
1 Appendix A: Matrix Algebra

1.1 Definitions

• Matrix A = [] = [A]

• Symmetric matrix:  =  for all  and 

• Diagonal matrix:  6= 0 if  =  but  = 0 if  6= 

• Scalar matrix: the diagonal matrix of  = 

• Identity matrix: the scalar matrix of  = 1

• Triangular matrix:  = 0 if   

• Idempotent matrix: A = AA = A2

• Symmetric idempotent matrix: A0A = A = AA

• Orthogonal matrix: A−1= A0

• Unitary matrix: A0A = AA0= I

• Trace of A :  (A) =P

=1  sum of diagonal terms.

—  (ABC) =  (BCA) =  (CBA) if ABC are symmetric.

—  (A) =  [ (A)]

—  (A+B) =  (A) +  (B)

Matrix Addition:

• A+B = [ + ]

• (A+B) +C = A+(B+C)

• (A+B)0 = A0+B0
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Matrix Multiplication

• AB 6= BA : ⎡⎣  

 

⎤⎦⎡⎣  

 

⎤⎦ =

⎡⎣ +   + 

+   + 

⎤⎦
⎡⎣  

 

⎤⎦⎡⎣  

 

⎤⎦ =

⎡⎣ +  + 

 +   + 

⎤⎦
• (AB)C = A (BC)

• A (B+C) = AB+AC

• (AB)0 = B0A0

Idempotent (projection) Matrix

y = x+ z+ u

where yx z and u are  × 1 vectors  and  are scalars. Let

M =
³
 − z (z0z)−1 z0

´
then,  is an idempotent matrix.

MM =
³
 − z (z0z)−1 z0

´³
 − z (z0z)−1 z0

´
=  − z (z0z)−1 z0 − z (z0z)−1 z0 + z (z0z)−1 z0z (z0z)−1 z0

=  − z (z0z)−1 z0 − z (z0z)−1 z0 + z (z0z)−1 z0

=  − z (z0z)−1 z0 =

Further note that

Mz =
³
 − z (z0z)−1 z0

´
z = 0

Hence we have

My = Mx+ Mz+Mzu

= Mx+Mzu
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Vector

• Lenth of a vector: Norm is defined as

||e|| =
√
e0e =

µ
P
=1

2

¶12
• Orthogonal vectors: Two nonzero vectors a and b are orthogonal, written a⊥b iff

a0b = b0a = 0

Regression in a Matrix form

y = Xb+ u

The OLS estimate is

b̂ = (X0X)−1X0y

= (X0X)−1X0Xb+ (X0X)−1X0u

= b+ (X0X)−1X0u

The OLS residuals are

û = y−Xb̂ = Xb−Xb̂+ u = u−X
³
b̂− b

´
Hence we have

X0û = X 0
³
u−X

³
b̂− b

´´
= X0u−X0X

³
b̂− b

´
= X0u−X0X (X0X)−1X0u

= 0

Matrix Inverse

• (AB)−1 = B−1A−1

•
⎡⎣ A11 0

0 A22

⎤⎦−1 =
⎡⎣ A−111 0

0 A−122

⎤⎦
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•
⎡⎣ A11 A12

A21 A22

⎤⎦−1 =? (see p.966 A-74)

Kronecker Products Let A =

⎡⎣ 11 12

21 22

⎤⎦  then
A⊗B =

⎡⎣ 11B 12B

21B 22B

⎤⎦
• A is  ×  and B is ×  Then A⊗B is ()× ()

• A⊗ (B+C) = A⊗B+A⊗C

• (A+B)⊗C = A⊗C+B⊗C

• (A)⊗B = A⊗ (B) =  (A⊗B) where  is a scalar

• (A⊗B)⊗C = A⊗ (B⊗C)

• (A⊗B)−1 = ¡A−1⊗B−1¢
• (A⊗B)0 = A0⊗B0

• tr(A⊗B) =tr(A)tr(B)

• (A⊗B) (C⊗D) = AC⊗BD

1.2 Eigen values and Eigen vectors

Eigen Values Characteristic vectors = Eigen vectors, c

Characteristic roots = Eigen values. 

Ac = c

Ac−Ic = 0

|A−I| c = 0
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Example: Find eigen values of A :

A =

⎡⎣ 1 3

0 2

⎤⎦

|A−I| =
¯̄̄̄
¯̄ 1−  3

0 2− 

¯̄̄̄
¯̄ = 0

Solutions:

 = 1 2

Eigen Vector: The characteristic vectors of a symmetric matrix are orthogonal. That is,

C0C = I

where C = [c1 c2  c ]  Alternatively C is a unitary matrix.

Let

Λ =  (1  ) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 · · · 0

0 2 · · · 0

0 0 · · · 

⎤⎥⎥⎥⎥⎥⎥⎦
Then we have

Ac = c

or

AC = CΛ

C0AC = C 0CΛ = Λ =  (1  )

Alternatively we have

A = CΛC0

which is the spectral decomposition of A
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Some Facts: Prove the followings

1.  (A) =  (Λ)

 (A) =  (CΛC0) =  (ΛCC0) =  (ΛI) =  (Λ)

The trace of a matrix equals the sum of its eigen values.

2. |A| = |Λ|

3. AA = A2 = CΛ2C0

4. A−1 = CΛ−1C0

5. Suppose that A is a nonsigular symmetric matrix. Then

A12= CΛ12C0

6. Consider a matrix P such that

P0P = A−1

then

P = Λ−12C0

Matrix Decomposition LU decomposition (Cholesky Decomposition)

A = LU

where L is lower triangular and U is upper triangular matrix. L = U0

Example: ⎡⎣  

 

⎤⎦ =
⎡⎣  

0 

⎤⎦⎡⎣  0

 

⎤⎦ =
⎡⎣ 2 + 2 

 2

⎤⎦
Hence the solution is given by

 =
√
  = 

√
  =?
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Spectral (Eigen) Decomposition

A = CΛC0

Schur Decomposition

A = USU0

where U is an orthogonal matrix and S is a upper triangular matrix.

Quadratic forms Let  be a symmetric matrix. Then all eigen values of  are positive

(negative), then  is a positive (negative) definite matrix. If  has both negative and positive

eigen values, then  is indefinite.

1.3 Matrix Algebra

 (Ax)

x
= A

 (Ax)

x0
= A0

 (x0Ax)
x

= 2Ax

 (x0Ax)
A

= xx0
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1.4 Sample Questions:

Part I: Calculation A =

⎡⎣ 1 1

1 2

⎤⎦  B =
⎡⎣ 1 0

0 1

⎤⎦
Q1: Find eigen values of A

Q2: Find the lower triangular matrix of A

Q3: A⊗B
Q4: (A⊗B)−1

Q5: tr(A)

Part II: Matrix Algebra Consider the following regression

 = + 1 + 2 +  (1)

Q6: If you wrote (9) as

y = Xβ + u (2)

Define , and 

Q7: Consider the following problem

argmin


 = u0u

Show the first derivertives of  function.

Q8: Show the solution satisfies β =( 0)−1X0y
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2 Probability and Distribution Theory

2.1 Probability Distributions

 () = Prob ( = )

1. 0 ≤ Prob( = ) ≤ 1

2.
P

  () = 1 (discrete case),
R∞
−∞  ()  = 1 (continuous case)

Cumulative Distribution Function

 () =

⎧⎨⎩
P

≤  () = Prob ( ≤ ) : discreteR 
−∞  ()  = Prob ( ≤ ) : continuous

1. 0 ≤  () ≤ 1

2. If    then  () ≥  ()

3.  (+∞) = 1

4.  (−∞) = 0

Expectations of a Random Variable Mean or expected value of a random variable is

 [] =

⎧⎨⎩
P

  () discreteR

 ()  continuous

Median: used when the distribution is not symmetric

Mode: the value of  at which  () take its maximum
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Functional expectation Let  () be a function of  Then

 [ ()] =

⎧⎨⎩
P

  ()  () discreteR

 ()  ()  continuous

Variance

 () =  (− )
2

=

⎧⎨⎩
P

 (− )
2
 () discreteR


(− )

2
 ()  continuous

Note that

 () =  (− )
2
= 

¡
2 − 2+ 2

¢
= 

¡
2
¢− 2

Now we consider third and fourth central moments

Skewness :  (− )
3

Kurtosis :  (− )
4

Skewness is a measure of the asymmetry of a distribution. For symmetric distribution,

we have

 (− ) =  (+ )

and

 (− )
3
= 0

2.2 Some Specific Probabilty Distributions

2.2.1 Normal Distribution


¡
| 2¢ = 1√

22
exp

Ã
−(− )

2

22

!
or we note

 ∼ 
¡
 2

¢
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Properties:

1. Addition and Multiplication

 ∼ 
¡
 2

¢
 +  ∼ 

¡
+  22

¢
2. Standard normal function

 ∼  (0 1)

 (|0 1) =  () =
1√
2
exp

µ
−

2

2

¶
1√
2
exp

³
−2

2

´

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

y

Chi-squared,  and  distributions

 (; ) =
1

22Γ (2)

−2
2 exp

³
−
2

´
1 [ ≥ 0]

1. If  ∼  (0 1)  then 2 ∼ 21 chi-squared with one degress of freedom.
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2. If 1   are  independent 
2
1 variables, then

X
=1

 ∼ 2

3. If 1   are  independent  (0 1) variables, then

X
=1

2 ∼ 2

4. If 1   are  independent  (0 
2) variables, then

X
=1

2
2
∼ 2

5. If 1 and 2 are independent 
2
 and 2 variables, then

1 + 2 ∼ 2+

6. If 1 and 2 are independent 
2
 and 2 variables, then

1

2
∼  ()

7. If  is a  (0 1) variable and  is 2 and is independent of  then the ratio

 =
p


and it has the density function given by

 () =
Γ
¡
+1
2

¢
√
Γ

¡

2

¢ µ1 + 2



¶−+1
2

where  = − 1 and Γ () is the gamma function

Γ () =

Z ∞

0

−1−

8.  →  (0 1) as →∞

9. If  ∼  then 2 ∼  (1 )
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10. Noncentral 2 distribution: If  ∼  ( 2)  then ()
2
has a noncentral 21 distrib-

ution.

11. If  and  have a joint normal distribution, then w = ( )
0
has

w ∼  (0Σ)

where

Σ =

⎡⎣ 2 

 2

⎤⎦
12. If w ∼  (μΣ) where w has  elements, then w0Σ−1w has a noncentral 2 . The

noncentral parameter is μ0Σ−1μ2

2.2.2 Other Distributions

Lognormal distribution

 () =
1√
2

exp

Ã
−1
2

∙
ln− 



¸2!

Note that

 () = exp

µ
+

2

2

¶
 () = 2+

2
³


2 − 1
´

Hence

 = ln ()− 1
2
ln

µ
1 +

 ()

 ()
2

¶
2 = ln

µ
1 +

 ()

 ()
2

¶
Mode () = −

2

Median () = 
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• Properties

1. If  ∼  ( 2)  then exp () ∼  ( 2)

2. If  ∼  ( 2)  then ln () ∼  ( 2)

3. If  ∼  ( 2)  then  =  +  is a shifted LN of .  () =  () +   () =

 (+ ) =  ()

4. If  ∼  ( 2)  then  =  is also LN.  ∼  (ln +  2)

5. If  ∼  ( 2)  then  = 1 is also LN.  ∼  (− 2)

6. If  ∼  (1 
2
1)   ∼  (2 

2
2) and they are independent, then

 ∼ 
¡
1 + 2 

2
1 + 22

¢
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Gamma Distribution

 () =


Γ ()
exp (−)−1 for  ≥ 0   0   0

where

Γ () =

Z ∞

0

−1−

Note that if  is a positive integer, then

Γ () = (− 1)!

When  = 1 gamma distribution becomes exponential distribution

 () =

⎧⎨⎩  exp (−) for  ≥ 0
0 for   0

When  = 
2
  = 12 gamma dist. = 2 dist.

When  is a positive integer, gamma dist. is called Erlang family.

Beta distribution For a variable constrained between 0 and   0 the beta distribution

has its density as

 () =
Γ (+ )

Γ ()Γ ()

³


´−1 ³
1− 



´−1 1


Usually ’s range becomes  ∈ (0 1) that is  = 1

1. symmetric if  = 

2.  = 1  = 1 becomes  (0 1)

3.   1   1, becomes  − 

4.  = 1   2 strictly convex

5.  = 1  = 2 straight line

6.  = 1 1    2 strictly concave

7. Mean: 
+

 
+

for  = 1

8. Variance: 2

(++1)(+)2
 

(++1)(+)2
for  = 1
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Figure 1:

Logistic Distribution

 () =
−(−)

 (1 + −(−))2
   0

 () =
1

1 + −(−)

When  = 1 and  = 0 we have

 () =
−

(1 + −)2
  () =

1

1 + −

−

(1+−)2
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Exponential distribution

 () = −

Weibull Distribution

 () =

⎧⎨⎩ 


¡



¢−1
−()



for  ≥ 0
0 for   0

When  = 1 Weibell becomes the exponential distribution.
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Cauchy Distribution

 () =
1



∙


(− 0)
2
+ 2

¸
where 0 is the location parameter,  is the scale parameter. The standard Cauchy distri-

bution is the case where 0 = 0 and  = 1

 () =
1

 (1 + 2)

1
(1+2)

-5 -4 -3 -2 -1 1 2 3 4 5

0.1

0.2

0.3

x

y

Note that the  distribution with  = 1 becomes a standard Cauchy distribution. Also note

that the mean and variance of the Cauchy distribution don’t exist.

