainder term. Let E* denote the expectation under bootstrap
sampling, that is, the expectation reative to the empirical distribution of the estimation data. Let
B.* © E*(g.* - g,) denote the bias of g,* as an estimator of g,. Taking E* expectations on both

sides of (3.5) shows that
(36) By =%E*[(>7*- X) &, (X)(X* - X)]+0(n"?)

almost surely. Because the distribution that the bootstrap samplesis known, B.* can be computed
with arbitrary accuracy by Monte Carlo simulation. Thus, B,* is a feasible estimator of the bias of
On- Thedetails of the simulation procedure are described bel ow.

By comparing (3.4) and (3.6), it can be seen that the only differences between B, and the
leading term of B,* arethat X replaces min B,* and the empirical expectation, E*, replaces the
population expectation, E. Moreover, E(B,*) = B, + O(n®) Therefore, through O(n™), use of the
bootstrap bias estimate B,* provides the same bias reduction that would be obtained if the infeasible
population value B, could be used. Thisis the source of the bootstrap's ability to reduce the bias of
0. Theresulting bias-corrected estimator of ¢ isqn - By*. It satisfies E(q, - o - B.*) = O(n).
Thus, the bias of the bias-corrected estimator is O(n'z), whereas the bias of the uncorrected
estimator g, is O(n™). *

The Monte Carlo procedure for computing B.* is as follows:

Monte Carlo Procedurefor Bootstrap Bias Estimation
B1l. Usethe estimation data to computeg,.
B2. Generate a bootstrap sample of sizen by sampling the estimation data randomly with
replacement. Compute ;¥ = g( X*).
B3. Compute E*q,* by averaging the results of many repetitions of step B2. Set B,* =

E* qn* - O
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To implement this procedure it is necessary to choose the number of repetitions, m, of step
B2. It usually suffices to choose m sufficiently large that the estimate of E*q,* does not change
significantly if misincreased further. Andrews and Buchinsky (2000) discuss more formal
methods for choosing the number of bootstrap replications.”

Thefollowing simple numerical exampleillustrates the bootstrap's ability to reduce bias.

Examples that are more realistic but also more complicated are presented in Horowitz (1998a).

Example 3.1 (Horowitz 1998a): Let X ~N(0O, 6) andn=10. Let g(n) = exp(n). Thengy=
1,and q,, =exp(X) . B, and the bias of g, - B,* can be found through the following Monte Carlo
procedure:

MC1. Generate an estimation data set of size n by sampling from the N(0,6) distribution.
Usethis data set to compute gp.

MC2. Compute B,* by carrying out steps B1-B3. Form g, - B,*.

MC3. Estimate E(qn - o) and E(q,, - By* - qo) by averaging the results of many repetitions of
steps MC1-MC2. Estimate the mean square errors of ¢, and g, - B,* by averaging the realizations
of (Gn - Go)* and (G - B* - do)”.

Thefollowing are the results obtained with 1000 Monte Carlo replications and 100

repetitions of step B2 at each Monte Carlo replication:

Bias Mean-Square Error
On 0.356 1.994
On - By* -0.063 1.246

In this example, the bootstrap reduces the magnitude of the bias of the estimator of q by nearly a

factor of 6. The mean-square estimation error is reduced by 38 percent. I
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3.2 The Distributions of Satistics

This section explains why the bootstrap provides an improved approximation to the finite-
sample distribution of an asymptotically pivotal statistic. As before, the data are a random sample
{X:1=1, ..., n} from a probability distribution whose CDF isFq. Lét T, = To(Xy, ..., X;) bea
dtatistic. Let Gy(t, Fo) = P(T, £ t) denote the exact, finite-sample CDF of T,. Aswasdiscussedin
Section 2, Gy(t, Fo) cannot be calculated analytically unless T, is pivotal. The objective of this
section is to obtain an approximation to G(t, Fo) that is applicable when T, is not pivotal.

To obtain useful approximations to Gy(t, Fo), it is necessary to make certain assumptions
about the form of the function T,(Xy, ..., X,). Itisassumed in this section that T, isa smooth

function of sample moments of X or sample moments of functions of X (the smooth function

model). Specifically, T, =nY?[H(Z,,....Z;) - H(my,,...,my )] , where the scalar-valued function
H is smooth in a sense that is defined precisdy beow, Zj = n'lé inzlzj (X;) foreachj=1,...,J
and some nonstochastic function Z;, and Mz = E(Z;). After centering and normalization, most

estimators and test statistics used in applied econometrics are either smooth functions of sample
moments or can be approximated by such functions with an approximation error that is
asymptotically negligible.® The ordinary least squares estimator of the slope coefficients in a linear
mean-regression model and thet statistic for testing a hypothesis about a coefficient are exact
functions of sample moments. Maximum-likelihood and generalized-method-of -moments
estimators of the parameters of nonlinear models can be approximated with asymptotically
negligible error by smooth functions of sample moments if the log-likelihood function or moment
conditions have sufficiently many derivatives with respect to the unknown parameters.

Some important econometric estimators and test statistics do not satisfy the assumptions of
the smooth function model. Quantile estimators, such as the least-absolute-deviations (LAD)

estimator of the slope coefficients of a median-regression model do not satisfy the assumptions of
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the smooth function modd because their objective functions are not sufficiently smooth.
Nonparametric density and mean-regression estimators and semiparametric estimators that require
kernd or other forms of smoothing also do not fit within the smooth function model. Bootstrap

methods for such estimators are discussed in Section 4.3.

Now return to the problem of approximating Gi(t, Fo). First-order asymptotic theory
provides one approximation. To obtain this approximation, write H(Z,,...,Z;) = H(Z) , where Z
=(Z,...,Z;)¢. Definem, =E(Z), TH(2) =TH(2)/ Tz, and W=E[(Z - m,)(Z - m,)d
whenever these quantities exist. Assume that:

SFM: (i) T, = n”z[H(Z) - H(m,)], where H(2) is 6 times continuously partially
differentiable with respect to any mixture of components of z in a neighborhood of my. (ii)
H(m,)* 0. (iii) The expected value of the product of any 16 components of Z exists.”

Under assumption SFM, a Taylor series approximation gives
37 nY’[H(Z)- H(my)] = TH(m)0*(Z - my) +0,(3) .

Application of the Lindeberg-Levy central limit theorem to the right hand side of (3.7) shows that
nY2[H(Z)- H(m,)]® 9 N(O\V) , where V = JH (i, )AMH (1T, ) . Thus, the asymptotic CDF of
Tais Gy (t,Fy) =F (t /V”z) , where F isthe standard normal CDF. Thisisjust the usual result of
the ddta method. Moreover, it follows from the Berry-Esséen theorem that

sgp|Gn(t JFo) - Gy (t,Fp)l=0(n"Y?).

Thus, under assumption SFM of the smooth function model, first-order asymptotic approximations
to the exact finite-sample distribution of T, make an error of size O(n™"?) 8

Now consider the bootstrap. The bootstrap approximation to the CDF T, is Gy(% F,). Under
the smooth function modd with assumption SFM, it follows from Theorem 3.2 that the bootstrap is

consistent. Indeed, it is possible to prove the stronger result that sup, |G, (t,F,)- Gy (t,Fy)|® 0
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almost surely. Thisresult insures that the bootstrap provides a good approximation to the
asymptotic distribution of T, if nis sufficiently large. It says nothing, however, about the accuracy
of Gn(% F,) as an approximation to the exact finite-sample distribution function G,(% Fo). To
investigate this question, it is necessary to develop higher-order asymptotic approximations to
Gn(% Fo) and G,(% F). Thefollowing theorem, which is proved in Hall (1992a), provides an
essential result.

Theorem 3.1: Let assumption SFM hold. Assume also that

(3.8) lim sup |E[exp(it®)]| <1,
[t|e ¥

where i =+/-1. Then

1 1 1 -2
(3.9) Gy(t,Fy) =Gy (t, R +F gt Fo) +Egz(t +Fo) +W93(t ,Fp) +O(n" %)
uniformly over t and

1 1 1 -2
(3-10) Gn(t 1Fn) :G¥ (t 1Fn) +Fgl(t 1Fn) +Egz(t 1Fn) +W93(t 1Fn) +O(n )

uniformly over t almost surely. Moreover, g, and gs are even, differentiable functions of their first
arguments, g, isan odd, differentiable, function of itsfirst argument, and Gy, g;, g2, and gs are
continuous functions of their second arguments relative to the supremum norm on the space of
distribution functions.

If T, isasymptotically pivotal, then Gy is the standard normal distribution function.
Otherwise, Gy (% Fo) isthe N(0,V) distribution function, and Gy (% Fy) isthe N(O,Vy,) distribution
function, where V, is the quantity obtained from V by replacing population expectations and
moments with expectations and moments relative to F.

Condition (3.8) is called the Cramér condition. It is satisfied if the random vector Z hasa

probability density with respect to L ebesgue measure.”
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It is now possible to evaluate the accuracy of the bootstrap estimator G(t, F,) asan

approximation to the exact, finite-sample CDF Gi(t, Fo). It follows from (3.9) and (3.10) that

(31D  Gy(t,Fy)- Gy(t,Fo) =[Gy (t,Fy) - Gyt ,Fo)]+n—]%2[91(t 'Fn) - au(t, o)l

+%[92(t F)- Galt,Fo)l +O(m ¥2)

almost surdly uniformly over t. Theleading term on the right-hand side of (3.11) is[G(t, Fn) -

Gy(t, Fo)]. Thesizeof thistermis O(n™?) almost surdly uniformly over t because F, - Fo = O(n™?)

almost surdy uniformly over the support of F,. Thus, the bootstrap makes an error of size O(n™?)
almost surely, which is the same as the size of the error made by first-order asymptotic
approximations. Interms of rate of convergence to zero of the approximation error, the bootstrap
has the same accuracy as first-order asymptotic approximations. In this sense, nothing islost in
terms of accuracy by using the bootstrap instead of first-order approximations, but nothing is gained
dther.

Now supposethat T, isasymptotically pivotal. Then the asymptotic distribution of T, is

independent of Fo, and Gy(t, Fr) = Gk (t,, Fo) for all t. Equations (3.9) and (3.10) now yield

(312) Gy(t.Fy)- Golt,Fo) =n—§2[gl(t F)- ot Fo)l

+%[92(t Fa)- 0yt Fo)l + O(n" ¥2)

almost surdly. Theleading term on the right-hand side of (3.12) is nqgu(t, Fy) - 0a(t, Fo)]. It
follows from continuity of g; with respect to its second argument that this term has size O(n™)
almost surdy uniformly over t. Now the bootstrap makes an error of size O(n™), which is smaller
asn® ¥ than the error made by first-order asymptotic approximations. Thus, the bootstrap is more
accurate than first-order asymptotic theory for estimating the distribution of a smooth

asymptotically pivotal statistic.
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If T, isasymptotically pivotal, then the accuracy of the bootstrap is even greater for
estimating the symmetrical distribution function P(|T,| £ t) = G(t, Fo) - Gn(-t, Fo). This quantity is
important for obtaining the RP's of symmetrical tests and the coverage probabilities of symmetrical
confidenceintervals. Let F denote the standard normal distribution function. Then, it follows from

(3.9) and the symmetry of g, g, and gs in ther first arguments that

Gn(t,Fo)- Gn(-1,F) =[Gy (t,Fo)- Gy (-t 1F0)]+%92(t ,Fo) +O(n"?)

(313) =2F(t)- 1+3g2(t ,Fp) +O(n"?).
n
Similarly, it follows from (3.10) that

Gn(t,F) - Ga(-t,Fy) =[Gy (t,Fy) - Gy (-t 1Fn)]+%gz(t JFp) +O(n°%)

(314) =2F(t)- 1+%gz(t ,F.)+0(n"?)

almost surdy. Theremainder termsin (3.13) and (3.14) are O(n) and not O(n*?) because the
O(n*?) term of an Edgeworth expansion, n'3’2g3(t ,F) , isan even function that, like g;, cancels

out in the subtractions used to obtain (3.13) and (3.14) from (3.9) and (3.10). Now subtract (3.13)

from (3.14) and use the fact that F,, - Fo = O(n™?) almost surdly to obtain

(3-15) [Gn(t 1Fn) - Gn('t 1Fn)] - [Gn(t 1F0) - Gn('t 1F0)]
= 2g,(t.,F)- gt Fo)] +O(n'?)

=0(n"¥?)
almost surdly if T, is asymptotically pivotal. Thus, the error made by the bootstrap approximation
to the symmetrical distribution function P(JT,| £ t) is O(n¥?) compared to the error of O(n™) made

by first-order asymptotic approximations.
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In summary, when T, is asymptotically pivotal, the error of the bootstrap approximationto a

one-sided distribution function is

(316) G, (t,F,)- G,(t,FR)=0(n"")

almost surdy uniformly over t. Theerror in the bootstrap approximation to a symmetrical
distribution function is

(317) [G,(t,F,)- G (-t,F)]- [G,(t.Fy) - G,(-t,F,)] =0(n ¥?)

almost surdy uniformly over t. In contrast, the errors made by first-order asymptotic
approximations are O(n™4) and O(n™), respectively, for one-sided and symmetrical distribution
functions. Equations (3.16) and (3.17) provide the basis for the bootstrap’s ability to reduce the
finite-sample errors in the RP' s of tests and the coverage probabilities of confidence intervals.

Section 3.3 discusses the use of the bootstrap in hypothesistesting. Confidenceintervals are

discussed in Section 3.4.

3.3 Bootstrap Critical Values for Hypothesis Tests
This section shows how the bootstrap can be used to reducethe errorsin the RP's of
hypothesis tests rdative to the errors made by first-order asymptotic approximations.
Let T, bea statistic for testing a hypothesis Ho about the sampled population. Assume that
under Ho, T, isasymptotically pivotal and satisfies assumptions SFM and (3.8). Consider a
symmetrical, two-tailed test of Hy. Thistest rgects Hp at thea levd if [Ty| > z, 472, Where z, 51, the
exact, finite-sample, a-levd critical value, isthe 1 - a/2 quantile of the distribution of T,.’> The

critical value solves the equation
(3-18) Gn(zn,a/21FO) - Gn(' Zhal2: FO) =1-a.

Unless T, is exactly pivotal, however, equation (3.18) cannot be solved in an application because Fq
isunknown. Therefore, the exact, finite-sample critical value cannot be obtained in an application if

T, is not pivotal.
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First-order asymptotic approximations obtain a feasible version of (3.18) by replacing G,
with Gy. Thus, the asymptotic critical value, z; 5, Solves
(319  Gy(zvas2:Fo)- Gy (-2 a/2.F0)=1-a.
Since Gy is the standard normal distribution when T,, is asymptotically pivotal, z; »,» can be obtained

from tables of standard normal quantiles. Combining (3.13), (3.18), and (3.19) gives

[Gy (Znar2:Fo) - G (- Znarz: Foll - [Gy (2 a2 Fo) - Gy (- & aj2, F)l =O(n°Y)
which impliesthat z, 5/ - Z¢ a2 = O(n‘l). Thus, the asymptotic critical value approximates the exact
finite sample critical value with an error whose sizeis O(n™).

The bootstrap obtains a feasible version of (3.18) by replacing Fo with F,. Thus, the

bootstrap critical value, z,,/,*, solves
(320)  Gy(Znare*:Fn) - Gol(- Znare* Fn) =1-a "
Equation (3.20) usually cannot be solved analytically, but z, ..* can be estimated with any desired
accuracy by Monte Carlo simulation. Toillustrate, suppose, as often happensin applications, that
T, is an asymptotically normal, Studentized estimator of a parameter g whose value under Ho is go.

