1 Panel Robust Variance Estimator

The sample covariance matrix becomes

o) (Sn) | (s (Sr) y

=1

and its associated t-statistic becomes

Consider two regressors: First let
! ~ ~ ~
§i = Xty = [z1,0; w2,
where
/
Thi = (Thyils s ThoiT)
Then calculate Y% | €/¢, which is T x T matrix.

Read Lecture note in Econometric I and find out the potential issue on this panel robust

variance estimator.

2 Monte Carlo Studies

2.1 Why Do We need MC?

1. Verify asymptotic results. If an econometric theory is correct, the asymptotic results

should be replicatable by means of Monte Carlo studies.

(a) Large sample theory: 7' or N must be very large. At least 7" = 500.

(b) Generalize assumptions. See if a change in an assumption makes any difference in

asymptotic results.

2. Examine finite sample performance. In finite sample, asymptotic results are just ap-
proximation. We don’t know if or not an econometric theory works well in the finite

sample.

(a) Useful to compare with various estimators.
(b) MSE and Bias become important to the estimation methods.

(c) Size and Power become issues on various testing procedures & covariance estimation.



2.2 How to do MC

1. Need a data generating process (DGP), and distributional assumption.

(a) DGP depends on an econometric theory and its assumptions.

(b) Need to generate pseudo random variables from a certain distribution

2.2.1 Example 1: Verifying asymptotic result of OLSE

DGP:
Model: y; = a + x;8 + u;

Now we take a particular case like
U; ~ 1tdN (0, 1) , XLy~ 1tdN (O,Ik)

where a = 5 = 0.

Step by Step procedure

1. Find out the parameters of interest. (here we are interested in consistency of OLSE)
2. Generate n pseudo random variables of u,  and y. Since a = 8 =0, y; = u;.

3. Calculate OLSE for 8 and a. (plus the estimates of parameters of interest)

4. Repeat 2 and 3 S times. record all B

5. calculate mean of 3 and variance of them. (how do we know the convergence rate?)

6. Repeat 2-5 by changing n.

2.2.2 Example 2: Verifying asymptotic result of OLSE Testing

DGP:
Model: y; = a + x;8 + u;

Now we take a particular case like
U; ~ 1tdN (0, 1) , XLy~ 1tdN (O,Ik)

where a = 5 = 0.



Step by Step procedure
1. Find out the parameters of interest. (t—statistic)
2. Generate n pseudo random variables of u, z and y. And calculate ¢ ratio for 5 and a.
3. Repeat 2 and 3 S times. record all ts-

4. Sort t 3 and find out the lower and upper 2.5% values. Compare them with the asymptotic

critical value.

5. Repeat 2-4 by changing n.

2.2.3 Exercise 1: Use NW estimator and calculate ¢ ratio. Compare the size and

power of the tests (ordinary and N'W t-ratios)

Asymptotic theory: Both of them are consistent. The ordinary ¢ ratio becomes more efficient.
Why?

Size of the test Change step 4 in Example 2 as follows:
Let

~

t* = ts

sort ¢*. Find when ¢7 > 1.96. And 1 — j*/S becomes the size of the test.

Power of the test Change 8 = 0.01, 0.05, 0.1, 0.2.
Repeat the above procedures, and find 1 — 5*/S. This becomes the power of the test.

2.2.4 Exercise 2: Re-do Bertrand et al.



3 Review Asymptotic Theory

3.1 Most Basic Theory

Yi = Bz 4+ w;
where
u; ~ 1id (0, ai)
X - S T LS wu
B=pt(ae) alu= B+ SEG = g+ HEE S
=1 "3 n =13
First let

Hence we have

or
Ly 6N (0.0
Vi
Next,
1 n
plim,, , — Z xf = Q,, let say.
N4
Then 1 —n
_n Zifl TiUq
n 2vi=17T;
or

3.2 Addition Constant term
Yi = a+ P +u;

where

Ti =g + X7, Y = ay + 5.
u; ~ iid (0,07)

M XU
E%z; =0+ T—n =
D & D i1 T

1 no o~ o~
7 Die Tilli



First let

n
1 .
— TilU; =
n

=1

Next,

Then

: 1 -
phmn—»ooﬁ Z;xz = Qg, let say.
1=

m(@-ﬁ)ZW

n =14

—4 N (0,Q;'07Q; 1) .



4 Power of the Test (Local Alternative Approach)

Consider the model
yi = Bxi + u;
and under the null hypothesis, we have
B =0,

Now we want to analyze the power of the test asymptotically. Under the alternative, we have

B=8,+c

where ¢ # 0.
Suppose that we are interested in comparing two estimates, let say OLSE and FGLSE (3,
and f3,). Then we have

or

M —4 N (0,1) + Ve + 0, (N*W)

YV ()
Hence as long as ¢ # 0, the power of the test goes to one. In other words, the dominant term
becomes the second term (y/nc)

Similary, we have

Hence we can’t compare two tests.

Now, to avoid this, let
B=B,+

so that 8 — (8 as n — oo. Then we have

Vi (B, - 8)

C
-
—4 N (c,1) + 0, <N*1/2> .

Hence depending on the value of ¢, we can compare the power of the test (across different

estimates).



5 Panel Regression

5.1 Regression Types

1. Pooled OLS estimator (POLS)
Yit = a+ Bxit + vzt + uit

2. Least squares dummy variables (LSDV) or Withing group (WG) or Fixed effects (FE)

estimator

Yit = a; + BTi + yzi + Uit

3. Random Effect (RE) or PFGLS estimator
Yit = a + Bris + yzie + €, €y = a; — a4 uy

Let X = (211,212, ..., 17, T21,s o0 INT) 5 Xi = (@i1, ooy i) s Xt = (T14, ..., ) . Define
7, z; and z; in the similar way. Let W = (X Z)'. Then
5.2 Covariance estimators:

1. Ordinary estimator: 62 (W/W) ™!

2. White estimator

(a) Cross sectional heteroskedasticity: NT (W'W) ™ (&30, a?wiw;) W'w)™*
(b) Time series heteroskedasticity: NT (W/W) ™ (% S ﬁ?wéwt) W'w)™

(¢) Cross and Time heteroskedasticity: NT (W/'W)~* (ﬁ ZZ]\LI Zthl ﬂ?twitwgt> w'w)~!
3. Panel Robust Covariane estimator: N (W/W) ™! <% SN Wgﬁiﬁ;wi> w'w)~*

4. LRV estimator 7 Why not?

5.3 Pooled GLS Estimators

b= (@ tenw] " W (Q e 1)y



5.3.1 How to estimate ) :

1. Time Series Correlation:
1 T—1
(a) ARI: easy to extend. Q =

pT—l 1

(b) Unknown. Qo = % Zf\;l U;st;p. Required small T and large N.
2. Cross sectional correlation

(a) Spatial: Easy.