2.3 Representations of A Probability Distribution

Survival Function

 () = 1−  () = Prob [ ≥ ]

where  is a continuous random variable.

Hazard Function (Failure rate)

 () =
 ()

 ()
=

 ()

1−  ()

Let  () = − (exponential density function), then we have

 () =
 ()

 ()
= 
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which implies that the harzard rate is a constant with respect to time. However for Weibull

distribution or log normal distribution, the harzard function is not a constant any more.

Moment Generating Function (mdf) The mgf of a random variable  is

 () = 
¡

¢
 for  ∈ 

Note that mgf is an alternate definition of probability distribution. Hence there is one

for one relationship between the pdf and mgf. However mgf does not exist sometimes. For

example, the mgf for the Cauchy distribution is not able to be defined.

Characteristic Function (cf) Alternatively, the following characteristic function is used

frequently in Finance to define probability function. Even when the mdf does not exist, cf

always exist.

 () = 
¡

¢
 2 = −1

For example, the cf for the Cauchy distribution is exp (0−  ||) 

Cumulants The cumulants  of a random variable  are defined by the cumulant gener-

ating function which is the logarithm of the mgf.

 () = log
£

¡

¢¤

Then, the cumulants are gievn by

1 =  = 0 (0)

2 = 2 = 00 (0)

 = () (0)
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2.4 Joint Distributions

The joint distribution for  and  denoted  ( ) is defined as

Prob ( ≤  ≤   ≤  ≤ ) =

⎧⎨⎩
P



P

  ( )R 


R 

 ( ) 

Consider the following bivariate normal distribution as an example.

 ( ) =
1

2
p
1− 2

exp

µ
−1
2

£
2 + 2 − 2

¤

¡
1− 2

¢¶
where

 =
− 


  =
 − 


  =





Suppose that  =  = 1  =  = 0  = 05 Then we have

 ( ) =
1

2
√
1− 052 exp

µ
−1
2

£
2 + 2 − 

¤

¡
1− 052¢¶

1

2
√
1−052 exp

¡−1
2
(2 + 2 − )  (1− 052)¢

44 220 0
0.00-2

xy

-2-4 -4

0.15

z 0.10

0.05

We denote ⎛⎝ 



⎞⎠ ∼ 

⎛⎝⎡⎣ 



⎤⎦ 
⎡⎣ 2 

 2

⎤⎦⎞⎠
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Marginal distribution It is defined as

Prob ( = 0) =
X


Prob ( = 0| = 0)Prob ( = 0) =  () =

⎧⎨⎩
P

  ( )R

 ( ) 

Note that

 ( ) =  ()  () iff  and  are independent

Also note that if  and  are independent, then

 ( ) =  () ()

alternatively

Prob ( ≤   ≤ ) = Prob ( ≤ )Prob ( ≤ )

For a bivariate normal distribution case, the marginal distribution is given by

 () = 
¡
 

2


¢
 () = 

¡
 

2


¢
Expectations in a joint distribution Mean:

 () =

⎧⎨⎩
P

  () =
P

 
P

  ( )R

 ()  =

R


R

 ( ) 

Variance: See B-50.

Covariance and Correlation

 [ ] = 
£
(− )

¡
 − 

¢¤
= 

 ( ) =




 (+ ) =  () +  () + 2 ( )
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2.5 Conditioning in a bivariate distribution

 (|) =  ( )

 ()

For a bivariate normal distribution case, the conditional distribution is given by

 (|) = 
¡
+  2

¡
1− 2

¢¢
where  =  −   = 

2


If  = 0 then  and  are independent.

Regression: The Conditional Mean The conditional mean is the mean of the condi-

tional distribution which is defined as

 (|) =
⎧⎨⎩

P
  (|)R


 (|) 

The conditional mean function  (|) is called the regression of  on 

 =  (|) + ( − (|))
=  (|) + 

Example:

 = + + 

Then

 (|) = + 

Conditional Variance

 (|) = 
£
( − (|))2 |¤

= 
¡
2|¢− (|)2
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2.6 The Multivariate Normal Distribution

Let x =(1  )
0
and have a multivariate normal distribution. Then we have

 (x) = (2)
−2 |Σ|−12 exp

µ
1

2
(x−μ)0Σ−1 (x−μ)

¶
1. If x ∼  (μΣ)  then

Ax+ b ∼  (Aμ+ bAΣA0)

2. If x ∼  (μΣ)  then

(x−μ)0Σ−1 (x−μ) ∼ 2

3. If x ∼  (μΣ)  then

Σ−12 (x−μ) ∼  (0 I)
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2.7 Sample Questions

Q1: Write down the definitions of skewness and kurtosis. What is the value of skewness for

the symmetric distribution.

Q2: Let  ∼  (0 2) for  = 1   Further assume that  is independent each

other.Then

1. 2 ∼

2.
P

=1 
2
 ∼

3.
P

=1

2
2
∼

4.
21
22
∼

5.
21+

2
2

23
∼

6. 1
22
∼

7. 1
22+

2
3
∼

Q3: Write down the standard normal density

Q4: Let  ∼  ( 2) 

1. ln () ∼

2. Prove that  =  ∼  (ln +  2) 

3. Prove that  = 1 ∼  (− 2) 

Q5: Write down the density function of the Gamma distribution

1. Write down the values of  and  when Gamma = 2

2. Write down the values of  and  when Gamma = exponential distribution
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Q6: Write down the density function of the logistic distribution.

Q7: Write down the density function of Cauchy distribution. Write down the value of 

when Cauchy= distribution

Q8: Write down the definition of Moment Generating and Characteristic function.

Q9: Suppose that x = (1 2 3)
0
and x ∼  (Σ)

1. Write down the normal density in this case.

2. y = Ax+ b ∼

3. z = Σ−1 (x− c) ∼ where c 6= μ
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3 Estimation and Inference

3.1 Definitions

1. Random variable and constant: A random variable is believed to change over time

across individual. Constant is believed not to change either dimension. It becomes an

issue in the panel data.

 =  + 

Here we decompose  ( = 1   ;  = 1   ) into its mean (time invariant) and

time varying components. Now is  random or constant. According to the definition

of random variables,  can be a constant since it does not change over time. However,

if  has a pdf, then it becomes a random variable.

2. IID: independent, identically distributed: Consider the following sequence

x = (1 2 2) = (1 2 3)

Now we are asking if each number is a random variable or constant. If they are random,

then we have to ask the pdf of each number. Suppose that

 ∼ 
¡
0 2

¢


Now we have to know that  is an independent event. If they are independent, then

next we have to know 2 is identical or not. Typical assumption is IID.

3. Mean:

̄ =
1



X
=1



4. Standard error (deviation)

 =

"
1

− 1
X
=1

( − ̄)
2

#12
5. Covariance

 =
1

− 1
X
=1

( − ̄) ( − ̄)
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6. Correlation

 =




Population values and estimates

 =  + 

 ∼ 
¡
 2

¢

1. Estimate: it is a statistic computed from a sample
³
̂
´
. Sample mean is the statistic

for the population mean ().

2. Standard deviation and error:  is the standard deviation and  is the standard error

of the population.

3. regression error and residual:  is the error, ̂ is the residual

4. Estimator: a rule or method for using the data to estimate the parameter. “OLS

estimator is consistent” should read “the estimation method using OLS is consistently

estimated a parameter.

5. Asymptotic = Approximated. Asymptotic theory = approximation property. We are

interested in how an approximation works as →∞

Estimation in the Finite Sample

1. Unbiased: An estimator of a parameter  is unbiased if the mean of its sampling

distribution is 


³
̂ − 

´
= 0 for all 

2. Efficient: An unbiased estimator ̂1 is more efficient than another unbiased estimator

̂2 is the sampling variance of ̂1 is less than that of ̂2


³
̂1

´
 

³
̂2

´
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3. Mean Squared Error:


³
̂
´
= 

∙³
̂ − 

´2¸
= 

∙³
̂ −̂ +̂ − 

´2¸
= 

³
̂
´
+
h

³
̂ − 

´i2
4. Likelihood Function: rewrite

 =  − 

and consider the joint density of  If  are independent, then

 (1  |) =  (1|)  (2|)  (|)

=

Y
=1

 (|) =  (|  )

The function  (|u) is called the likelihood function for  given the data u.

5. Cramer-Rao Lower Bound: Under regularity condition, the variance of an unbiased

estimator of a parameter  will always be at least as large as

[ ()]
−1
=

µ
−

∙
2 ln ()

2

¸¶−1
=

Ã


∙
 ln ()



¸2!−1
where the quantity  () is the information number for the sample.

4 Large Sample Distribution Theory

Definition and Theorem (Consistency and Convergence in Probability)

1. Convergence in probability: The random variable  converges in probability to a

constant  if

lim
→∞

Prob (| − |  ) = 0 for any positive 

We denote

 →  or plim→∞ = 
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Carefully look at the subscript ‘’. This means  is dependent on the size of  For

an example, the sample mean, −1
P

=1  is a function of 

2. Almost sure convergence:

Prob
³
lim
→∞

 = 
´
= 1

Note that almost sure convergence is stronger than convergence in probability. We

denote

 → 

3. Convergence in the −th mean

lim
→∞

 (| − |) = 0

and denote it as

 → 

When  = 2 we say convergence in quardratic mean.

4. Consistent Estimator: An estimator ̂ of a parameter  is a consistent estimator of 

iff

plim→∞̂ = 

5. Khinchine’s weak law of large number: If  is a random sample from a distribution

with finite mean  () =  then

plim→∞̄ = plim→∞
−1

X
=1

 = 

6. Chebychev’s weak law of large number: If  is a sample of observations such that

 () =  ∞  () = 2 ∞, ̄2 = −2
P

=1 
2
 → 0 as →∞ then

plim→∞ (̄ − ̄) = 0

where ̄ = −1
P

=1 
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7. Kolmogorov’s Strong LLN: If  is a sequence of independently distributed random

variables such that  () =  ∞ and  () = 2 ∞ such that
P∞

=1 
2


2 ∞
as →∞ then

̄ − ̄ → 0

8. (Corollary of 7) If  is a sequence of iid variables such that  () =   ∞ and

 || ∞ then

̄ − → 0

9. Markov’s Strong LLN: If  is a sequence of independent random variables with () =

 ∞ and if for some   0,
P∞

=1
h
| − |1+

i
1+ ∞ then

̄ − ̄ → 0

Properties of Probability Limits

1. If  and  are random variables with plim =  and plim =  then

plim ( + ) = + 

plim = 

plim



=




if  6= 0

2. W is a matrix whose elements are random variables and if plimW = Ω then

plimW−1
 = Ω−1

3. If X and Y are random matrices with plimX = B and plimY = C then

plimXY = BC
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Convergence in Distribution

1.  converges in distribution to a random variable  with cdf  () if

lim
→∞

| ()−  ()| = 0 at all continuity points of  ()

In this case,  () is the limiting distribution of  and this is written

 → 

2. Cramer-Wold Device: If x → x then

c0x→ c0x

where c ∈

3. Lindeberg-Levy CLT (Central limit theorem): If 1   are a random sample from a

probability distribution with finite mean  and finite variance 2, then it sample mean,

̄ = −1
P

=1  have the following limiting distribution

√
 (̄ − )→ 

¡
0 2

¢
4. Lindegerg-Feller CLT: Suppose that 1   are a random sample from a probability

distribution with finite mean  and finite variance 
2
 . Let

̄2 =
1



X
=1

2  ̄ =
1



X
=1



where lim→∞max ()  (̄) = 0 Further assume that lim→∞ ̄2 = ̄2  ∞ then

it sample mean, ̄ = −1
P

=1  have the following limiting distribution

√
 (̄ − ̄)→ 

¡
0 ̄2

¢
or √

 (̄ − ̄)

̄
→  (0 1)
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5. Liapounov CLT: Suppose that {} is a sequnece of independent random variables with
finite mean  and finite positive variance 

2
 such that 

³
| − |2+

´
∞ for some

  0 If ̄ is positive and finite for all  sufficiently large, then
√
 (̄ − ̄)

̄
→  (0 1)

6. Multivariate Lindeberg-Feller CLT:

√
 (x̄−μ̄)→  (0Q)

where  (x) = Q and we assume that lim Q̄= Q

7. Asymptotic Covariance Matrix: Suppose that

√

³
θ̂−θ

´
→  (0V)

then its asymptotic covariance matrix is defined as

Asy. Var
³
θ̂

´
=
1


V

Order of A Sequence

1. A sequence  is of order 
 denoted 

¡

¢
 iff

plim→∞



=  ∞

(a)  = 1 =  (1)

(b)  = 2 =  (2) : plim22 = 1

(c)  = 1 (+ 10) =  (−1) : plim(+ 10)−1 −1 = 1

2. A sequence  is of order less than  iff

plim→∞



= 0

(a)  = 0 =  (1) : plim01 = 0

(b)  = 
¡
−12

¢
 then  =  (1)
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Order in Probability

1. A sequence random variable  is  ( ()) if there exists some  such that   0

and all   

Prob

µ¯̄̄̄


 ()

¯̄̄̄
 

¶
 1− 

where  is a finite constant

(a) If  ∼  (0 2)  then  =  (1)  Since given  there is always some  such

that

Prob (||  )  1− 

(b)  (
)

¡

¢
= 

¡
+

¢
(c) If

√
 (̄ − ̄)→  (0 ̄2)  then (̄ − ̄) = 

¡
−12

¢
but ̄ =  (1)

2. The notation  =  () means



→ 0

(a) If
√
̄ →  (0 ̄2)  then ̄ = 

¡
−12

¢
and ̄ =  (1)

(b)  (
) 

¡

¢
= +
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Sample Qestions

Part I: Consider the following model

M1 :  =  +   = 1  

M2 :  = +  + 

Suppose that

1 =  ∞ but  = 0 for all 

Q1: Show the OLS estimator ̂ in M1 is unbiased and consistent

Q2: Show the OLS estimator ̂ is biased but consistent

Q3: Suppose that  ∼  (0 1)  Derive the limiting distribution of ̂ in M1

Q4: Suppose that  ∼  (0 2 )  Derive the limiting distribution of ̂ in M2

Part II: Consider the following model

y = Xb+ u

Q5: Obtain the limiting distribution of θ = x0u

Q6: Obtain the limiting distribution of b̂

Q7: Suppose that  ∼  (0 2 )  Find the asymptotic variance of b̂
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5 Chapters 1 through 4: The Classical Assumptions

1. Linear

y = Xb+ u ∞

2. X is a nonstochastic and finite × matrix

3. X0X is nonsingular for all  ≥ 

4.  (u) = 0

5. u ∼ (0 2I) 

When X is stochastic 4. Exogeneity of the independent variables:  (u|X) = 0
5-1. Homoscedasticity and no-autocorrelation.