That is,

T =@ G0)
S,

where g, is the estimator of g, N""*(0, - go) ® ¢ N(0, s?) under Ho and s, is a consistent estimator of

s2. Thenthe Monte Carlo procedure for evaluating z, ,,* is as follows:

Monte Carlo Procedure for Computing the Bootstrap Critical Value
T1. Usethe estimation data to compute g
T2. Generate a bootstrap sample of size n by sampling the distribution corresponding to F,.
For example, if F, isthe EDF of the data, then the bootstrap sample can be obtained by sampling

the data randomly with replacement. If F, is parametric so that Fn(® = F(% q,) for somefunction F,
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then the bootstrap sample can be generated by sampling the distribution whose CDF is F(% q).
Compute the estimators of q and s from the bootstrap sample. Call the results g.* and s,*. The
bootstrap version of T, is T,* =nY?(q* - q,,) / S* .

T3. Usetheresults of many repetitions of T2 to compute the empirical distribution of [T*|.

Set 7, 52" equal tothe 1 - a quantile of this distribution.

Theforegoing procedure does not specify the number of bootstrap replications that should be
carried out in step T3. In practice, it often suffices to choose a value sufficiently large that further
increases have no important effect on z,,,*. Hall (1986a) and Andrews and Buchinsky (2000)
describe the results of formal investigations of the problem of choosing the number of bootstrap
replications. Repeatedly estimating q in step T2 can be computationally burdensomeif g, isan
extremum estimator. Davidson and MacKinnon (1999a) and Andrews (1999) show that the
computational burden can be reduced by replacing the extremum estimator with an estimator that is
obtained by taking a small number of Newton or quasi-Newton steps from the g, value obtained in
Step TL

To evaluate the accuracy of the bootstrap critical value z, ,,,* as an estimator of the exact

finite-sample critical value z, 5,2, combine (3.13) and (3.18) to obtain
B2)  2F (Zyar)- 1+2 Golznarz Fo) =1- 2 +O('?).
Similarly, combining (3.14) and (3.20) yields,

(2 2F (e - 142 GylEmars* Fo) =1- a +0(n™)

almost surely. Equations (3.21) and (3.22) can be solved to yield Cornish-Fisher expansions for

Zyap @Nd Z, 2% Theresultsare (Hall 19923, p. 111)

1 g ,Fo)
(3.23) hal2 =% a2 19\ a/2:T0)

o(n?),
0 fan) )

28



wheref isthe standard normal density function, and

1 92(Z¥ a/21Fn) -2
(3.24) * = - ===+ 0(n" )
Zn,a/2 Z¥,a/2 n f(z¥,a/2)

almost surdy. It follows from (3.23) and (3.24) that

(3825  Zya/F =Zpare +O(M¥?)
almost surely. Thus, the bootstrap critical value for a symmetrical, two-tailed test differs from the

exact, finite-sample critical value by O(n¥?)

almost surely. The bootstrap critical valueis more
accurate than the asymptatic critical value, z ., whose error is O(n‘l).

Now consider the rgection probability of the test based on T, when Hq istrue. With the
exact but infeasible a-leve critical value, the RPis P(|Ty| > z,42) = a.. With the asymptotic critical
value, theRP is

P(lTn|> Z¥,a/2) =1- [Gn(z¥,a/21FO) - Gn(' Z¥,a/21 FO)]

(326) =a +0O(nY),
wherethelast linefollows from setting t =z 52 in (3.13). Thus, with the asymptotic critical value,
the true and nominal RP’s differ by O(n™).

Now consider the RP with the bootstrap critical value, P(|T,| 3 z,a2*). Becausez,,.* isa
random variable, P([Ty| 3 z,a2*) * 1 - [Gn(Zhar*, Fo) - Gn(-Zna2*, Fo)]. Thisfact complicates the
calculation of the difference between the true and nominal RP’s with the bootstrap critical value.
The calculation is outlined in the Appendix of this chapter. Theresult isthat
(327)  P(T|>25/5") =a +O(n"%).

In other words, the nominal RP of a symmetrical, two-tailed test with a bootstrap critical value

differs from the true RP by O(n®) when the test statistic is asymptotically pivotal. In contrast, the

difference between the nominal and true RP’s is O(n™) when the asymptatic critical value s used.
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The bootstrap does not achieve the same accuracy for one-tailed tests. For such tests, the
difference between the nominal and true RP’s with a bootstrap critical valueis usually O(n™),
wheress the difference with asymptotic critical valuesis O(n?). SeeHall (19924, pp. 102-103) for
details. Thereare, however, circumstances in which the difference between the nominal and true
RP’s with a bootstrap critical valueis O(n¥?). Hall (19924, pp. 178-179) shows that thisis true for
aone-sided t test of a hypothesis about a slope (but not intercept) coefficient in a homoskedastic,
linear, mean-regression modd. Davidson and MacKinnon (1999b) show that it is true whenever T,
is asymptotically independent of gx(zy a2,Fn). They further show that many familiar test statistics
satisfy this condition.

Tests based on statistics that are asymptotically chi-square distributed behave like
symmetrical, two-tailed tests. Therefore, the differences between their nominal and true RP' s under
Ho are O(n™") with asymptotic critical values and O(n®) with bootstrap critical values,

Singh (1981), who considered a one-tailed test of a hypothesis about a population mean,
apparently was the first to show that the bootstrap provides a higher-order asymptotic
approximation to the distribution of an asymptotically pivotal statistic. Singh's test was based on
the standardized sample mean. Early papers giving results on higher-order approximations for
Studentized means and for more general hypotheses and test statistics include Babu and Singh

(1983, 1984), Beran (1988) and Hall (1986b, 1988).

3.4 Confidence Intervals
Let g be a population parameter whose true but unknown valueis qo. Let g, bea
n*2-consistent, asymptotically normal estimator of g, and let s, be a consistent estimator of the
standard deviation of the asymptotic distribution of n"*(q, - 0o). Then an asymptotic 1 - a
confidence interval for 0o is O - 2¢ aeSYNY2 £ Qo £ On + Zv axS/N"%. Define Ty, = NY%(0n - Qo)/s. Then

the coverage probability of the asymptotic confidence interval is P(|T,| £ z¢ ar0). It follows from
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(3.26) that the difference between the true coverage probability of the interval and the nominal
coverage probability, 1 - a, isO(n™).

If T, satisfies the assumptions of Theorem 3.1, then the difference between the nominal and
true coverage probabilities of the confidence interval can be reduced by replacing the asymptotic
critical value with the bootstrap critical value z, ,.*. With the bootstrap critical value, the
confidence interval is Gy - zna*SYN"2 £ Qo £ O + Znar* SN2 The coverage probability of this
interval is P([To| £ Zoar*). By (3.27), P(ITul £ Zoa2*) = 1 - @ + O(0), so the true and nominal
coverage probabilities differ by O(n®) when the bootstrap critical valueis used, whereas they differ
by O(n™) when the asymptotic critical valueis used.

Analogous results can be obtained for one-sided and equal-tailed confidence intervals. With
asymptotic critical values, the true and nominal coverage probabilities of these intervals differ by
O(n™?). With bootstrap critical values, the differences are O(n™). In special cases such as the slope
coefficients of homoskedastic, linear, mean-regressions, the differences with bootstrap critical
values are O(n¥).

The bootstrap’s ability to reduce the differences between the true and nominal coverage
probahilities of a confidence interval isillustrated by the following example, which is an extension
of Example 3.1.

Example 3.2 (Horowitz 1998a): This example uses Monte Carlo simulation to compare the
true coverage probabilities of asymptotic and bootstrap nominal 95% confidenceintervalsfor goin
the modd of Example 3.1. The Monte Carlo procedureis:

MC4: Generate an estimation data set of size n = 10 by sampling from the N(0,6)
distribution. Usethis data set to compute gp,.

MC5: Computez,,.* by carrying out steps T2-T3 of Section 3.3. Determine whether g is

contained in the confidence intervals based on the asymptotic and bootstrap critical values.
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MC6: Determinethe empirical coverage probabilities of the asymptotic and bootstrap
confidence intervals from the results of 1000 repetitions of steps MC4-MCb.

The empirical coverage probability of the asymptotic confidence interval was 0.886 in this
experiment, whereas the empirical coverage probability of the bootstrap interval was 0.943. The
asymptotic coverage probability is statistically significantly different from the nominal probability

of 0.95 (p < 0.01), whereas the bootstrap coverage probability is not (p > 0.10). I

3.5 The Importance of Asymptotically Pivotal Satistics

The arguments in Sections 3.2-3.4 show that the bootstrap provides higher-order asymptotic
approximations to distributions, RP's of tests, and coverage probabilities of confidence intervals
based on smooth, asymptotically pivotal statistics. These include test statistics whose asymptotic
distributions are standard normal or chi-square and, thus, most statistics that are used for testing
hypotheses about the parameters of econometric models. Models that satisfy the required
smoothness conditions include linear and nonlinear mean-regression models, error-components
mean-regression models for pand data, logit and probit modds that have at least one continuously
distributed explanatory variable, and tobit models. The smoothness conditions are also satisfied by
parametric sample-selection models in which the selection equation is a logit or probit mode with
at least one continuously distributed explanatory variable. Asymptotically pivotal statistics based
on median-regression models do not satisfy the smoothness conditions. Bootstrap methods for such
statistics are discussed in Section 4.3. The ability of the bootstrap to provide asymptotic
refinements for smooth, asymptotically pivotal statistics provides a powerful argument for using
them in applications of the bootstrap.

The bootstrap may also be applied to statistics that are not asymptotically pivotal, but it does
not provide higher-order approximations to their distributions. Estimators of the structural
parameters of econometric modes (e.g., slope and intercept parameters, including regression

coefficients; standard errors, covariance matrix elements, and autoregressive coefficients) usually
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are not asymptotically pivotal. The asymptatic distributions of centered structural parameter
estimators are often normal with means of zero but have variances that depend on the unknown
population distribution of the data. The errors of bootstrap estimates of the distributions of statistics
that are not asymptotically pivotal convergeto zero at the same rate as the errors made by first-order
asymptotic approximations.”

Higher-order approximations to the distributions of statistics that are not asymptotically
pivotal can be obtained through the use of bootstrap iteration (Beran 1987, 1988; Hall 1992a) or
bias-correction methods (Efron 1987). Bias correction methods are not applicable to symmetrical
tests and confidence intervals. Bootstrap iteration is discussed in Section 4.4. Bootstrap iteration is
highly computationally intensive, which makes it unattractive when an asymptotically pivotal

statistic is available,

3.6 The Parametric Versus the Nonparametric Bootstrap

Thesize of the error in the bootstrap estimate of a RP or coverage probability is determined
by thesize of F, - Fo. Thus, F, should be the most efficient available estimator. If Fo belongsto a
known parametric family F(% q), F(% g,) should be used to generate bootstrap samples, rather than
the EDF. Although the bootstrap provides asymptotic refinements regardless of whether F(% q,) or
the EDF is used, the results of Monte Carlo experiments have shown that the numerical accuracy of
the bootstrap tends to be much higher with F(x g,) than with the EDF. If the objectiveisto test a
hypothesis Hp about g, further gains in efficiency and performance can be obtained by imposing the
constraints of Hp when obtaining the estimate qp.

Toillustrate, consider testing the hypothesis Hy: b; = 0 in the Box-Cox regression mode

328 YO =by+b;X+U,
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where Y is the Box-Cox (1964) transformation of Y, X is an observed, scalar explanatory variable,
U is an unobserved random variable, and b, and b, are parameters. Supposethat U ~ N(0,s 2) .22

Then bootstrap sampling can be carried out in the following ways:

1 Sample (Y, X) pairs from the data randomly with replacement.
2. Estimatel , bo, and b, in (3.28) by maximum likelihood, and obtain residuals 3.

Generate Y values from Y =[I (b, +b, X +U*) +1]¥' »  wherel , by, and b, arethe estimates of | ,

bo, and b,; and U* is sampled randomly with replacement from the 3.

3. Same as method 2 except U* is sampled randomly from the distribution N(O, s,9),
where s, is the maximum likelihood estimate of s 2,

4. Estimatel , by, and s 2n (3.28) by maximum likelihood subject to the constraint b,

=0. Then proceed asin method 2.

5. Estimatel , by, and s 2n (3.28) by maximum likelihood subject to the constraint b,
=0. Then proceed asin method 3.

In methods 2-5, the values of X may be fixed in repeated samples or sampled independently

of U fromthe empirical distribution of X.

Method 1 provides the least efficient estimator of F,, and typically has the poorest numerical
accuracy. Method 5 has the greatest numerical accuracy. Method 3 will usually have greater
numerical accuracy than method 2. If the distribution of U is not assumed to belong to a known
parametric family, then methods 3 and 5 are not available, and method 4 will usually have greater
numerical accuracy than methods 1-2. Of course, parametric maximum likelihood cannot be used
to estimate by, by, and | if the distribution of U is not specified parametrically.

If the objectiveis to obtain a confidence interval for b, rather than to test a hypothesis,
methods 4 and 5 are not available. Method 3 will usually provide the greatest numerical accuracy if

the distribution of U is assumed to belong to a known parametric family, and method 2 if not.



One reason for the relatively poor performance of method 1 is that it does not impose the
condition E(U¥X =x) = 0. Thisproblemis discussed further in Section 5.2, where heteroskedastic

regression moddls are considered.

3.7 Recentering

The bootstrap provides asymptotic refinements for asymptotically pivotal statistics because,
under the assumptions of the smooth function mode, sup. |Gn(t, F,) - Ga(t, Fo)| converges to zero
asn® ¥ morerapidly than sup |G (t, Fo) - Gi(t, Fo)|. Oneimportant situation in which this does
not necessarily happen is generalized method of moments (GMM) estimation of an overidentified
parameter when F,, is the EDF of the sample.

To seewhy, let o bethetrue value of a parameter g that is identified by the moment
condition Eh(X, q) = 0. Assumethat dim(h) > dim(q). If, asis often the casein applications, the
distribution of X is not assumed to belong to a known parametric family, the EDF of X isthe most
obvious candidate for F,. The sample analog of Eh(X, q) isthen

E*h(X0)= 18 h(x, )

i=1

where E* denotes the expectation rdativeto F,. The sample analog of qq is qn, the GMM estimator
of g. Ingeneral, E*h(X, g,) * 0in an overidentified model, so bootstrap estimation based on the
EDF of X implements a moment condition that does not hold in the population the bootstrap
samples. Asaresult, the bootstrap estimator of the distribution of the statistic for testing the
overidentifying restrictions is inconsistent (Brown et al. 1997). The bootstrap does consistently
estimate the distributions of n"*(qg, - go) (Hahn 1996) and the't statistic for testing a hypothesis about
a component of g. However, it does not provide asymptotic refinements for the RP of thet test or

the coverage probability of a confidence interval.
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This problem can be solved by basing bootstrap estimation on the recentered moment
condition E*h*(X, q,) = 0, where
829 (X =h(Xa)- 8 n(X a).

i=1
Hall and Horowitz (1996) show that the bootstrap with recentering provides asymptotic refinements
for the RP’s of t tests of hypotheses about components of g and the test of overidentifying
restrictions. The bootstrap with recentering also provides asymptotic refinements for confidence
intervals. Intuitively, the recentering procedure works by replacing the misspecified moment
condition E*h(X, g) = 0 with the condition E*h*(X, q) = 0, which does hold in the population that
the bootstrap samples.

Freedman (1981) recognized the need for recentering residuals in regression models without
intercepts. See, aso, Efron (1979).

Brown et al. (1997) propose an alternative approach to recentering. Instead of replacing h
with h* for bootstrap estimation, they replace the empirical distribution of X with an empirical
likelihood estimator that is constructed so that E*h(X, ¢,) = 0.** The empirical likelihood estimator
assigns a probability mass py,; to observation X (i =1, ..., n). Thep,’s are determined by solving
the problem

n

. ]
maximize: g logp

pnl """ pnn |:1

n n
subjectto:  Q Ph(Xi.0,) =0 A Pns=L P30
i=1 i=1
In general, the solution to this problem yields pi * n™, so the empirical likelihood estimator of the
distribution of X is not the same as the empirical distribution. Brown et al. (1997) implement the
bootstrap by sampling { X} with probability weights p; instead of randomly with replacement.