(b) Unknown. Qg = % Zle Ugt Uy

5.4 Seemingly Unrelated Regression

=W (e YW W ({Ie )y



6 Bootstrap

Reference: “The BOOTSTRAP” by Joel L. Horowitz (Chapter 52 in Handbook of Economet-
rics Vol 5)

6.1 What is the bootstrap

It is a method for estimating the distribution of an estimator or test statistics by resampling

the data.

Example 1 (Bias correction) Model

Yt = a+ pyi—1 + e,

1 —;Sp +0 (T’2) . Here

I am explaining how to reduce Kendall bias (not eliminating) by using the following bootstrap

where e; is a white noise process. It is well known that E(p — p) = —

procedure.

1. Estimate OLSE for a and p, denote them as @ and p. Get OLS residual é; = 3y —a— pyr—1-

2. generate T+ K random variables from the uniform distribution of U (1,7 — 1). Make

them as integers.

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).
ind = 1+floor(ind); % make integers. 0.1 => 1.

3. Draw (T'+ K) x 1vector of e from é;.

esta = e(ind,:);

4. Recentering e; to make its mean be zero. Generate pseudo y; from ej, and discard the
first K obs.

esta = esta - mean(esta); ysta = esta;
for i=2:t+k;
ysta(i,:) = ahat+rhohat*ysta(i-1,:) + esta(i,:);
end;

ysta =ysta(k+1:t+k,:);

Tt = W NN



Note that ahat should not be inside for statement. Add ahat in line 5. Precisely speaking,
you have to add ahat*(1-rho) but don’t need to do so if you use demeaned series to

estimate rho.
5. Estimate a* and p* with y;.

6. Repeat step 2 and 5 M times.

M Ak ~
m=1 pm - p

7. Calculate the sample mean of p*. Calculate the bootstrap bias, B = ﬁ >
where py, is the mth time bootstrapped point estimate of p. Subtract B from p.

N

pmue:p_B

where mue stands from mean unbiased estimator. Note that
E (Z)muc - p) =0 (T_Q) .

8. For t—statistics: Construct

+* — i)jrkn B p
m ~
’ V()
and then repeat M times and get the 5% critical value of tm- Compare this with

P
V(p)

t, =
6.2 How the bootstrap works
First let the estimates be a function of T. For example, p be p;. Now define

. > itYit—1
pr = S=5— =g(2), let say
> yi2t—1

where z is a 2 x 1 vector. That is, z = (21, 22) and z; = %Z?]it?jit_1 and z9 = %Zgﬁt_l.

From A Tyalor expansion (or Delta method), we have

N dg 1 / 829 -2
pr=pt =)+ 5 =) (g ) (2 20) 40, (1)

Now taking expectations yields

2
E(pr—p) = E% (Z—Zo)+%E(Z—zo)' <628ng) (z—2) + O (T7?)

(O -
= %E(Z_Zo) <8zagz') (2 = 2) + O (T7?)

10



since F (z — z,) = 0 always.

1+3
The first term in the above becomes O (T‘l), that is — Rl

. We want to eliminate this

part (not reduce it). The bootstrapped p} becomes

. 09 1. %9 \ -
bt L =)+ 3 =2 () (= 20) + 05 (1)

0z 2

where z* = (27, 23), and 2] = % > U5k _q, etc. Note that we generate y}; from pp, p7- can be
expanded around pr not around the true value of p. Now taking expectation E* in the sense
that

E* - Fas M, T — oco.

Then we have

Note that in general

hence we have

N

Pmue = pT - B* = bT - B (ﬁ;” - pT)

6.3 Bootstrapping Critical Value

Example 2. (Using the same example 1) Generate t-ratio for py, M times. Sort them,

and find 95% critical value from the bootstrapped t-ratio. Compare it with the actual t-ratio.

Asymptotic Refinement Notation:
Fp is the true cumulative density function. For an example, cdf of normal distribution.
tg is the t-statistic of f3.
tn,p is the sample t-statistic of B where n is the sample size.
G (7, Fy) = P (tg < 7). That is the function G is the true CDF of t3.
Gy (1, Fy) = P (t, 3 < 7). The function Gy, is the exact finite sample CDF of ¢, 3

Asymptotically G,, — G as n — oo. Denote that G, (7, F},) is the bootstrapped function
for t7 P where F), is the finite sample CDF.

11



Definition: Pivotal statistics If G, (7, Fj) does not depend on Fy, then ¢, 5 is said to be

pivotal.

Example 3 (exact finite sample CDF for AR(1) with a unknown constant) From
Tanaka (1983, Econometrica), the exact finite sample CDF for ¢, is given by

o(x) 2p+1 n
VT /1-p?

where @ is the CDF of normal distribution and ¢ is PDF of normal. Here Tanaka assumes Fy

P (tT,,b < 1‘) = (SE) + 0] (Tﬁl)

is normal. That is, y; is distributed as normal. Of course, if y; has a different distribution,
the exact finite sample PDF is unknown. However, ¢ is pivotal since as T' — oo, its limiting
distribution goes to ® (z).

Now under some regularity conditions (see Theorem 3.1 Horowitz), we have

1 1 1
G, (T,FO) = G(ﬂFg) + %gl (T,Fo) + Egz (T,Fo) + ng (T,F()) +0 (n72)

uniformly over 7.

Meanwhile the bootstrapped ¢ B has the following properties

1 1 1
G (7, F) = G (7, F) + —=1 (7, Fa) + 92 (7, Fo) + —500 (7, Fo) 0 (n7%)

NG

When ¢ 3 is not a pivotal statistic In this case, we have

G (1, Fo) — Gy (1, F,) =[G (1, Fy) — G (1, F,)] + g1 (1, Fo) — g1 (7, F,)]| + O (n_l)

1
NLD
Note that G (r,Fy) — G(7,F,) = O (n*1/2). Hence the bootstrap makes an error of size
) (n_1/2) . Also note that G, (7, Fp) also makes an error of size O (n_1/2) , so that the boot-

strap does not reduce (neither increase) the size of the error.

When tp is a pivotal In this case, we have
G(r,Fy) —G(1,F,)=0
by definition. Then we have
Gy (v, Fo) — G (1, Fy) = \/1% o1 (2 Fo) — g1 (7. Fo)] + O (n7Y)
and g1 (7, Fy) — g1 (1, F,) = O (n_l/z) . Hence we have
Gy (1,Fy) — Gy (1, F,) =0 (n_l) ,

which implies that the bootstrap reduces the size of an error.

12



6.4 Exercise: Sieve Bootstrap

(Read Li and Maddala, 1997)

Consider the following cross sectional regression
Yit = a + Brir + uit (3)

We want to test the null hypothesis of 8 = 0. We suspect that x;; and wu;; are serially correlated,

but not cross correlated. Consider the following sieve bootstrap procedure
1. Run (3) and get a, B, and ;.
2. Run the following regression
it | _ | P | | P O €it
Uiy 0 0 py Eit

and get fi,, P, P, and their residuals of é;; and ;. Recentering them.

Tit
_l’_
Uit

* *
3. Generate pseudo z, and .

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).
ind = 1+floor(ind); % make integers. 0.1 => 1.