5-2. Normal distribution.

Properties: A. Existence: Given 1,2,3, β̂ exists for all  ≥  and it unique

B. Unbiasedness: Given 1-4,


³
β̂
´
= β

C. Normality: Given 1-5,

β̂ ∼ 
³
β 2 (X0X)−1

´
D. Gauss-Markov Theorem: OLS estimator is the minimum variance linear unbiased

estimator (whether X is stochastic or nonstochastic).

Linear Model Consider two models.

 = +  + 

 = +  + 2 + 

35



Consider log, semilog, level:

 = +  + 

ln  = +  ln + 

ln  = +  + 
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5.1 Brainstorm I: Sample Mean

Notation:

 = earning at time 

Classification: Male, Female, Skilled Worker, Non-skilled worker.

Question 1: How to test the difference between male and female earning.

1 = sample mean of male earning

2 = sample mean of female earning

Question 2: How to explain the earning difference between male and female. By using skill

data.

3 = sample mean of skilled worker

4 = sample mean of nonskilled worker

If so how?

Question 3: Deriving the limiting distributions for Q1 and Q2 as →∞

Question 4: Form a null hypothesis to test if male and female earning difference.
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5.2 Brainstorm II: Trend Regression

Notation: The true model is given by

 = +   ∼ 
¡
0 2

¢
Now consider two regressions

 = 1+ 

 = 2
√
+ 

Question 1: Deriving the limiting distribution of ̂1

Question 2: Write down  as a function of ,  and
√


Question 3: Deriving the limiting distribution of ̂2
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5.3 Brainstorm I Continue: Dummy Regression

Notation:  = earning.  = Decision for Ph.D. program.  = Decision for taking

Econometric class

Consider the following decision tree.

If  = 0 then the values for  does not matter.

Question 1: Construct a dummy regression for the first example of Brainstorm I

Question 2: Construct a dummy regression for the current example

Question 3: Derive the limiting distribution for Q2.
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5.4 Assignment II: 2 Extra Credits

Basic 0: Sample Mean Suppose that  is i.i.d.  ( 
2) 

1. Let ̂2 = 1


P

=1 ( − )
2
 Show that ̂2 is biased but consistent. Obtain the unbiased

estimator.

2. Let  =  − 1 for  = 2   Obtain the unbiased variance for 

3. Let  =  − 21 + 2 for  = 3   Obtain the unbiased variance for 

4. Let ̂21 ̂
2
2 ̂

2
3 be the unbiased variance for Q1,2,3. Find the smallest variance.

Basic I: Single Regressor Consider the following model

 =  + 

We assume that all classical assumptions hold.

1. Show the OLS estimator ̂ is unbiased.

2. Show the OLS estimator is minimizing the following quadratic loss

X
=1

2

3. Show that
1



X
=1

̂ = 0

Basic II: Multiple Regressors Consider the following model

 = Xβ +  = 11 + 22 + 

or equivalently

y = Xβ + u = X11+X22+u

We assume the classical assumptions hold.
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1. Show the OLS estimator ̂ is unbiased.

2. Show the OLS estimator is minimizing the following quadratic loss

u0u

3. Show that

X0û = 0

4. Show that

̂ = (X0X)−1X0y

5. DefineM1 andM2 and show the followings

̂1 = (X0
1M2X1)

−1
X0
1M2y

̂2 = (X0
2M1X2)

−1
X0
2M1y

6. Suppose that 2 = 0 Consider the following two regressions

y = X11 + e (3)

y = X11 +X22 + u (4)

(a) Show that 2 in (3) is smaller than that in (4).

(b) Write down the relationship between 2 and ̄2 in general.

(c) Suppose that 2 6= 0 and  ratio for ̂2 is greater than 1. Show that ̄
2 in (4) is

greater than 2 in (3).

7. Consider (3) as the true model.  ∼  (0 2)  Let 2 =
û0û
− 1 

(a) Show that ̂1 and ̂2 be independent.

(b) Show that

̂1 − q
2 (X0

1X1)
−1
∼ 1
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8. Consider (4) as the true model. Let 2 = 1 +  1 is independent on  Also  is

independent on .

(a) Find plim̂2

(b) Let  ∼  (0 −) for   0 Find plim̂1 and plim̂2

9. Consider (4) as the true model. 2 6= 0 and 1 is independent on 2 Suppose that

you are interested in testing

0 :  =
1
2
= 0

Derive the limiting distribution ̂ = ̂1̂2
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5.5 Answer and Additional Notes

True Model (when  is nonstochastic)

∗ =  +  ∗ =  + 

 =  + 

Regression

∗ =  +  +  =  −  +  ( + ) + 

= + ∗ +  (5)

1. How to obtain ̂ and ̂ (OLS estimators)

Take the sample average

1



X
∗ = + 

1



X
∗ +

1



X
∗ (6)

(2) - (1) yields

̃∗ = ̃∗ + ̃

or equivalently

̃ = ̃ + ̃

since

̃∗ =  − 1


X
 = ̃

̂ =  +

P
̃̃P
̃2

̂ −  =

P
̃̃P
̃2

=
1


P
̃̃

1


P
̃2

Since we assume  is nonstochastic, we have


³
̂ − 

´
= 

1


P
̃̃

1


P
̃2

=
1


P
̃̃

1


P
̃2

= 0


³
̂ − 

´2
= 

∙ 1


P
̃̃

1


P
̃2

¸2
=

 1
2
(
P

̃̃)
2£

1


P
̃2
¤2 (7)

43



Note that³X
̃̃

´2
= (̃1̃1 + + ̃̃)

2
=
¡
̃21̃

2
1 + + ̃2̃

2


¢
+2 (̃1̃1̃2̃2 + + ̃̃̃−1̃−1)

Hence


³X

̃̃

´2
= 

¡
̃21̃

2
1 + + ̃2̃

2


¢
+ 2 (̃1̃1̃2̃2 + + ̃̃̃−1̃−1)

=
¡
̃21̃

2
1 + + ̃2̃

2


¢
+ 2 (̃1̃2̃1̃2 + + ̃̃−1̃̃−1)

We will assume

 () = 0 for  6=  : independent

2 = 2 : identical

Then we have

̃2 = 

µ
 − 1



X


¶2
= 

µ
2 −

2



X

 +
1

2

³X


´2¶
= 2 −

2



¡
1 + + 2 + +1 + + 

¢
+

1

2

³X
2 + 2 (12 + + −1)

´
(8)

= 2 −
2



¡
1 + +2 ++1 + +

¢
+
1

2

³X
2 + 2 (12 + + −1)

´
= 2 −

2


2 +

1


2 = 2

µ
1− 1



¶
=

− 1


2

since

1 = 0 if  6= 1 and +1 = 0 for all 

Also note that

̃̃+1 = 

µ
 − 1



X


¶µ
+1 − 1



X


¶
= 

µ
+1 − 1


+1

X
 − 1



X

+1 +
1

2

³X


´2¶
= 0− 1


2 −

1


2 +

1

2

¡
 · 2

¢
= −1


2 = 

¡
−1

¢
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Now, we have


³X

̃̃

´2
=

¡
̃21̃

2
1 + + ̃2̃

2


¢
+ 2 (̃1̃2̃1̃2 + + ̃̃−1̃̃−1)

=
− 1


2

X
=1

̃2 − 2
1


2 (̃1̃2 + + ̃̃−1)

= 2

X
=1

̃2 −
1


2

"
X
=1

̃2 − 2 (̃1̃2 + + ̃̃−1)

#

= 2

X
=1

̃2 −
1


2

Ã
X
=1

̃

!2

= 2

X
=1

Ã
̃ − 1



X
=1

̃

!2
= 2

X
=1

Ã
 − 1



X
=1



!2

= 2

X
=1

̃2

since

̃ − 1


X
=1

̃ =  − 1


X
=1

 − 1


X
=1

Ã
 − 1



X
=1



!

=  − 1


X
=1

 − 1


X
=1

 +
1



X
=1



=  − 1


X
=1

 = ̃

Now from (3), we have


³
̂ − 

´2
= 

∙ 1


P
̃̃

1


P
̃2

¸2
=

 1
2
(
P

̃̃)
2£

1


P
̃2
¤2 =

1
2
2
P

=1 ̃
2
£

1


P
̃2
¤2

=
1

2
£
1


P

=1 ̃
2


¤£
1


P
̃2
¤2 =

2P
̃2

Note that

lim
→∞

2P
̃2
= 0 if

1



X
̃2 = 

In order to have a finite variance, we need to have

√

³
̂ − 

´
=

1√


P
̃̃

1


P
̃2
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Now it is easy to show that (by using LL CLT)

√

³
̂ − 

´
→ 

µ
0

2
1


P
̃2

¶
or

̂ − p
2

P
̃2
→  (0 1) 

To Students:

Q1. Now you do more simple model

 =  +  (9)

and get the limiting distribution of ̂ Here we assume  =  = 0

Q2. (Example of nonstochastic ) Consider

 = +  (10)

This is a regression of  on 1 That is, we let  =  and  = 1 for all  in (9) then we have

(10). Find the limiting distribution of ̂

When  is stochastic We don’t work with expectation term here. Instead of this, we

take probability limit (since we are obtaining the limiting distribution, so we are caring

about consistency only. The previous case, both two unbiaseness and consistency becomes

identical problem since  was nonstochastic.)

plim→∞
³
̂ − 

´
=
plim→∞

1


P
̃̃

plim→∞
1


P
̃2

=
plim→∞

1


P
̃̃

plim→∞
1


P
̃2

= 0

Note that

̃2 =
− 1


2 ̃̃+1 = −1

2

Similarly, we have

̃2 =
− 1


2 ̃̃+1 = −1

2
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Hence


³X

̃̃

´2
= 

¡
̃21̃

2
1 + + ̃2̃

2


¢
+ 2 (̃1̃2̃1̃2 + + ̃̃−1̃̃−1)

=
¡
̃21̃

2
1 + +̃2̃

2


¢
+ 2 (̃1̃2̃1̃2 + +̃̃−1̃̃−1)

= 

µ
− 1


2

¶µ
− 1


2

¶
−  (− 1)

µ
1


2

¶µ
1


2

¶
= 2

2


(− 1)2
2

−  (− 1)
2

2
2
 = 2

2


"
(− 1)2 − (− 1)

2

#

= 2
2


∙
1− 3+ 2

2

¸
= 2

2


∙
1− 3



¸
= 2

2
 +

¡
−1

¢

Also note that

plim→∞
1



Xµ
 − 1



X


¶2
= plim→∞

1



X
2 − plim→∞

µ
1



X


¶2
= 2 −

1


2 = 2 +

¡
−1

¢
Then we have

1



X
̃̃ → 

µ
0
2

2



+

¡
−1

¢¶
1√


X
̃̃ → 

¡
0 2

2


¢
From Cramer-Wold Device, we have

1√


P
̃̃

1


P
̃2
→ 

µ
0
2
2

¶
Usually in textbooks, we don’t follow the above derivation. Simply others use the condi-

tional expectation. Let x = (1  )
0
 Then we consider


³
̂ − |x

´
and


³
̂ − |x

´2
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which is equivalent to treat  like a nonstochastic variable. Asymptotically we note that

√

³
̂ − |x

´
→ 

¡
0 2Q

−1


¢
where

Q = lim→∞

µ
x0x


¶−1
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Dummy Variable Regression: Let’s go back to our orignial example

 = +  + 

where

 = 0 for  =  1 for  = 

Suppose that 1 = total number of female = total number of male. Then

 = 1 + 1 = 21 or 1 =


2

̂ =  +

P
̃̃P
̃2

Treat as if  is nonrandom. Then we have


X

̃̃ =
X

̃̃ = 0

Next X
̃2 =

XÃ
 − 1



X
=1



!2
=
X

2 −
1



³X


´2
Note

2 =  =

⎧⎨⎩ 0 if female

1 if male

so that X
2 =

X
 = 1 : total number of female or male

Hence we haveX
̃2 =

X
2 −

1



³X


´2
= 1 − 1


21 =



2
− 1



2

4
=
2− 

4
=
1

4
 (11)

Next, find the limiting distribution of

1√


X
̃̃

We know

plim
1



X
̃̃ = 0
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also we know

1√


X
̃̃ =

1√


XÃ
 − 1



X
=1



!
̃ =

1√


X
̃ − 1√



XÃ
1



X
=1



!
̃

=
1√


X
̃ − 1√



Ã
1



X
=1



!X
̃

=
1√


1X
=1

̃ − 1



1√


X
̃

since

̃ = 0 if  is female.

