
1 Panel Robust Variance Estimator

The sample covariance matrix becomes
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and its associated t-statistic becomes
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Consider two regressors: First let

�i = X 0
iûi = [x1;iûi x2;iûi]

where

xk;i = (xk;i1; :::; xk;iT )
0

Then calculate
PN

i=1 �
0
i�i which is T � T matrix.

Read Lecture note in Econometric I and �nd out the potential issue on this panel robust

variance estimator.

2 Monte Carlo Studies

2.1 Why Do We need MC?

1. Verify asymptotic results. If an econometric theory is correct, the asymptotic results

should be replicatable by means of Monte Carlo studies.

(a) Large sample theory: /T or N must be very large. At least T = 500:

(b) Generalize assumptions. See if a change in an assumption makes any di¤erence in

asymptotic results.

2. Examine �nite sample performance. In �nite sample, asymptotic results are just ap-

proximation. We don�t know if or not an econometric theory works well in the �nite

sample.

(a) Useful to compare with various estimators.

(b) MSE and Bias become important to the estimation methods.

(c) Size and Power become issues on various testing procedures & covariance estimation.
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2.2 How to do MC

1. Need a data generating process (DGP), and distributional assumption.

(a) DGP depends on an econometric theory and its assumptions.

(b) Need to generate pseudo random variables from a certain distribution

2.2.1 Example 1: Verifying asymptotic result of OLSE

DGP:

Model: yi = a+ xi� + ui

Now we take a particular case like

ui � iidN (0; 1) ; xi � iidN (0; Ik)

where a = � = 0:

Step by Step procedure

1. Find out the parameters of interest. (here we are interested in consistency of OLSE)

2. Generate n pseudo random variables of u; x and y: Since a = � = 0; yi = ui:

3. Calculate OLSE for � and a: (plus the estimates of parameters of interest)

4. Repeat 2 and 3 S times. record all �̂:

5. calculate mean of �̂ and variance of them. (how do we know the convergence rate?)

6. Repeat 2-5 by changing n:

2.2.2 Example 2: Verifying asymptotic result of OLSE Testing

DGP:

Model: yi = a+ xi� + ui

Now we take a particular case like

ui � iidN (0; 1) ; xi � iidN (0; Ik)

where a = � = 0:

2



Step by Step procedure

1. Find out the parameters of interest. (t�statistic)

2. Generate n pseudo random variables of u; x and y: And calculate t ratio for � and a:

3. Repeat 2 and 3 S times. record all t�̂:

4. Sort t�̂ and �nd out the lower and upper 2.5% values. Compare them with the asymptotic

critical value.

5. Repeat 2-4 by changing n:

2.2.3 Exercise 1: Use NW estimator and calculate t ratio. Compare the size and

power of the tests (ordinary and NW t-ratios)

Asymptotic theory: Both of them are consistent. The ordinary t ratio becomes more e¢ cient.

Why?

Size of the test Change step 4 in Example 2 as follows:

Let

t� =
��̂t���

sort t�. Find when t�j > 1:96: And 1� j�=S becomes the size of the test.

Power of the test Change � = 0:01; 0:05; 0:1; 0:2:

Repeat the above procedures, and �nd 1� j�=S: This becomes the power of the test.

2.2.4 Exercise 2: Re-do Bertrand et al.
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3 Review Asymptotic Theory

3.1 Most Basic Theory

yi = �xi + ui

where

ui � iid
�
0; �2u

�
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3.2 Addition Constant term

yi = a+ �xi + ui

where

xi = ax + x
o
i ; yi = ay + y

o
i :

ui � iid
�
0; �2u

�
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First let
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Next,

plimn!1
1
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4 Power of the Test (Local Alternative Approach)

Consider the model

yi = �xi + ui

and under the null hypothesis, we have

� = �o

Now we want to analyze the power of the test asymptotically. Under the alternative, we have

� = �o + c

where c 6= 0:
Suppose that we are interested in comparing two estimates, let say OLSE and FGLSE (�̂1

and �̂2). Then we have
p
n
�
�̂1 � �

�
r
V
�
�̂1

� !d N (0; 1) +Op

�
N�1=2

�
or p

n
�
�̂1 � �o

�
r
V
�
�̂1

� !d N (0; 1) +
p
nc+Op

�
N�1=2

�
Hence as long as c 6= 0; the power of the test goes to one. In other words, the dominant term
becomes the second term (

p
nc)

Similary, we have
p
n
�
�̂2 � �o

�
r
V
�
�̂2

� !d N (0; 1) +
p
nc+Op

�
N�1=2

�

Hence we can�t compare two tests.

Now, to avoid this, let

� = �o +
cp
n

so that � ! � as n!1: Then we have
p
n
�
�̂� � �

�
r
V
�
�̂�

� !d N (c; 1) +Op

�
N�1=2

�
:

Hence depending on the value of c; we can compare the power of the test (across di¤erent

estimates).
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5 Panel Regression

5.1 Regression Types

1. Pooled OLS estimator (POLS)

yit = a+ �xit + 
zit + uit

2. Least squares dummy variables (LSDV) or Withing group (WG) or Fixed e¤ects (FE)

estimator

yit = ai + �xit + 
zit + uit

3. Random E¤ect (RE) or PFGLS estimator

yit = a+ �xit + 
zit + eit; eit = ai � a+ uit

Let X = (x11; x12; :::; x1T ; x21; :::; xNT )
0 ; xi = (xi1; :::; xiT )

0 ; xt = (x1t; :::; xNt)
0 : De�ne

Z; zi and zt in the similar way. Let W = (X Z)0 : Then

5.2 Covariance estimators:

1. Ordinary estimator: �̂2u (W
0W )�1

2. White estimator

(a) Cross sectional heteroskedasticity: NT (W 0W )�1
�
1
N

Pn
i=1 û

2
iw

0
iwi

�
(W 0W )�1

(b) Time series heteroskedasticity: NT (W 0W )�1
�
1
T

PT
t=1 û

2
tw

0
twt

�
(W 0W )�1

(c) Cross and Time heteroskedasticity: NT (W 0W )�1
�

1
NT

PN
i=1

PT
t=1 û

2
itwitw

0
it

�
(W 0W )�1

3. Panel Robust Covariane estimator: N (W 0W )�1
�
1
N

PN
i=1w

0
iûiû

0
iwi

�
(W 0W )�1

4. LRV estimator ? Why not?

5.3 Pooled GLS Estimators

�̂ =
�
W 0 �
�1 
 I�W ��1 �W 0 �
�1 
 I� y�
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5.3.1 How to estimate 
 :

1. Time Series Correlation:

(a) AR1: easy to extend. 
 =

2664
1 �T�1

...
. . .

...

�T�1 1

3775
(b) Unknown. 
̂sh = 1

N

PN
i=1 ûisûih: Required small T and large N:

2. Cross sectional correlation

(a) Spatial: Easy.