F = [ehat espi]; % é;; and &

Fsta = F(ind,:); % use the same ind. Important!

repeat what you learnt before....

4. Generate y};, under the null,

Y = 0+ ujy.
5. Run (3) with y};, and z;, and get the bootstrapped critical value.
Simplest Case: Consider you want to test
Yjit = aj + Wjit, Ujit = PjUjit—1 + €jit (4)

where j stands for the jth treatment. Assume u;;; are cross sectionally dependent and serially
correlated. However uj;; is exogenous. Then running the following panel AR(1) regression

beceoms useless to test Hy : a; = a for all j.
Yjit = O + P;Yjit—1 + €jit

since aj = a; (1 — p;) . In this case, one should run (4) and do a seive bootstrap with ;.

13



7 Maximum Likelihood Estimation

7.1 The likelihood function

Let y1,...,Yn, {yi}, be a sequence of random variables which has iid N (,u, 02) . Its probability

density function f (y|,u, 0’2) can be written as

1

o

1
202

fy=uyilp,0®) = -

exp [— (yi — M)z] :

Note that this pdf states that with given y and o2, the probability of y; = y. Now let think
about the joint density of y such that

F eyl o®) = f (nlp,0®) x - X f (yn|p, 0?)

n
= II f (vlw 02) due to independence
i=1

That is, with given u and o2, the joint pdf states that the probability of a sequence of y to be
{y:;} . This concept is very useful when we do both/or MC and bootstrap.

Now consider the mirror image case. Given {y;}, what are the most probable estimates for
p and 02? To answer this question, we consider the likelihood (probability) of x and o2. Let

0= (u, 02) . Then we can re-interpret the joint pdf as the likelihood function. That is,
f () =L (Oly).

And then we maximize the likelihood with given {y;} .
arg max L(0y).

However it is often difficult to maximize directly L function due to nonlinearity. Hence alter-

natively we maximize the log likelihood
arg max InL(0ly) .

In practice (computer programming) it is much easier to minimize the negative log likelihood
such that
arg main —InL (0ly)

Of course, we have to get the first order conditions with respect to 6, and find the optimal

values of 6.

14



Example 1 Normal random variables. {y;}, i = 1,...,n. Want to estimate y and o2.

L(wo®y) = [1—mesexp [—2;(%—#)2]

since
exp (a)exp (b) = exp (a+b).
Hence ,
n
n 2 1 (yi — 1)
lnL——ln(2W)—an—2;[ — ]
Note that
OlnL 1<
= =52 Wi—-n=0,
Op 7=
OlnL n 1 « 9
s A= DI

From this, we have
n

ﬂmle = % Zyl

=1

and
n

. 1 2
U72’7Ll6 = E Z (y’L - /Lmle)
i=1
Properties of an MLE (Theorem 16.1 Green)

1. Consistency: @mle —P g

2. Asymptotic normality
Ote —4 N (9, [I (9)—1})

where

1(0)=-EF [‘9;01;;] = —E(H)

where H is the Hessian matrix.

3. Asymptotic Efficiency: 9ml€ is asymptotically efficient and achieves the Cramer-Rao lower

bound for consistent estimators.

15



8 Method of Moments (Chap 15)

Consider moment conditions such that

B (&~ u)=0

where ¢, is a random variable and p is the unknown mean of &,. The parameter of interest,
here, is pu. Consider the following minimum criteria given by

T

1
arg min Vp = arg min — —
gmin Vy = argmi Tt;(ft 1)

2

which becomes the minimum variance of £, with respect to u. Of course, the simple solution

becomes the sample mean for p since we have
8V 1 1 «
ovr

The above case is the simple example of the method of moment(s).

Now consider more moments such that

(u)=

o o o O

=)
[( m( )m -
|

Then we have the four unknowns: wu,~g,7v1,7v2. We have four sample moments such that

I 1, 1< 1 <&
T EoT D ) Ebinp ) Eibia
t=1 t=1 t=1 t=1

so that we can solve this numerically.
However, we want to impose further restriction. Suppose that we assume &, follows AR(1)

process. Then we have
Y1 =PY% T2 =P

so that the total number of unknowns is reducing to three (v, p, i) . We can increase more cross

moment conditions also. Let ¥, = ( Zt 1fthZt 1§taTZt 1 & 1,th 1 & 2> .

Then we have
1 X T
2 _
B ; (& — Z — 1 =1

H \



so that

N

1 T
EZY & =~ — i
t=1
Also note that

T
1
P Dt =0 i, and soon

Hence we may consider the following estimation

arg min [y — ¥ (0)] [V — ¥ (0)]. (5)

HsPYo

where 6 is the parameters of interest (true parameters, p,7g,p). The resulting estimator is
called ‘method of moments estimator’. Note that MM estimator is a kind of minimum distance
estimators.

In general, MM estimator can be used in many cases. However, this method has one
weakness. Suppose that the second moment is relatively huge than the first moment. Since
Vr function assigns the same weight across moments, the minimum problem in (5) tries to
minimize the second moment rather than the first and second moment both. Hence we need
to design the optimal weighted method of moments, which becomes generalized method of
moments (GMM).

To understand the nature of GMM, we have to study the asymptotic properties of MM esti-
mator. (in order to find the optimal weighting matrix). Now to get the asymptotic distribution
of @, we need a Taylor expansion.

vr=v0)+ 220 (0-0) +0, (1)

so that we have

VI (0-0) = VT o -0 0] 60) " +0,

where G (0) = &%Tese). Note that we know that

VT [pr — 1 (6)] -7 N (0, )

Hence we have

VT (9 - 9) AN (0, G0) ' oG (0)’*1)
where G (0) =P G ().

17



8.1 GMM
First consider infeasible generalized version of method of moments.

arg min [ — 3 ()] @7 [ — ¢ (0)].

121290

where ® is true unknown weighting matrix. Now feasible version becomes

arg /lH/l)l’IYlo [Wr = (0)) Wr [r — 4 (0)]n = arg Mfgglo Gr (6) WrGr (6)

where W1 is a consistent estimator of ® 1. Let

Vr = [y — ¢ ()] Wr [y — ¢ (6)]
Then GMM estimator satisfies
oVr (éGMM)

OO cn =2Gr (éGMM),WT [wT_¢<éGMM>} =0

so that we have
(8 (éGMM> = ¢r (0) + Gr (0) (9GMM - 9) +0p (;)
Thus
Gr (éGMM>,WT [¢T — (éG’MM)}
= Gr (9GMM)/WT [@ﬁT — (9G’MM)} + Gr (9GMM)/WTGT (9) (éGMM - 9) =0
Hence
(9GMM - 9) =— {GT (éGMM), WrGr (9)}_1 Gr <9GMM)/WT [ﬂ}T — (éGMMﬂ
and
VT (éGMM - 9) —? N (0,V)
where
V= % (WG} ' GWeWG {G'WG)
When W = &~ ! then we have
V= % el Yearel SuleRel Sulelas % el ici
Overidentifying Restriction can be tested by calculating the following statistics
J = [ — ¢ (0%)] Wr [ — ¢ (09)] =7 xi_y
where [ is the total number of moments and k is the total number of parameters to estimate.