They argue that the bootstrap is more accurate with empirical-likeihood recentering than with

36



recentering by (3.29) because the empirical-likelihood estimator of the distribution of Xis
asymptotically efficient under the moment conditions Eh(X,q) = 0. With either method of
recentering, however, the differences between the nominal and true RP's of symmetrical tests and
between the nominal and true coverage probabilities of symmetrical confidenceintervals are O(n).
Thus, the differences between the errors made with the two recentering methods are likely to be
small with samples of the sizes typically encountered in applications.

Brown et al. (1997) develop the empirical-likelihood recentering method only for simple
random samples. Kitamura (1997) has shown how to carry out empirical-likelihood estimation with
dependent data. It islikely, therefore, that empirical-likelihood recentering can be extended to
GMM estimation with dependent data. T he recentering method based on (3.29) requires no
modification for use with dependent data (Hall and Horowitz 1996). Section 4.1 provides further

discussion of the use of the bootstrap with dependent data.

4. EXTENSIONS

This section explains how the bootstrap can be used to obtain asymptotic refinements in
certain situations where the assumptions of Section 3 are not satisfied. Section 4.1 treats dependent
data. Section 4.2 treats kernd density and nonparametric mean-regression estimators. Section 4.3
shows how the bootstrap can be applied to certain non-smooth estimators. Section 4.4 describes
how bootstrap iteration can be used to obtain asymptotic refinements without an asymptotically
pivotal statistic. Section 4.5 discusses additional special problems that can arise in implementing
the bootstrap. Section 4.6 discusses the properties of bootstrap critical values for testing a

hypothesis that is false.

4.1 Dependent Data
With dependent data, asymptotic refinements cannot be obtained by using independent

bootstrap samples. Bootstrap sampling must be carried out in away that suitably captures the
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dependence of the data-generation process. This section describes several methods for doing this.

It also explains how the bootstrap can be used to obtain asymptotic refinements in GMM estimation
with dependent data. At present, higher-order asymptotic approximations and asymptotic
refinements are available only when the data-generation process is stationary and strongly
geometrically mixing. Except when stated otherwise, it is assumed here that this requirement is

satisfied. Non-stationary data-generation processes are discussed in Section 4.1.3.

4.1.1 Methods for Bootstrap Sampling with Dependent Data

Bootstrap sampling that captures the dependence of the data can be carried out relatively
easily if thereis a parametric modd, such asan ARMA modd, that reduces the data-generation
process to a transformation of independent random variables. For example, suppose that the series
{X} is generated by the stationary, invertible, finite-order ARMA modd
(41) A(L.a)X, =B(L,b)U,
where A and B are known functions, L is the backshift operator, a and b are vectors of parameters,
and { U} is a sequence of independently and identically distributed (iid) random variables. Let a,
and by, be n"*-consistent, asymptotically normal estimators of a and b, and let {L§t} be the centered
residuals of the estimated modd (4.1). Then a bootstrap sample { X;*} can be generated as

A(L,a ) X# = B(L,b,)U*,
where { U*} is arandom sample from the empirical distribution of the residuals {L§t} . If the
distribution of U, is assumed to belong to a known parametric family (e.g., the normal distribution),
then { U*} can be generated by independent sampling from the estimated parametric distribution.
Bose (1988) provides arigorous discussion of the use of the bootstrap with autoregressions. Bose
(1990) treats moving average models.

When thereis no parametric modd that reduces the data-generation process to independent

sampling from some probability distribution, the bootstrap can be implemented by dividing the data
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into blocks and sampling the blocks randomly with replacement. The block bootstrap is important
in GMM estimation with dependent data, because the moment conditions on which GMM
estimation is based usually do not specify the dependence structure of the GMM residuals. The
blocks may be non-overlapping (Carlstein 1986) or overlapping (Hall 1985, Kiinsch 1988, Politis
and Romano 1994). To describe these blocking methods more precisdy, let the data consist of
observations{X: i =1, ..., n}. With non-overlapping blocks of length |, block 1 is observations
{X:j=1,...,1}, block 2 isobservations{ X, +j: j =1, ..., 1}, and so forth. With overlapping blocks
of length I, block 1 isobservations{X: j =1, ...,1}, block 2 is observations {X;.1: j=1,...,1}, and
so forth. The bootstrap sampleis obtained by sampling blocks randomly with replacement and
laying them end-to-end in the order sampled. It is also possible to use overlapping blocks with
lengths that are sampled randomly from the geometric distribution (Politis and Romano 1994). The
block bootstrap with random block lengths is also called the stationary bootstrap because the
resulting bootstrap data series is stationary, whereas it is not with overlapping or non-overlapping
blocks of fixed (non-random) lengths.

Regardless of the blocking method that is used, the block length (or average block length in
the stationary bootstrap) must increase with increasing sample size n to make bootstrap estimators
of moments and distribution functions consistent. The asymptotically optimal block length is
defined as the one that minimizes the asymptotic mean-square error of the block bootstrap
estimator. The asymptotically optimal block length and its rate of increase with increasing n
depend on what is being estimated. Hall et al. (1995) showed that with either overlapping or non-
overlapping blocks with non-random lengths, the asymptotically optimal block-lengthis| ~n,
wherer = 1/3 for estimating bias or variance, r = 1/4 for estimating a one-sided distribution function
(eg., P(T,£1)), andr = 1/5 for estimating a symmetrical distribution function (e.g., P([Tn| £ t)).
Hall et al. (1995) also show that overlapping blocks provide somewhat higher estimation efficiency
than non-overlapping ones. The efficiency differenceislikely to be very small in applications,

however. For estimating a two-sided distribution function, for example, the root-mean-square
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estimation error (RM SE) with either blocking method is O(n®®). The numerical difference between

the RMSE's can beillustrated by considering the case of a normalized sample average. L et

T,=(X- m/s ,where X isthesample average of observations{ X}, m=E(X), and

s 2 =Var(X). Thentheresults of Hall, et al. (1995) imply that for estimating P(|T,| £ t), the

reduction in asymptotic RM SE from using overlapping blocks instead of nonoverlapping onesis
less than 10 percent.

Lahiri (1999) investigated the asymptotic efficiency of the stationary bootstrap. He showed
that the asymptotic relative efficiency of the stationary bootstrap compared to the block bootstrap
with non-random block lengths is always less than one and can be arbitrarily closeto zero. More
precisdy, let RMSEg and RMSEng, respectively, denote the asymptotic RM SE’s of the stationary
bootstrap and the block bootstrap with overlapping or non-overlapping blocks with non-random
lengths. Then RMSENy RMSEg < 1 always and can be arbitrarily closeto zero. Thus, at least in
terms of asymptotic RM SE, the stationary bootstrap is unattractive relative to the block bootstrap
with fixed-length blocks.

Implementation of the block bootstrap in an application requires a method for choosing the
block length with afinite sample. Hall, et al. (1995) describe a subsampling method for doing this
when the block lengths are non-random. The idea of the method is to use subsamples to create an
empirical analog of the mean-square error of the bootstrap estimator of the quantity of interest. Let
y denote this quantity (eg., atwo-sided distribution function). Let y ,, bethe bootstrap estimator of
y that is obtained using a preliminary block-length estimate. Lee m<n. Leay il (i=1,...,n-

m) denote the bootstrap estimates of y that are computed using al the n - mruns of length min the

data and block length I¢ Let I, be the value of |¢that minimizes éi[y mi(l")-y n]2 . The

estimator of the asymptotically optimal block length is (n/m)'l,,, wherer = 1/3 for estimating bias or
variance, r = 1/4 for estimating a one-sided distribution function, and r = 1/5 for estimating a two-

sided distribution function
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Kreiss (1992) and Biihimann (1997) have proposed an alternative to blocking for use when
the data-generation process can be represented as an infinite-order autoregression. In this method,
called the sieve bootstrap, the infinite-order autoregression is replaced by an approximating
autoregression with a finite-order that increases at a suitablerateasn ® ¥. The coefficients of the
finite-order autoregression are estimated, and the bootstrap is implemented by sampling the
centered residuals from the estimated finite-order modd. Bihlmann (1997) gives conditions under
which this procedure yidds consistent estimators of variances and distribution functions.

Buhlmann (1998) shows that the sieve bootstrap provides an asymptotic refinement for estimating
the CDF of thet statistic for testing a one-sided hypothesis about the trend function in an AR(¥)
process with a deterministic trend. Choi and Hall (2000) show that the error in the coverage
probahility of a one-sided confidence interval based on the sieve bootstrap for an AR(¥) processis
O(n *®) for any e >0, whichisonly slightly larger than the error of O(n™?) that is available
when the data are a random sample.

If the data are generated by a Markov process, then the bootstrap can be implemented by
sampling the process generated by a nonparametric estimate of the Markov transition density. This
approach has been investigated by Rajarshi (1990), Datta and McCormick (1995), and Paparoditis

and Politis (2000). Its ability to achieve asymptotic refinements for Studentized statistics is

unknown.

4.1.2 Asymptotic Refinements in GMM Estimation with Dependent Data

This section discusses the use of the block bootstrap to obtain asymptotic refinementsin
GMM estimation with dependent data. Lahiri (1992) showed that the block bootstrap provides
asymptotic refinements through O(n™?) for normalized sample moments and for a Studentized
sample moment with m-dependent data. Hall and Horowitz (1996) showed that the block bootstrap

provides asymptotic refinements through O(n™) for symmetrical tests and confidence intervals
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based on GMM estimators. Their methods can also be used to show that the bootstrap provides
refinements through O(n™?) for one-sided tests and confidenceintervals. Hall and Horowitz (1996)
do not assume that the data-generation process is m-dependent™.

Regardless of whether overlapping or nonoverlapping blocks are used, block bootstrap
sampling does not exactly replicate the dependence structure of the original data-generation process.
For example, if nonoverlapping blocks are used, bootstrap observations that belong to the same
block are deterministically related, whereas observations that belong to different blocks are
independent. This dependence structure is unlikely to be present in the original data-generation
process. Asaresult, the finite-sample covariance matrices of the asymptotic forms of parameter
estimators obtained from the original sample and from the bootstrap sample are different. The
practical consequence of this differenceis that asymptotic refinements through O(n™) cannot be
obtained by applying the “ usual” formulae for test statistics to the block-bootstrap sample. It is
necessary to develop special formulae for the bootstrap versions of test statistics. These formulae
contain factors that correct for the differences between the asymptotic covariances of the original-
sample and bootstrap versions of test statistics without distorting the higher-order terms of
asymptotic expansions that produce refinements.

Lahiri (1992) derived the bootstrap version of a Studentized sample mean for m-dependent
data. Hall and Horowitz (1996) derived formulae for the bootstrap versions of the GMM
symmetrical, two-tailed t statistic and the statistic for testing overidentifying restrictions. Asan
illustration of the form of the bootstrap statistics, consider the GMM t statistic for testing a
hypothesis about a component of a parameter g that is identified by the moment condition Eh(X, q)
= 0. Hall and Horowitz (1996) showed that the corrected formula for the bootstrap version of the

GMM t statistic is

T+ =(S,/ ST,
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where 'ﬁl isthe® usua” GMM t statistic applied to the bootstrap sample, S, isthe® usua” GMM

standard error of the estimate of the component of g that is being tested, and S, is the exact standard
deviation of the asymptotic form of the bootstrap estimate of this component. S, is computed from
the original estimation sample, not the bootstrap sample. Hansen (1982) gives formulae for the
usual GMM t statistic and standard error. S, can be calculated because the process generating
bootstrap data is known exactly. An analogous formulais available for the bootstrap version of the
statistic for testing overidentifying restrictions but is much more complicated algebraically than the
formulafor thet statistic. See Hall and Horowitz (1996) for details.

At present, the block bootstrap is known to provide asymptotic refinements for symmetrical
tests and confidence intervals based on GMM estimators only if the residuals { h(X;, qo): 1 =1,2,...}
at the true parameter point, o, are uncorrelated after finitely many lags. That is,

(42)  EIN(X;.o)h(X; do)1=0 iffi- jl>M

for someM < ¥.% Thisrestriction is not equivalent to m-dependence because it does not preclude
correations among higher powers of components of h that persist at arbitrarily largelags (e.g.,
stochastic volatility). Although the restriction is satisfied in many econometric applications (see,
e.g., Hansen 1982, Hansen and Singleton 1982), there are others in which rdaxing it would be
useful. Themain problem in doing so is that without (4.2), it is necessary to use a kernd-type
estimator of the GMM covariance matrix (see, eg., Newey and West 1987, 1994; Andrews 1991,
Andrews and Monahan 1992). Kernd-type estimators are not functions of sample moments and
converge at rates that are slower than n'’2. However, present results on the existence of asymptotic
expansions that achieve O(n™") accuracy with dependent data apply only to functions of sample
moments that have N2 rates of convergence (Gotze and Hipp 1983, 1994). It will be necessary to
extend existing theory of asymptotic expansions with dependent data before (4.2) can be relaxed for

symmetrical tests and confidence intervals.
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Condition (4.2) is not needed for one-sided tests and confidence intervals, where the
bootstrap provides only O(n™?) refinements. Gotze and K iinsch (1996) and Lahiri (1996) give
conditions under which the moving-block-bootstrap approximation to the distribution of a statistic
that is Studentized with a kernd-type variance estimator is accurate through Op(n'” %). Whenthe

conditions are satisfied,

(43) sup|P(T, £1)- P* (T £t)]=0,(n"Y?),
t

where T,* is the bootstrap analog of the Studentized statistic T,, and the moving block bootstrap is
used to generate bootstrap samples. In Gotze and Kiinsch (1996), T, is the Studentized form of a
smooth function of sample moments. In Lahiri (1996), T, is a Studentized statistic for testing a
hypothesis about a slope coefficient in a linear mean-regression modd. Achieving the result (4.3)
requires, among other things, use of a suitable kernel or weight function in the variance estimator.
Gotze and Kiinsch (1996) show that (4.3) holds with a rectangular or quadratic kernd but not with a

triangular one.

4.1.3 The Bootstrap with Non-Sationary Processes

Theforegoing results assume that the data-generation processis stationary. Most research to
date on using the bootstrap with non-stationary data has been concerned with establishing
consistency of bootstrap estimators of distribution functions, not with obtaining asymptotic
refinements. An exception is Lahiri (1992), who gives conditions under which the bootstrap
estimator of the distribution of the normalized sample average of non-stationary data differs from
the true distribution by o(n™’?) almost surdy. Thus, under Lahiri’s conditions, the bootstrap is more
accurate than first-order asymptotic approximations. Lahiri’s result requires a priori knowledge of
the covariance function of the data and does not apply to Studentized sample averages. Moreover
Lahiri assumes the existence of the covariance function, so his result does not apply to unit-root

PrOCesses.



The consistency of the bootstrap estimator of the distribution of the dope coefficient or
Studentized slope coefficient in a simple unit-root model has been investigated by Basawa et al.
(19914, 1991b), Datta (1996), and Ferretti and Romo (1996). Themodd is
(44) X, =bX._,+U;; i=12,...n,
where X, =0and {U} isaniid sequencewith E(U;) =0 and E(U?) =s 2<¥ . Le b, denotethe

ordinary least squares estimator of b in (4.4):

Let bo denote the true but unknown value of b. Consider using the bootstrap to estimate the
sampling distribution of (b, - bo) or thet statistic for testing Ho: b =b,. It turns out that when by =
1 is possible, the consistency of the bootstrap estimator is much more sensitive to how the bootstrap
sample is drawn than when it is known that |bo| < 1.
Basawa et al. (1991a) investigate the consistency of a bootstrap estimator of the distribution

of thet statistic in the special casethat U ~N(0,1). Inthiscase, thet statisticis

0 12
(46) t,= [é X 1] (b, - bo).

i=1
In Basawa et al. (1991a), the bootstrap sample { Xi*: i =1, ..., n} isgenerated recursively from the
estimated mode
47 X*=bX_ [ +Uy,
where Xo* = 0 and { U;*} is an independent random sample from the N(0,1) distribution. The
bootstrap version of thet statisticis

n 1/2
t*=lé (xi-l*)z} (b - 1),

i=1

45



where b,* is obtained by replacing X with X* in (4.5). Basawa et al. (1991a) show that the
bootstrap distribution function P,* (t* £ t) does not consistently estimate the population distribution
function P,(t £t). Thisresult isnot surprising. The asymptotic distribution of t is discontinuous at
bo=1. Therefore, condition (iii) of Theorem 2.1 is not satisfied if the set of data-generation
processes under consideration includes ones with and without by = 1.