= ̃ if  is male

Hence

1√


X
̃̃ =

1√


1X
=1

̃ − 1



1√


X
̃ =

1√


1X
=1

̃ − 1
2

1√


X
=1

̃

=
1√


Ã
1X
=1

̃ − 1
2

X
=1

̃

!
=

1√


Ã
1

2

1X
=1

̃ − 1
2

X
=1+1

̃

!

=
1√


X
=1

̃∗

where

̃∗ =

⎧⎨⎩ 1
2
̃ if  is male

−1
2
̃ if  is female

Note that the stochastic properties of ̃∗ is the same as
1
2
̃ as long as  is independent and

identically distributed.

Next, we know already the value of  (̃)
2
from (8)



Ã
1√


X
=1

̃∗

!2
=

1




⎛⎝ X
=1

(∗ )
2 − 1



Ã
X
=1



!2⎞⎠
=

1



µ


4
2 −

1





4
2

¶
=

1

4
2 −

1

4
2 =

1

4
2 +

¡
−1

¢
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Hence
1√


X
̃̃ → 

µ
0
1

4
2

¶
and


³
̂ − 

´
=

1√


P
̃̃

1


P
̃2

=

1√


P
̃̃

1


4

=
4√


X
̃̃

since
P

̃2 = 4 from (11). Therefore finally we have

√

³
̂ − 

´
→ 

¡
0 42

¢


or
√

̂ − p
42
→  (0 1)

Note that the asymptotic variance of ̂ is

Asy Var
³
̂
´
=
42


Now consider the quantity of

2

³X
̃2

´−1
= 2

4


= Asy Var

³
̂
´

Two Dependent Dummies Consider two models

 = +  +  + 

 = +  + 

Now

 =  + 

where

 =

⎧⎨⎩ 0 if  is non-skilled

1 if  is skilled

Further note that
1



X
 6= 0
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Consider the following ‘pay-off’ matrix where  indiciates the total number of observations.

Unskilled Skilled Total

Female 11 12 11 + 12

Male 21 22 21 + 22

Total 11 + 21 12 + 22 

Assume the total number of female = that of male.

11 + 12 = 21 + 22

Further consider the following assumptions.

11 = 221

212 = 22

Then we have

Unskilled Skilled Total

Female 211 22 211 + 22

Male 11 222 11 + 222

Total 311 322 

and the probability matrix becomes

Unskilled Skilled Total

Female 211 22
211+22



Male 11 222
11+222



Total 311 322 1

Note that
211 + 22


=

11 + 222


=
1

2
⇐⇒ 22 = 11 = 0 =

1

6

so that finally we have

Unskilled Skilled Total

Female 1
3

1
6

1
2

Male 1
6

1
3

1
2

Total 1
2

1
2

1
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Consider the following expectation

Expected earning

Female & unskilled;  =  = 0  () = 

Female & skilled;  = 0  = 1  () = + 

Male & unskilled;  = 1  = 0  () = + 

Male & skilled;  = 1  = 1  () = +  + 

Unskilled Skilled Total

Female  +  2
3
+ 1

3
(+ )

Male +  +  +  1
3
(+ ) + 2

3
(+  + )

Total 2
3
+ 1

3
(+ ) 1

3
(+ ) + 2

3
(+  + )

Now let  = 0 but   0 Then we have

Unskilled Skilled Total

Female  +  2
3
+ 1

3
(+ ) = + 1

3


Male  +  1
3
+ 2

3
(+ ) = + 2

3


Total  + 

Hence unskilled worker’s earning is lower than skilled workers, and female earning is lower

than male earning because of   0 not of   0

We can do the above analysis (very tedious) but rather also can do the following regression

analysis to test if  = 0 but  6= 0

 = +  +  +  (12)

Construct the following null hypothesis

1
0 :  = 0

2
0 :  = 0

3
0 :  =  = 0

Further note that when we run

 = +  +  (13)

the OLS estimator ̂ may not be zero. But the OLS estimator ̂ in (12) could be zero. Why?
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Omitted Variable If  () 6= 0, or in other words,  () 6= 0 then the OLS esti-
mator ̂ in (13) becomes inconsistent. (To students: Prove it)

Cross Dummies Suppose that among unskilled workers, there is no gender earning dif-

ference. However among skilled workers, there is gender earning difference. How to test?

Expected earning

Female & unskilled;  =  = 0  () = 

Female & skilled;  = 0  = 1  () = + 

Male & unskilled;  = 1  = 0  () = + 

Male & skilled;  = 1  = 1  () = +  +  + 

In this case, we will have

 = +  +  +  + 

Then test  = 0 but  6= 0
What is the meaning of  =  = 0 but  6= 0?
What is the meaning of  = 0 and  = 0?

What is the meaning of  = 0 but  6= 0 and  6= 0?

Sequential Dummies Consider the following learning choice:

Expected earning

Ph.D & taking Econometrics III  () = +  + 

Ph.D & not taking Econometrics III  () = + 

No Ph.D  () = 

Construct dummy variable regression:
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Another Example of Nonstochastic Regressor

 = +   ∼ 
¡
0 2

¢
Q1: Find the limiting distribution of 

̂ −  =

P
P
2

Consider


X

 = 0


³X



´2
=  (1 + 22 + +  )

2

= 
¡
21 + 2

222 + +  22
¢
+ 2 (212 + )

= 2
¡
1 + 4 + +  2

¢
= 2

X
2

Note that
X
=1

2 =
1

6
 (2 + 1) ( + 1)

Hence we have X
 → 

µ
0 2

 (2 + 1) ( + 1)

6

¶
and P

P
2
=

P


1
6
 (2 + 1) ( + 1)

→ 

µ
0 2

6

 (2 + 1) ( + 1)

¶
Now fine  which makes



P
P
2
→ 

¡
0 2

¢
The answer is

 =

r
 (2 + 1) ( + 1)

6
=

r
 3

3
+

 2

6
+ ( ) =

r
1

3
 32 + ( )

Hence we have

 32
³
̂ − 

´
→ 

µ
0
2

3

¶
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Linear and Nonlinear Restrictions (Chapter 5) Consider the following regression

y = Xb+ u = x11 + x22 + u

Then in general we have
√

³
b̂− b

´
→  (0Σb)

or

√


⎛⎝ ̂1 − 1

̂2 − 2

⎞⎠→ 

⎛⎝⎡⎣ 0
0

⎤⎦ 
⎡⎣ 211 12

12 222

⎤⎦⎞⎠ 

Next consider the following linear restriction

0̂1 + 1̂2 = 2

Alternatively we may let


³
̂1 ̂2

´
= 0̂1 + 1̂2 + 2 := ̂ (14)

Taking Taylor expansion around their true values yields


³
̂1 ̂2

´
=  (1 2) +

 (1 2)

1

³
̂1 − 1

´
+

 (1 2)

2

³
̂2 − 2

´
+
1

2

2 (1 2)

21

³
̂1 − 1

´2
+
1

2

2 (1 2)

22

³
̂2 − 2

´2
+
1

2

2 (1 2)

12

³
̂1 − 1

´³
̂2 − 2

´
+ · · · 

Note that from (14), we have

 (1 2)

1
= 0

 (1 2)

2
= 1

2 (1 2)

21
=

2 (1 2)

22
=

2 (1 2)

12
= 0 (15)

so that

̂ = 01 + 12 + 2 + 0

³
̂1 − 1

´
+ 1

³
̂2 − 2

´
= 01 + 12 + 2 + (0 1)

⎡⎣ ³̂1 − 1

´
³
̂2 − 2

´
⎤⎦
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or

√
 (̂ − ) =

h
0 1

i⎡⎣ √³̂1 − 1

´
√

³
̂2 − 2

´
⎤⎦

→ 

⎛⎝0 h 0 1

i⎡⎣ 211 12

12 222

⎤⎦⎡⎣ 0

1

⎤⎦⎞⎠
= 

¡
0 2

¢
Finally we have √

 (̂ − )p
2

→  (0 1)

Now compare this limiting result with Greene. (page 84) Let

R =
h
0 1

i
and q = 2

Then we have

 = (Rb− q)0
h
2R (X0X)−1R0

i−1
(Rb− q)→ 21

Note that 2 (X0X)−1 = Σb in our notation.

Next we consider a nonlinear restriction. Usually for a nonlinear restriction case, the

second and cross terms in (14) are not equal to zero but become small terms. To see this,

consider


³
̂1 ̂2

´
−  (1 2) =

 (1 2)

1

³
̂1 − 1

´
+

 (1 2)

2

³
̂2 − 2

´
+

or

̂ −  =
 (1 2)

1

³
̂1 − 1

´
+

 (1 2)

2

³
̂2 − 2

´
+

where  is the remainder term. Note that
√

³
̂1 − 1

´
is  (1), so that

³
̂1 − 1

´
is



¡
−12

¢

³
̂1 − 1

´2
is  (

−1) and
³
̂1 − 1

´³
̂2 − 2

´
=  (

−1)  Hence we have

 = 

¡
−1

¢
Therefore,

√
 (̂ − ) =

 (1 2)

1

√

³
̂1 − 1

´
+

 (1 2)

2

√

³
̂2 − 2

´
+

µ
1√


¶
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and

√
 (̂ − ) =

h
(12)

1

(12)

2

i⎡⎣ √³̂1 − 1

´
√

³
̂2 − 2

´
⎤⎦+

µ
1√


¶

→ 

⎛⎝0 h (12)

1

(12)

2

i⎡⎣ 211 12

12 222

⎤⎦⎡⎣ (12)

1

(12)

2

⎤⎦⎞⎠

Example: Suppose that you want to test if

̂1

̂2
= 0

Then we have
 (1 2)

1
=
1

2


 (1 2)

2
= −1

22
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6 Time Series Models (Ref: Chap 19 & 21)

Consider the following regression

 =  +   = 1  

where

 = −1 +   ∼ 
¡
0 2

¢
Let’s assume that  () =  () = 0 for all  and  Q1: Find the limiting

distribution of ̂

We know

̂−  =

P
P
2



and


³X



´
= 0

Consider


³X



´2


Observe this³X


´2
= (11 + +  )

2
=
X

2
2
 + 2 (1122 + + −1−1 ) (16)

Now


X

2
2
 =

X
2

2


To calculate 2 , consider the folllowings

 = −1 +  −1 = −2 + −1

so that

 = 2−2 + −1 + 

= 3−3 + 2−2 + −1 + 

...

=  + −1 + 2−2 +  =

∞X
=0

−

59



Next,

2 =
¡
 + −1 + 2−2 + 

¢2
=

∞X
=0

22− + cross product terms

so that

2 = 
¡
2 + 22−1 + 42−2 + 

¢
+ (cross)

Since

 = 0 for  6=   (cross) = 0

Hence we have

2 = 
¡
 + −1 + 2−2 + 

¢2
= 

¡
2 + 22−1 + 42−2 + 

¢
= 2

¡
1 + 2 + 4 + 

¢
Note that

1 + 2 + 4 +  =
1

1− 2


1 + + 2 +  =
1

1− 


1 + + 2 + +  =
1− +1

1− 


Finally

2 =
2

1− 2
= 2

Also note that

−1 = 
¡
 + −1 + 2−2 + 

¢ ¡
−1 + −2 + 2−3 + 

¢
= 2

¡
+ 3 + 

¢
= 2

¡
1 + 2 + 

¢
=

2

1− 2


= 
¡
2

¢


and

−2 = 
¡
 + −1 + 2−2 + 

¢ ¡
−2 + −3 + 2−4 + 

¢
= 2

¡
2 + 4 + 

¢
= 22

¡
1 + 2 + 

¢
=

2

1− 2
2

= 2
¡
2

¢
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In general

− = + = 2 = 2

Then we have


³X



´2
=
X

2
2
 + 2 (1122 + + −1−1 ) = 2

2


Hence there is no much difference.