The null hypothesis is that with given estimates, all moment conditions considered are valid.

Once the overidentifying restriction is not rejected, the GMM estimates become robust.

18



9 Sample Midterm Exam

Model

Yit = a;+Bxi+uy, t=1,...,T;i=1,....N (6)
Uip = PUip—1+ Vg, Tyt = pri—1 + e for time series and panel cases (7)

where v;4,e;; are independent each other.

9.1 Matlab Exercise:

1. Estimators

(a) Cross section: Let ¢ = 1, N = n. Provide matlab codes for OLS, WLS (weighted

least squares)
(b) Time series: Let N = 1,7 = T Provide matlab codes for OLS.
(c) Panel data: Provide matlab codes for POLS, LSDV, PGLS (infeasible GLS)

2. t-statistics

(a) Cross section: provide ¢ ratios for ordinary and white.
(b) Time series: provide ¢ ratios for ordinary and NW.

(c) Panel Data: provide t ratios for ordinary and panel robust.

3. Monte Carlo Study. Assume all innovations are iidN(0,1). (Don’t need to write up

matlab codes)

(a) want to show that B spy 1is inconsistent. Write down how you can do by means of
MC.

R 2
(b) want to show that t;5 = 6LSDV/\/6U/ {sz\il S (xit - %Zle xit) } suffers

from size distortion. Write down step by step procedure how you can show it by

means of MC.
4. Bootstrap.

(a) write up the bootstrap procedure (step by step) how to construct the bootstrapped
critical value for ¢ B in 3.b. under the null hypothesis 5 = 0.

19



9.2 Theory
1. Basic: Derive the limiting distribution of 37 gpy in (1) and (2)

2. Suppose that
uit = O + it (8)

where 6; is independent from x;;.

(a) You run eq. (1). (v on a; and x). Show B ¢py is consistent.

(b) Further assume that ¢;; is a white noise but 6; follows an AR(1) process. How can
you obtain more efficient estimator by using a simple transformation. (Don’t think
about MLE)

3. Now we have

uit = Aify + €it

(a) Show that 3 spy is still consistent as long as u;; is independent from ;.

(b) Can you eliminate \;0;? If so, how?
4. DGP is given by
Vit = a + Bri +wip, wip = (@i —a) +uir, Ui = pui—1 + i, it ~ AN (0, a?) - (9

(a) you want to estimate the set of parameters by maximizing log likelihood function.

Write down the set of parameters.
(b) Write down the log likelihood function and its F.O.C.

(c) Derive MLEs when p = 0 and this information is given to you.
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10 Binary Choice Model: (Chapter 23, Green)

10.1 Cross Sectional Regression

yi = 1{a + bx; + u; > 0}
where 1{-} is a binary function. That is
lifa+bx; +u; >0
yi =
' 0 otherwise.
10.1.1 Regression Type: Linear Probability Model (LPM)
yi = a1 +bix; + ¢ :X,,@+e
Let
Pr(y=1[x) = F(x,8)
Pr(y=0x) = 1-F(x,0)

(10)

(11)

where F'is a CDF, typically assumed to be symmetric about zero. That is, F' (u) = 1—F (—u).

Then we have
Eyx)=1xF(x,08)+0x{1-F(x,8)}=F(x,03).

Now
y=Eyx)+ - Eyx)=E(yx) +te=x'8+e

Properties

1. a1 + bix; + ¢; should be either 1 or 0. That is,

a1 +bhiz; +e;, = 1 <— 6121—a1—b1$iwithF(X,,@)

a1+ bix;+e; = 0 < ¢ =—a1 —bix; with1 - F

2. Hence
Var (e|x) =x'8 (1 - x'8)

3. Easy to interpret.

1
— g y; = estimated probability that y =1
n

1 1

- E yi=a1+b1ﬁ E T

21



Criticism
1. If (10) is true, then (11) is false.

2. x'@ is constrained to be between 0 and 1.

10.1.2 Logit and Probit Model

Assume that (here I delete constant term for notational convenience). Both logit and probit

model work with the latent model given by
yi =bx; +uy

and
yi = L{y; >0}

Then
Prly; = 1|a;] = Pr[u; > bx;] = F (ba;) = 1 — F (—bx;)
Two common choices are

F (br) = exp (bz;)

= —— logit
Ttexp(bay) 0

and
bLBi

F (bx;) = ¢ (t)dt = & (bx;) : probit.
—0o0
How to interpret the regression coefficient: Logit and probit models are not linear.

Hence the interpretation of the regression coefficients must be done in the following way.

OF [y|x] dF (bz;)
Ta = L oS0
¢ (bx;) b : probit

_exp(bzi) N U
(1+exp(bx;))2 A (bx;) [1 — A (bx;)] : logit

Two way to calculate slope.

1. use sample mean of x;

OF [y|x] _ ¢ (bx) b : probit
Ox A (bz) [1 — A (bT)] = logit
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2. use sample mean of slopes across x;

OF | y|:z: B Z OF [y|z] _ LS ¢ (ba;)b: probit
Ox; LS A (bay) [1— A (bzy)] : logit

1 and 2 are similar. So usually 1 is used.

10.1.3 Estimation of Logit and Probit: Using MLE.

Assumption: independent and identical distributed.

Then the joint pdf is given by

Pr(y1,...,ynlx) = yr:lo [1— F (bx;)] yl;[lF (bx;)

and the likelihood function can be defined as

L) =TT [ = F ()] F (b))

=1
and its log likelihood is given by
InL=> [yInF (bx;) + (1 - y;)In{l—F (bx;)}].
=1

Now F.O.C. is

OlnL yili N[ o
b _Z{F +(1_yl)(1—Fi) 2 =0

where f; = dF;/d (bx;). More specifically, we have

EﬂnL_ z(yi—Ai)l‘i:O
ab Z/\iﬂ}izo

where
(2y; —1) ¢ ((2y: — 1) bxi)‘

M= (20— 1))

Estimation of Covariance Matrix 1. Inverse Hessian matrix.

_9*InL — Y Nz« logit
obov’ > =Xi (i + bx;) wizl . probit

2. Berndt, Hall, Hall and Hausman Estimator

B— > (yi— Ai)2 zix) : logit
> )\12 x;z, © probit
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3. Robust Covariance Estimator

Estimation of Covariance of Marginal Effects Marginal Effects = f (l;a’c)l; = F, let

say. How to estimate its variance?
A / A
- OF oF
v(F)= (819) V(ab>

V =V(b)

where

Issue on Binary Choice Models First consider linear model
y=X10+XoBy +¢

but you run

y=X161+u

Then A) if X, is correlated with X;, 3, is inconsistent. B) If 1X/ X1 = 0 (orthogonal),

then 3, is unbiased even when Sy # 0.