This problem can be overcome by specifying that by = 1, thereby removing the source of the
discontinuity. Basawa et al. (1991b) investigate the consistency of the bootstrap estimator of the
distribution of the statistic Z, ° n(b, - 1) for testing the unit-root hypothesisHy: bg=11in(4.4). The
bootstrap sampleis generated by the recursion
(4.8)  X* =X +Ui*,
where Xp* = 0 and { U;*} is arandom sample from the centered residuals of (4.4) under Ho. The
centered residuals are l§i =X - X;.;-U ,wheeU = n'lé inzl(xi - Xj.1) . Thebootstrap
analog of Z, isZ,* = n(b,* - 1), where b,* is obtained by replacing X; with Xi* in (4.5). Basawa et
al. (1991b) show that if Hpis true, then |P*(Z,* £ 2) - Po(Zn £ 2)| = 0y(1) uniformly over z.

The discontinuity problem can be overcome without the restriction by = 1 by using bootstrap
samples consisting of m < n observations (Datta 1996). This approach has the advantage of
yidding a confidence interval for by that isvalid for any b T (-¥,¥). Consider modd (4.4) with

the additional assumption that E|JU;[**® < ¥ for somed > 0. Let b, bethe ordinary least squares
estimator of b, and definet, asin (4.6). Let U; = X; - by X1 - M@ (X - byXig) (=1, ...,
n) denote the centered residuals from the estimated modd, and let {U;*: i =1, ..., m} bearandom

sample of {l§i} for somem<n. Thebootstrap sampleis generated by the recursion (4.7) but with i

=1, ...,minsteadof i =1, ..., n. Let by* denotethe ordinary least squares estimator of b that is

obtained from the bootstrap sample. Define the bootstrap version of t, by
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m 12
tr =lé (xi-l*)z} (b - by) -

i=1
Datta (1996) proves that if [m(log log n)°]/n® 0asn® ¥, then |Py* (t* £ t) - Po(t, £ t)]=0(1)
almost surdy asn ® ¥ uniformly over zfor any by (-¥, ¥).

Ferretti and Romo consider atest of Hq: bg=1in (4.4). Let b, betheordinary least squares

estimator of b, and let

(Xi - byXi 1)

Qo5

(49) s2i=

Sl

i=1

Thetest statisticis

n 12
(.10 i;=si[é xi?l] Gu- D).

n\i=1
The bootstrap sample is generated from the centered residuals of the estimated model by using the
recursion (4.8). Let b,* denote the ordinary least squares estimator of b that is obtained from the
bootstrap sample. The bootstrap version of the test statistic, t,*, is obtained by replacing X; and by,
with Xi* and b,* in (4.9) and (4.10). Ferretti and Romo (1996) show that
IP*(t* £t)- P,(i, £t)]=0(1) amost surdy asn® ¥. Ferreiti and Romo (1996) also show
how this result can be extended to the casein which {U;} in (4.4) follows an AR(1) process.
Theresults of Monte Carlo experiments (Li and Maddala 1996, 1997) suggest that the
differences between the true and nominal RP' s of tests of hypotheses about integrated or
cointegrated data-generation processes are smaller with bootstrap-based critical values than with
asymptotic ones. At present, however, there are no theoretical results on the ability of the bootstrap
to provide asymptotic refinements for tests or confidence intervals when the data are integrated or

cointegrated.
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4.2 Kernel Density and Regression Estimators
This section describes the use of the bootstrap to carry out inference about kernd
nonparametric density and mean-regression estimators. These are not smooth functions of sample
moments, even approximately, so the results of Section 3 do not apply to them. In particular, kernd
density and mean-regression estimators converge more slowly than n’2, and their distributions have
unconventional asymptotic expansions that are not in powers of N2, Consequently, the sizes of the
asymptotic refinements provided by the bootstrap are also not powers of N2, Sections 4.2.1-4.2.3
discuss bootstrap methods for nonparametric density estimation. Nonparametric mean regression is

discussed in Section 4.2.4.

4.2.1 Nonparametric Density Estimation

Let f denote the probability density function (with respect to L ebesgue measure) of the scalar
random variable X. The problem addressed in this section is inferring f from a random sample of X,
{X: 1=1, ..., n}, without assuming that f belongs to a known, finite-dimensional family of
functions. Point estimation of f can be carried out by the kernd method. The kernd estimator of

f(x) is

fn(x):ién K(x-mxi j
i=1

where K isakernd function with properties that are discussed below and{h,: n=1,2, ...} isa
strictly positive sequence of bandwidths.

The properties of kernel density estimators are described by Silverman (1986), among others.
To state the properties that arerdevant here, let r 3 2 be an even integer. Assumethat f hasr
bounded, continuous derivativesin a neighborhood of x. Let K be a bounded function that is

symmetrical about 0 and has support [-1,1]."" In addition, let K satisfy
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) 1if j=0
(4.12) jluiK(u)duz 0if 1EjEr-1
A1 Oifj=r.

Define
1 2
By :j_lK(u) du.

Also define bn(X) = E[fo(x) - f(x)] and s 2(x) =Var[ f(x)] . Then

B () = 2% £ 09 + off)

and

2 — BK
4.12) s2(x) r f(x).

Moreover, if nh?*! isbounded asn® ¥, then

Zn(X)o fn(X)' f(X)- bn(x)

sn(X)

(413 = fn(x)s' '(E)E)f”(x)] ® ¢ N(01).

The fastest possible rate of convergence of f,(X) tof(x) is achieved by setting h, p @ * . When
this happens, f,(x) - f(x) = Q[N * Y], by(x) u @Y and s ,(x) p N™@*",
A Studentized statistic that is asymptotically pivotal and can be used to test a hypothesis

about f(x) or form a confidence interval for f(x) can be obtained from (4.13) if suitable estimators of
S ﬁ(x) and by(x) are available. The need for estimating an asymptotic varianceis familiar. An
estimator of s ﬁ(x) can be formed by replacing f(x) with f,(x) on the right-hand side of (4.12).
However, the asymptotic expansions required to obtain asymptotic refinements are simpler if

S ﬁ(x) is estimated by a sample analog of the exact, finite-sample variance of f,(x) instead of a
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sample analog of (4.12), which is the variance of the asymptotic distribution of f,(x). A sample

analog of the exact finite-sample variance of f,(x) is given by

2

> 1 & [x- X f ()2
- - K - .
S0 ( y J n

Ifh® Oandnh, ® ¥ asn® ¥, then (nh,)[S7(X) - s 5(X)] =0, (1) asn® ¥. Definethe

Studentized form of Z, by

(414) t = fn(X)- E[ fn(x)]
" $(%)

Thent, isthe asymptotic t statistic for testing a hypothesis about E[f,(x)] or forming a confidence
interval for E[f,(X)]. The asymptotic distribution of t, isN(0,1). However, unless the asymptotic
bias by(X) is negligibly small, t, cannot be used to test a hypothesis about f(x) or form a confidence
interval for f(x). Because s ;ﬁ(x) = O[(nh,)"] and sr}l(x) = Op[(nhn)”z], bn(X) is negligibly small

only if (nh,)**b

n(X) =0(1) asn® ¥. The problem of asymptotic bias cannot be solved by replacing
E[f.(X)] with f(x) on the right-hand side of (4.14) because the asymptotic distribution of the resulting
version of t, isnot centered at O unless by(X) is negligibly small. Section 4.2.2 discusses ways to

deal with asymptotic bias.

4.2.2 Asymptotic Bias and Methods for Controlling It

Asymptotic biasis a characteristic of nonparametric estimators that is not shared by
estimators that are smooth functions of sample moments. As has just been explained, asymptotic
bias may prevent t, from being suitable for testing a hypothesis about f(x) or constructing a
confidenceinterval for f(x). Asymptotic bias also affects the performance of the bootstrap. To see
why, let {X*: i =1, ..., n} beabootstrap samplethat is obtained by sampling the data { X}

randomly with replacement. Then the bootstrap estimator of fis

414)  f*(x) = ﬁé K(X_hfi* j
i=1
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The bootstrap analog of s2(x) is

2

> 1 & [x-X* fx ()2
*(x) = ——aK - :
s (nhn)2 ia:1 ( h, J n

Define the bootstrap analog of t, by

A COR A
SR CO

t*
It is clear from (4.14) that E*[f,*(X) - f(X)] = 0. Thus, f,*(X) an unbiased estimator of f,(x) in afinite
sample as well as asymptotically, whereas f(X) is an asymptotically biased estimator of f(x). It can
be shown that the bootstrap distribution of t,* converges in probability to N(0,1). Therefore, despite
the unbiasedness of f,*(X), t,* isabootstrap t statistic for testing a hypothesis about E[f,(x)] or
forming a confidence interval for E[f,(X)]. It isnot abootstrap t statistic for testing a hypothesis
about f(x) or forming a confidence interval for f(x) unless by(x) is negligibly small.

There are two ways to overcome the difficulties posed by asymptotic bias so that t, and t,*
become statistics for testing hypotheses about f(x) and forming confidence intervals for f(x) instead

of E[f,(x)]. Oneisthemethod of explicit biasremoval. It consists of forming an estimator of

b,(x) , say l§n (X) , that can be subtracted from f,(x) to form the asymptotically unbiased estimator

fr(X) - l§h(x) . The other method is undersmoothing. This consists of setting h, i n* with k >
1/(2r + 1). With undersmoothing, (nh,)"?by(x) = 0p(1) asn® ¥, sothat b,(X) isasymptotically
negligible. Nether method is compatible with achieving the fastest rate of convergence of a point-
estimator of f(x). With undersmoothing, the rate of convergence of f,(x) isthat of s ,(x) . Thisis
n-¥2 which is slower than n”® * . Explicit bias removal with h, p @ *? and rate of
convergence n"@* ¥ for f,(x) requires f(X) to have morethan r derivatives. When f(x) has the
required number of derivatives, the fastest possible rate of convergence of f,(x) isn*®*? for some
s>r. Thisrateis achieved with h, u n®* 3, but the resulting estimator of f(x) is asymptotically

biased. Thus, regardiess of the method that is used to remove asymptatic bias, testing a hypothesis
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about f(x) or forming a confidence interval requires using a bandwidth sequence that converges
more rapidly than the one that maximizes the rate of convergence of a point estimator of f(x).
Nonparametric point estimation and nonparametric interval estimation or testing of hypotheses are
different tasks that require different degrees of smoothing.

Hall (1992b) compares the errors in the coverage probabilities of bootstrap confidence
intervals with undersmoothing and explicit bias removal. He shows that when the number of
derivatives of f(x) is held constant, undersmoothing achieves a smaller error in coverage probability
than does explicit bias removal. This conclusion also applies to the regjection probabilities of
hypothesis tests; the difference between true and nominal rejection probabilities can be made
smaller with undersmoothing than with explicit bias removal. Thus, undersmoothing is the better
method for handling asymptotic bias when the aim is to minimize differences between true and
nominal rejection and coverage probabilities of bootstrap-based hypothesis tests and confidence

intervals. Accordingly, undersmoothing is used for bias removal in the remainder of this section.

4.2.3 Asymptotic Refinements

The argument showing that the bootstrap provides asymptotic refinements for tests of
hypotheses and confidence intervals in nonparametric density estimation is similar to that made in
Section 3 for the smooth function modd. The main step is proving that the distributions of t, and
tn* have Edgeworth expansions that areidentical up to a sufficiently small remainder. Theresult is
stated in Theorem 4.1, which is proved in Hall (1992a, pp. 268-282).

Theorem 4.1: Assumethat f hasr bounded, continuous derivatives in a neighborhood of x.
Let h, ® Oand (nh,)/(logn) ® ¥ asn® ¥. Let K be a bounded function that is symmetrical about
0, has support [-1,1], and satisfies (4.11) for somer 3 2. Also, assume that there is a partition of
[-1,1], up=-1<u; <... <uyn=1suchthat K¢exists, is bounded, and is either strictly positive or
strictly negative on each interval (u;, uj+1). Then there are even functions g, and gs and an odd

function g, such that
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12
419 P, ED=FO+ O+ )+ 2] a0+ Ol ey

uniformly over t. Moreover, there are even functions g,; and g,3 and an odd function gy, such that
On(t) - qi(t) ® Oasn® ¥ uniformly over t almost surely (j =1, ..., 3), and
“(ir £t = ! ! h, )" a2
P*(ty £1) = F(t) +an1(t ) +ﬁqn2(t ) +(F) Ona(t) + Ol(nhy) = +n"7]
uniformly over t almost surely.
Hall (1992a, pp. 211-216) gives explicit expressions for the functions g; and qy.

To seetheimplications of Theorem 4.1, consider a symmetrical test of a hypothesis about
f(x). Theresultsthat will be obtained for this test also apply to symmetrical confidence intervals.
Let the hypothesisbe Ho: f(X) =fo. A symmetrical test rgects Hy if [fn(X) - fo| islarge. Suppose that
nh,y **® Oasn® ¥. Thisrate of convergence of h, insures that the asymptotic bias of f,(X) has
anegligibly small effect on the error made by the higher-order approximation to the distribution
of t, that is used to obtain asymptotic refinements.’® It also makes the effects of asymptotic bias
sufficiently small that t, can be used to test Ho. Reecting Hp if [fn(X) - fo| islarge is then
equivalent to rgjecting Ho if [t,] is large, thereby yielding a symmetrical t test of H.

Now suppose that the critical value of the symmetrical t test is obtained from the
asymptotic distribution of t,, whichisN(0,1). Theasymptotic a-leve critical value of the
symmetrical t test is zy,, the 1 - a/2 quantile of the standard normal distribution. Theorem 4.1
shows that P(|ts| > zar2) = a + O[(nhy)™]. In other words, when the asymptotic critical valueis
used, the difference between the true and nominal rejection probabilities of the symmetrical t test
is O[(nhy)™].

Now consider the symmetrical t test with a bootstrap critical value. The bootstrap a-level

critical value, z, 0%, satisfies P*([t,*| 3 z,42*) = a. By Theorem 4.1,

(4.16)  P*(ty|>t) - P(tal>t) =o0l(nhy)™]
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almost surely uniformly over t. It can also be shown that P(|t.| > Z,a2*) = a + o[(nh,)™]. Thus,
with the bootstrap critical value, the difference between the true and nominal rejection
probabilities of the symmetrical t test is o[(nh,)™]. The bootstrap reduces the difference between
the true and nominal rejection probabilities because it accounts for the effects of the O[(nh,) "]
term of the Edgeworth expansion of the distribution of t,. First-order asymptotic approximations
ignorethisterm. Thus, the bootstrap provides asymptotic refinements for hypothesis tests and
confidence intervals based on a kernel nonparametric density estimator provided that the
bandwidth h, converges sufficiently rapidly to make the asymptotic bias of the density estimator
negligibly small.

The conclusion that first-order asymptotic approximations make an error of size O[(nh,)”]
assumes that nh, " ® 0. If this condition is not satisfied, the error made by first-order
approximations is dominated by the effect of asymptotic bias and is larger than O[(nh,)™] This
result is derived at the end of this section.