(b) Unknown. 
̂sh = 1
T

PT
t=1 ûstûht

5.4 Seemingly Unrelated Regression

�̂ =
�
W 0 �I 
 
�1�W ��1 �W 0 �I 
 
�1� y�
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6 Bootstrap

Reference: �The BOOTSTRAP�by Joel L. Horowitz (Chapter 52 in Handbook of Economet-

rics Vol 5)

6.1 What is the bootstrap

It is a method for estimating the distribution of an estimator or test statistics by resampling

the data.

Example 1 (Bias correction) Model

yt = a+ �yt�1 + et;

where et is a white noise process. It is well known that E(�̂� �) = �
1 + 3�

T
+O

�
T�2

�
: Here

I am explaining how to reduce Kendall bias (not eliminating) by using the following bootstrap

procedure.

1. Estimate OLSE for a and �; denote them as â and �̂: Get OLS residual êt = yt�â��̂yt�1:

2. generate T + K random variables from the uniform distribution of U (1; T � 1) : Make
them as integers.

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+�oor(ind); % make integers. 0.1 => 1.

3. Draw (T +K)� 1 vector of e�t from êt:

esta = e(ind,:);

4. Recentering e�t to make its mean be zero. Generate pseudo y
�
t from e�t ; and discard the

�rst K obs.

esta = esta - mean(esta); ysta = esta; 1

for i=2:t+k; 2

ysta(i,:) = ahat+rhohat*ysta(i-1,:) + esta(i,:); 3

end; 4

ysta =ysta(k+1:t+k,:); 5
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Note that ahat should not be inside for statement. Add ahat in line 5. Precisely speaking,

you have to add ahat*(1-rho) but don�t need to do so if you use demeaned series to

estimate rho.

5. Estimate â� and �̂� with y�t :

6. Repeat step 2 and 5 M times.

7. Calculate the sample mean of �̂�: Calculate the bootstrap bias, B = 1
M

PM
m=1 �̂

�
m � �̂

where �̂�m is the mth time bootstrapped point estimate of �: Subtract B from �̂:

�̂mue = �̂�B

where mue stands from mean unbiased estimator. Note that

E (�̂mue � �) = O
�
T�2

�
:

8. For t�statistics: Construct
t��;m =

�̂�m � �̂p
V (�̂�m)

and then repeat M times and get the 5% critical value of t��;m: Compare this with

t� =
�̂p
V (�̂)

:

6.2 How the bootstrap works

First let the estimates be a function of T: For example, �̂ be �̂T : Now de�ne

�̂T =

P
~yit~yit�1P
~y2it�1

= g (z) ; let say

where z is a 2� 1 vector. That is, z = (z1; z2) and z1 = 1
T

P
~yit~yit�1 and z2 = 1

T

P
~y2it�1:

From A Tyalor expansion (or Delta method), we have

�̂T = �+
@g

@z
(z � zo) +

1

2
(z � zo)0

�
@2g

@z@z0

�
(z � zo) +Op

�
T�2

�
Now taking expectations yields

E (�̂T � �) = E
@g

@z
(z � zo) +

1

2
E (z � zo)0

�
@2g

@z@z0

�
(z � zo) +O

�
T�2

�
=

1

2
E (z � zo)0

�
@2g

@z@z0

�
(z � zo) +O

�
T�2

�
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since E (z � zo) = 0 always.
The �rst term in the above becomes O

�
T�1

�
, that is �1 + 3�

T
: We want to eliminate this

part (not reduce it). The bootstrapped �̂�T becomes

�̂�T = �̂T +
@g

@z
(z� � zo) +

1

2
(z� � zo)0

�
@2g

@z@z0

�
(z� � zo) +Op

�
T�2

�
where z� = (z�1 ; z

�
2) ; and z

�
1 =

1
T

P
~y�it~y

�
it�1; etc. Note that we generate y

�
it from �̂T ; �̂

�
T can be

expanded around �̂T not around the true value of �: Now taking expectation E
� in the sense

that

E� ! E as M;T !1:

Then we have

E� (�̂�T � �̂T ) =
1

2
E� (z� � zo)0

�
@2g

@z@z0

�
(z� � zo) +O

�
T�2

�
= B�

Note that in general

B� = B +O
�
T�2

�
hence we have

�̂mue = �̂T �B� = �̂T � E� (�̂�T � �̂T )

6.3 Bootstrapping Critical Value

Example 2. (Using the same example 1) Generate t-ratio for �̂�m M times. Sort them,

and �nd 95% critical value from the bootstrapped t-ratio. Compare it with the actual t-ratio.

Asymptotic Re�nement Notation:

F0 is the true cumulative density function. For an example, cdf of normal distribution.

t� is the t-statistic of �:

tn;� is the sample t-statistic of �̂ where n is the sample size.

G (� ; F0) = P (t� � �). That is the function G is the true CDF of t� :

Gn (� ; F0) = P (tn;� � �) : The function Gn is the exact �nite sample CDF of tn;�

Asymptotically Gn ! G as n ! 1: Denote that Gn (� ; Fn) is the bootstrapped function
for t�n;� where Fn is the �nite sample CDF:
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De�nition: Pivotal statistics If Gn (� ; F0) does not depend on F0; then tn;� is said to be

pivotal.

Example 3 (exact �nite sample CDF for AR(1) with a unknown constant) From

Tanaka (1983, Econometrica), the exact �nite sample CDF for t�̂ is given by

P (tT;�̂ � x) = � (x) +
� (x)p
T

2�+ 1p
1� �2

+O
�
T�1

�
where � is the CDF of normal distribution and � is PDF of normal. Here Tanaka assumes F0

is normal. That is, yt is distributed as normal. Of course, if yt has a di¤erent distribution,

the exact �nite sample PDF is unknown. However, tT;�̂ is pivotal since as T !1; its limiting
distribution goes to � (x) :

Now under some regularity conditions (see Theorem 3.1 Horowitz), we have

Gn (� ; F0) = G (� ; F0) +
1p
n
g1 (� ; F0) +

1

n
g2 (� ; F0) +

1

n3=2
g3 (� ; F0) +O

�
n�2

�
uniformly over � :

Meanwhile the bootstrapped t�̂ has the following properties

Gn (� ; Fn) = G (� ; Fn) +
1p
n
g1 (� ; Fn) +

1

n
g2 (� ; Fn) +

1

n3=2
g3 (� ; Fn) +O

�
n�2

�

When tn;�̂ is not a pivotal statistic In this case, we have

Gn (� ; F0)�Gn (� ; Fn) = [G (� ; F0)�G (� ; Fn)] +
1p
n
[g1 (� ; F0)� g1 (� ; Fn)] +O

�
n�1

�
Note that G (� ; F0) � G (� ; Fn) = O

�
n�1=2

�
. Hence the bootstrap makes an error of size

O
�
n�1=2

�
: Also note that Gn (� ; F0) also makes an error of size O

�
n�1=2

�
; so that the boot-

strap does not reduce (neither increase) the size of the error.