Now consider the binary choice model
y=1{X18; + X285+ >0}
Assume E X7 X2 =0 but 85 # 0. And you run
y=1{X15; +u >0}
Then
Py, x, = €18y + 2By # B
Likelihood Ratio Test (LR) Let
Ho:By;=0
Then we can test this null hypothesis by using likelihood ratio test given by
—2(InLp —InLy) ~ x4

where k is the number of restriction.
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Measuring Goodness of Fit R? does not work since the regression erros are inside the

nonlinear function. Several measures are used in practice.

1. McFadden’s likelihood ratio index
InL
In Ly

where Lg is the likelihood only with constant term.

LR1=1-

2. Ben-Akiva, Lerman, Kay and Little

n

Ryp = %Z [%Fi +(1—y) <1 - Fz):|

i=1

3. See Green page 791 for other criteria

10.2 Time Series Regression
Models are given by
yr = 1{a + bzy + uy > 0} .

Note that there is no difference in terms of estimation and statistical inference from cross
sectional binary choice model. However, in time series case, the persistent response becomes
an important issue. In fact, most of time series binary choices are very persistent, and especially

the source of such persistency becomes an important issue. There are three explanations

1. Fixed effects
y; = a+ bxy +up > 0 because a >>0: M1

In this case, y; has all positive values for most of all times.

2. yf is highly persistent.
y; =a+ py;_q +up;: M2
3. y; is depending on y;—1 (past choice).

ye = 1{a+ pyr—1 +ur} : M3

Modell and Model 2 can be identified from Model 3. However if two models are mixed,
then it is impossible to identify the order of serial correlation. In other words, it the true model
is given by

ye = 1{yf = a+pye—1 + dyjy +w}: M4

Then ¢ and p are not in general identifiable.
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Heckman Run Test

Assumption 1 (Cross Section Independence) The binary choice is not cross sectionally

dependent. That is, a; ~ i.i.d (O, 0(21) , and e; ~ 1.i.d (0, a%) .

Assumption 2 (Initial Condition) For M2, y;_; = 0. That is, y;1 = 1 {a + e;1 > 0} . For
M3, yio = 1{a + ujp > 0} and u;o ~ i.i.d (0,0’?/ (1 — p2)) .

Under these two assumptions, Heckman suggests the so-called ‘run’ test by looking running

patterns of y;;. To fix the idea, let T = 1,2, 3 and consider the true probablity of each run

Model Run Patterns
M1  P(110) =P(011) =P(101) P(100) =P(001) =P(010)
M2  P(110) =P(011) #P(101) P(100) =P(001) #P(010)
M3  P(011) >P(101) >P(110) P(001) >P(010) >P(100)
M4 All probabilities distinct but unordered

By using these runs patterns, Heckman constructs the following two sequential null hypotheses

to distinguish the first three models.

Hoi : P(011) =P (101) & P (001) = P (010) under M1
Hap @ P(011) # P (101) or P (001) # P (010) under M2, M3, and M4

When the first null hypothesis is rejected, then the second null hypothesis can be tested.

Hgy : P(110) = P (011) and P (100) = P (001) under M2
Hyo : P(110) # P (011) or P (100) # P (001) under M3 and M4

Heckman suggests Peason’s score y? statistics for both null hypotheses. For Hy; and Hgs, the

test statistics are given by

(For1 — EFOH)2 (Fio1 — EFun)2 9
= —_—
Por EFy1 * EF101 X
(Fi10 — EF110)* | (Four — EFpi1)° 2
e e
oz EFi10 * EFp11 X

where Fpi1 is the observed frequency for the outcome of the ‘0,1, 1’ response. Similary Fjjj, is
defined in the same way. EFy11 =EFi91 under Hy; while EFy1g =EFp11 under Hyo.
Several issues are arised in Heckman’s run tests. First, Heckman’s run test requires to

estimate the expected frequency under the null hypothesis. When a; # « in M3 or M2, it is

26



hard to estimate the expected frequency from the models. Second, M3 is hard to distinguished
from M4 if the current choice depends on many past lagged depedent variables. In fact,
Heckman does not provide any formal test to distinguish M3 from M4. Third, when the binary
panel data shows severe persistency, the numbers of observations in each case for the two null
hypotheses are decreased significantly. In fact, Heckman (1978) couldn’t reject the first null
hypothesis by using 198 individuals over three years of the data: Out of 198 individuals, 165
individuals show either ‘111’ or ‘000’ flat response, and only less than 17% of individuals show
heterogeneous responses. Finally, such runs patterns become useless if the first observation does
not start from ¢ = 1. For example, if econometricians don’t observe the first £ observations,
and if they treated as if the k£ 4+ 1th observation as the first observation, they can’t obtain the
heterogeneous running patterns for M2 and M3. With a moderate large k, P(110) =P(011)
and P(100) =P(001) both under M2, M3 and M4. Hence the second null hypothesis can’t be

tested by using runnig patterns.
11 Panel Binary Choice

11.1 Multivariate Models (See 23.8 Green)

Model

yi = z1B +e,
Ys = X285+ €2,

BN

Consider the bivaraite normal cdf given by

where

2 T1
Pr(Xi <z, Xo <xp] = / / ¢y (21, 22, p) dz1d2o
—o00 J —o0o

where [} (53 + 53 — 2pma2) / (1— )]
exp |—5 (2] + 5 — 2px122 —p
bo (21, 22,p) = 21 2 (12)
2m/(1 = p?)
Likelihood Function Let
g1 = 2yn—1, qi2=2yi2—1

/
Zij = LBy, Wig = GijZigs  Pix = Gi1qi2p
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Then the log likelihood function can be written as

n
InL = Z In ®o (wj1, wiz, pi«)
i=1

Marginal Effects
0Py xh8 — pxy B
87:1:1 =¢ (55351) @ (21 B

Testing for zero correlation

Ak = 2[In Ly — (In Ly + In Ly)] -4 x3

11.2 Recursive Simulatneous Equations
Priyi = 1,92 = l|z1, 2] = @ (2181 + 7y2, 2285, p)

At least one endogeneous variable is expressed only with exogenous variables.

Results (Maddala 1983)

1. We can ignore the simultaneity

2. Use log-likelihood estimation. Not LPM.

11.3 Panel Probit Model
Model

yit = 1{y;; > 0}

Results

1. If T'< N, then don’t use fixed effects: Let v}, = a; + Bxi; + ui. Note that y;; is either 1

or 0. When T is small, a; is impossible to identify.
2. If T > N, then use multivariate probit or logit.
3. If T'< N, then you can use random effects but have to know that it is very complicated.

4. Overall, Don’t use panel probit.
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11.4 Conditional Panel Logit Model with Fixed Effects
Set T' = 2, consider the cases

Cl Yi1 = O,yig =0

C2 : ya=LlLyp=1

C3 : ya=0,y2=1

C4 : yn=1yp=0

The unconditional likelihood becomes

L= HPr (Yir = yi1) Pr (Yi2 = yi2),

which is not helpful to eliminate fixed effects.