The bootstrap can also be used to obtain asymptotic refinements for one-sided and equal-
tailed tests and confidence intervals. For one-sided tests and confidence intervals with bootstrap
critical values, the differences between the true and nominal rejection and coverage probabilities
are O[(nhy) ™ + (nhy)¥?h,f]. These are minimized by setting h, p @ *?, in which case the errors
are O[n?"@*3]. For equal-tailed tests and confidence intervals with bootstrap critical values, the
differences between the true and nominal rejection probabilities and coverage probabilities are
O[(nhy)™ +nh,? ** + h,"]. These are minimized by setting h, u N * 2, in which case the errors

"+ In contrast, the error made by first-order asymptotic approximationsis O[(nh,) ™4

are Q[
in both the one-sided and equal-tailed cases. Hall (1992a, pp. 220-224) provides details and a
discussion of certain exceptional cases in which smaller errors can be achieved. In contrast to the

situation with the smooth function model, the orders of refinement achievable in nonparametric

density estimation are different for one-sided and equal-tailed tests and confidence intervals.



The Error Made by First-Order Asymptotics when nh,"** Does Not Convergeto 0:
The effects of having h, ® 0 too slowly are most easily seen by assuming that s ,(x) is known

so that t, is replaced by

2 = o090 T09- by

sn(X)

A symmetrical test of Ho rgectsif [f,(X) - fol/sn(X) islarge. If Hpistrue, then

P( fr(X) - fOEZJ:P(ZHEZ_ bn(x)J

Sn(X) Sn(X)
for any z, and
(4.17) P{M{:’Z}:p{znf"z_ bn(x)}_ P{ZHE_Z_ by (%) }
S n(x) S n(X) s (%)

Each term on the right-hand side of (4.17) has an asymptotic expansion of the form (4.15) except
without the g5 term and the O(n™*) remainder term, which arise from random sampling error in

$:2(x). Specifically,

(418) P{Mgz}z F{z - M}_ F{_Z bn(¥) }

s (%)
1 ] [ b
+(nhh)”2{pl{z sn(x)} pl{z sn(x)}}

1 b L], (X -372
+H{p{z Sn(X)} pz{z Sn(x)}}*‘o[(m‘h) I

where p; is an even function and p, is an odd function. Hall (19923, p. 212) provides a proof and
the details of p; and p,. A Taylor series expansion of the right-hand side of (4.18) combined with

ba(X) = O(hy') and s(x) =O[(nhy,) 2] yields

(419) P{Mﬁz}:m)-F(-z)+om:+(nm)rﬁr+(nhn)-l].

s n(X)
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The remainder term on the right-hand side of (4.19) is dominated by h,', which is the effect of
asymptotic bias, unless nh,"** ® 0. Thus, the error made by first-order asymptotic
approximations exceeds O[(nh,) "] unless f,(X) is sufficiently undersmoothed to make the

asymptotic bias b,(x) negligible, which is equivalent to requiringnh, **® Oasn® ¥.

4.2.4 Kernel Nonparametric Mean Regression

In nonparametric mean-regression, the aimisto infer the mean of a random variable Y
conditional on a covariate X without assuming that the conditional mean function belongsto a
known finite-dimensional family of functions. Define G(x) = E(Y]X = x) to be the conditional mean
function. Let X be a scalar random variable whose distribution has a probability density function f.
This section explains how the bootstrap can be used to obtain asymptotic refinements for tests of
hypotheses about G(x) and confidence intervals that are based on kernd estimation of G..

Let the data consist of arandom sample, {Y;, Xi: i = ., N}, of thejoint distribution of (Y,

X). The kernd nonparametric estimator of G(x) is

G B & X-Xij’
()= mf(x)"’_l (m

where

0= & K(X' X j

nh, 2 U

K isakernd function and { h,} a sequence of bandwidths. The properties of G(X) are discussed by
Hérdle (1990). To statethe onesthat arerdevant here, let r 3 2 be an even integer. Assumethat G
and f each have r bounded, continuous derivatives in a neighborhood of x. Let K be a bounded
function that is symmetrical about O, has support [-1,1], and satisfies (4.11). Define By and A¢ asin

Section4.2.1. Set V(2) = Var(Y]X = 2), and assume that this quantity is finite and continuousin a

neighborhood of z=x. Also define
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by (X) =hﬁi{“—[e(x)f(x)]- f“)(x)}

rif(x) | qx"
and
2y = B V()
(4200 sy(x)= o T(x)

If nh?"*! isbounded asn® ¥, then

Z,(x)° G (%) 'SG(())(())' b, (x) ® ¢ N(0.1)

The fastest possible rate of convergence of G(X) to G(X) is achieved by setting h, p /@ *. When
this happens, Gy(x) - G(x) = Oy * V], by(x) u " Y, and s ,(x) p n"@* Y,

Theissues involved in converting Z, into an asymptotically pivotal statistic that can be used
to test a hypothesis about G(x) or form a confidence interval for G(x) are the same asin kernel
density estimation. It is necessary to replace s ,(X) with a suitable estimator and to remove the
asymptotic bias by(x). Asinkerne density estimation, asymptotic bias can be removed to sufficient
order by undersmoothing. Undersmoothing for a symmetrical test or confidenceinterval consists of
choosing h, sothat nh, **® Oasn® ¥.*

Now consider estimation of s ﬁ(x) . One possibility isto replace f(x) with f,(x) and V(X)
with a consistent estimator on the right-hand side of (4.20). The higher-order asymptotics of Gn(x)
are simpler, however, if s ﬁ(x) is estimated by a sample analog of the exact finite-sample variance

of the asymptotic form of G,(X) - G(X). With asymptotic bias removed by undersmoothing, the

asymptotic form of G,(x) - G(X) is

(4.21) G,(¥)- G(x)=

1 d X- X
100 A G(X)]K( h, jmp(l)'

Thevariance of thefirst term on the right-hand side of (4.21) is then estimated by the following

sample analog, which will be used here to estimate s 2(x) »:
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n 2
2(x) L&y Gn(x)JZK[X'TX‘j .

TR
Now define

ZGa(- G
" $(%)

With asymptotic bias removed through undersmoothing, t, is asymptotically distributed as N(0,1)
and is an asymptotically pivotal statistic that can be used to test a hypothesis about G(x) and to form
a confidence interval for G(x). The bootstrap version of t, is

_ G (%) - Gy(¥)
5 (9

t,*

where Gy*(X) is obtained from G,(x) by replacing the sample{Y;, X} with the bootstrap sample
{Y*, X*}, and ;% (X) is obtained from s,(X) by replacing the sample with the bootstrap sample, f,(x)
with f.*(x), and Gn(x) with G,*(x).**

The Edgeworth expansions of the distributions of t, and t,* are similar in structure to those of

the analogous statistic for kerne density estimators. Theresult for symmetrical tests and
confidence intervals can be stated as follows. Let E(Y*#|X = Z) befinite and continuous for all zin

aneighborhood of x. Let K satisfy the conditions of Theorem 4.1. Then there are functions gand g,

such that ¢, - = 0(1) uniformly and almost surdly asn® ¥,
(422)  P(tplEt)=2F(t)- 1+ ﬁqa ) +ol(nh,) "]
uniformly over t, and

Pe(t;*|Et) = 2F (t)- 1+iqn(t)+o[(nhn)-l]

uniformly over t almost surely. It follows that the bootstrap estimator of the distribution of [t is
accurate through O[(nh,)™], whereas first-order asymptotic approximations make an error of this

size. Let z,,,* bethebootstrap a-level critical value of for testing the hypothesis Hy: G(X) = Go.
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Then P*(|t.*| > z,a2*) = &, and it can be shown that P(|t.| > z,a2*) = a + o[(nh,)"]. Hall (1992,
Section 4.5) discusses the mathematical details. Thus, with the bootstrap critical value, the true
and nominal rejection probabilities of a symmetrical t test of Ho differ by o[(nh,)™]. In contrast, it
follows from (4.22) that the differenceis O[(nh,)™] if first-order asymptotic approximations are
used to obtain the critical value. The same conclusions hold for the coverage probabilities of

symmetrical confidenceintervals for G(x).

4.3 Non-Smooth Estimators

Some estimators are obtained by maximizing or minimizing a function that is
discontinuous or whose first derivative is discontinuous. Two important examples are Manski’s
(1975, 1985) maximum-score (MS) estimator of the slope coefficients of a binary-response mode
and the least-absolute deviations (LAD) estimator of the slope coefficients of alinear median-
regression modd. The objective function of the M S estimator and the first derivative of the
objective function of the LAD estimator are step functions and, therefore, discontinuous. The
LAD and M S estimators cannot be approximated by smooth functions of sample moments, so
they do not satisfy the assumptions of the smooth function model. Moreover, the Taylor-series
methods of asymptotic distribution theory do not apply to the LAD and M S estimators, which
greatly complicates the analysis of their asymptotic distributional properties. As a consequence,
little is known about the ability of the bootstrap to provide asymptotic refinements for hypothesis
tests and confidence intervals based on these estimators. Indeed it is not known whether the
bootstrap even provides a consistent approximation to the asymptotic distribution of theM S
estimator.

This section explains how the LAD and M S estimators can be smoothed in a way that
greatly smplifies the analysis of their asymptotic distributional properties. The bootstrap
provides asymptotic refinements for hypothesis tests and confidence intervals based on the

smoothed LAD and M S estimators. |n addition, smoothing accelerates the rate of convergence of
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the M S estimator and simplifies even its first-order asymptotic distribution. Smoothing does not
change the rate of convergence or first-order asymptotic distribution of the LAD estimator. The

LAD estimator is treated in Section 4.3.1, and the M S estimator is treated in Section 4.3.2

4.3.1 The LAD Estimator for a Linear Median-Regression Model
A linear median-regression model has the form

(4.23) Y=Xb+U,

where Y is an observed scalar, X isan observed 1” q vector, b isaq’ 1 vector of constants, and U
is an unobserved random variable that satisfies median(U|X = x) = 0 almost surely. Let {Y;, X;: i
=1, ..., n} bearandom sample from thejoint distribution of (Y, X) in (4.23). The LAD estimator
of b, 6;1 , solves

= 14
minimize H,(b)° = Y - X b
imzeH®)° Ca - Xb

n
(424 = =8 (¥ - XD[21(% - %b>0)- 1|,
i=1
where B is the parameter set and I(® is theindicator function. Bassett and Koenker (1978) and
K oenker and Bassett (1978) give conditions under which the LAD estimator is n”consistent and
nY2(b, - b) isasymptotically normal.
ﬁn (b) has cusps and, therefore, a discontinuous first derivative, at points b such that Y; =

Xib for somei. This non-smoothness causes the Edgeworth expansion of the LAD estimator to be

non-standard and very complicated (De Angdlis et al. 1993). The bootstrap is known to estimate
the distribution of n”z(ﬁn - b) consistently (De Angdlis et al. 1993, Hahn 1995), but it is not
known whether the bootstrap provides asymptotic refinements for hypothesis tests and confidence

intervals based on by, .22
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Horowitz (1998b) suggests removing the cuspsin ﬁn by replacing the indicator function

with a smooth function, thereby producing a modified objective function whose derivatives are
continuous. Theresulting smoothed LAD (SLAD) estimator is first-order asymptotically
equivalent to the unsmoothed LAD estimator but has much simpler higher-order asymptotics.
Specifically, let K be a bounded, differentiable function satisfying K(v) =0 if v£ -1 and K(v) = 1
if v3 1. Let {h,} bea sequence of bandwidths that convergestoOasn® ¥. TheSLAD
estimator solves
(4.25) mir:)iirgize:Hn(b) ° %é(\q - Xib){ZK(Yi'Txib)- 1}.
K is analogous to the integral of a kernd function for nonparametric density estimation. K is not
a kernd function itsdlf.

Let b, bea solution to (4.25). Horowitz (1998b) gives conditions under which

nY 2(bn - En) =0y(2) . Thus, the smoothed and unsmoothed LAD estimators are first-order

asymptotically equivalent. It follows from this asymptotic equivalence and the asymptotic
normality of LAD estimators that n"4(b, - b) ® ¢ N(0,V), whereV = D'E(X¢X)D™?, D =
2E[XXf(O[x)], and f(¥x) is the probability density function of U conditional on X = x.

At statistic for testing a hypothesis about a component of b or forming a confidence
interval can be constructed from consistent estimators of D and E(X¢X). D can be estimated

consistently by Dy(by), where

(4.26) D, (b) =%é’1n XiCIXiKt{\ﬁ 'hhxibj.
i=1

E(X&X) can be estimated consistently by the sample average of X¢X. However, the asymptotic
expansion of the distribution of thet statistic is simpler if E(X¢X) is estimated by the sample

analog of the exact finite-sample variance of Hn(b)/flb a b =b. Thisestimator is T,(b,), where
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n 2
427) T.(0) :%é X 6. ﬂzK(—Yi 'hnxibj- 1}2(Yi 'mxiijc{Yi 'hnxibj} .
i=1

It is not difficult to show that V is estimated consistently by V,, © Dy(bn)*Tn(b,)Dn(by) ™. Now let
by and by, respectively, be thej’th components of b, andb (j =1, ..., q). LetV, bethe(j, j)
component of V,. Thet statistic for testing Ho: b; = by ist, = n"*(by - bio)/Viy2. 1f Hyistrue,
thent, ® Y N(0,1), sot, is asymptotically pivotal.

To obtain a bootstrap version of t,, let {Yi*, Xi*: i =1, ..., n} beabootstrap sample that
is obtained by sampling the data { Y;, X;} randomly with replacement. Let b,* be the estimator of
b that is obtained by solving (4.25) with {Y/*, Xi*} in placeof {Y;, X}. Let V;* bethe version of
V, that is obtained by replacing b, and {Y;, Xi}, respectively, with b,* and { Yi*, X*} in (4.26) and
(4.27). Then the bootstrap analog of t, is t;* = n"(by* - by)/(Vi*)"2.

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that under regularity conditions, t, and t,* have Edgeworth
expansions that are identical almost surely through O[(nh,)™]. Horowitz (1998b) gives the details
of theargument. In addition, reasoning similar to that used in Section 4.2.3 shows that the
bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based on
the SLAD estimator. For example, consider a symmetrical t test of Ho. Let z,,,,* bethe
bootstrap a-level critical valuefor thistest. That is, z,,,* satisfies P*(|ta*| > Z,42*) =a. Then
P(Ita] > Znar*) = @ + o[(nh,)™]. In contrast, first-order asymptotic approximations make an error
of sizeO[(nh,)™"]. Thisis because first-order approximations ignore a term in the Edgeworth
expansion of the distribution of |t,| whose size is O[(nh,)™], whereas the bootstrap captures the
effects of this term.

The conditions under which this result holds include: (1) for almost every x and every u
in a neighborhood of O, f(u[x) isr -1 times continuously differentiable with respect to u; (2) K

satisfies (4.11) and has four bounded, Lipschitz continuous derivatives everywhere; and (3) h, pt
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n*, where 2/(2r + 1) < k < 1/3. Complete regularity conditions are given in Horowitz (1998b).
Condition (3) impliesthat r 3 4. Therefore, the size of the refinement obtained by the bootstrap is
O(n°), where7/9 < c< 1.

The bootstrap also provides asymptotic refinements for one-sided tests and confidence
intervals and for asymptotic chi-square tests of hypotheses about several components of b. In
addition, it is possible to construct a smoothed version of Powell’s (1984, 1986) censored LAD
estimator and to show that the bootstrap provides asymptotic refinements for tests and confidence
intervals based on the smoothed censored LAD estimator. Horowitz (1998b) provides details, a
method for choosing h, in applications, and Monte Carlo evidence on the numerical performance

of thet test with bootstrap critical values.