When tn;�̂ is a pivotal In this case, we have

G (� ; F0)�G (� ; Fn) = 0

by de�nition. Then we have

Gn (� ; F0)�Gn (� ; Fn) =
1p
n
[g1 (� ; F0)� g1 (� ; Fn)] +O

�
n�1

�
and g1 (� ; F0)� g1 (� ; Fn) = O

�
n�1=2

�
: Hence we have

Gn (� ; F0)�Gn (� ; Fn) = O
�
n�1

�
;

which implies that the bootstrap reduces the size of an error.
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6.4 Exercise: Sieve Bootstrap

(Read Li and Maddala, 1997)

Consider the following cross sectional regression

yit = a+ �xit + uit (3)

We want to test the null hypothesis of � = 0:We suspect that xit and uit are serially correlated,

but not cross correlated. Consider the following sieve bootstrap procedure

1. Run (3) and get â; �̂, and ûit:

2. Run the following regression"
xit

uit

#
=

"
�x

0

#
+

"
�x 0

0 �u

#"
xit

uit

#
+

"
eit

"it

#
and get �̂x; �̂x; �̂u and their residuals of êit and "̂it: Recentering them.

3. Generate pseudo x�it and u
�
it:

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+�oor(ind); % make integers. 0.1 => 1.

F = [ehat espi]; % êit and "̂it

Fsta = F(ind,:); % use the same ind. Important!

repeat what you learnt before....

4. Generate y�it under the null,

y�it = â+ u�it:

5. Run (3) with y�it and x
�
it; and get the bootstrapped critical value.

Simplest Case: Consider you want to test

yjit = aj + ujit; ujit = �jujit�1 + ejit (4)

where j stands for the jth treatment. Assume ujit are cross sectionally dependent and serially

correlated. However ujit is exogenous. Then running the following panel AR(1) regression

beceoms useless to test H0 : aj = a for all j:

yjit = �j + �jyjit�1 + ejit

since �j = aj
�
1� �j

�
: In this case, one should run (4) and do a seive bootstrap with ûjit:
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7 Maximum Likelihood Estimation

7.1 The likelihood function

Let y1; :::; yn; fyig ; be a sequence of random variables which has iidN
�
�; �2

�
: Its probability

density function f
�
yj�; �2

�
can be written as

f
�
y = yij�; �2

�
=

1p
2��2

exp

�
� 1

2�2
(yi � �)2

�
:

Note that this pdf states that with given � and �2; the probability of yi = y: Now let think

about the joint density of y such that

f
�
y1; :::; ynj�; �2

�
= f

�
y1j�; �2

�
� � � � � f

�
ynj�; �2

�
=

nQ
i=1

f
�
yij�; �2

�
due to independence

That is, with given � and �2; the joint pdf states that the probability of a sequence of y to be

fyig : This concept is very useful when we do both/or MC and bootstrap.
Now consider the mirror image case. Given fyig ; what are the most probable estimates for

� and �2? To answer this question, we consider the likelihood (probability) of � and �2: Let

� =
�
�; �2

�
: Then we can re-interpret the joint pdf as the likelihood function. That is,

f (yj�) = L (�jy) :

And then we maximize the likelihood with given fyig :

argmax
�
L (�jy) :

However it is often di¢ cult to maximize directly L function due to nonlinearity. Hence alter-

natively we maximize the log likelihood

argmax
�
lnL (�jy) :

In practice (computer programming) it is much easier to minimize the negative log likelihood

such that

argmin
�
� lnL (�jy)

Of course, we have to get the �rst order conditions with respect to �; and �nd the optimal

values of �:
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Example 1 Normal random variables. fyig ; i = 1; :::; n: Want to estimate � and �2.

L
�
�; �2jy

�
=

nQ
i=1

1p
2��2

exp

�
� 1

2�2
(yi � �)2

�
=

�
1p
2��2

�n
exp

"
� 1

2�2

nX
i=1

(yi � �)2
#

since

exp (a) exp (b) = exp (a+ b) :

Hence

lnL = �n
2
ln (2�)� n

2
ln�2 � 1

2

nX
i=1

"
(yi � �)2

�2

#
Note that

@ lnL

@�
=

1

�2

nX
i=1

(yi � �) = 0;

@ lnL

@�2
= � n

2�2
+

1

2�4

nX
i=1

(yi � �)2 = 0

From this, we have

�̂mle =
1

n

nX
i=1

yi

and

�̂2mle =
1

n

nX
i=1

(yi � �̂mle)2

Properties of an MLE (Theorem 16.1 Green)

1. Consistency: �̂mle !p �

2. Asymptotic normality

�̂mle !d N
�
�;
h
I (�)�1

i�
where

I (�) = �E
�
@2 lnL

@�@�0

�
= �E (H)

where H is the Hessian matrix.

3. Asymptotic E¢ ciency: �̂mle is asymptotically e¢ cient and achieves the Cramer-Rao lower

bound for consistent estimators.
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8 Method of Moments (Chap 15)

Consider moment conditions such that

E (�t � �) = 0

where �t is a random variable and � is the unknown mean of �t: The parameter of interest,

here, is �: Consider the following minimum criteria given by

argmin
�
VT = argmin

�

1

T

TX
t=1

(�t � �)2

which becomes the minimum variance of �t with respect to �: Of course, the simple solution

becomes the sample mean for � since we have

@VT
@�

= �2 1
T

TX
t=1

(�t � �) = 0; =) 1

T

TX
t=1

�t = �

The above case is the simple example of the method of moment(s).

Now consider more moments such that

E (�t � �) = 0

E
h
(�t � �)2 � 
0

i
= 0

E
�
(�t � �)

�
�t�1 � �

�
� 
1

�
= 0

E
�
(�t � �)

�
�t�2 � �

�
� 
2

�
= 0

Then we have the four unknowns: �; 
0; 
1; 
2: We have four sample moments such that

1

T

TX
t=1

�t;
1

T

TX
t=1

�2t ;
1

T

TX
t=1

�t�t�1;
1

T

TX
t=1

�t�t�2

so that we can solve this numerically.

However, we want to impose further restriction. Suppose that we assume �t follows AR(1)

process. Then we have


1 = �
0; 
2 = �
0

so that the total number of unknowns is reducing to three (
0; �; �) :We can increase more cross

moment conditions also. Let  T =
�
1
T

PT
t=1 �t;

1
T

PT
t=1 �

2
t ;
1
T

PT
t=1 �t�t�1;

1
T

PT
t=1 �t�t�2

�0
:

Then we have

E
1

T

TX
t=1

(�t � �)2 = E
1

T

TX
t=1

�2t � �2 = 
0
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so that

E
1

T

TX
t=1

�2t = 
0 � �2

Also note that

E
1

T

TX
t=1

�t�t�1 = �
0 � �2; and so on.