For C1, consider this

exp (a; + xif3)
1+ exp (a; + =)

Pryiy = 1|z =

Now, we want to eliminate the fixed effects from logistic distribution. How? Consider the

following probability

Pr 0,1 and sum = 1]
Pr[sum = 1]
Pr|0,1]

Pr[0,1] + Pr[1,0]

Prlyin = 0,y2 = llsum = 1] =

Hence for this pair of obs, the conditional probability is given by

1 exp(a;+zi23)
14-exp(a;+x:18) 1+exp(a;+xi20) €xXp (%16)

1 exp(a;+xi2) 1 exp(aitzinif) : .
1+exp(a;+z;18) 1+exp(a;+xi2f) + 14exp(a;+zi28) 1+exp(a;+x4106) exp(mllﬂ) +exp (33226)

In other words, conditioning on the sum of the two observations, we can remove the fixed

effects. Now the log likelihood function is given by

_ - Ay exp (zi1) ) exp (w2/3)
InL = Z di [yﬂ n <exp($¢15) + exp (m126)> +yiln <exp(xﬂﬁ) + exp ($12ﬁ)>:|

=1

where

d; = 11if y;1 + y;2 = 1, and 0 otherwise.
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11.5 Conditional Panel Logit Model with Fixed and Common Time Effects

Model
yir = 1{y; > 0}
where
Yir = a; + 0y + 2448+ ui
Consider

exp (92 + x00 + ai)
exp (02 + zi28 + a;) + exp (01 + zi1 8 + a;)

Prlyin = 0,y;2 = 1|sum = 1] =

Let divide both sides by exp [01 + xi15 + a;], then we have

exp (02 + zi2B + a;) / exp [61 + zi1 5 + a4
exp (02 + 28 + a;) / [01 + 18 + ai] + exp (01 + ;18 + a;) / [01 + xin B + a4
exp (92 — 01+ (.'L'Z‘Q — a:ﬂ) ,B) exp (A0 + szﬂ)

exp (03 — 01 + (zi2 — xi1) B) + exp (0) exp (Af + Az;8) +1

Hence the condition log-likelihood function can be written as

- exp (A0 + Az;3) 1
— i 1 o1
L ; di [y“ . (1 exp (A0 + AzB) ) V2 T Fexp (A0 1 Azif)

Remark Fixed and common time effects can’t be estimated. Use panel profit with random

effects to estimate their variances if you are interested in them.

STATA CODE: xtlogit y x, fe. Marginal effects: mxf, predict(pu0)
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12 Multinomial Choice Models

Two types of multinomial choices: Unordered choice v.s. ordered choice model. First we

consider unordered choice.

12.1 Unordered Choice or Multinomial Logit Model (23.11 Green)

Example: How to commute to school.

(1) automobile (2) bike (3) walk (4) Bus (5) Train

yi = J {y}; > y:]}
where J{-} is an interger J function if {-} is true. That is, J = 0,1,2,..., K. Note that an
individual j will choose j if y7; (utility) is greater than any other choice, y..
Now, let

*
Yij = ajx; + €ij

Note that the coefficient on x; is varying across choices, j. Why? Suppose that a; = a across
J. Then
y;; = y; for all j

so that an individual ¢ does not make any choice (since there is no dominant choice). Similary,
let
Yi; = ajmi + Bzi + g
then the coefficient S is not identifiable due to the same reason.
Hence when you model for multinomial choice, you may want to include some variable
which will differ across j. For example, the cost of transportation must be different across j.

In this case, we can setup the model given by
y;"j =a;x; + ﬂzij + Ujj-

In this case, the probability is given by

exp (a;zi + B2ij)
ZJK:O exp (a;x; + Bzij)

PrlY; = j] =

Now, let’s consider only x; case by setting 8 = 0. Then we have

exp (a;x;)

Sioexp (aja)

PrlY; =j] =
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so that the first choice will not be identified since the sum of probability should be one. Hence

we let (usually)
_ exp (a;x;
1+ >0 exp (ajz;)
The log likelihood function is given by

by setting ag = 0.

n

mL_Zid‘.ln( exp (a;7:) )
_ ’ 1

i=1 j=0 1+ 3750 exp (a;z)

where d;; = 1 if y; = j, otherwise 0.

Issue: 1. Independence of Irelevant Alternatives (IIA).Individual preference should not be
dependent on what other choices are available.
2. Panel multinomial logit: pooled one is okay. random effects mlogit is okay. fixed effects

clogit is not available yet.

12.2 Ordered Choices (Chapter 23.10 in Green)

Example: Recommendation letter.
(1) Outstanding (2) excellent (3) good (4) average (5) poor
Usually rating is corresponding to the distribution of the grades.

Then we can say
0ify* <0

1lif0<y* <
Y= .

kif e <y*

Then we have
Pr(y=0lz) = &(-2'B)
Pr(y=1lz) = @(c—2'8) -2 (2'5)

Priy=klz) = 1-9® (ck_l — x’ﬁ)

so that the likelihood function becomes

InL = i idzj I {® (¢c; —2'8) — @ (¢;_1 — 2'B)}

i=1 j=0

where d;; = 1 if y; = j, otherwise 0.
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13 Truncated and Censored Regressions

13.1 Truncated Distributions

x; has a nontruncated distribution. For an example, z ~ iidN (0, 1) . If z; is truncated around

a, then its pdf is changed to

(2) v o (7))

f(x!:c>a):Pr(:c>a) N l_filoo\/TTFeXp<Tx2)dx

For an example, if a = 0, then we have

0 1 <—$2>
exp| — | dx =0.5
[

flz) 1 —z”
Pr(m>0)_2\/ﬂeXp< 5 > from x >0

so that

f (ala > 0) =

Now consider its mean

E[x\x>a]—/ooxf(ma:>a)d:c—/oo:c\/2276xp <_2$2> dx =

For the case of a = 0, we have

SIS

Elz|lz > 0] = Y2 =0.798

SIS

More generally, we have the following fact.

Let z ~ iidN (u, 02) and a is a constant, then

E(zlx>a) = p+oi(a)
Vizlz >a) = o?[1—6(a)

where

and
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13.2 Truncated Regression

Example: y; = Test score, x; = parents income. Data selection: High Test score only. Suppose

that we have the following regression

Yi = xi8 + &
The conditional expectation of y given x is equal to

Ey(yly >0) = E;(y'|y" >0)=E; (28 +ele > —apB)
= zB+ Ey(ele > —aB) # 2B
since
E, (ele > —xpB) # 0.

Hence typical LS estimator becomes biased and inconsistent. We call this bias sample selection
bias.

The solution for this problem is using MLE based on the truncated log likelihood function

Inl = z; [m{iqs (W)} —In® <°””f>} :

We will consider more solution later.

given by
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Now, what happen if z; is truncated? Note that

E, lyilx; >a] = E.[zf+c¢l|z > d]
= zf+ E;[elz > a] =z

Hence the typical OLS estimator becomes consistent.
13.3 Censored Distribution
We say that y; is censored if

yi = 0ify’ <0

yi = y;ify; >0

Hence y; has a continuous (or non-censored) distribution.