4.3.2 The Maximum Score Estimator for a Binary-Response Model

The most frequently used binary-response modd hastheform Y =1(Xb +U 2 0), where
X is an observed random vector, b is a conformable vector of constants, and U is an unobserved
random variable. The parameter vector b isidentified only up to scale, so a scale normalization is

needed. Here, scale normalization will be accomplished by assuming that [b,| = 1, where b, isthe

first component of b. Let b and b denote the vectors consi sting of all components of b and b

except the first. The maximum-score estimator of b, by, © (bnl,ﬁn“r)d:, solves
N 1g
(4.28) maﬁ%rglze H,(b) =Ea (2Y - DI (X;b2 0),
i=1
where{Y;, Xi: i =1, ..., n} isarandom sample from thejoint distribution of (Y, X), and Bisa
compact parameter set in which the scale normalization holds
Manski (1975, 1985) shows that if median(U|X = x) = 0 almost surely, the first

component of X is continuously distributed with a non-zero coefficient, and certain other

conditions are satisfied, then (bnl,ﬁ]"r)d: ® b almost surely. Because by = +1, by, convergesto b,
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faster than any power of n. Cavanagh (1987) and Kim and Pollard (1990) show that 6;1

converges in probability at the rate n”® and that n”3(6,'1 - 6) has a complicated, non-normal

asymptotic distribution. The M S estimator is important despite its slow rate of convergence and
complicated limiting distribution becauseit is semiparametric (that is, it does not require the
distribution of U to belong to a known, finite-dimensional family) and it permits the distribution
of U to have arbitrary heteroskedasticity of unknown form provided that the centering assumption
median(U[X = x) = 0 holds.

The asymptotic distribution of the M S estimator is too complex for usein testing
hypotheses about b or constructing confidence intervals. Manski and Thompson (1986)
suggested using the bootstrap to estimate the mean-square error of the M S estimator and
presented Monte Carlo evidence suggesting that the bootstrap works well for this purpose.
However, it is not known whether the bootstrap consistently estimates the asymptotic distribution
of the M S estimator.

The M S estimator converges slowly and has a complicated limiting distribution because
it is obtained by maximizing a step function. Horowitz (1992) proposed replacing the indicator
function on the right-hand side of (4.28) by a differentiable function. The resulting estimator is
called the smoothed maximum score (SMS) estimator. |t solves
(4.29) ma>g%r2ize H,(b) =%éi 2y - 1)K(Xﬁbj,

i=1
where K is a bounded, differentiable function satisfying K(v) =0if vE-1and K(v) = 1if v3 1,

and { hn} is a sequence of bandwidths that convergestoOasn® ¥. Asin SLAD estimation, K is

analogous to theintegral of akernd function. Let b again be the vector of all components of b

but thefirst. Let b, © (bnl,ﬁndr)d: be the SMS estimator of (b1,6<9¢. Horowitz (1992) gives

conditions under which (nh,)¥2(b, - b- 'l )® 9 N(OV), wherer ® 2 isan integer that is



related to the number of times that the CDF of U and the density function of Xb are continuously
differentiable, nh,” *'isbounded asn® ¥, 1 isan asymptotic bias, and V is a covariance matrix.
Therate of convergence of the SM S estimator of b isat least n?® and can be arbitrarily closeto
n2if the CDF of U and density function of Xb have sufficiently many derivatives. Thus,

smoothing increases the rate of convergence of the M S estimator.

To obtain an asymptotically pivotal t statistic for testing a hypothesis about a component
of b or formi ng a confidence interval, it is necessary to remove the asymptatic bias of 6;1 and
construct a consistent estimator of V. Asymptotic bias can be removed by undersmoothing. For
first-order asymptotic approximations, undersmoothing consists of choosing h, so that nh,” ** ®
Oasn® ¥. However, for the reasons explained in the discussion of equation (4.19), the stronger
condition nh,"** ® 0 is needed to obtain asymptotic refinements through O[(nh,)™]. V can be

estimated consistently by V,, = Qu(b,) "Dn(b,)Qn(bn) ™, wherefor any b1 B

1 g = = X;b
(430) Q\(b)=——=a (2Y - XX, Kﬂ{ﬁj

nh," i

2
13 ~-~ X:b
—aq X | Ke == ||,

and X consists of all components of X but thefirst.

(4.31) Dg(b)=

Now let an and Bj , respectively, be the |’ th components of 6;1 and b . Let V, bethe
(i, j) component of V.. Thet statistic for testing Ho: b =b ;g is t, = (nh,)2(by - b o) / Vi Y2

If Hoistrue thent, ® ?N(0,1), sot, is asymptotically pivotal.
To obtain a bootstrap version of t,, let {Yi*, Xi*: i =1, ..., n} beabootstrap sample that
is obtained by sampling the data { Y;, X;} randomly with replacement. Let b,* be the estimator of

b that is obtained by solving (4.29) with {Y/*, Xi*} in placeof {Y;, X}. Let V;* bethe version of
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V, that is obtained by replacing b, and {Y;, Xi}, respectively, with b,* and { Yi*, X*} in (4.30) and
(4.31). Then the bootstrap analog of t, is t* = (nm)ﬂz(gnj* - an)/(vnj*)ﬂz.

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that t, and t,* have Edgeworth expansions that are identical almost
surely through O[(nh,)™]. See Horowitz (1998c) for the details of the argument. It follows that
the bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals based
on the SMS estimator. For a symmetrical t test or confidence interval, the true and nominal
rejection or coverage probabilities differ by o[(nh,)™] when bootstrap critical values are used,
whereas they differ by O[(nh,)™] when first-order asymptotic critical values are used. First-order
approximations ignore a term in the Edgeworth expansion of the distribution of |t,| whose sizeis
O[(nh,)™"], whereas the bootstrap captures the effects of this term.

The conditions under which this result holds include: (1) the CDF of U conditional on X
and the density of Xb conditional on X have sufficiently many derivatives; (2) K satisfies (4.11)
for somer 3 8; and (3) h, p n*, where 1/(r + 1) < k < 1/7. Complete regularity conditions are
givenin Horowitz (1998c). Conditions (2) and (3) imply that the size of the refinement obtained
by the bootstrap is O(n™), where 6/7 < ¢ < 1. The bootstrap also provides asymptotic refinements

for one-sided tests and confidence intervals and for asymptotic chi-square tests of hypotheses
about several components of b . Horowitz (1998c) discusses methods for choosing hy, in

applications and gives Monte Carlo evidence on the numerical performance of thet test with

bootstrap critical values.

4.4 Bootstrap Iteration
Thediscussion of asymptotic refinements in this chapter has emphasized the importance of
applying the bootstrap to asymptotically pivotal statistics. This section explains how the bootstrap

can be used to create an asymptotic pivot when oneis not available. Asymptotic refinements can be
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obtained by applying the bootstrap to the bootstrap-generated asymptotic pivot. The computational
procedureis called bootstrap iteration or prepivoting because it entails drawing bootstrap samples
from bootstrap samples as wdl as using the bootstrap to create an asymptotically pivotal statistic.
The discussion here concentrates on the use of prepivoting to test hypotheses (Beran 1988). Beran
(1987) explains how to use prepivoting to form confidence regions. Hall (1986b) describes an
alternative approach to bootstrap iteration.

Let T, bea statistic for testing a hypothesis Ho about a sampled population whose CDF is F.
Assume that under Ho, T, satisfies assumptions SFM and (3.8) of the smooth function modd.
DefineF = Fy if Hp istrue, and define F to be the CDF of a distribution that satisfies Hy otherwise.

Let G,(t,F)° P-(T, £t) denotethe exact, finite-sample CDF of T, under sampling from the

population whose CDF isF. Supposethat Hy isreected if T, islarge. Then the exact a-leve
critical value of Ty, Z,, iSthe solution to Gn(Z,, F) =1 - a under Ho. An exact a-leved test based on
T, can be obtained by rgecting Ho if Gy(T,, F) > 1-a. Thus, if F were known, g, ° G,(T,, F) could
be used as a statistic for testing Ho. Prepivoting is based on the idea of using g, as atest statistic.

A test based on g, cannot be implemented in an application unless T, is pivotal because F
and, therefore, g, are unknown. A feasible test statistic can be obtained by replacing F with an
estimator F, that imposes the restrictions of Hp and is nY2-consistent for Fq if Ho is true.

Replacing F with F, produces the bootstrap statistic g,* = Gn(Ty, Fn). Gn(% F,) and, therefore,
Gn(Tn, Fn) can be estimated with arbitrary accuracy by carrying out a Monte Carlo simulation in

which random samples are drawn from F,. Givenany t, let H,(t ,Fo) = P (9, £1) =
P [Gn(Th, Fy) £1]. An exact test based on gi* rejects Ho at the a level if Hy(90*, Fo) >1- a.

This test cannot be implemented because F, is unknown. If the bootstrap is consistent, however,
the asymptotic distribution of g,* isuniformon [0,1]. Therefore, Hy is rejected at the asymptotic
a level if g,* >1-a. Now observethat g,* is asymptotically pivotal even if T, is not; the

asymptotic distribution of g,* is U[0,1] regardless of Fo. This suggests that asymptotic
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refinements can be obtained by carrying out a second stage of bootstrap sampling in which the
bootstrap is used to estimate the finite-sample distribution of g,*.

The second stage of bootstrapping consists of drawing samples from each of the first-stage
bootstrap samples that are used to compute g,*. Suppose that there are M first-stage samples.
The m'th such sample yields a bootstrap version of Ty, say Tnm, and an estimator F, of F, that is
consistent with Ho. F,, can be sampled repeatedly to obtain Gn(% Fqm), the EDF of T,, under
sampling from Fym, @and gnm © Gn(Tom, Frm)- Now estimate Hi(% Fo) by Hq(% Fr), which is the EDF
of gm(M=1, ..., M). Theiterated bootstrap test rgjects Ho at thea leve if H,(g.*, F,) >1-a.

Beran (1988) shows that when prepivoting and bootstrap iteration are applied to a statistic
T, the true and nominal probabilities of rejecting a correct null hypothesis differ by o(n™?) for a
one-sided test and o(n'™) for a symmetrical test even if T, is not asymptotically pivotal. By
creating an asymptotic pivot in thefirst stage of bootstrapping, prepivoting and bootstrap iteration
enable asymptotic refinements to be obtained for a non-asymptotically-pivotal T,. The same
conclusions apply to the coverage probabilities of confidence intervals. Beran (1988) presents the
results of Monte Carlo experiments that illustrate the numerical performance of this procedure.

The computational procedure for carrying out prepivoting and bootstrap iteration is given
by Beran (1988) and is as follows:

1. Obtain T, and F, from the estimation data{X: i =1, ..., n}, which are assumed to be a
random sample of a possibly vector-valued random variable X.

2. Letcy, ..., Cq be M bootstrap samples of size n that are drawn from the population
whose distribution is F,. Let F,, denote the estimate of F, that is obtained from c,,. Let T,n be

the version of T, that is obtained fromc,. The EDF of { Ty m=1, ..., M} estimates G,(% F).
— -1 M
St gr=M'Q _ 1(TmET,).

3. Foreachm, let ¢y, ..., Cmk be K further bootstrap samples of size n, each drawn from

the population whose CDF is F,,. Lét T bethe version of T, that is obtained from cpy. Set
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Gh (Tam: Fam) = K~ 1& sz1| (Tamk £ Tam) - Each of the Gy(Tom, Fom) (M= 1, ..., n} isasecond-

stage estimate of g,. Estimate Hy(g:*, Fo) by H,(g:*,F,) = M™1Q rzll[Gn (Tom, Fam) £ 90°1 -

Reect Hp at thea leve if Hy(gn*, Fr) > 1- a.

4.5 Secial Problems

The bootstrap provides asymptotic refinements because it amounts to a one-term Edgeworth
expansion. The bootstrap cannot be expected to perform well when an Edgeworth expansion
provides a poor approximation to the distribution of interest. Animportant case of thisis
instrumental-variables estimation with poorly corrdated instruments and regressors. It iswell
known that first-order asymptotic approximations are especially poor in this situation (Hillier 1985,
Nelson and Startz 1990ab, Phillips 1983). The bootstrap does not offer a solution to this problem.
With poorly corrdated instruments and regressors, Edgeworth expansions of estimators and test
statistics involve denominator terms that are closeto zero. Asaresult, the higher-order terms of the
expansions may dominate the lower-order ones for a given sample size, in which case the bootstrap
may provide little improvement over first-order asymptotic approximations. Indeed, with small
samples the numerical accuracy of the bootstrap may be even worse than that of first-order
asymptotic approximations.

The bootstrap also does not perform well when the variance estimator used for
Studentization has a high variance itsdf. This problem can be especially severe when the
parameters being estimated or tested are variances or covariances of a distribution. This happens,
for example, in estimation of covariance structures of economic processes (Abowd and Card 1987,
1988; Behrman et al. 1994; Griliches 1979; Hall and Mishkin 1982). In such cases Studentization
is carried out with an estimator of the variance of an estimated variance. Imprecise estimation of a
variance also affects the finite-sample performance of asymptotically efficient GMM estimators

because the asymptotically optimal weight matrix is theinverse of the covariance matrix of the
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GMM residuals. Thefinite-sample mean-square error of the asymptotically efficient estimator can
greatly exceed the mean-square error of an asymptotically inefficient estimator that is obtained with
a non-stochastic weight matrix. Horowitz (1998a) shows that in the case of estimating covariance
structures, this problem can be greatly mitigated by using a trimmed version of the covariance
estimator that excludes “outlier” observations. See Horowitz (1998a) for details. Section 5.5

presents a numerical illustration of the effects of trimming.

4.6 The Bootstrap when the Null Hypothesisis False

To understand the power of atest based on a bootstrap critical value, it is necessary to
investigate the behavior of the bootstrap when the null hypothesis being tested, Ho, isfalse.
Suppose that bootstrap samples are generated by a modd that satisfies a false Ho and, therefore, is
misspecified relative to the true data-generation process. If Ho is simple, meaning that it completely
specifies the data-generation process, then the bootstrap amounts to Monte Carlo estimation of the
exact finite-sample critical value for testing Hq against the true data-generation process. Indeed, the
bootstrap provides the exact critical value, rather than a Monte Carlo estimate, if G(% F,) can be
calculated analytically. Tests of simple hypotheses are rarely encountered in econometrics,
however.

In most applications, Hy is composite. That is, it does not specify the value of afinite- or
infinite-dimensional “nuisance’ parameter y . In the remainder of this section, it is shown that a test
of a composite hypothesis using a bootstrap-based critical value is a higher-order approximation to
acertain exact test. The power of the test with a bootstrap critical valueis a higher-order
approximation to the power of the exact test.

Except in the case of atest based on a pivotal statistic, the exact finite-sample distribution of
thetest statistic dependsony . Therefore, except in the pivotal case, it is necessary to specify the
value of y to obtain exact finite-sample critical values. The higher-order approximation to power

provided by the bootstrap appliesto avalue of y that will be called the pseudo-true value. To
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define the pseudo-true value, let y , be an estimator of y that is obtained under the incorrect
assumption that Hg istrue. Under regularity conditions (see, e.g., Amemiya 1985, White 1982), y
converges in probability to alimity *, and n¥%(y , -y *) = Oy(1). y* isthe pseudo-truevalueof y .
Now let T, be a statistic that is asymptotically pivotal under Ho. Suppose that its exact CDF
with an arbitrary value of y is G(%y ), and that under H, its asymptotic CDF is Go(®. Suppose that
bootstrap sampling is carried out subject to the constraints of Ho. Then the bootstrap generates
samples from a modd whose parameter valueisy ,, so the exact distribution of the bootstrap
version of T, isGy(% Y n). Under Ho and subject to regularity conditions, G,(% Yy ») has an asymptotic
expansion of theform
(432)  Gy(zy ) =Go(@) +n 2g;(zy *) +0,(n"17?)
uniformly over z, wherej = 1 or 2 depending on the symmetry of T,,. Usually j = 1if T,isadatistic
for aone-tailed test andj = 2if T, isa statistic for a symmetrical, two-tailled test. Gy(z y *) hasan
expansion identical to (4.32) through O(n"?). Therefore, through O,(n™"?), bootstrap sampling when
Ho isfalseis equivalent to generating data from a modd that satisfies Hy with pseudo-true values of
the parameters not specified by Ho. 1t follows that when Hy is false, bootstrap-based critical values
are equivalent through Op(n""z) to thecritical values that would be obtained if the mode satisfying
Ho with pseudo-true parameter values were correct. Moreover, the power of atest of Hp using a
bootstrap-based critical valueis equal through O(n"?) to the power against the true data-generation
process that would be obtained by using the exact finite-sample critical value for testing Hq with

pseudo-true parameter values.