Hence we may consider the following estimation

arg min
�;�;
0

[ T �  (�)]0 [ T �  (�)] : (5)

where � is the parameters of interest (true parameters, �; 
0; �). The resulting estimator is

called �method of moments estimator�. Note that MM estimator is a kind of minimum distance

estimators.

In general, MM estimator can be used in many cases. However, this method has one

weakness. Suppose that the second moment is relatively huge than the �rst moment. Since

VT function assigns the same weight across moments, the minimum problem in (5) tries to

minimize the second moment rather than the �rst and second moment both. Hence we need

to design the optimal weighted method of moments, which becomes generalized method of

moments (GMM).

To understand the nature of GMM, we have to study the asymptotic properties of MM esti-

mator. (in order to �nd the optimal weighting matrix). Now to get the asymptotic distribution

of �̂; we need a Taylor expansion.

 T =  (�) +
@ T (�)

@�0

�
�̂ � �

�
+Op

�
1

T

�
so that we have

p
T
�
�̂ � �

�
=
p
T [ T �  (�)]G (�)�1 +Op

�
1p
T

�
where GT (�) =

@ T (�)
@�0

: Note that we know that

p
T [ T �  (�)]!d N (0;�)

Hence we have
p
T
�
�̂ � �

�
!d N

�
0; G (�)�1�G (�)0�1

�
where GT (�)!p G (�) :
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8.1 GMM

First consider infeasible generalized version of method of moments.

arg min
�;�;
0

[ T �  (�)]0��1 [ T �  (�)] :

where � is true unknown weighting matrix. Now feasible version becomes

arg min
�;�;
0

[ T �  (�)]0WT [ T �  (�)]n = arg min�;�;
0
GT (�)

0WTGT (�)

whereWT is a consistent estimator of ��1: Let

VT = [ T �  (�)]0WT [ T �  (�)]

Then GMM estimator satis�es

@VT

�
�̂GMM

�
@�̂GMM

= 2GT

�
�̂GMM

�0
WT

h
 T �  

�
�̂GMM

�i
= 0

so that we have

 
�
�̂GMM

�
=  T (�) +GT (�)

�
�̂GMM � �

�
+Op

�
1

T

�
Thus

GT

�
�̂GMM

�0
WT

h
 T �  

�
�̂GMM

�i
= GT

�
�̂GMM

�0
WT

h
 T �  

�
�̂GMM

�i
+GT

�
�̂GMM

�0
WTGT (�)

�
�̂GMM � �

�
= 0

Hence�
�̂GMM � �

�
= �

�
GT

�
�̂GMM

�0
WTGT (�)

��1
GT

�
�̂GMM

�0
WT

h
 T �  

�
�̂GMM

�i
and

p
T
�
�̂GMM � �

�
!d N (0; V )

where

V =
1

T

�
G0WG

	�1
G0W�WG

�
G0WG

	�1
:

When W = ��1; then we have

V =
1

T

�
G0��1G

	�1
G0��1G

�
G0��1G

	�1
=
1

T

�
G0��1G

	�1
:

Overidentifying Restriction can be tested by calculating the following statistics

J = [ T �  (��)]0WT [ T �  (��)]!d �2l�k

where l is the total number of moments and k is the total number of parameters to estimate.

The null hypothesis is that with given estimates, all moment conditions considered are valid.

Once the overidentifying restriction is not rejected, the GMM estimates become robust.
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9 Sample Midterm Exam

Model

yit = ai + �xit + uit; t = 1; :::; T ; i = 1; :::; N (6)

uit = �uit�1 + vit; xit = �xit�1 + eit for time series and panel cases (7)

where vit,eit are independent each other.

9.1 Matlab Exercise:

1. Estimators

(a) Cross section: Let t = 1; N = n: Provide matlab codes for OLS, WLS (weighted

least squares)

(b) Time series: Let N = 1; T = T: Provide matlab codes for OLS.

(c) Panel data: Provide matlab codes for POLS, LSDV, PGLS (infeasible GLS)

2. t-statistics

(a) Cross section: provide t ratios for ordinary and white.

(b) Time series: provide t ratios for ordinary and NW.

(c) Panel Data: provide t ratios for ordinary and panel robust.

3. Monte Carlo Study. Assume all innovations are iidN(0,1). (Don�t need to write up

matlab codes)

(a) want to show that �̂LSDV is inconsistent. Write down how you can do by means of

MC.

(b) want to show that t�̂ = �̂LSDV =

s
�̂2u=

�PN
i=1

PT
t=1

�
xit � 1

T

PT
t=1 xit

�2�
su¤ers

from size distortion. Write down step by step procedure how you can show it by

means of MC.

4. Bootstrap.

(a) write up the bootstrap procedure (step by step) how to construct the bootstrapped

critical value for t�̂ in 3.b. under the null hypothesis � = 0:
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9.2 Theory

1. Basic: Derive the limiting distribution of �̂LSDV in (1) and (2)

2. Suppose that

uit = �t + "it (8)

where �t is independent from xit:

(a) You run eq. (1). (y on ai and xit). Show �̂LSDV is consistent.

(b) Further assume that "it is a white noise but �t follows an AR(1) process. How can

you obtain more e¢ cient estimator by using a simple transformation. (Don�t think

about MLE)

3. Now we have

uit = �i�t + "it

(a) Show that �̂LSDV is still consistent as long as uit is independent from xit:

(b) Can you eliminate �i�t? If so, how?

4. DGP is given by

yit = a+ �xit + !it; !it = (ai � a) + uit; uit = �uit�1 + "it; "it � iidN
�
0; �2"

�
: (9)

(a) you want to estimate the set of parameters by maximizing log likelihood function.

Write down the set of parameters.

(b) Write down the log likelihood function and its F.O.C.

(c) Derive MLEs when � = 0 and this information is given to you.
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10 Binary Choice Model: (Chapter 23, Green)

10.1 Cross Sectional Regression

yi = 1 fa+ bxi + ui > 0g (10)

where 1 f�g is a binary function. That is

yi =

(
1 if a+ bxi + ui > 0

0 otherwise.