Let’s assume that  () = 0 for all  and  but  () = − (2 ). Then we

have

 = −
¡
2
¢
−

¡
2
¢

= 2(−)2
2


Consider the cross product term carefully

Cross Term = 11 (22 + +  )

+22 (11 + 33+  )

+

+ (11 + + −1−1)

Hence

Cross Term = 11 (22 + +  )

+22 (11 + 33+  )

+

+ (11 + + −1−1)

where

11 (22 + +  ) = 22
2
 + 42

2
 + + 2(−1)2

2


= 2
2

2
¡
1 + 2 + + 2(−2)

¢
= 2

2

21− 2(−1)

1− 2
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22 (11 + 33+  ) = 22
2
 + 22

2
 + + 2(−2)2

2


= 2
2

2
¡
2 + 2 + + 2(−3)

¢
= 2

2

21− 2(−2)

1− 2
+ 2

2

2

33 (11 + 22 + 44 + +  )

= 42
2
 + 22

2
 + 22

2
 + + 2(−3)2

2


= 2
2

2
¡
2 + 2 + 2 + + 2(−4)

¢
= 2

2

21− 2(−3)

1− 2
+ 2

2

2
¡
1 + 2

¢


 (11 + + −1−1) = 2−22
2
 + + 22

2
 = 2

2

21− 2(−1)

1− 2

Hence the total sum becomes

22
2

2

X
=1

1− 2(−)

1− 2
= 2

2
2

2

1− 2
 + (1)

Or


³X



´2
=

X
2

2
 + 2 (1122 + + −1−1 )

= 2
2
 + 2

2
2

2

1− 2
 + (1)

= 2
2


µ
1 + 2

1− 2

¶
+ (1)

Finally we have
√

³
̂− 

´
→ 

¡
0 2

¢
where

2 =
2

2


³
1+2

1−2
´

2
2


=

µ
1 + 2

1− 2

¶
2
2
≥ 2

2

In other words, the typical limiting distribution such as

√

³
̂− 

´
→ 

³
0 2 (X

0X)−1
´

does not work here.
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6.1 Definitions

1. Strong Stationary: A time-series process, {}=∞=−∞ is stronlgy stationary if the joint

probability distribution of any set of  obersvations in the sequence {  +} is the
same regardless of the origin  in the time scale.

2. Weak Stationary: {} is weakly stationary if (i)  () is finite, (ii)  ( −) is a
finite function only of  and model parameters. (In other words, it should not be time

varying)

3. Ergodicity: A strongly stationary time series process is ergodic if

lim
→∞

| [ ( +1  +)  (+ ++1  ++)]|
= | ( +1  +)| | (+ ++1  ++)|

(a) Example: Let  = −1 +   ∼  (0 1)

lim
→∞

| (+)| = lim
→∞

¯̄
2

¯̄
= 0 = || |+|

4. The Ergodic Theorem: If  is strongly stationary and ergodic and  || is a finite
constant, then ̄ = −1

P
 →  =  () 

5. Martingale Sequence:  is a martingale sequence if

 (|−1 −2 ) = −1

(a) Example:  = −1 +   (|−1 −2 ) = −1

6. Martingale Difference Sequence:  is a martingale difference sequence if

 (|−1 −2 ) = 0

7. White Noise process: stationary but not-autocorrelated process.
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6.2 Long Run Variance

Q1: Consider  = −1 +   is a white noise process with a finite variance of 
2 Find

the limiting distribution of the sample mean of 

 =
1



X
=1



Mean:  = 0

Variance:



Ã
1



X
=1



!2
=

1

 2
 (1 + +  ) (1 + +  ) =

1

 2

"
X
=1

2 + 2

−1X
=1

X
=



#

=
1

 2

"
2 + 2

−1X
=1

X
=

−2

#
=
1

 2
2

∙
 + 2



1− 
 + (1)

¸
=

1



2

1− 2

µ
1 + 2



1− 
+

¡
−1

¢¶
=
1



2

1− 2

µ
1 + 

1− 
+

¡
−1

¢¶
=

1



2

(1− )
2
+

¡
−2

¢
:=

1


2 omega

Hence we have

 → 

µ
0
1


2
¶

or
1√


X
=1

 → 

µ
0

2

(1− )
2

¶
(17)

We call 2 long run variance of 
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6.3 Estimation of Long Run Variance (HAC Estimation)

How to estimate the long run variance of  in (17) then? The unknowns are 
2 and  How

many observations do we have?  So it is easy to estimate it.

Nowwhat if the parametric structure is unknown. Let say  follows ( ) or ( )

where  and  are unknown? Is it possible to estimate 2? No. The total number of un-

knowns becomes
 (−1)

2
+ 1 The first term is the sum of cross product terms and the last

term, 1, is the unknown variance term (diagonal term). If variance is time varying, then it

becomes
 (−1)

2
+  Simply impossible to estimate the long run variance in this case.

Therefore we are imposing regularity: Ergodic and stationary process. And then we

assume that

 (−) ' 0 for a large 

Alternatively let say


1



−1X
=1

X
=

 = 
1



−1X
=1

+X
=

 +
1



−1X
=1

X
=++1



= 
1



−1X
=1

+X
=

 +  (1) (18)

In this case, we don’t need to estimate the second term.

Newey and West Estimator Let

2 = 20 +

∞X
=1

¡
2 + 2−

¢
where

2 = −

Then we can apply the above concept in (18), so we have

̂2 = ̂20 +

X
=1

¡
̂2 + ̂2−

¢
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According to Andrews (1991), we can modify the estimator further in an elegant way

̂2 = ̂20 +

X
=1



¡
̂2 + ̂2−

¢
where  is some optimal weight. Newey and West (1992) suggest

 = 1− 

 + 1
  = 

¡
 13

¢


We call such weight Bartlett kernel weight. They show that this type of estimator becomes

consistent.

Parametric Version: Andrews andMonahan’s Prewhitening HAC estimator Let

 is a stationary and ergodic process. Then we may have

 = −1 + 

and



µ
1√


X


¶2
=

2

(1− )
2

where 2 is the long run variance of  Now we estimate ̂ and replace this. That is,

̂2 =
̂2

(1− ̂)
2


Conversion to Matrix Form Consider

 = X
0
b+ 

√

³
b̂− b

´
→  (0V̂)

where

V̂ =

µ
1



X
XX

0


¶−1
1



X
=1

X
=1

X (X)
0
µ
1



X
XX

0


¶−1


Now let

ξ =  ·X = (1 2  )

66



Then

Ω2 = Ω0 + Ω + Ω−

Ω̂2 = Ω̂0 +

X
=1



³
Ω̂ + Ω̂−

´
Then we have

V̂̂ =

µ
1



X
XX

0


¶−1
Ω̂2
µ
1



X
XX

0


¶−1
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Alternative Approach Let assume

 = X
0
b+   =

X
=1

− + 

Then

1−1 = 1X
0
−1b+ 1−1

...

− = X
0
−b+ −

Now subtract −1 − from 

 = X0
b−

X
=1

X
0
−b+

X
=1

− + b −
X

=1

−

= X0
b−

X
=1

X
0
−b+

X
=1

− +  = Zγ + 

where  =
¡
XX−1 X− −1  −

¢
 Let rewrite it as

y = Zγ + e

and then we have
√
 (γ̂ − γ)→ 

¡
0 2

−1


¢


where

 = plim→∞
Z0Z
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Conventional Approach (Generalized Least Squares GLS: Chapter 8) Suppose

that we know the AR order. Let say AR(1). Then we have

 = −1 + 

so that

uu0 = Ω× = 2

⎡⎢⎢⎢⎢⎢⎢⎣
1

1−2


1−2 · · · −1
1−2



1−2
1

1−2 · · · ...
...

...
. . . 

1−2
−1
1−2 · · · 

1−2
1

1−2

⎤⎥⎥⎥⎥⎥⎥⎦

=
2

1− 2

⎡⎢⎢⎢⎢⎢⎢⎣
1  · · · −1

 1 · · · ...
...

...
. . . 

−1 · · ·  1

⎤⎥⎥⎥⎥⎥⎥⎦
Now we know

Ω = CΛC0

where C0C = I and

Ω−1 = CΛ−1C0

= P0P

where

P = Λ−12C0

Next consider the following transformation

Py = PXb+Pu

or

y∗ = X∗b+ u∗ (19)

Now define the GLS estimator

b̂ = (X
∗0X∗)−1X∗0y∗
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or alternatively we can say

X∗0X∗ = X0P0PX = X0Ω−1X

and

X∗0y∗ = X0P0Py = X0Ω−1y

so that we have

b̂ =
¡
X0Ω−1X

¢−1
X0Ω−1y

and find its limiting distribution.

First note that

u∗u∗0 = Puu0P0 = PΩP0 = Λ−12C0CΛC0CΛ−12 = I

Hence the limiting distribution of b̂ is given by

√

³
b̂ − b

´
→ 

Ã
0

µ
X∗0X∗



¶−1!
or

√

³
b̂ − b

´
→ 

Ã
0

µ
X0Ω−1X



¶−1!

Feasible GLS Replace Ω by Ω̂

b̂ =
³
X0Ω̂−1X

´−1
X0Ω̂−1y

70



7 Heteroskedasticity (Chapter 8 Continue)

Now we allow heterogenous variance for each  or  That is,

2 = 2 6= 2 = 2

However we assume that

 = 0

Then we have

uu0 = Ω× =

⎡⎢⎢⎢⎢⎢⎢⎣
21 0 · · · 0

0 22 · · · ...
...

...
. . . 0

0 · · · 0 2

⎤⎥⎥⎥⎥⎥⎥⎦
Note that

X0uu0X = X0ΩX 6= X0X

But in this case, we have

[X1 X]

⎡⎢⎢⎢⎢⎢⎢⎣
21 0 · · · 0

0 22 · · · ...
...

...
. . . 0

0 · · · 0 2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
X1

...

X

⎤⎥⎥⎥⎥⎥⎥⎦ = 21X
0
1X1 + 22X

0
2X2 + + 2X

0
X

=

X
=1

2X
0
X

Therefore we have
√

³
b̂− b

´
→  (0V)

where

V = (X0X)−1 (X0ΩX)−1 (X0X)−1

= (X0X)−1
Ã

X
=1

2X
0
X

!
(X0X)−1

If we replace 2 but ̂
2
 = ̂2  then we call this estimator ‘White’ heteroskedasticity

consistent estimator.
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8 Instrumental Variables

Consider the following data generating process

 =  + 

where

 =  + 

we assume that  () = 0 for all  and 

Now we have

̂ = + (0)−1 0 = +  + (0)−1 0

so that

 (̂− |) =  6= 0

We say that  is endogeneous in this case. Note that the concept of endogeneity is in

general somewhat different. We will explain it later in Chapter 20.

8.1 Can we know if  = 0 or not?

1. Hausman Test: testing for exogeneity. We will study it later.

2.  is unknown. How do we know if  is correlated with  ?

3. Known case: Lagged dependent variable.

 = +   

 = −1 + 

so that

 =  (1− ) + −1 + 

Then we can rewrite it as

̃ = ̃−1 + ̃

Note that  (̃−1̃) 6= 0 However as →∞ this bias goes away at the  (
−1) rate.
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4. Measurement error: True model

 =  +  (20)

But we observe ∗ =  +  So you run

 = ∗ + 

From (20), we haev

 =  ( + )−  +  = ∗ + 

Now  (
∗
 ) =  ( − ) ( + ) 6= 0

8.2 Solution I

Including control variables.

 =  +w
0
γ + 

where w = (1  )
0
 Now w becomes a proxy variable for 

Problem: We don’t know how many control variables should be included.

8.3 Solution II

Construct instrumental variable,  such that

 () 6= 0

but

 () = 0

Then construct IV estimator

̂ = (z0x)−1 z0y

= (z0x)−1 z0 (xα+ u)

= + (z0x)−1 z0u
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Next,

̂ −  = (z0x)−1 z0u

and

plim (̂ − ) = plim

µ
z0x


¶−1
plim

z0u


=  · 0 = 0

so that ̂ is a consistent estimator of 

Asymptotic variance:

 (̂ − ) (̂ − )
0
= 

h
(z0x)−1 z0uu0z (z0x)−1

i
If  and  are non-stochastic, we have

 (̂ − ) (̂ − )
0
= (0)−1 0Ω (

0)−1

8.3.1 Getting into details: Measurement error

 = ∗ +  ∗ =  +   = − + 

Find a variable such that

 =  +

but

 = 0 and  = 0

Then  is the right instrumental variable.

How to find such a good IV then? Ask GOD.
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9 Method of Moments (Chap 15)

Consider moment conditions such that

 ( − ) = 0

where  is a random variable and  is the unknown mean of  The parameter of interest,

here, is  Consider the following minimum criteria given by

argmin


 = arg
2

min


1



X
=1

( − )

which becomes the minimum variance of  with respect to  Of course, the simple solution

becomes the sample mean for  since we have




= −2 1



X
=1

( − ) = 0 =⇒ 1



X
=1

 = 

The above case is the simple example of the method of moment(s).

Now consider more moments such that

 ( − ) = 0


£
( − )

2 − 0
¤
= 0


£
( − )

¡
−1 − 

¢− 1
¤
= 0


£
( − )

¡
−2 − 

¢− 2
¤
= 0

Then we have the four unknowns:  0 1 2 We have four sample moments such that

1



X
=1


1



X
=1

2 
1



X
=1

−1
1



X
=1

−2

so that we can solve this numerically.

However, we want to impose further restriction. Suppose that we assume  follows AR(1)

process. Then we have

1 = 0 2 = 0
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so that the total number of unknowns is reducing to three (0  )  We can increase more

cross moment conditions also. Let  =
³
1


P

=1 
1


P

=1 
2
 

1


P

=1 −1
1


P

=1 −2
´0


Then we have


1



X
=1

( − )
2
= 

1



X
=1

2 − 2 = 0

so that


1



X
=1

2 = 0 − 2

Also note that


1



X
=1

−1 = 0 − 2 and so on.