Example: If y* ~ iidN (u, 02) ,and y = a if y* < a or else y = y*, then

)-U

E(y) = Pr(y=a)a+Pr(y>a)E(y*ly* > a)
(

|
.,

r(y* <a)a+Pr(y" >a)E(y*ly* > a)
= ®(a)a+{l-2(a)}{u+or(a)}

and
V) =0 (1-0) [(1-8)+(a— 20|,

where

a=(a—p) /o, A=¢(a)/{l =B (@)}, 6 =\~ Xa

Remark Let y* ~iidN (0,1), and y =0 if y <0 or else y = y*. Then

1

¢ (0) V2T 2
A= = =0.798, 6 = 0.798° = 0.637
1-®(0) 05 ’

E(yla=0) = 0.5(0+0.798) = 0.399
V(y) = 0.5[(1—0.637)+0.637 x 0.5] = 0.637
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13.4 Censored Regression (Tobit) Model

Tobin proposed this model. So we call it Tobit model.

yr =ziB+e
yi = 0ify; <0
yi = y;ify; >0

The conditional expectation of y given z is equal to

Elylz] = Prly=0]-04Pr[y>0]E; (yly > 0)
[y > 0] Ex (yly > 0)

Prle > —afB| E; (y*le > —xf3)

Prie > —28] E, (z + ¢le > —x3)
= Prie > —zf]{zf + E; (cle > —z5)}

= ¢ xZ/B> (xiﬁ+a)\i)
g

where
ol-wiB/o] _ ¢[xi/o]
— & [~z;B/0] P[x:8/0]

since ¢ is a symmetric distribution. Also note that the OLS estimator becomes biased and

A =

inconsistent.

Similar to the truncated regression, the ML estimator based on the following likelihood

SR

function becomes consistent.

( Yi xlﬁ

1
InL = E —3 log (27) + Ino? +
y;>0

Now, the marginal effect is given by

OF (yilx;) _ 50 (mzﬁ)
8:32-

13.5 Balanced Trimmed Estimator (Powell, 1986)

Truncation and censored problems arise due to asymmetric truncation. Now consider the
following truncation rule

yi = ziB+u
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yi=0ifyf <0 <= y; =01if ;8 <y
yi=yi ify; >0 <= y; =y if 26 > —uy

We can’t do anything about censored or truncated parts, but can modify the non-censored
or non-truncated part to balance up the symmetry. Consider the below figure. The vertical
axis represents the density of y7. When y; is either censored or truncated about 0, the mean
of y shifts due to asymmetry of its pdf. To avoid this, we can censor or truncate the right
side distribution about 2z..

0 B 2%B

Powell (1986) suggests the following criteria of nonlinear LS estimator. For truncated

regressions,

T(B)= z": [yi — max <;Z/z‘,$z‘5>]2

i=1

and for censored regressions

c(B) = z”: [yz — max (;yz,xzﬁ)] 2 + z”; 1{y; > 2z;8} [(iy’y — max (07%5)2]

=1

The F.O.C for T'(p) is given by
1 n
- D 1y < 2B} (yi — wiff) mi = 0
i=1
and the F.O.C. for C (§) is given by
1< :
. Z 1{x;8 > 0} {min [y;, 22;5] — z;f} z; =0
=1
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13.6 Sample Selection Bias: Heckman’s two stage estimator

13.6.1 Incidental Truncated Bivariate Normal Distribution

Let y and z have a bivariate normal distribution

()

and let
_ Oy
p= N
Then we have
Elylz>a] = p,+poyA ()
Viylz >a] = O'Z [1 p25(az)]

where

13.6.2 Sample Selection Bias

Consider

i = wpy +u
yi = wif+e

where 2 is unobservable. Suppose that

n.a. if 27 <0 . *
Y = ' , Truncation based on z;
y; otherwise

then

E(yilzf >0) = E(yilui > —w;y)
= i+ E(gilu; > —wiy)
= xz/B + paa)\i (au)

Hence the OLS estimator becomes biased and inconsistent.
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Solution (Heckman’s two stage estimation) (1) Assume normality
We rewrite the model as

zi = 1{z] = wyy + u; > 0}

and

yi=xif+eif z=1
Step 1 Probit regression with z;. Estimate ¥y, and compute A and §; given by

() <+ s s
Ai = ( - Aproblt) , 0=\ ()‘l + wi’yprobit) ’
@ (inprobit)

Step 2 Estimate 8 and 3, = po. by OLS

yi = x; 0+ B,\X; + error

What if x; = w;? Then we have

2 = 1{yz* =z;8 4+ u; >0}
vy = =x;f+eifz=1
Step 1 Probit regression with z;. Estimate Bpmbit, and compute \; given by
o ¢ <xi6probit>
i = N\
o (xiﬁprobit)

)

Step 2 Estimate 8 and 8, = po. by OLS

yi = x5 + B)\S\l + error

13.7 Panel Tobit Model
Uiy = ai + Bri + ui

n.a. if yf, <0 0ify, <0
yit_{ it i _{ it

Yy otherwise Y5 otherwise

Assume uy; is iid and indepenent of ;.
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Likelihood Function (Treat a; random)

n T
L (truncated) = H/ [H f_(yit — Pty - ai) 9 (a;) da;
=17 Lt=1

F (=Bt — a;)
n T T
L (Censored) = H/ H F(=Bzi — a;) H f (Wit — Brie — a;) | g(ai) da;
i=1 yit=0 Yt >0

Symmetric Trimmed LS Estimator (Horone, 1992) Let
Yit = @i + Tt + wit
Yit = E(Yitloi, ai,yie > 0) + €
= a;+zyf + E (uirlui > —a; — zaB) + €

so that we have

Yit = i + it + E (uit|uie > —a; — 4t 3) + €3

Now take the first s difference

Vit — Yis = (Tt — xis) B+ E (wit|uig > —a; — z4)

—FE (uis|uis > —a; — xisf3) + €ir — €is
In general, we have
E (uit|luig > —a; — xi4B8) — E (uis|uis > —a; — x458) # 0

Hence a typical sth differencing does not work.