10.1.1 Regression Type: Linear Probability Model (LPM)

yi = a1 + b1xi + ei = x
0� + e (11)

Let

Pr (y = 1jx) = F (x;�)

Pr (y = 0jx) = 1� F (x;�)

where F is a CDF, typically assumed to be symmetric about zero. That is, F (u) = 1�F (�u) :
Then we have

E (yjx) = 1� F (x;�) + 0� f1� F (x;�)g = F (x;�) :

Now

y = E (yjx) + (y � E (yjx)) = E (yjx) + e = x0� + e

Properties

1. a1 + b1xi + ei should be either 1 or 0. That is,

a1 + b1xi + ei = 1 () ei = 1� a1 � b1xi with F (x;�)

a1 + b1xi + ei = 0 () ei = �a1 � b1xi with 1� F

2. Hence

V ar (ejx) = x0�
�
1� x0�

�
3. Easy to interpret.

1

n

X
yi = estimated probability that y = 1

1

n

X
yi = a1 + b1

1

n

X
xi
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Criticism

1. If (10) is true, then (11) is false.

2. x0� is constrained to be between 0 and 1.

10.1.2 Logit and Probit Model

Assume that (here I delete constant term for notational convenience). Both logit and probit

model work with the latent model given by

y�i = bxi + ui

and

yi = 1 fy�i > 0g

Then

Pr [yi = 1jxi] = Pr [ui > bxi] = F (bxi) = 1� F (�bxi)

Two common choices are

F (bx) =
exp (bxi)

1 + exp (bxi)
: logit,

and

F (bxi) =

Z bxi

�1
� (t) dt = �(bxi) : probit.

How to interpret the regression coe¢ cient: Logit and probit models are not linear.

Hence the interpretation of the regression coe¢ cients must be done in the following way.

@E [yjx]
@x

=

�
dF (bxi)

d (bxi)

�
b = f (bxi) b

=

8<: � (bxi) b : probit
exp(bxi)

(1+exp(bxi))
2 = �(bxi) [1� � (bxi)] : logit

Two way to calculate slope.

1. use sample mean of xi

@E [yjx]
@x

=

(
� (b�x) b : probit

� (b�x) [1� � (b�x)] : logit
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2. use sample mean of slopes across xi

@E [yjx]
@x

=
1

n

nX
i=1

@E [yjxi]
@xi

=

(
1
n

P
� (bxi) b : probit

1
n

P
� (bxi) [1� � (bxi)] : logit

1 and 2 are similar. So usually 1 is used.

10.1.3 Estimation of Logit and Probit: Using MLE.

Assumption: independent and identical distributed.

Then the joint pdf is given by

Pr (y1; :::; ynjx) =
Q
yi=0

[1� F (bxi)]
Q
yi=1

F (bxi)

and the likelihood function can be de�ned as

L (b) =
nQ
i=1
[1� F (bxi)]1�yi F (bxi)yi

and its log likelihood is given by

lnL =

nX
i=1

[yi lnF (bxi) + (1� yi) ln f1� F (bxi)g] :

Now F.O.C. is
@ lnL

@b
=
X�

yifi
Fi

+ (1� yi)
�fi

(1� Fi)

�
xi = 0

where fi = dFi=d (bxi) : More speci�cally, we have

@ lnL

@b
=

( P
(yi � �i)xi = 0P

�ixi = 0

where

�i =
(2yi � 1)� ((2yi � 1) bxi)

� ((2yi � 1) bxi)
:

Estimation of Covariance Matrix 1. Inverse Hessian matrix.

H =
@2 lnL

@b@b0
=

(
�
P
�ixix

0
i : logitP

��i (�i + bxi)xix0i : probit

2. Berndt, Hall, Hall and Hausman Estimator

B =

( P
(yi � �i)2 xix0i : logitP

�2ixix
0
i : probit
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3. Robust Covariance Estimator

V
�
b̂
�
=
h
Ĥ
i�1

B̂
h
Ĥ
i�1

Estimation of Covariance of Marginal E¤ects Marginal E¤ects = f
�
b̂�x
�
b̂ = F̂ ; let

say: How to estimate its variance?

V
�
F̂
�
=

 
@F̂

@b

!0
V

 
@F̂

@b

!
where

V = V (b̂)

Issue on Binary Choice Models First consider linear model

y = X1�1 +X2�2 + "

but you run

y = X1�1 + u

Then A) if X2 is correlated with X1; �̂1 is inconsistent. B) If
1
nX

0
2X1 = 0 (orthogonal),

then �̂1 is unbiased even when �2 6= 0:

Now consider the binary choice model

y = 1 fX1�1 +X2�2 + " > 0g

Assume EX1X2 = 0 but �2 6= 0: And you run

y = 1 fX1�1 + u > 0g

Then

plim�̂1jwo X2 = c1�1 + c2�2 6= �1

Likelihood Ratio Test (LR) Let

H0 : �2 = 0

Then we can test this null hypothesis by using likelihood ratio test given by

�2 (lnLR � lnLU ) � �2k

where k is the number of restriction.
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Measuring Goodness of Fit R2 does not work since the regression erros are inside the

nonlinear function. Several measures are used in practice.

1. McFadden�s likelihood ratio index

LR1 = 1� lnL

lnL0

where L0 is the likelihood only with constant term.

2. Ben-Akiva, Lerman, Kay and Little

R2BL =
1

n

nX
i=1

h
yiF̂i + (1� yi)

�
1� F̂i

�i
3. See Green page 791 for other criteria

10.2 Time Series Regression

Models are given by

yt = 1 fa+ bxt + ut > 0g :

Note that there is no di¤erence in terms of estimation and statistical inference from cross

sectional binary choice model. However, in time series case, the persistent response becomes

an important issue. In fact, most of time series binary choices are very persistent, and especially

the source of such persistency becomes an important issue. There are three explanations

1. Fixed e¤ects

y�t = a+ bxt + ut > 0 because a >> 0 : M1

In this case, y�t has all positive values for most of all times.

2. y�t is highly persistent.

y�t = a+ �y�t�1 + ut: M2

3. yt is depending on yt�1 (past choice).

yt = 1 fa+ �yt�1 + utg : M3

Model1 and Model 2 can be identi�ed from Model 3. However if two models are mixed,

then it is impossible to identify the order of serial correlation. In other words, it the true model

is given by

yt = 1
�
y�t = a+ �yt�1 + �y

�
t�1 + ut

	
: M4

Then � and � are not in general identi�able.
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Heckman Run Test

Assumption 1 (Cross Section Independence) The binary choice is not cross sectionally

dependent. That is, ai � i:i:d
�
0; �2a

�
; and eit � i:i:d

�
0; �2i

�
:

Assumption 2 (Initial Condition) For M2, yi�1 = 0: That is, yi1 = 1 fa+ ei1 � 0g : For
M3, yi0 = 1 fa+ ui0 � 0g and ui0 � i:i:d

�
0; �2i =

�
1� �2

��
:

Under these two assumptions, Heckman suggests the so-called �run�test by looking running

patterns of yit: To �x the idea, let T = 1; 2; 3 and consider the true probablity of each run

Model Run Patterns

M1 P(110) =P(011) =P(101) P(100) =P(001) =P(010)

M2 P(110) =P(011) 6=P(101) P(100) =P(001) 6=P(010)
M3 P(011) >P(101) >P(110) P(001) >P(010) >P(100)

M4 All probabilities distinct but unordered

By using these runs patterns, Heckman constructs the following two sequential null hypotheses

to distinguish the �rst three models.