Hence we may consider the following estimation

arg min
0

[ −  ()]
0
[ −  ()]  (21)

where  is the parameters of interest (true parameters,  0 ). The resulting estimator

is called ‘method of moments estimator’. Note that MM estimator is a kind of minimum

distance estimators.

In general, MM estimator can be used in many cases. However, this method has one

weakness. Suppose that the second moment is relatively huge than the first moment. Since

 function assigns the same weight across moments, the minimum problem in (21) tries to

minimize the second moment rather than the first and second moment both. Hence we need

to design the optimal weighted method of moments, which becomes generalized method of

moments (GMM).

To understand the nature of GMM, we have to study the asymptotic properties of MM

estimator. (in order to find the optimal weighting matrix). Now to get the asymptotic

distribution of ̂ we need a Taylor expansion.

 =  () +
 ()

0
³
̂ − 

´
+

µ
1



¶
so that we have

√

³
̂ − 

´
=
√
 [ −  ()] ()

−1
+

µ
1√


¶
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where  () =
 ()

0  Note that we know that

√
 [ −  ()]→  (0Φ)

Hence we have
√

³
̂ − 

´
→ 

¡
0  ()

−1
Φ ()

0−1¢
where  ()→  () 

9.1 GMM

First consider infeasible generalized version of method of moments.

arg min
0

[ −  ()]
0
Φ−1 [ −  ()] 

where Φ is true unknown weighting matrix. Now feasible version becomes

arg min
0

[ −  ()]
0
W [ −  ()] = arg min

0

 ()
0
W ()

whereW is a consistent estimator of Φ
−1 Let

 = [ −  ()]
0
W [ −  ()]

Then GMM estimator satisfies



³
̂

´
̂

= 2

³
̂

´0
W

h
 − 

³
̂

´i
= 0

so that we have


³
̂

´
=  () + ()

³
̂ − 

´
+

µ
1



¶
Thus



³
̂

´0
W

h
 − 

³
̂

´i
= 

³
̂

´0
W

h
 − 

³
̂

´i
+

³
̂

´0
W ()

³
̂ − 

´
= 0
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Hence³
̂ − 

´
= −

½


³
̂

´0
W ()

¾−1


³
̂

´0
W

h
 − 

³
̂

´i
and

√

³
̂ − 

´
→  (0  )

where

 =
1


{0W}−10WΦW {0W}−1 

When  = Φ−1 then we have

 =
1



©
0Φ−1

ª−1
0Φ−1

©
0Φ−1

ª−1
=
1



©
0Φ−1

ª−1
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10 Panel Data Analysis (Chapter 9)

Latent Data Generating Process

 =  +  + 

where

 = time invariant individual characteristics

 = cross sectional invariant common factor

 = idiosyncratic term

10.1 Economic, Financial, or Social Theory:

1. Time series approach: Long  but small  : Finance and macroeconomics

 =  +  + 

(a) Heterogeneity (coefficients, especially constant term) becomes an important issue.

(b) Pooling regression coefficient  : Testing heterogeneity becomes an issue.

(c) Cross section dependence becomes an issue

2. Cross sectional approach: Small  but large  : microeconomics, political science.

 = +  +   =  + 

(a) Heterogeneity (variance of  is correlated with ) becomes an issue

(b) Use usually random effects model. Why?

(c) Cross section dependence does not matter much.

10.2 Cross Section & Time Series Regressions

1. Cross Section Regression (applied microeconomics, typically labor, health, demography

etc.)
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(a) Usually try to explain the different averages: Examples; gender wage difference,

race wage difference etc. Use survey data.

(b) Typical regression setting: Let  be the th individual wage (or income) at a

particular time (survey year)

 = + 1gender + 2region + 3age + 5edu + + 

i. Explanatory variables: discrete variables. In other words, dummies.

ii. Nonlinear versus linear: Approximation around x0

 =  (x) '  (x0) +


x0
(x − x0) + 1

2

2

x20
(x − x0)2 + 

= + 11 + 22 + 1
2
1 + 2

2
2 + 312 +  : for two regressors case

Hence without including the second moments, the regression suffers from

misspecification

(c) Don’t run cross section regression to examine time series behavior

 =  +   =  + 

Assume

 =  +  : mean relation

 =  +  : time series relation

In fact,

 6= 

2. Time series regression (Finance, International Economics, Macroeconomic etc)

(a) Examining parities (PPP, UIP, CIP, Fisher Hypothesis, etc). Dynamic stability

becomes the main issue.

(b) Cointegration among nonstationary variables becomes an issue.

(c) Ignore time invariant variables such as means.
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11 Pooling Panel and RandomEffects (Estimation: Mi-

cro Panel)

Model

 = +  + 

1. Why pooling?

(a) Economic theory must hold for all individuals.

(b) More data: either more cross sectional or time series observations. Pooling means

more ‘efficient’ and ‘powerful’ (will explain later)

2. Why not pooling?

(a) Account for individual heterogeneity. So at least we have to allow some level

heterogeneity such as

 =  +  + 

(b) How to handle for  then? Either fixed or random effects.

(c) What if  is observable? like gender, edu, age etc. You may want to include

them. How?

11.1 Random Effects

Model:

 = +  +   =  − +  =  + 

Assumption:

A1 E() = 0 for all 

A2 E() = 0 for all 
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Under A1 and A2, note that the pooled OLS becomes consistent but not efficient. The

consistency (here we are assuming   →∞ or  →∞ for any  ) requires that

plim→∞
1



X
=1

1



X
=1

 = 0

Indeed under A1 and A2, we can prove that POLS estimator satisfies the above condition.

However, the regression errors are not i.i.d. anymore.

12 = 2 + 12 + 1 + 2

Taking expectation yields

E12 = E2 + E12 + E1 + E2

= 2 if E12 = 0 (no serial corr.)

where we assume E() = 0 Also note that

E11 = E2 + E11 + 2E1

= 2 + 2

In this case, pooled GLS estimator becomes efficient and consistent. Here is how to

obtain the feasible GLS estimator

1. Run

 = +  + 

and get the pooled OLS residuals ̂ Let ̂pols and ̂pols be the POLS estimates for 

and 
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2. Construct

̂2 =
1



X
=1

X
=1

³
 − ̂pols − ̂pols

´2
=

1



X
=1

X
=1

̂2

̂ =
1



X
=1

̂ ̂ = ̂ − ̂

̂2 =
1



X
=1

Ã
̂ −

1



X
=1

̂

!2

̂2 =
1



X
=1

X
=1

Ã
̂ − 1



X
=1

X
=1

̂

!2
Note if  is small, ( − 1) should be used for the above calculation.

3. Construct the sample covariance matrix

Ω̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
̂2 + ̂2 ̂2 · · · ̂2

̂2 ̂2 + ̂2 · · · ...
...

...
. . .

...

̂2 ̂2    ̂2 + ̂2

⎤⎥⎥⎥⎥⎥⎥⎦ (22)

and then construct the feasible GLS estimator given by

̂fgls =

Ã
X
=1

 0
Ω̂
−1

!−1Ã X
=1

 0
Ω̂
−1

!

where  = [1  ]
0
and  = [1  ]

0

Remark 1: (Inconsistency relies on A1) If A1 does not hold (usually A1 does not

hold), that is, if individual characteristics are correlated with regressors, then POLS esti-

mator becomes inconsistent. Also the random effects estimator (FGLS) is also inconsistent.

Because of this reason, many researchers in practice don’t run the random effects model

(or FGLS estimator). We will study the alternative estimation method in the below (fixed

effects model).
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Remark 2: (Including Observed Individual Effects) Even when A1 does not hold,

if  is observable, then the observed  can be entered the regression as a regressor. That

is,

 = + 11 + 22 + +  + 

We will study this model later (after studying fixed effects model) in detail.
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12 Fixed Effects (Estimation: Micro Panel)

12.1 Eyeball Approach: Works well.

You need to draw some graphs (for your dissertation or journal article) why? looks good,

and give more direct information. Try to draw one nice graph which explains main theme

of the paper.

12.1.1 Single explanatory variables

Target: Want to explain the relationship between  and  Plot  on  Use different

color for each 

1. See if there is one unique relationship between  and  across 

2. insert a graph here fixed effects (positive and positive)

3. insert a graph here fixed effects (positive but negative)

4. insert a graph here heterogeneity (positive but negative)

5. insert a graph here projected graph. (demean )

Demean:

 =  +  + 

1



X
=1

 =  + 
1



X
=1

 +
1



X
=1



 − 1



X
=1

 = 

Ã
 − 1



X
=1



!
+  − 1



X
=1



̃ = ̃ + ̃
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12.1.2 More than two variables

 =  +  +  + 

1. Don’t plot either ̃ on ̃ or ̃ on ̃ : Why?

2. running ̃ on ̃ implies

̃ = ̃ + ̃ ̃ = ̃ + ̃

If  (̃̃) 6= 0 then ̂ becomes inconsistent. Worst case:  = 0 but  (̃̃) 6= 0

then ̂ 6= 0

3. Solution: Run

̃ = 1̃ + ̃+  ̃ = 2̃ + ̃+

and get residuals ̃+ and ̃+  Plot them. Similarly, Run

̃ = 1̃ + ̃∗ ̃ = 2̃ + ̃∗

and plot ̃∗ on ̃∗

4. Mathematically, it is a projection approach.  −  ( 0)−1  0 = or  matrix.

12.2 Common Time Effects:

 =  +  +  + 

Allows time dummies also. How to estimate ̂?

1. Eliminate fixed effects by demeaning over 

 − 1



X
=1

 =  − 1



X
=1

 + 

Ã
 − 1



X
=1



!
+  − 1



X
=1



Still you have  terms.
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2. Rewrite this as

̃ = ̃ + ̃ + ̃ (23)

Take cross sectional mean

1



X
=1

̃ = ̃ + 
1



X
=1

̃ +
1



X
=1

̃ (24)

3. subtract (24) from (23).

̃ − 1



X
=1

̃ = 

Ã
̃ − 1



X
=1

̃

!
+

Ã
̃ − 1



X
=1

̃

!

4. Finally evaluate


†
 = ̃ − 1



X
=1

̃ =  − 1



X
=1

 − 1



X
=1

 +
1



X
=1

1



X
=1

 (25)

we call it ‘within transformation’.

Note: Fixed effects estimator is called either ‘Least Squares Dummies Variable (LSDV)’

estimator or ‘Within Group’ estimator.
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Questions Consider the following data generating process

 =  +   =  +  (26)

where

 = +  +  (27)

 =  +  +  (28)

1. Suppose that you run the following cross section regression for  = 1

1 = 1 + 11 + 1 (29)

Prove that the OLS estimate becomes inconsistent generally. That is,

plim→∞̂1 6= 

2. Rather than running (29), you run the following cross sectional regression with time

series average.

̄ = + ̄ + ̄ (30)

where

̄ =
1



X
=1

 ̄ =
1



X
=1



Derive the limiting distribution of ̂ in (30). Is the convergence rate equal to
√
 or

√
?

Part II (POLS): Consider the following DGP

 =  +   = −1 +   ∼ 
¡
0 2

¢
1. You run the POLS given by

 = + −1 + 

Prove that when   1 the POLS estimator becomes inconsistent. Derive the exact

bias.
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Part III (Dynamic Panel Regression I) Consider the following DGP

 =  +   = −1 +   ∼ 
¡
0 2

¢
Derive Nickell bias when  = 1
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12.3 Dynamic Panel Regression

Read: Bertrand, M., E. Duflo and S. Mullainathan, 2004, How much should we trust

differences-in-differences estimates?, Quarterly Journal of Economics, 249—275.

Model:

 =  +  +  +  (31)

Now the regression error follows

 = −1 + 

Remark 1: As long as  is exogenous, the LSDV estimator in (31) becomes consistent.

However, the statistical inference (in other words, −value for ̂) becomes an issue (in other
words, the critical value for ̂ must be different than the ordinary critical value). We will

suggest the solution for the statistical inference later. (see section 3)

Remark 2: If  is large, then more efficient estimator can be obtain by running dynamic

panel regression.

Let’s transform (31) as

−1 = + −1 + −1 + −1 (32)

and next subtract (32) from (31). Then we have

 =  (1− ) +  + −1 + −1 +  − −1 + 

or

 =  +  + −1 +  + −1 +  (33)

By using within transformation, we can run


†
 = 

†
−1 + 

†
 + 

†
−1 + 

†
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See (25) the definition of ‘†’.

0

2

4

6

8

10

12

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

̂ from

y it  a i  Xit
′   Xit−1

′   y it−1  uit

̂ from

yit  ai  Xit
′   it

̂

Remark 3 (Consistency for  and ): The LSDV estimators for  and  are inconsistent

but the LSDV estimator  becomes consistent. So the parameter of interest is here assumed

to be  Since the estimators for  and  are inconsistent, the statistical inference for 

should be carefully constructed. In the next section, we will study how to obtain robust

statistical inference regardless of error term structures.
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13 Pooling Panel and Random Effects (Testing: Micro

Panel)

13.1 Bench Mark Model: Strongly Exogenous Single Regressor

with Fixed Effects

Model

 =  +  +  (34)

Assumptions

1. E = 0 for all    

Here we are interested in testing the null hypothesis of 0 :  = 0 To test this null

hypothesis, we need a statistic. Usually we use a formal  statistic defined by

̂ =
̂r

 
³
̂
´

where  
³
̂
´
stands for the sample variance of the point estimate ̂ which depends on the

parametric assumptions for the regression errors.