Now consider the following sample truncation

Yit > (Tit — Tis) B, Yis > — (Tit — Tis) B

Otherwise, drop the sample.
Then we have when — (24 — 245) 8 > 0,

E (yis|ai, Tit, Tis, Yis > — (it — xis) B) = a; + Tisf + E (uis|uis > —a; — i — (it — Tis) )

= ai+ 2B + E (wis|uis > —a; — xit3)
Note that due to iid condition, we have
E (uisluis > —a; — 2y B) = E (wit|ug > —a; — x43)
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Similarly when (x;; — x;5) 6 > 0,

E (yitlai, Tit, Tis, Yir > (it — Tis) ) = a; + zitB + E (uit|uir > —a; — xS — (it — Tis) B)
= a; +xyl + E (uiluyg > —a; — xi53)

Note that due to iid condition, we have

E (uis|luis > —a; — x4s8) = E (uit|uig > —a; — z453)

Hence if we use the observations where (1) yi > (zit — 24s) 5, (2) vis > — (Tit — xis) 5, (3)
yit > 0, (4) y;s > 0, then we have

(Yit — Yis) = (Tir — Tis) B+ (i — €is) -

The OLS estimator becomes consistent.
Since g is unknown, the LS estimator can be obtained by maximinzing the following sum
of square errors.

n

Z {(Ayi — Az;B)* Ly > —AziB,yi2 > Az B}
i=1

+yAl{yin > —AziB, Y2 < Az;B}
+ yHl{yin < —AziB,yi2 > Ax;B}}
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14 Treatment Effects
14.1 Definition and Model

1
d; :{ 0 treatment

Yi = , outcome
yio if d; =0

We can’t observe both ;1 and y;o at the same time

14.1.1 Regression Model
Yi = a+ Bd; + ¢ (13)

If 3 = (0 significantly, we say treatment is effective. This becomes true if d; is not correlated

with ;.
Suppose that

di = wiv+u
d; = 1{d; >0}

and u; is correlated with ;. Then we have

E(yﬂdz‘:l) = a—l—B—i—E(aildi:l)
= a+ B+ po(—wiy)#a+p

Hence the treatment effect will be over-estimated.

14.1.2 Bias in Average Treatment Effects
In general, the true treatment effect is given by
E (yi1 — yioldi = 1) = TE,
but it is impossible to observe E (yo|d; = 1) . Instead of this, we are using

ATE = E (yald; = 1) — E (yio|d; = 0),
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which is called ‘average treatment effect’. In the above, we show that this will be upward

biased (and inconsistent). To see this, we expand

E (yi|ldi =1) — E (yioldi =0) = E(yi1 — Yioldi = 1) + E (yio|di = 1) — E (yio|di = 0)
= ATE + [E (yio|ld; = 1) — E (yi0|d; = 0)]
£ ATE

Of course, if treatment effects are not endogenous (alternatively exogenous or forced to get

the treatment), then
E(yildi=1)=a+f+E(Eld=1)=a+p

so that there will be no bias. We call this type of treatment ‘randomized treatment’.

14.2 Estimation of Average Treatment Effects (ATE)
14.2.1 Linear Regression

The inconsistency of B in (13) can be interpreted as endogeneous inconsistency due to miss-
ing observations. The typical solution in this case is including control variables, w;, in the
regression. That is,

y; = a + Bd; + yw; + €. (14)
This is the most crude estimation method for estimating average treatment effects. The con-

sistency of B requires the following restriction.

Definition: Unconfoundedness: Conditional on a set of covariate w, the pair of counter-

factual outcomes, (yio,¥i1) , is independent of d. That is

(yio,yi1) L d | w

Under unconfoundedness, the OLS estimator in (14) becomes consistent, that is
p—rps

and the estimator of ATE becomes f3.

Typical linear treatment regression is given by
yi = a+ Bd; + yiwi + vow] + &,

but there is no theoretical justification of why d; has a linear relationship with w;
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14.2.2 Propensity Score Weighting Method

We learn first what propensity score is.

Definition: Propensity Score The conditional probability of receiving the treatment is

call ‘propensity score’

e(w) =Prld; = l|lw; = w| = E [d;|w; = w]

How to estimate the propensity score: Use LPM, logit or probit, and estimate the
propensity scores.
d; = 1{d; = wiy +u; >0}

e(w;) = F (w#) = m for a logit case

Now, the average outcomes for treated and controls are given by

> diyi 2 -diyi
Z di [treated Z (1 - dl) |controlled

’i\—:

is biased.

Consider the following expectation of the simple weighting

[t ol - e ) - 200} - v

Similarly we have

B[{ k] =),

which implies that

L[ dy (U =d)y I~y e
Tp_NZ{e(wi)_l—e(wi)}_NZ{wiy’_wiyZ}

i=1 =1

where w] is the weight for treated units.

However, this estimator is not an attractive estimator since the weight is not always one
in the finite sample. To balance out the weight, we consider the following weighting over
weighting estimator

pr =% 7y7/ X7 7% .
v st vl s

Hirano, Imbens and Ridder (2003) show that this estimator is efficient.
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14.2.3 Matching

There are several matching methods. Among them, propensity score matching is usually used.
The idea of matching is simple. Suppose that a subject j in the controlled group has the same

covariate value (w;) with a subject ¢ in the treated group. That is
w; = wj.

In this case, we can calculate the average treatment effect without any bias. Several matching

methods are available. Alternatively we can use propensity score to match. That is

bi = Dj-

Of course, it is inefficient if many observations should be dropped. Here I show only two

examples of matching methods.

Exact Matching Drop subjects in treated and controlled if w; # w; or p; # p;.

Propensity Matching 1. Cluster samples such that

lpi —pj| < &1 for the first group

e1 < |pi —pj| < ez for the second group

2. Calculate the average treatment effects by taking
1 S 1 ns
Tm = gz {nsz (yis (1) — Yjs (0))}
s=1 =1
14.3 Panel Treatment Effects

14.3.1 When T =2

Example: (Card and Krueger, 1994) New Jersey raised the minimum wage in Jan. 1990. (I
don’t know the exact year). Meanwhile Pennsylvania didn’t do so both in 1990 and 1991. In

the below, the number of net employed persons are shown during these periods.

Before After Difference
NJ 20.44  21.03 0.59
PENN 23.33 21.17 -2.16
Difference -2.89  -0.14 2.76
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Now estimate the effect of the higher minimum wage.

Let y;; be the outcome and z;; be treatment. Then for NJ, we have

E (yiolzi0=0) = o
E(puilznn=1) = ar+vy+0
Meanwhile for Penn,
E (yoolzeo =0) = a2
E(yo1|xo1 =0) = az+7v

Note that the withine difference is

E (yu|lrii =1) = E(ywolzi0=0) = v+
E (y21]z21 = 0) — E (y20|z20 =0) = 7

so that we can get the treatment effects by taking difference in difference.
[E (y11|z11 = 1) — E (y10lz10 = 0)] — [E (y21]m21 = 0) — E (Y2020 = 0)] = 0
In the regression context, we run
yit = a~+ [BS; +yt + dtxy + ey, fort=1,2

where S; is a state dummy, ¢ is trend.

Now for a large ¢, we consider a case of (0,1,1) and (0,0,0).

E (yiolzr10=0) = o

Eilzn=1) = ai+7y+9¢
E(yi2lzia=1) = ai+7,+4¢
E (yaolzeo =0) = a2

E(y21|r21 =0) = oo+

E (ya2lr2 =0) = o+,

Then we can estimate the ATE by
E(yii|lzi1 =1) — E(y21|lz21 =0) = a1 —az+6

E (yi0|lz10 =0) — E (y20]z20 =0) = a1 — a2
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and also we can do
E (y12|r12 = 1) — E (ya2|r22 = 0) = 1 — a2 + 0.
Hence overall we can estimate the ATE by running

Yit = a; + 0r + 0Tit + €3¢
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