H01 : P (011) = P (101) & P (001) = P (010) under M1

HA1 : P (011) 6= P (101) or P (001) 6= P (010) under M2, M3, and M4

When the �rst null hypothesis is rejected, then the second null hypothesis can be tested.

H02 : P (110) = P (011) and P (100) = P (001) under M2

HA2 : P (110) 6= P (011) or P (100) 6= P (001) under M3 and M4

Heckman suggests Peason�s score �2 statistics for both null hypotheses. For H01 and H02; the

test statistics are given by

P01 =
(F011 � EF011)2

EF011
+
(F101 � EF101)2

EF101
=) �21

P02 =
(F110 � EF110)2

EF110
+
(F011 � EF011)2

EF011
=) �21

where F011 is the observed frequency for the outcome of the �0; 1; 1�response. Similary Fijk is

de�ned in the same way. EF011 =EF101 under H01 while EF110 =EF011 under H02:

Several issues are arised in Heckman�s run tests. First, Heckman�s run test requires to

estimate the expected frequency under the null hypothesis. When �i 6= � in M3 or M2, it is
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hard to estimate the expected frequency from the models. Second, M3 is hard to distinguished

from M4 if the current choice depends on many past lagged depedent variables. In fact,

Heckman does not provide any formal test to distinguish M3 from M4. Third, when the binary

panel data shows severe persistency, the numbers of observations in each case for the two null

hypotheses are decreased signi�cantly. In fact, Heckman (1978) couldn�t reject the �rst null

hypothesis by using 198 individuals over three years of the data: Out of 198 individuals, 165

individuals show either �111�or �000��at response, and only less than 17% of individuals show

heterogeneous responses. Finally, such runs patterns become useless if the �rst observation does

not start from t = 1: For example, if econometricians don�t observe the �rst k observations,

and if they treated as if the k+ 1th observation as the �rst observation, they can�t obtain the

heterogeneous running patterns for M2 and M3. With a moderate large k; P(110) =P(011)

and P(100) =P(001) both under M2, M3 and M4. Hence the second null hypothesis can�t be

tested by using runnig patterns.

11 Panel Binary Choice

11.1 Multivariate Models (See 23.8 Green)

Model

y�1 = x1�1 + "1;

y�2 = x2�2 + "2;

where "
"1

"2

#
�
 "

0

0

#
;

"
1 �

� 1

#!
Consider the bivaraite normal cdf given by

Pr [X1 < x1; X2 < x2] =

Z x2

�1

Z x1

�1
�2 (z1; z2; �) dz1dz2

where

�2 (z1; z2; �) =
exp

�
�1
2

�
x21 + x

2
2 � 2�x1x2

�
=
�
1� �2

��
2�
p
(1� �2)

(12)

Likelihood Function Let

qi1 = 2yi1 � 1; qi2 = 2yi2 � 1

zij = x0ij�j ; wij = qijzij ; �i� = qi1qi2�
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Then the log likelihood function can be written as

lnL =

nX
i=1

ln�2 (wi1; wi2; �i�)

Marginal E¤ects
@�2
@x1

= �
�
x01�1

�
�

 
x02� � �x01�p

1� �2

!
�1

Testing for zero correlation

�LR = 2 [lnLmulti � (lnL1 + lnL2)]!d �21

11.2 Recursive Simulatneous Equations

Pr [y1 = 1; y2 = 1jx1; x2] = � (x1�1 + 
y2; x2�2; �)

At least one endogeneous variable is expressed only with exogenous variables.

Results (Maddala 1983)

1. We can ignore the simultaneity

2. Use log-likelihood estimation. Not LPM.

11.3 Panel Probit Model

Model

yit = 1 fy�it > 0g

Results

1. If T < N; then don�t use �xed e¤ects: Let y�it = ai + �xit + uit: Note that yit is either 1

or 0. When T is small, ai is impossible to identify.

2. If T > N; then use multivariate probit or logit.

3. If T < N; then you can use random e¤ects but have to know that it is very complicated.

4. Overall, Don�t use panel probit.
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11.4 Conditional Panel Logit Model with Fixed E¤ects

Set T = 2; consider the cases

C1 : yi1 = 0; yi2 = 0

C2 : yi1 = 1; yi2 = 1

C3 : yi1 = 0; yi2 = 1

C4 : yi1 = 1; yi2 = 0

The unconditional likelihood becomes

L =
Y
Pr (Yi1 = yi1) Pr (Yi2 = yi2) ;

which is not helpful to eliminate �xed e¤ects.

For C1, consider this

Pr [yit = 1jxit] =
exp (ai + xit�)

1 + exp (ai + xit�)

Now, we want to eliminate the �xed e¤ects from logistic distribution. How? Consider the

following probability

Pr [yi1 = 0; yi2 = 1jsum = 1] =
Pr [0; 1 and sum = 1]

Pr [sum = 1]

=
Pr [0; 1]

Pr [0; 1] + Pr [1; 0]

Hence for this pair of obs, the conditional probability is given by

1
1+exp(ai+xi1�)

exp(ai+xi2�)
1+exp(ai+xi2�)

1
1+exp(ai+xi1�)

exp(ai+xi2�)
1+exp(ai+xi2�)

+ 1
1+exp(ai+xi2�)

exp(ai+xi1�)
1+exp(ai+xi1�)

=
exp (xi1�)

exp(xi1�) + exp (xi2�)

In other words, conditioning on the sum of the two observations, we can remove the �xed

e¤ects. Now the log likelihood function is given by

lnL =
nX
i=1

di

�
yi1 ln

�
exp (xi1�)

exp(xi1�) + exp (xi2�)

�
+ yi2 ln

�
exp (xi2�)

exp(xi1�) + exp (xi2�)

��
where

di = 1 if yi1 + yi2 = 1; and 0 otherwise.
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11.5 Conditional Panel Logit Model with Fixed and Common Time E¤ects

Model

yit = 1 fy�it > 0g

where

y�it = ai + �t + xit� + uit

Consider

Pr [yi1 = 0; yi2 = 1jsum = 1] =
exp (�2 + xi2� + ai)

exp (�2 + xi2� + ai) + exp (�1 + xi1� + ai)

Let divide both sides by exp [�1 + xi1� + ai] ; then we have

exp (�2 + xi2� + ai) = exp [�1 + xi1� + ai]

exp (�2 + xi2� + ai) = [�1 + xi1� + ai] + exp (�1 + xi1� + ai) = [�1 + xi1� + ai]

=
exp (�2 � �1 + (xi2 � xi1)�)

exp (�2 � �1 + (xi2 � xi1)�) + exp (0)
=

exp (�� +�xi�)

exp (�� +�xi�) + 1

Hence the condition log-likelihood function can be written as

lnL =
nX
i=1

di

�
yi1 ln

�
exp (�� +�xi�)

1 + exp (�� +�xi�)

�
+ yi2 ln

�
1

1 + exp (�� +�xi�)

��

Remark Fixed and common time e¤ects can�t be estimated. Use panel pro�t with random

e¤ects to estimate their variances if you are interested in them.