In the below, we will study various hypotheses testings and statistics. Before that, I will

address why the panel data is useful (and powerful) compared with either cross sectional or

time series regressions.

13.1.1 More  or More ?

General statistical panel theory states that the panel gain comes from the use of more data.

However, this statement is not quite right. One may have either a lengthy time series or

cross section data. However whenever one uses a panel data, s/he can use either a short time

series across some individuals, or a small individual over somewhat large time series data.

For example, many empirical growth regressions have been based on cross sectional studies
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due to the data limitation. Even though PWT provides more than 150 countries panel data,

it is often very hard to obtain a full set of panel data for all 150 countries. Here we consider

which data sets (larger  or ) we should use to increase panel gain.

To attack this issue, we first consider the rate of convergence concept. Consider the

following simple regression

 =  +  for  =  or  and  = 1   

where we assume the strong exogeneity of  Typical limiting distribution theory says

̂ =
1


P

=1 
1


P

=1 
2


= +
1


P

=1 
1


P

=1 
2




̂−  =

µ
1√


¶ 1√


P

=1 

1


P

=1 
2


:=

µ
1√


¶




 let say

We may assume that

 =⇒ 
¡
0Ω2

¢
  −→  as  →∞

where ‘=⇒’ stands for convergence in distribution and ‘−→’ means convergence in proba-

bility. Then we finally have (following by Cramer’s theorem)

√

³
̂− 

´
=⇒ 

¡
0 −1 Ω2

−1


¢
Alternatively √


³
̂− 

´
q
−1 Ω2

−1


=⇒  (0 1)

Meanwhile the testing hypothesis is given by

0 :  = 0 usually.

 :  6= 0

Then we have √
̂q

−1 Ω2
−1


=⇒ 

⎛⎝ √
q

−1 Ω2
−1


 1

⎞⎠
so that the power of the test (how frequently a test can reject the null hypothesis when the

alternative is true) is getting larger if
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1. true value of || is getting larger,

2. Variance of  is getting smaller,

3. the number of observations,  is getting larger.

Among them, the last item, 3, is only thing we can control for. We don’t know the true value

of  and the true variance of  either However, we can increase the number of observations

(by putting more labor hours for digging out the data).

Now, when we have both  and  dimensions, we can rewrite the pooled estimate of 

as

̂panel =
1


P

=1
1


P

=1 
1


P

=1
1


P

=1 
2


= +
1


P

=1
1


P

=1 
1


P

=1
1


P

=1 
2




and similarly

̂panel −  =

µ
1√


¶




 let say

and

 =⇒ 
¡
0Ω2

¢
  −→  as   →∞ jointly. (35)

Then we have
√


³
̂panel − 

´
=⇒ 

¡
0 −1 Ω2

−1


¢
(36)

Now consider the above three criteria for the power of the test. Does panel data enable us

to know either true value of variance of ? The answer is no. Then what about the last one?

Does panel data enable us to use more observations? The answer is not straightforward.

In practice, one often face the situation like this. When one use one dimensional data (for

example time series), one may choose or select the longest time series data for  and 

Denote the size of the sample as  Now if s/he has to use a panel data, usually s/he scarifies

the lengthy time series in order to increase the cross section units. Denote the time series

s/he will use for the panel data as  From the direct calculation, we have the condition for

the panel gain given by
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That is, if you have 300 of  for one series but have to use only 30 of  in order to use the

panel data, then the minimum number of the cross sections — you have to obtain — should

be larger than 10.

However, we may need much larger cross sections if  and  are  (1) (or in other words,

nonstationary). In this case, the limiting distribution for ̂ is different from a normal distri-

bution (actually it becomes
¡R


¢ ¡R

2

¢−1
) and also the convergence rate becomes 

rather than
√
  Hence the minimum condition for the panel gain changes as

√
  

In the above example, you need at least
√
  10 or   100

Unfortunately, the most of macro data are nonstationary. So the important question

becomes that how many observations should be scarified to use the panel data. Let  be the

fraction of the sample you have to sacrifice to use additional  cross sections. Then we have

√
 




 or

√
 



(1− )
=

1

1− 


so that

 

µ
1

1− 

¶2


To decode this formula, let say you have 120 monthly time series observations initially.

In order to use the panel data, if you have to use 10 annual observations, then  =

12010 = 12 so that the minimum  becomes 144. Remember that the power of a test

with  = 144 and  = 10 will be exactly same as the power of the test with  = 120 and

 = 1 However, if you can still use monthly observations but loose 2 years observations,

then  = 12096 = 125 so that the minimum  becomes 156 which is less than 2.

Hence the power of a test with  = 2 and  = 96 will be larger than that with  = 1 and

 = 120

So the conclusion follows:

Recommendation (How to Construct a Panel Data)

1. When you are interested in the correlation among level variables, you should use the

panel data set which contains more  or the largest of  ×  2 rather than  × 
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2. When you are interested in the correlation among (quasi) difference variables (such

as growth rates), you should use the panel data which total number of observations

(=  ×  ) is largest.

13.1.2 How to Calculate the Covariance Matrix

Here we are asking how to estimate Ω2 and  in (35) and (36). First consider Ω
2
 which

can be defined as

Ω2 =
1




Ã
X
=1

X
=1



!2
=

1


 (1111 + + 11 + 2121 + +  )

2
(37)

=
1



¡
211

2
11 + + 21

2
1 + 221

2
21 + + 2

2


¢
+  (cross products)

If  (12) 6= 0 due to serial correlation, then in general the expected values of the cross
product terms are not equal to zero.

White (1980) suggests the use of the so called ‘heteroskedasticity consistent estimator’

which is given by

Ω̂2 =
1



X
=1

̃ 0
̂̂

0
̃

where ̂ = (̂1  ̂ )
0
 ̃ = (̃1  ̃ )

0
 So that the sample covariance matrix becomes


³
̂
´
=

Ã
X
=1

̃ 0
̃

!−1Ã X
=1

̃ 0
̂̂

0
̃

!Ã
X
=1

̃ 0
̃

!−1
(38)

and its associated -statistic becomes

̂ =
̂r³P

=1 ̃
0
̃
´−1 ³P

=1 ̃
0
̂̂

0
̃

´³P

=1 ̃
0
̃
´−1 (39)

Note that if  and  are  then the above formula can be simplified as


³
̂
´
= ̂2

Ã
X
=1

̃ 0
̃

!−1
(40)

which is the sample variance reported in canned statistical packages.

Here are a couple of very important facts:
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Recommendation

1. Usually the sample variance in (2-5) is larger than that in (40). This implies that when

there is either heteroskedasticity or autocorrelation, the standard -ratio is much larger

than its true value.

2. When  is fixed but  is large, the ̂ in (39) is distributed as a normal. So the

standard critical value can be used here. However when  is large but  is small, the

 ratio asymptotically follows a −distribution with  − 1 degrees of freedom under

homoskedasticity. (Hansen, 2007 Journal of Econometrics, ‘Asymptotic Properties of

a Robust Variance Matrix Estimator for Panel Data when  is large’)

13.2 Testing

13.2.1 Some Basic Facts on Statistical Testing

Size and Power The size of a test stands for the rejection rate of the null when the null

hypothesis is true, meanwhile the power of a test implies the rejection rate of the null when

the alternative is true. Usually we set the size of a test at the significance level. For example,

the critical value for the 5% significance level for a normal distribution (for two sides test)

is 1.95. In other words, we permit ourselves that we would make a wrong decision at the

5% level. (5 out of 100 times). Setting a smaller size means that you want to be more

conservative or don’t want to make any mistake, but at the same time it also implies that

the power of the test will be reduced.

Size Distortion You set the size at the 5% significance level. However (especially in the

finite sample), a test does not produce exactly the 5% of the size. If a test over-rejects

the null (when the null is true), then we say that the test suffers from oversize distortion.

The opposite case is undersize distortion. Usually the undersized test is acceptable since it

simply implies that you will make less mistake. The oversize problem becomes serious. The

oversized test usually rejects the null very often even when the null is true.
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Size Problem in Panel Data In univariate case, usually a well designed statistic does

not suffer from the size distortion as  (the number of observations) goes to infinity. For

example, the standard t-test for the univariate AR(1) regression produces somewhat serious

size distortion with small  but as  →∞ the size distortion goes away.

 = + −1 +  ̂ =
̂p
 (̂)

for   1 (41)

It is because the asymptotic variance of ̂ is designed in this way. However, in the panel

data, the t-ratio produces more size distortion as  →∞ for fixed 

 =  + −1 +  ̂ =
̂lsdvp
 (̂lsdv)

for   1 (42)

The underlying reason is simple. When  is small, the test statistic in (41) produces a small

size distortion. In the panel data, the size distortion becomes cumulated as  increases.

Similarly, as  → ∞ for a fixed  the usual panel statistic in (39) produces more size

distortion if there is heteroskedasticity in the error terms.

13.2.2 Fixed versus Random Effects.

LSDV estimator is ‘robust’ and consistent whether or not the fixed effects  in (34) are

correlated with  Meanwhile the GLS (or random effects estimator) is ‘efficient’ and con-

sistent only when  is not correlated with regressors. When the number of observations

are small (such as moderately small  and  ), the GLS becomes an attractive estimator if

 is not correlated with regressors. Naturally econometricians have developed various test

statistics to investigate if this condition holds or not.

There are broadly two ways to test the orthogonality between  and  The first method

is based on the pooled OLS regression residuals, and the second method is based on the

difference between LSDV and GLS. We discuss the first method, first.

Breusch & Pagan (1980)’s LM Test BP tests if

0 :  =  for all  (43)

 :  6=  for any 

98



When  in (34) is not serially correlated, these hypotheses can be rewritten as

0 :  (̂̂) = 0 for all 

 :  (̂̂) 6= 0 for any 

where ̂ is the pooled OLS regression residuals. That is,

̂ =  − ̂− ̂pols

The test statistic is given by

 =


2 ( − 1)

⎡⎢⎣P

=1

³P

=1 ̂

´2
P

=1

P

=1 ̂
2


− 1

⎤⎥⎦
2

=⇒ 21

Note that

E

Ã
X
=1

̂

!2
= E

Ã
X
=1

̂2 +

X
=1

X
6=



!
and under 0 we have

E

Ã
X
=1

̂

!2
= E

Ã
X
=1

̂2 +

X
=1

X
6=



!
= E

Ã
X
=1

̂2

!

since the expectation of the cross product terms become zero. For large  and  also note

that under the alternative and no serial correlation among , we have

E

Ã
X
=1

̂

!2
≥ E

Ã
X
=1

̂2

!
since

E () = E
¡
2 + 

¢
= 2  0

It is important to note that if  is serially correlated, then BP’s LM test fails.

Hausman’s Specification Test Hausman test is fairly a general test for misspecification,

and can be applied to test the null hypothesis in (43). Under the null hypothesis

plim→∞̂LSDV = plim→∞̂GLS
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since two estimators are both consistent. However, under the alternative, we have

plim→∞̂LSDV =  but plim→∞̂GLS 6= 

so that

plim→∞
³
̂GLS − ̂LSDV

´
6= 0

Hence we can test 0 by examining if the distance between ̂GLS and ̂LSDV is equal to

zero or not. A typical test statistic in this case is given by³
̂GLS − ̂LSDV

´0 h
 

³
̂GLS − ̂LSDV

´i−1 ³
̂GLS − ̂LSDV

´0
=⇒ 2

when the dimension of ̂ is  For a single regressor case, we have simply³
̂GLS − ̂LSDV

´2
 

³
̂GLS − ̂LSDV

´ =⇒ 21

Note that under 0

 
³
̂GLS − ̂LSDV

´
= ̂2

"
X
=1

X
=1

̃2

#−1
−
"

X
=1

X
=1

X
=1

̂̃̃

#−1

where ̂ is the th and th element of Ω̂−1 and Ω̂ is defined at (22).
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14 Dynamic Panel Regression I (Issues and Problems)

More than the quarter of theoretical studies on the panel data is focused on the dynamic

panel regression. Modelling the ‘dynamics’ in the panel data is critically important. First

we address where ‘dynamic adjustment form’ comes from.

14.1 Source of Serial Correlation

14.1.1 Univariate Series

Many economic variables such as income, consumption, wage, etc have the following transi-

tional path.

 = ∗ + (0 − ∗ ) 
−

where ∗ is the steady state outcome. Note that all variables are in logarithm. Rewrite this

model as

 =
£
∗ + (0 − ∗ ) 

−(−1)¤ − + ∗
¡
1− −

¢
= ∗

¡
1− −

¢
+ −−1

By letting  = −  = ∗ and adding a random error which can be exogeneous i.i.d.

measurement errors, transitory shocks, etc then we have

 =  (1− ) + −1 +  for  = 1  

This simple growth model generates the time dependence between  and −1

In other words, all variables (growing variables such as wage, income, height etc) are

serially correlated during transition periods.

14.1.2 General Regressions

In general regression models, the serial correlation occurs whenever the regression is not

balanced. To understand the balancing concept, consider a simple regression model given by

 =  +  +  (44)

Suppose that
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1.  has a linear trend.  6= 0. Regardless  has a linear trend or not,  contains a
linear trend. So you have to include a trend in the regression. Why?

(a) Let  =  + +  and  =  + +  You don’t want to assume that

the deterministic trend terms have a common relationshop since you can’t write

it as

 = +  () +  (45)

Simply because the dependent variable is purely nonstochastic. Even when the

dependent variable has a stochastic component (such as  = +  and   =

+  ()+  as long as  6=  for any  the error term includes a linear trend

component.