5. MONTE CARLO EXPERIMENTS
This section presents the results of some Monte Carlo experiments that illustrate the
numerical performance of the bootstrap as a means of reducing differences between the true and

nominal reection probabilities of tests of statistical hypotheses.
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5.1 The Information-Matrix Test

White s (1982) information-matrix (IM) test is a specification test for parametric modds
estimated by maximum likelihood. It tests the hypothesis that the Hessian and outer-product forms
of theinformation matrix are equal. Reection implies that the modd is misspecified. Thetest
statistic is asymptotically chi-square distributed, but Monte Carlo experiments carried out by many
investigators have shown that the asymptotic distribution is a very poor approximation to thetrue,
finite-sample distribution. With sample sizes in the range found in applications, the true and
nominal probabilities that the IM test with asymptotic critical values rejects a correct mode can
differ by afactor of 10 or more (Horowitz 1994, Kennan and Neumann 1988, Orme 1990, Taylor
1987).

Horowitz (1994) reports the results of Monte Carlo experiments that investigate the ability of
the bootstrap to provide improved finite-sample critical values for the IM test, thereby reducing the
distortions of RP’ s that occur with asymptotic critical values. Threeforms of the test were used:
the Chesher (1983) and Lancaster (1984) form, White's (1982) original form, and Orme' s (1990)
ws. The Chesher-Lancaster form isrdatively easy to compute because, in contrast to the other
forms, it does not require third derivatives of the log-density function or analytic expected values of
derivatives of the log-density. However, first-order asymptotic theory gives an especially poor
approximation to its finite-sample distribution. Orme (1990) found through Monte Carlo
experimentation that the distortions of RP’s are smaller with ws than with many other forms of the
IM test statistic. Orme's w; uses expected values of third derivatives of the log-density, however,
soitisrdatively difficult to compute.

Horowitz' s (1994) experiments consisted of applying the three forms of the IM test to Tobit
and binary probit models. Each modd had ether one or two explanatory variables X that were
obtained by sampling either the N(0,1) or the U[0,1] distribution. There were 1000 replications in

each experiment. Other details of the Monte Carlo procedure are described in Horowitz (1994).
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Table 1 summarizes the results of the experiments. As expected, the differences between empirical
and nominal RP' s arevery large when asymptotic critical values areused. Thisis especially true
for the Chesher-Lancaster form of thetest. When bootstrap critical values are used, however, the
differences between empirical and nominal RP’ s arevery small. The bootstrap essentially

diminates the distortions of the RP' s of the three forms of the IM test.

5.2 Thet Test in a Heter oskedastic Regression Model

In this section, the heteroskedasticity-consistent covariance matrix estimator (HCCME) of
Eicker (1963,1967) and White (1980) is used to carry out at test of a hypothesis about b inthe
mode!

(51) Y=Xb+U.

In this modd, U is an unobserved random variable whose probability distribution is unknown and
that may have heteroskedasticity of unknown form. It is assumed that E(UYX =x) =0 and
Var(U¥X =x) <¥ for all xin the support of X.

Let b, bethe ordinary least squares (OLS) estimator of b in (5.1), b, and b; bethei'th
components of b, and b, and s, be the squareroot of the (i,i) dement of the HCCME. Thet statistic
for testing Ho: by = bigis T, = (byi - bio)/s. Under regularity conditions, T, ® d N@O,1) asn® ¥.
However, Chesher and Jewitt (1987) have shown that sy can be seriously biased downward.
Therefore, the true RP of atest based on Ty, is likdly to exceed the nominal RP. Asis shown later in
this section, the differences between the true and nominal RP’s can be very large when n is small.

The bootstrap can be implemented for mode (5.1) by sampling observations of (Y,X)
randomly with replacement. The resulting bootstrap sampleis used to estimate b by OLS and
compute T.*, thet statistic for testing Ho*: b = b,;. Theempirical distribution of T,* is obtained by
repeating this process many times, and the a-level bootstrap critical valuefor T,* is estimated from

this distribution. Since U may be heteroskedastic, the bootstrap cannot be implemented by
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resampling OL S residuals independently of X. Similarly, one cannot implement the bootstrap by
sampling U from a parametric moded because (5.1) does not specify the distribution of U or the
form of any heteroskedasticity.

Randomly resampling (Y, X) pairs does not impose the restriction E(U%X =x) = 0 on the
bootstrap sample. Aswill be seen later in this section, the numerical performance of the bootstrap
can be improved greatly through the use of an alternative resampling procedure, called thewild
bootstrap, that imposes thisrestriction. The wild bootstrap was introduced by Liu (1988) following
a suggestion of Wu (1986). Mammen (1993) establishes the ability of the wild bootstrap to provide
asymptotic refinements for the modd (5.1). Cao-Abad (1991), Hardle and Mammen (1993), and
Hérdle and Marron (1991) use the wild bootstrap in nonparametric regression.

To describe the wild bootstrap, write the estimated form of (5.1) as

Y = Xib,+U,; i=12,..,n
whereY; and X; arethei’th observed values of Y and X, and U,; isthei’'th OLSresidua. For eachi

=1, .., n, let F; bethe unique 2-point distribution that satisfies E(Z|F) =0, E(Z?|F)=U2, and

E(z%F)=U2 , where Z is arandom variable with the CDF F. Then, Z = (1- ¥/5)U,; /2 with

ni »
probability (1++/5)/(2v/5), and Z = (1++/5)U,; / 2 with probability 1- (1++/5)/(2V5). The
wild bootstrap is implemented as follows:

1. Foreachi=1, ..., n sample U* randomly from F;. Set Yi* = Xb, + U;*.

2. Estimate (5.1) by OL S using the bootstrap sample{Y*, Xi:i =1, ..., n}. Computethe
resulting t statistic, Tp*.

3. Obtain the empirical distribution of the wild-bootstrap version of T* by repeating steps 1
and 2 many times. Obtain the wild-bootstrap critical value of T,* from the empirical distribution.

Horowitz (1997) reports the results of a Monte Carlo investigation of the ability of the
bootstrap and wild bootstrap to reduce the distortions in the RP of a symmetrical, two-tailed t test

that occur when asymptotic critical values are used. The bootstrap was implemented by resampling
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(Y,X) pairs, and the wild bootstrap was implemented as described above. The experiments also
investigate the RP of thet test when the HCCME is used with asymptotic critical values and when a
jackknife version of the HCCME is used with asymptotic critical values (MacKinnon and White
1985). MacKinnon and White (1985) found through Monte Carlo experimentation that with the
jackknife HCCME and asymptotic critical values, thet test had smaller distortions of RP thaniit did
with several other versions of the HCCME.

The experiments usen = 25. X consists of an intercept and either 1 or 2 explanatory
variables. In experiments in which X has an intercept and one explanatory variable, b = (1, 0)¢ In
experiments in which X has an intercept and two explanatory variables, b = (1,0,1)¢ The hypothesis
tested in all experimentsis Ho: b, = 0. The components of X were obtained by independent
sampling from a mixture of normal distributions in which N(0,1) was sampled with probability 0.9
and N(2,9) was sampled with probability 0.1. The resulting distribution of X is skewed and
leptokurtotic. Experiments were carried out using homoskedastic and heteroskedastic U’s. When
U was homaoskedastic, it was sampled randomly from N(0,1). When U was heteroskedastic, the U
value corresponding to X = x was sampled from N(O,W), where W, = 1+ X% or W, = 1 + x,® + X%,
depending on whether X consists of 1 or 2 components in addition to an intercept. W isthe

covariance matrix of U corresponding to the random-coefficients model Y = Xb + Xd +V , where

V and the components of d are independently distributed as N(0,1). Therewere 1000 Monte Carlo
replications in each experiment.

Table 2 shows the empirical RP's of nominal 0.05-leve t tests of Ho. Thedifferences
between the empirical and nominal RP’ s using the HCCME and asymptotic critical values arevery
large. Using the jackknife version of the HCCME or critical values obtained from the bootstrap
greatly reduces the differences between the empirical and nominal RP's, but the empirical RP' sare

still 2-3 times the nominal ones. With critical values obtained from the wild bootstrap, the
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differences between the empirical and nominal RP' s are very small. In these experiments, the wild

bootstrap essentially removes the distortions of RP that occur with asymptotic critical values.

5.3 Thet Test in a Box-Cox Regression Model

Thet statistic for testing a hypothesis about a slope coefficient in a linear regression mode
with a Box-Cox (1964) transformed dependent variableis not invariant to changesin the
measurement units, or scale, of the dependent variable (Spitzer 1984). The numerical value of thet
statistic and the finite-sample RP's of thet test with asymptotic critical values vary according to the
measurement units or scalethat isused. Asaresult, thefinite-sample RP's of thet test with
asymptotic critical values can befar from the nominal RP’'s. The bootstrap provides a better
approximation to the finite-sample distribution and, therefore, better finite-sample critical values.

Horowitz (1997) reports the results of a Monte Carlo investigation of the finite-sample RP of
asymmetrical t test of a hypothesis about a slope coefficient in alinear regression modd with a

Box-Cox transformed dependent variable. The modd generating the datais

YO =py+b, X +U

where Y() is the Box-Cox transformed value of the dependent variable Y, U ~N(0,s2), b= 2, b; =
0and s?=0.0625. X was sampled from N(4,4) and was fixed in repeated samples. The hypothesis
being tested isHy: b; =0. Thevalueof | isether 0.01 or 1, depending on the experiment, and the
scaleof Ywas 0.2, 1, or 5. Thesample sizesweren =50 and 100. There were 1000 replicationsin
each experiment.

Theresults of the experiments are summarized in Table 3. The empirical critical value of the
t test tends to be much smaller than the asymptotic critical value of 1.96, especially in the
experiments with a scale factor of 5. Asaresult, theempirical RP of thet test is usually much

smaller than its nominal RP. The mean bootstrap critical values, however, arevery closeto the
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empirical critical values, and the RP's based on bootstrap critical values are very closeto the

nominal ones.

5.5 Estimation of Covariance Structures

In estimation of covariance structures, the objective is to estimate the covariance matrix
of ak” 1 vector X subject to restrictions that reduce the number of unique, unknown eementsto r
< k(k + 1)/2. Estimates of ther unknown elements can be obtained by minimizing the weighted
distance between sample moments and the estimated population moments. Weighting all sample
moments equally produces the equally-weighted minimum distance (EWMD) estimator, whereas
choosing the weights to maximize asymptotic estimation efficiency produces the optimal
minimum distance (OMD) estimator.

The OMD estimator dominates the EWMD estimator in terms of asymptotic efficiency,
but it has been found to have poor finite-sample properties in applications (Abowd and Card
1989). Altonji and Segal (1994, 1996) carried out an extensive Monte Carlo investigation of the
finite-sample performance of the OMD estimator. They found that the estimator is badly biased
with samples of the sizes often found in applications and that its finite-sample root-mean-square
estimation error (RM SE) often greatly exceeds the RM SE of the asymptotically inefficient
EWMD estimator. Altonji and Segal also found that the true coverage probabilities of asymptotic
confidence intervals based on the OMD estimator tend to be much lower than the nominal
coverage probabilities. Thus, estimation and inference based on the OMD estimator can be
highly misleading with finite samples.

Horowitz (1998a) reports the results of a Monte Carlo investigation the ability of the
bootstrap to reduce the bias and RM SE of the OMD estimator and reduce the differences between
true and nominal coverage probabilities of nominal 95% confidence intervals based on this
estimator. The data-generation processes used in the Monte Carlo experiments were taken from

Altonji and Segal (1994). In each experiment, X has 10 components, and the sample sizeisn =
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500. Thej’th component of X, X; (j = 1, ..., 10) is generated by X; = (Z + r Z,+ )/(1 + rH)"?,
whereZy, ..., Z3; areiid random variables with means of 0 and variances of 1, andr =0.5. The
Z's are sampled from five different distributions depending on the experiment. These are U[0,1],
N(0,1), Student t with 10 degrees of freedom, exponential, and lognormal. It isassumed that r is
known and that the components of X are known to be identically distributed and to follow MA(1)
processes. The estimation problem isto infer the scalar parameter q that is identified by the
moment conditions Var(X) =q (j =1, ..., 10) and Cov(X;, X;.1) =rg/(L+r? ( =2, ..., 10).
Experiments were carried out with the EWMD and OMD estimators as well as a version of the
OMD estimator that uses a trimmed estimator of the asymptotically optimal weight matrix. See
Horowitz (1998a) for an explanation of the trimming procedure.

Theresults of the experiments are summarized in Table4. The OMD estimator, g, omp IS
biased and its RM SE exceeds that of the EWMD estimator, g,ewvp for all distributions of Z
except the uniform. Moreover, the coverage probabilities of confidence intervals based on g, omp
with asymptotic critical values are far below the nominal value of 0.95 except in the experiment
with uniform Z's. Bootstrap bias reduction greatly reduces both the bias and RMSE of gnomp- In
addition, the use of bootstrap critical values greatly reduces the errors in the coverage
probabilities of confidence intervals based on g, omp. 1N the experiments with normal, Student t,
or uniform Z's, the bootstrap essentially eliminates the bias of g, omp and the errors in the
coverage probabilities of the confidence intervals. Moreover, the RM SE of the bias-corrected
Onomp 1N these experiments is 12-50% less than that of g, ewmp-

When Z is exponential or lognormal, the bootstrap reduces but does not eliminate the bias
of gnomp and the errors in the coverage probabilities of confidenceintervals. Horowitz (1998a)
shows that the poor performance of the bootstrap in these cases is caused by imprecise estimation
of the OMD weight and covariance matrices. This problem islargely eliminated through the use

of the trimmed estimator of these matrices. With trimming, g, omp With exponential or lognormal
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Z'shasa RMSE that is the same as or less than that of the EWMD estimator, and the empirical

coverage probabilities of confidence intervals are close to the nominal values.

6. CONCLUSIONS

The bootstrap consistently estimates the asymptotic distributions of econometric
estimators and test statistics under conditions that are sufficiently general to accommodate most
applications. Subsampling methods usually can be used in place of the standard bootstrap when
the latter is not consistent. Together, the bootstrap and subsampling methods provide ways to
substitute computation for mathematical analysis if analytical calculation of the asymptotic
distribution of an estimator or test statistic is difficult or impossible.

Under conditions that are stronger than those required for consistency but still general
enough to accommodate a wide variety of econometric applications, the bootstrap reduces the
finite-sample biases of estimators and provides a better approximation to the finite-sample
distribution of an estimator or test statistic than does first-order asymptotic theory. The
approximations of first-order asymptotic theory are often quite inaccurate with samples of the
sizes encountered in applications. As aresult, the true and nominal probabilities that a test rejects
a correct hypothesis can be very different when critical values based on first-order
approximations areused. Similarly, the true and nominal coverage probabilities of confidence
intervals based on asymptotic critical values can be very different. The bootstrap can provide
dramatic reductions in the differences between true and nominal rejection and coverage
probabilities of tests and confidence intervals. In many cases of practical importance, the
bootstrap essentially eliminates finite-sample errors in rgjection and coverage probabilities.

This chapter has also emphasized the need for carein applying the bootstrap. The
importance of asymptotically pivotal statistics for obtaining asymptotic refinements has been
stressed. Proper attention also must be given to matters such as recentering, correction of test

statistics in the block bootstrap for dependent data, smoothing, and choosing the distribution from
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which bootstrap samples are drawn. These qualifications do not, however, detract from the

importance of the bootstrap as a practical tool for improving inference in applied econometrics.
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APPENDI X: Informal Derivation of (3.27)

To derive (3.27), write P([Tn| 3 z,4/2%) intheform

(AL P(Ta>20a/5) =1- [P(Th £ Za/5") - P(Tn £-2,0/5)]

=1- {P[Tn - (Zn,alz* - Z¥.a/2) £ Z¥,a/2] - P[Tn +(Zn,a/2* - Z¥,a/2) £- Z¥,a/2]}-

With an error whose sizeis almost surely O(n), (Zna2* - ¢ a2) On the right-hand side of (A.1) can

—3/2) )

be replaced with a Cornish-Fisher expansion that retains terms through O(n This expansion can

be obtained by applying the delta method to the difference between (3.23) and (3.24). Theresultis

10(Z¢a2:F0) 1
A2 * e = = 22%, +
(A2 Z4/" - Zar N f(Zan) n?