STATA CODE: xtlogit y x, fe. Marginal e¤ects: mxf, predict(pu0)

30



12 Multinomial Choice Models

Two types of multinomial choices: Unordered choice v.s. ordered choice model. First we

consider unordered choice.

12.1 Unordered Choice or Multinomial Logit Model (23.11 Green)

Example: How to commute to school.

(1) automobile (2) bike (3) walk (4) Bus (5) Train

yi = J
�
y�ij > y�ijc

	
where J f�g is an interger J function if f�g is true. That is, J = 0; 1; 2; :::;K: Note that an

individual j will choose j if y�ij (utility) is greater than any other choice, y
�
ijc :

Now, let

y�ij = ajxi + eij

Note that the coe¢ cient on xi is varying across choices, j: Why? Suppose that aj = a across

j: Then

y�ij = y�i for all j

so that an individual i does not make any choice (since there is no dominant choice). Similary,

let

y�ij = ajxi + �zi + uij

then the coe¢ cient � is not identi�able due to the same reason.

Hence when you model for multinomial choice, you may want to include some variable

which will di¤er across j: For example, the cost of transportation must be di¤erent across j:

In this case, we can setup the model given by

y�ij = ajxi + �zij + uij :

In this case, the probability is given by

Pr [Yi = j] =
exp (ajxi + �zij)PK
j=0 exp (ajxi + �zij)

Now, let�s consider only xi case by setting � = 0: Then we have

Pr [Yi = j] =
exp (ajxi)PK
j=0 exp (ajxi)

;

31



so that the �rst choice will not be identi�ed since the sum of probability should be one. Hence

we let (usually)

Pr [Yi = j] =
exp (ajxi)

1 +
PK

j=1 exp (ajxi)
by setting a0 = 0:

The log likelihood function is given by

lnL =
nX
i=1

KX
j=0

dij ln

 
exp (ajxi)

1 +
PK

j=1 exp (ajxi)

!
where dij = 1 if yi = j; otherwise 0.

Issue: 1. Independence of Irelevant Alternatives (IIA).Individual preference should not be

dependent on what other choices are available.

2. Panel multinomial logit: pooled one is okay. random e¤ects mlogit is okay. �xed e¤ects

clogit is not available yet.

12.2 Ordered Choices (Chapter 23.10 in Green)

Example: Recommendation letter.

(1) Outstanding (2) excellent (3) good (4) average (5) poor

Usually rating is corresponding to the distribution of the grades.

Then we can say

y =

8>>>>><>>>>>:
0 if y� � 0

1 if 0 < y� � c1
...

k if ck�1 < y�

Then we have

Pr (y = 0jx) = �
�
�x0�

�
Pr (y = 1jx) = �

�
c1 � x0�

�
� �

�
x0�
�

...

Pr (y = kjx) = 1� �
�
ck�1 � x0�

�
so that the likelihood function becomes

lnL =
nX
i=1

kX
j=0

dij ln
�
�
�
cj � x0�

�
� �

�
cj�1 � x0�

�	
where dij = 1 if yi = j; otherwise 0.

32



13 Truncated and Censored Regressions

13.1 Truncated Distributions

xi has a nontruncated distribution. For an example, x � iidN (0; 1) : If xi is truncated around

a; then its pdf is changed to

f (xjx > a) =
f (x)

Pr (x > a)
=

1p
2�
exp

�
�x2
2

�
1�

R a
�1

1p
2�
exp

�
�x2
2

�
dx

For an example, if a = 0; then we haveZ 0

�1

1p
2�
exp

�
�x2
2

�
dx = 0:5

so that

f (xjx > 0) = f (x)

Pr (x > 0)
= 2

1p
2�
exp

�
�x2
2

�
from x > 0

Now consider its mean

E [xjx > a] =

Z 1

a
xf (xjx > a) dx =

Z 1

a
x
2p
2�
exp

�
�x2
2

�
dx =

p
2p
�
e�

1
2
a2

For the case of a = 0; we have

E [xjx > 0] =
p
2p
�
= 0:798

More generally, we have the following fact.

Let x � iidN
�
�; �2

�
and a is a constant, then

E (xjx > a) = �+ �� (�)

V (xjx > a) = �2 [1� � (�)]

where

� =
a� �
�

and

� (�) =
� (�)

1� � (�) , � (�) = � (�) (� (�)� �) :
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13.2 Truncated Regression

Example: yi = Test score, xi = parents income. Data selection: High Test score only. Suppose

that we have the following regression

yi = xi� + "i

The conditional expectation of y given x is equal to

Ex (yjy > 0) = Ex (y
�jy� > 0) = Ex (x� + "j" > �x�)

= x� + Ex ("j" > �x�) 6= x�

since

Ex ("j" > �x�) 6= 0:

Hence typical LS estimator becomes biased and inconsistent. We call this bias sample selection

bias.

The solution for this problem is using MLE based on the truncated log likelihood function

given by

lnL =
X
i=1

�
ln

�
1

�
�

�
yi � xi�

�

��
� ln�

�
xi�

�

��
:

We will consider more solution later.
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Now, what happen if xi is truncated? Note that

Ex [yijxi > a] = Ex [x� + "jx > a]

= x� + Ex ["jx > a] = x�

Hence the typical OLS estimator becomes consistent.

13.3 Censored Distribution

We say that yi is censored if

yi = 0 if y�i � 0

yi = y�i if y
�
i > 0

Hence y�i has a continuous (or non-censored) distribution.