(b) The interest relation must be between  and  In this case, you have to elim-

inate the trend term in the first place by including a linear trend component in

the regression

(c) If you are interested in analyzing growth rates in  and  then you have to

take the first difference to approximate the stochastic growth components. That

is,

∆ =  + ∆ + error (46)

2.  is serially correlated but  is not. Then  is serially correlated. (the opposite is

not true) In this case, you may want to run the dynamic panel regression

 =  + −1 +  + −1 +  (47)

(a) From (44), you have

 = −1 +  (48)

Here I assume that the error term follows AR(1) structure for simplicity.

(b) Then you have

−1 = + −1 + −1 (49)

Subtracting (49) from (44) yields (47).
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3.  is not serially correlated but  is very persistent ( is near unity). And more

importantly  6= 0 Then the regression in (44) is not well specified. Simply it becomes
unbalanced regression. In this case, to balance out the serial correlation,  should be

negatively correlated with 

(a) Example: Stock return predictability & UIP:

 =  +  + 

where  is either stock return or depreciation rates, which are almost white noisy.

 is either interest rate differential (for UIP), or dividend ratio (stock return).

Both interest rate differential or dividend ratio is highly serially correlated. If

 6= 0 then  should be negatively correlated with 

(b) Hence  is serially correlated in this case also.

14.2 Modeling Dynamic Panel Regression

There are several types of dynamic panel regressions. Depending on the regression types, the

properties of LSDV estimators are quite different. Hence modeling dynamic panel regression

becomes very important.

M1:  =  +  +   = −1 +  (50)

M2:  =  + −1 +  +  (51)

where I didn’t include common time effects and linear trend components either. Note that

M1 and M2 can be restated as

M1:  =  +   =  −   = −1 +  (52)

M2:  =  +   = −1 +   =  +  (53)

Note that in M1,  is correlated with  in level. Meanwhile in M2,  is correlated with

the quasi-differenced  Alternatively we can rewrite M1 as

M1:  =  + −1 +  + −1 +  (54)
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Hence if (51) is true, then (54) is not misspecified. Simply  becomes zero if (51) is true.

However, if (54) or M1 is true, then (51) becomes misspecified, which results in inconsistent

estimator for  as well as  in (51). In this sense, (54) nests (51).

The economic interpretations are different across models. M1 states that the quasi-

difference ( − −1) is explained by  Meanwhile M2 implies that the level of  is

explained by  Hence usually  in (51) is assumed to follow a white noisy process (no

serial correlation). Meanwhile  in (54) does not have such restriction.

14.3 Inconsistency of LSDV estimator

Here we analyze why the LSDV estimator under fixed effects becomes inconsistent as →∞
but fixed  . The model we study is given by

 =  + −1 +   ∼ 
¡
0 2

¢
Nickell Bias (1981, Econometrica) Nickell extends the so-called ‘Kendall’ (1954, Bio-

metrika) bias to the panel data setting.

1. To understand Kendall bias, we consider an univariate simple AR(1) model with

constant

 = + −1 +  (55)

The OLS estimator is given by

̂ =

P

=2 ̃−1̃P

=2 ̃
2
−1



and its expectation gives

̂ = 

"P

=2 ̃−1̃P

=2 ̃
2
−1

#
:= 





From Marriott and Pope (1954, Biometrika), we have






=




[1− ( )]
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 ( ) =
 ( )

 ( ) ( )
+

  ( )

[ ( )]
2

Note that  ( ) 6= 0 usually due to asymetric distribution of ̂ In the finite

sample, the empirical distribution of ̂ is not a normal but skewed left a little bit.

This asymetric distribution yields the small sample bias but usually it goes away

quickly as  increases

2. The major bias arises from the first term   To see this





= +

P

=2 ̃−1̃

P

=2 ̃
2
−1

Note that



X
=2

̃−1̃ = 

X
=2

(−1 − ̄) ( − ̄) = 

X
=2

−1 − 1




Ã
X
=2

−1

!Ã
X
=2



!

= 0− 1




Ã
X
=2

−1

!Ã
X
=2



!
Since

 = + −1 +  =


1− 
+

∞X
=0

−

so that  = 0 for all    However



Ã
X
=2

−1

!Ã
X
=2



!
=  (1 + + −1) (2 + +  )

and note that

11 = 2 21 =  (1 + 2)1 = 2 

hence this term is not eqaul to zero.

3. Finally we have

̂ = 




= − 1 ( )− 2 ( )

where

1 ( ) =

P

=2 ̃−1̃

P

=2 ̃
2
−1

= −1 + 


+

¡
−2

¢
2 ( ) = −2


+

¡
−2

¢
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It is important to know that the first bias, 1 ( ), comes from the correlation

between ̃−1 and ̃ (which are the regressor and the regression error after de-

meaning transformation), and the second bias, 2 ( )  comes from the asymmetric

distribution of ̂

4. In panel regressions, this first part of the small time series bias remains perma-

nently when  →∞ However the second part of the small bias goes away. The

underlying reason is straightforward. As  → ∞ the distribution of ̂LSDV be-

comes symmetric. Hence the bias arised from asymmetric distribution goes away

simply. However the first bias 1 ( ) does not go away since this bias is arised be-

cause of the time series correlation between the regressor, ̃−1 and the regression

error, ̃ More formally, we states

plim→∞ (̂LSDV − ) = plim→∞
1


P

=1

P

=2 ̃−1̃
1


P

=1

P

=2 ̃
2
−1

=
plim→∞

1


P

=1

P

=2 ̃−1̃

plim→∞
1


P

=1

P

=2 ̃
2
−1

=
 1



P

=1

P

=2 ̃−1̃

 1


P

=1

P

=2 ̃
2
−1

= −1 + 


+

¡
−2

¢
Asymptotic Bias when  = 1 Nickell (1981) shows the asymptotic bias (or inconsistency

of ̂LSDV) when   1 Here we study how the expression of the bias formula badly fails

when  = 1

1. Consider the following latent model

 = +    = −1 + 

then we have

 =  (1− ) + −1 + 

so that, if  = 1 then

 = −1 +  =

X
=1

 = 1 + + 
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2. In the panel data, we have

2 =  (1 + + )
2
= 2 for 

2
 = 2 for all 


1

 − 1
X
=2

2−1 =
1

 − 1
X
=2

 (1 + + )
2
= 2

1

 − 1
−1X
=1

 = 2


2


3. Prove that

 (̂LSDV − 1) = −
3


+

¡
−2

¢
 − 2


+

¡
−2

¢
14.4 Inconsistency of the Pooled OLS Estimator

Derive the inconsistency of the pooled OLS estimator

 (̂POLS) =?

1. We are running

 = + −1 +   =  − + 

2. The POLS estimator is given by

̂POLS = +

P

=1

P

=2

³
−1 − 1



P

=1

P

=2 −1
´³

−1 − 1


P

=1

P

=2 −1
´

P

=1

P

=2

³
−1 − 1



P

=1

P

=2 −1
´2

Note that


¡
[ − ] + −1

¢
([ − ] (1− ) + ) = 2

and


1



X
=1

X
=2

Ã
−1 − 1



X
=1

X
=2

−1

!2
= 2 + 2

3. Let  = 2
2
 And express the inconsistency in terms of 
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14.5 Asymptotic Distribution of LSDV estimator

̂LSDV −  =

P

=1

P

=2 ̃−1̃P

=1

P

=2 ̃
2
−1

= −
P

=1

³P

=2 −1
´³P

=2 

´
P

=1

P

=2 ̃
2
−1

+

P

=1

P

=2 −1P

=1

P

=2 ̃
2
−1

1√


P

=1

P

=2 −1
1



P

=1

P

=2 ̃
2
−1

=⇒ 
¡
0 1− 2

¢
since

1√


X
=1

X
=2

−1 =⇒ 

µ
0

4
1− 2

¶
Now we have

√
 (̂LSDV − ) = −1 + 



√
 +

1√


P

=1

P

=2 −1
1



P

=1

P

=2 ̃
2
−1

= − (1 + )

r



+

1√


P

=1

P

=2 −1
1



P

=1

P

=2 ̃
2
−1

If 

→  as   →∞

√
 (̂LSDV − ) =⇒ − (1 + ) +

¡
0 1− 2

¢
If 


→∞ as   →∞

√
 (̂LSDV − )→ ∞

If 

→ 0 as  →∞ then

√
 (̂LSDV − ) =⇒ 

¡
0 1− 2

¢

108



Empirical Example Nominal wage =   = treatment variable or dummy

 = +  +   = −1 +   ∼ 
¡
0 2

¢
where  is a dummy variable. Suppose that  is serially correlated ( 6= 0).
Q1: Find the limiting distribution of ̂ and ̂

First transform the regression as

 − 1



X
=1

 = 

Ã
 − 1



X
=1



!
+

Ã
 − 1



X
=1



!
̃ = ̃ + ̃ let say

Then

̂ =

P

=1 ̃

³P

=1 ̃

´
P

=1 ̃
2


=  +

P

=1 ̃

³P

=1 ̃

´
P

=1 ̃
2


Let

̂ −  =

1


P

=1 ̃

³P

=1 ̃

´
1


P

=1 ̃
2




Assume that

 =

⎧⎨⎩ 0 if  ∈ 1 or  = 1 

2

1 if  ∈ 1 or  =

2
+ 1  





"
X
=1

̃

Ã
X
=1

̃

!#2
= 

"
X
=1

̃ ̄

#2
where

̄ =
1



X
=1

̃

Observe this



"
X
=1

̃

Ã
X
=1

̃

!#2

= 

⎡⎣−1
2

2X
=1

X
=1

̃ +
1

2

X
=2+1

X
=1

̃

⎤⎦2

= 

⎡⎣1
4

⎛⎝2X
=1

X
=1

̃

⎞⎠2

+
1

4

⎛⎝ X
=2+1

X
=1

̃

⎞⎠2

− 1
2

⎛⎝2X
=1

X
=1

̃

⎞⎠⎛⎝ X
=2+1

X
=1

̃

⎞⎠⎤⎦
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Note that if there is no cross section dependence, then the last third term becomes zero.

Hence we have



"
X
=1

̃

Ã
X
=1

̃

!#2
=

1

4


⎛⎝2X
=1

X
=1

̃

⎞⎠2

+
1

4


⎛⎝ X
=2+1

X
=1

̃

⎞⎠2

=
1

4



2


⎛⎝ 2



2X
=1

X
=1

̃

⎞⎠2

+
1

4



2


⎛⎝ 2



X
=2+1

X
=1

̃

⎞⎠2

=


8

2

(1− )
2
+



8

2

(1− )
2
=



4

2

(1− )
2

where we use the fact



Ã
X
=1

̃

!2
=

2

(1− )
2
 (To students: Prove this)

Note that



Ã
X
=1

̃

!2
 

X
=1

̃2 =
2

1− 2

Solution: Use panel robust HAC estimator. Prove this.

Next, Consider the convergence rate: = must be
√
 Why?

Limiting Distribution: Major (nice) term and nuisance term For LSDV.

Nice term:

 =

P
−1P
̃2−1

Nuisance term:

 = − 1


P
³P

−1
´³P



´
P

̃2−1
Note that

̂ −  =

P
̃−1̃P
̃2−1

=  + =  +

µ
1

?

¶


and  is 

³
1√


´


√
 =

1√


P
−1

1


P
̃2−1

→ 
¡
0  2

¢
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but

 = − 1


1


P
³P

−1
´³P



´
1



P
̃2−1

= − 1


1


P
³

1√


P
−1

´³
1√


P


´
1



P
̃2−1

= − 1


1


P
 (1) (1)

 (1)

= − 1√


1



1√


P
 (1) (1)

 (1)
=

 (1)√


= 

µ
1√


¶
Hence

√
 (̂ − ) =

√
 +

√
 =  (1) +

µ
1√


¶
so that as  →∞ we can ignore the second term.
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Sample Final Exam:

Part I: Definition and Explanation

Q1: Cointegration

Q2: Unit Root Test

Q3: Weakly Stationarity

Q4: Newey and West Estimator

Q5: Panel Robust Covariance Estimator

Q6: White Heteroskedasticity Consistent Estimator

Q7: Nickell Bias

Q8: Relationship among between, within and pooled estimators

Q9: First Difference GMM/IV estimator in Dynamic Panel Regression

Q10: Hausman Test for Fixed Effects

Q11: Granger Causality Test

Q12: Error Correction Model

Part II: Proof and Derivation

Consider the following DGP

 =  +   = −1 +   ∼  (0 1)  0 = 0

Q1: Assume  = 1 You run the following regression

 = −1 +  (56)

(a) Show that the pooled OLS estimator in (56) becomes consistent for fixed  and large

 . That is,

plim→∞̂pols = 1

(b) Derive the limiting distribution of ̂pols when   →∞ jointly.

Now you add fixed effects.

 =  + −1 +  (57)
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(c) Show that the within group estimator in (57) becomes inconsistent. (for fixed  large

)

(d) Suppose that  → 0 as  →∞ Derive the limiting distribution of ̂FE

Q2: Assume ||  1 You run (56).
(a) Find the moment conditions that the pooled OLS becomes consistent.

(b) Under the conditon of (a), derive the limiting distribution of ̂pols
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