>n2r3(Z) +O(n°?),

where rs is a smooth function, rs(r,) =0, and n”2r3(2) =0p() asn® ¥. Substituting (A.2)
into (A.1) yidds
(A3)  P(TyP> za/3) =1- {P[Ty- 0 ¥20"20(Z) £2 5 + 175 (2 0 12)]

- PLTy +1 ¥2n"2r3(Z) £- 2 a0 - 07 a(2 121} +O(02).

where
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__ % (zR)
A4 r(2= f@

The next step is to replace the right-hand side of (A.3) with an Edgeworth approximation. To do
this, it is necessary to provide a detailed specification of the function g, in (3.9) and (3.13). Let kj,
denote thej’th cumulant of T, Under assumption SFM, k;, can be expanded in a power series.

For a statistic such as T, whose asymptatic distribution has a variance of 1,

k k
— M2 13 -5/2
kl,n - n]_/z + n3/2 +O(n ) ’

Kon =142 +O(M2)
' n

k k
— 31 32 -5/2
k3,n - n]_/z + n3/2 +O(n ) ’

and
g =8 +0(M2),
' n

where the coefficients ki are functions of moments of products of components of Z. The function

gz isthen
1 1 1
(A5)  Golt,Fo)=-t [E(kzz +hiz) o (Kay + Akipkan) (£ - 3+ kay(t® - 1007 +15)}f ®).

See Hall (19924, pp. 46-56) for details. Denote the quantity on the right-hand side of (A.5) by
0,(t ko) , where ko denotes the ki coefficients that are associated with cumulants of the
distribution of T,,. Let ¥ n denote the k; coefficients that are associated with cumulants of

T, +n ¥2nY2r,(Z), andlet G,(t B ,,) denotetheversion of g, that is obtained by replacing k ,
with B . Now replace g(t, Fo) in (3.13) with g, (t K ,). Also, replacet with

Zy g2t (2 as2) IN(3.13). Substituting the result into the right-hand side of (A.3) gives the

following Edgeworth approximationto P(|T,|> z,, 2*) :
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(AB) P> Zyass*) =21~ Flzyapp +0 (2 o/2)}

- 207Gl 2y a2 + N (24 a12) K] +O(N72).
A Taylor-series expansion of theright-hand side of (A.6) combined with (A.4) and the fact that

2[1-F(zap)] =agves
(A7) P(T>z,5,2%) =2 +%[§2(Z¥.a/21ko) - o2y a/2.R )] +0(n’?).

Itis not difficult to show that §,(z; 5,2.K ) - §2(2¥’a,2,l$n) =o(n" ). (Roughly speaking, thisis

because n” lr3(Z )=o(n"1) almost surely.) Therefore, the second term on the right-hand side of

(A.7) iso(n?), which yidds (3.27).
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FOOTNOTES

! Thereis not general agreement on the name that should be given to the probability that a test
rejects a true null hypothesis (that is, the probability of a Typel error). The source of the
problem is that if the null hypothesis is composite, then the rgection probability can be different
for different probability distributionsin the null. Hall (1992, p. 148) uses the word level to denote
the rgection probability at the distribution that was, in fact, sampled. Beran (1988, p. 696)
defines level to be the supremum of rejection probabilities over all distributions in the null
hypothesis. Other authors (Lehmann 1959, p. 61; Rao 1973, p. 456) use the word size for the
supremum. Lehmann defines level as a number that exceeds the rejection probability at all
distributions in the null hypothesis. In this chapter, the term regjection probability or RP will be
used to mean the probability that a test rgects a true null hypothesis with whatever distribution
generated the data. The RP of atest isthe same as Hall’s definition of level. The RP is different

from the size of a test and from Beran’s and Lehmann’s definitions of level.

2 TheMallows metric is defined by r (P,Q)* =inf{E|Y - X||2: Y ~P, X ~Q}. Theinfimumis
over al joint distributions of (Y, X) whose marginalsareP and Q. . Weak convergence of a

sequence of distributions in the Mallows metric implies convergence of the corresponding
sequences of first and second moments. See Bickel and Freedman (1981) for a detailed discussion

of this metric.

% Hall and Jing (1996) show how certain types of asymptotic refinements can be obtained
through non-replacement subsampling. The rate of convergence of resulting error is, however,

slower than the rate achieved with the standard bootstrap.

* If E(qy) does not exist, then the “ bias reduction” procedure described here centers a higher-

order approximation to the distribution of g, - Jo.

® |t is not difficult to show that the bootstrap provides bias reduction even if m= 1. However, the
bias-corrected estimator of g may have a large variance if mistoo small. The asymptotic
distribution of the bias-corrected estimator is the same as that of the uncorrected estimator if m

increases sufficiently rapidly as n increases. See Brown (1996) for further discussion.

® The meaning of asymptotic negligibility in this context may be stated precisely as follows. Let
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T, =T (Xq,..., X,,) beastatistic, andlet T, =n[H(Z,,...,Z;) - H(My,,...,m,;)]. Thenthe
error made by approximating 'ﬁl with T, is asymptotically negligibleif thereis a constant ¢ >0

suchthat n2P[n?[T, - T,|>c]=0O(1) asn® ¥.

" The proof that the bootstrap provides asymptotic refinements is based on an Edgeworth
expansion of a sufficiently high-order Taylor-series approximation to T,. Assumption SFM
insures that H has derivatives and Z has moments of sufficiently high order to obtain the Taylor
series and Edgeworth expansions that are used to obtain a bootstrap approximation to the
distribution of T, that has an error of size O(n®). . SFM may not be the weakest condition
needed to obtain this result. It certainly assumes the existence of more derivatives of H and
moments of Z than needed to obtain less accurate approximations. For example, asymptotic
normality of T, can be proved if H has only one continuous derivative and Z has only two
moments. See Hall (1992a, pp. 52-56 and 238-259) for a statement of the regularity conditions
needed to obtain various levels of asymptotic and bootstrap approximations.

® Some statistics that are important in econometrics have asymptotic chi-square distributions.

Such statistics often satisfy the assumptions of the smooth function model but with H(,) =0
and ‘ITZH(z) / ‘sz‘ITz(tZ:mZ 1 0. Vesions of the results described here for asymptotically normal

statistics are also available for asymptotic chi-square statistics. First-order asymptotic
approximations to the finite-sample distributions of asymptotic chi-square statistics typically
make errors of size O(n™). Chandra and Ghosh (1979) give aformal presentation of higher-order
asymptotic theory for asymptotic chi-square statistics.

° More generally, (3.8) is satisfied if the distribution of Z has a non-degenerate absolutely
continuous component in the sense of the L ebesgue decomposition. There are also circumstances
in which (3.8) is satisfied even when the distribution of Z does not have a non-degenerate
absolutely continuous component. See Hall (19923, pp. 66-67) for examples. In addition, (3.8)
can be modified to deal with econometric models that have a continuously distributed dependent
variable but discrete covariates. See Hall (19923, p. 266).

19" Another form of two-tailed test is the equal-tailed test. An equal tailed test rgjects Hy if T, >
Znar OF Tn < Zy1-a2), Where z, 1 - a1 is the a/2-quantile of the finite-sample distribution of T,. If

the distribution of T, is symmetrical about O, then equal-tailed and symmetrical tests are the same.



Otherwise, they are different. Most test statistics used in econometrics have symmetrical
asymptotic distributions, so the distinction between equal-tailed and symmetrical testsis not
relevant when the RP is obtained from first-order asymptotic theory. Many test statistics have
asymmetrical finite-sample distributions, however. Higher-order approximations to these
distributions, such as the approximation provided by the bootstrap, are also asymmetrical.
Therefore, the distinction between equal-tailed and symmetrical tests is important in the analysis
of asymptotic refinements. Notethat “ symmetrical” in a symmetrical test refersto theway in
which the critical value is obtained, not to the finite-sample distribution of T, which is

asymmetrical in general.

' The empirical distribution of the data is discrete, so (3.20) may not have a solution if F, isthe
EDF of thedata. However, Hall (1992a, pp. 283-286) shows that thereis a solution at a point an
whose difference from a decreases exponentialy fast asn ® ¥. Theerror introduced into the
analysis by ignoring the difference between a,, and a is o(n®) and, therefore, negligible for

purposes of the discussion in this chapter.

12 Under mild regularity conditions, the constant the multiplies the rate of convergence of the
error of the bootstrap estimate of the distribution function of a non-asymptotically-pivotal statistic
is smaller than the constant that multiplies the rate of convergence of the error that is made by the
normal approximation. This need not happen, however, with the errorsin the RP's of tests and

coverage probabilities of confidenceintervals. See Beran (1982) and Liu and Singh (1985).

13 Strictly spesking, U cannot be normally distributed unless| = 0 or 1, but the error made by
assuming normality is negligibly small if the right-hand side of the mode has a negligibly small
probahility of being negative. Amemiya and Powell (1981) discuss ways to avoid assuming

normality.

¥ The empirical-likelihood estimator is one of alarger class of estimators of F that are described
by Brown et al. (1997) and that impose the restriction E¥h(X, q,) = 0. All estimatorsin the class
are asymptotically efficient.

> The regularity conditions required to achieve asymptotic refinements in GMM estimation with
dependent data include the existence of considerably more higher-order moments than are needed
with iid data as well as a modified version of the Cramér condition that takes account of the

dependence. See Hall and Horowitz (1996) for a precise statement of the conditions.
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1® Tests and confidence regions based on asymptotic chi-square statistics, including the test of
overidentifying restrictions, are symmetrical. Therefore, restriction (4.2) also applies to them.

" The results stated in this section do not require assuming that r is even or that K isa
symmetrical function, but these assumptions simplify the exposition and are not highly restrictive

in applications.

8 The asymptotic bias contributes a term of size [(nh,) ?ba(X)]? = O(nh,* * 1) to the Edgeworth
expansion of the distribution of |t,|. Becauset,* isunbiased, thistermis not present in the
expansion of the distribution of [t,*|. Therefore, the expansions of the distributions of [t,| and [t,*|
agree through O[(nh,)™] only if nh,"**® Oasn® ¥.

¥ It is also possible to carry out explicit bias removal in kernd mean-regression. Hardle et al
(1995) compare the methods of explicit bias removal and undersmoothing for a one-sided
confidence interval. They show that for a one-sided interval, there are versions of the bootstrap
and explicit bias removal that give better coverage accuracy than the bootstrap with

undersmoothing.

% Hall (1992a, p. 226) proposes an estimator of s 2(x) that is n“*-consistent when Y is
homoskedastic (that is, Var(Y]X = X) is independent of X). The estimator used here is consistent

(but not n2-consistent) when Y has heteroskedasticity of unknown form.

2l The discussion here assumes that the bootstrap sample is obtained by randomly sampling the
empirical distribution of (Y, X). If V(2) is a constant (that is, the modd is homoskedastic), then
bootstrap sampling can also be carried out by sampling centered regression residuals conditional
on the observed values of X. SeeHall (19923, Section 4.5).

Z Janas (1993) shows that a smoothed version of the bootstrap provides asymptotic refinements

for a symmetrical t test of a hypothesis about a population median (no covariates).

% The cumulants of a distribution are coefficients in a power-series expansion of the logarithm of
its characteristic function. Thefirst three cumulants are the mean, variance, and third moment
about the mean. The fourth cumulant is the fourth moment about the mean minus three times the

square of the variance.
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TABLE 1

EMPI R CAL REJECTI ON PROBABI LI TI ES OF NOM NAL 0. 05- LEVEL | NFORVATI ON- MATRI X TESTS OF PRCB

RP Usi ng RP Usi ng
Distr. Asynptotic Critical Values Boot strap-Based Orit. Val ue
N of X Wiite  Chesh.-Lan. O ne Wiite Chesh.-Lan. an
Bi nary Probit Mdel s
50 N(O, 1) 0.385 0.904 0. 006 0. 064 0. 056 0. 0:
U -2,2) 0.498 0.920 0. 017 0. 066 0. 036 0. 0:
100 N0, 1) 0.589 0. 848 0. 007 0. 053 0. 059 0.0
U -2,2) 0.632 0.875 0. 027 0. 058 0. 056 0. 04
Tobit Model s
50 N(O, 1) 0.112 0.575 0. 038 0. 083 0. 047 0. 04
U -2,2) 0.128 0.737 0.174 0. 051 0. 059 0.0
100 N(O, 1) 0. 065 0.470 0.167 0. 038 0. 039 0. 04
U -2,2) 0. 090 0.501 0.163 0. 046 0. 052 0. 0:

1

Source: Horowitz (1994).
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TABLE 2

EMPI R CAL REJECTI ON PROBABI LI TIES OF t TESTS USI NG HETEROSKEDASTI CI TY-

CONSI STENT COVARI ANCE MATRI X ESTI MATORS?

n =25

Enpirical RP at Nomi nal 0.05 Level

1-Vari abl e 1-Vari abl e 2-Vari abl e 2-Vari abl e

For m of Honmoskedasti c Random Coef f. Honoskedasti c Random Coef f .

Test Model Model Model Model
Asynptotic 0. 156 0. 306 0.192 0. 441
Jackkni fe 0. 096 0. 140 0. 081 0. 186

Boot st rap 0. 100 0. 103 0.114 0.124
(Y, X) Pairs

W d 0. 050 0. 034 0. 062 0. 057

Boot st rap
! Source: Horowitz (1997).
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TABLE 3!
EMPI Rl CAL REJECTI ON PROBABI LI TIES OF t TESTS FOR BOX- COX REGRESSI ON MODEL *

Nom nal RP = 0. 05

RP Usi ng

Cit. Val. from Mean

Scal e Enpi ri cal Boot st rap

n I Fac. Asynp. Boot . Cit. Val. Cit. val.
50 0.01 0.2 0. 048 0. 066 1. 930 1. 860
1.0 0. 000 0. 044 0.911 0. 909
5.0 0. 000 0. 055 0. 587 0.571
100 0.01 0.2 0. 047 0. 053 1.913 1.894
1.0 0. 000 0. 070 1.201 1. 165
5.0 0. 000 0. 056 0. 767 0. 759
50 1.0 0.2 0. 000 0. 057 1.132 1.103
1.0 0. 000 0. 037 0. 625 0. 633
5.0 0. 000 0. 036 0. 289 0. 287
100 1.0 0.2 0. 000 0.051 1. 364 1. 357
1.0 0. 000 0. 044 0. 836 0. 835
5.0 0. 000 0.039 0. 401 0. 391

! Source: Horowitz (1997).
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TABLE 4: RESULTS CF MONTE CARLO EXPERI MENTS W TH ESTI MATORS OF COVARI ANCE ST
EWWD OVD wi t hout Boot strap OVD with Bootstrap ___OMDw
Cover age Cover age
Prob. with Prob. with
Asynptotic Boot st rap
Critical Criti cal
Distr. RVEE Bi as RNVBE Val ue Bi as RVBE Val ue Bi as R
Uni form 0. 019 0.005 0.015 0.93 0.002 0.014 0.96
Nor rral 0. 024 0.016 0.025 0.85 0.0 0. 021 0.95
St udent t 0. 029 0.024 0.034 0.79 0.002 0.026 0.95
Exponential 0.042 0.061 0.073 0.54 0.014 0.048 0.91 0.004 0.1
Lognor mal 0.138 0.274 0.285 0.03 0.136 0.173 0.76 0.046 0.
! Source: Horowitz (1998a). Nom nal coverage probability is 0.95. Based on 1000 repli:
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