Example: If y� � iidN
�
�; �2

�
; and y = a if y� � a or else y = y�; then

E (y) = Pr (y = a) a+ Pr (y > a)E (y�jy� > a)

= Pr (y� � a) a+ Pr (y� > a)E (y�jy� > a)

= � (a) a+ f1� � (a)g f�+ �� (�)g

and

V (y) = �2 (1� �)
h
(1� �) + (�� �)2�

i
;

where

� = (a� �) =�; � = � (�) = f1� � (�)g ; � = �2 � ��

Remark Let y� � iidN (0; 1) ; and y = 0 if y�i � 0 or else y = y�: Then

� =
� (0)

1� � (0) =
1p
2�

0:5
= 0:798; � = 0:7982 = 0:637

E (yja = 0) = 0:5 (0 + 0:798) = 0:399

V (y) = 0:5 [(1� 0:637) + 0:637� 0:5] = 0:637
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13.4 Censored Regression (Tobit) Model

Tobin proposed this model. So we call it Tobit model.

y�i = xi� + "i

yi = 0 if y�i � 0

yi = y�i if y
�
i > 0

The conditional expectation of y given x is equal to

E [yjx] = Pr [y = 0] � 0 + Pr [y > 0]Ex (yjy > 0)

= Pr [y > 0]Ex (yjy > 0)

= Pr [" > �x�]Ex (y�j" > �x�)

= Pr [" > �x�]Ex (x� + "j" > �x�)

= Pr [" > �x�] fx� + Ex ("j" > �x�)g

= �

�
xi�

�

�
(xi� + ��i)

where

�i =
� [�xi�=�]

1� � [�xi�=�]
=
� [xi�=�]

� [xi�=�]

since � is a symmetric distribution. Also note that the OLS estimator becomes biased and

inconsistent.

Similar to the truncated regression, the ML estimator based on the following likelihood

function becomes consistent.

lnL =
X
yi>0

�1
2

"
log (2�) + ln�2 +

(yi � xi�)2

�2

#
+
X
yi=0

ln

�
1� �

�
xi�

�

��
Now, the marginal e¤ect is given by

@E (yijxi)
@xi

= ��

�
xi�

�

�
:

13.5 Balanced Trimmed Estimator (Powell, 1986)

Truncation and censored problems arise due to asymmetric truncation. Now consider the

following truncation rule

y�i = xi� + ui
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yi = 0 if y�i � 0 () yi = 0 if xi� � ui

yi = y�i if y
�
i > 0 () yi = y�i if xi� > �ui

We can�t do anything about censored or truncated parts, but can modify the non-censored

or non-truncated part to balance up the symmetry. Consider the below �gure. The vertical

axis represents the density of y�i : When y
�
i is either censored or truncated about 0, the mean

of y�i shifts due to asymmetry of its pdf. To avoid this, we can censor or truncate the right

side distribution about 2�x�:

0 x#K 2x#K

Powell (1986) suggests the following criteria of nonlinear LS estimator. For truncated

regressions,

T (�) =

nX
i=1

�
yi �max

�
1

2
yi; xi�

��2
and for censored regressions

C (�) =

nX
i=1

�
yi �max

�
1

2
yi; xi�

��2
+

nX
i=1

1 fyi > 2xi�g
"�
1

2
yi

�2
�max (0; xi�)2

#

The F.O.C for T (�) is given by

1

n

nX
i=1

1 fyi < 2xi�g (yi � xi�)xi = 0

and the F.O.C. for C (�) is given by

1

n

nX
i=1

1 fxi� > 0g fmin [yi; 2xi�]� xi�gxi = 0
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13.6 Sample Selection Bias: Heckman�s two stage estimator

13.6.1 Incidental Truncated Bivariate Normal Distribution

Let y and z have a bivariate normal distribution"
y

z

#
� N

 "
�y

�z

#
;

"
�y �yz

�yz �z

#!

and let

� =
�yzp
�y�z

Then we have

E [yjz > a] = �y + ��y� (�z)

V [yjz > a] = �2y
�
1� �2� (�z)

�
where

�z =
a� �z
�z

; � (�z) =
� (�z)

1� � (�z)
; � (�2) = � (�z) [� (�z)� �z]

13.6.2 Sample Selection Bias

Consider

z�i = wi
 + ui

yi = xi� + "i

where z�i is unobservable. Suppose that

yi =

(
n:a: if z�i � 0
yi otherwise

; Truncation based on z�i

then

E (yijz�i > 0) = E (yijui > �wi
)

= xi� + E ("ijui > �wi
)

= xi� + ��"�i (�u)

Hence the OLS estimator becomes biased and inconsistent.
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Solution (Heckman�s two stage estimation) (1) Assume normality

We rewrite the model as

zi = 1 fz�i = wi
 + ui > 0g

and

yi = xi� + "i if zi = 1

Step 1 Probit regression with zi: Estimate 
̂probit; and compute �̂i and �̂i given by

�̂i =
�
�
wi
̂probit

�
�
�
wi
̂probit

� ; �̂i = �̂i

�
�̂i + wi
̂probit

�
:

Step 2 Estimate � and �� = ��" by OLS

yi = xi� + ���̂i + error

What if xi = wi? Then we have

zi = 1 fy�i = xi� + ui > 0g

yi = = xi� + "i if zi = 1

Step 1 Probit regression with zi: Estimate �̂probit; and compute �̂i given by

�̂i =
�
�
xi�̂probit

�
�
�
xi�̂probit

� ;
Step 2 Estimate � and �� = ��" by OLS

yi = xi� + ���̂i + error

13.7 Panel Tobit Model

y�it = ai + �xit + uit

yit =

(
n:a: if y�it � 0
y�it otherwise

; yit =

(
0 if y�it � 0
y�it otherwise

Assume uit is iid and indepenent of xit:
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Likelihood Function (Treat ai random)

L (truncated) =
nY
i=1

Z " TY
t=1

f (yit � �xit � ai)
1� F (��xit � ai)

#
g (ai) dai

L (Censored) =
nY
i=1

Z 24 TY
yit=0

F (��xit � ai)
TY

yit>0

f (yit � �xit � ai)

35 g (ai) dai
Symmetric Trimmed LS Estimator (Horone, 1992) Let

yit = ai + xit� + uit

yit = E (yitjxit; ai; yit > 0) + �it
= ai + xit� + E (uitjuit > �ai � xit�) + �it

so that we have

yit = ai + xit� + E (uitjuit > �ai � xit�) + �it

Now take the �rst s di¤erence

yit � yis = (xit � xis)� + E (uitjuit > �ai � xit�)

�E (uisjuis > �ai � xis�) + �it � �is

In general, we have

E (uitjuit > �ai � xit�)� E (uisjuis > �ai � xis�) 6= 0

Hence a typical sth di¤erencing does not work.

Now consider the following sample truncation

yit > (xit � xis)�; yis > � (xit � xis)�

Otherwise, drop the sample.

Then we have when � (xit � xis)� > 0;

E (yisjai; xit; xis; yis > � (xit � xis)�) = ai + xis� + E (uisjuis > �ai � xis� � (xit � xis)�)

= ai + xis� + E (uisjuis > �ai � xit�)

Note that due to iid condition, we have

E (uisjuis > �ai � xit�) = E (uitjuit > �ai � xit�)
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Similarly when (xit � xis)� > 0;

E (yitjai; xit; xis; yit > (xit � xis)�) = ai + xit� + E (uitjuit > �ai � xit� � (xit � xis)�)

= ai + xit� + E (uitjuit > �ai � xis�)

Note that due to iid condition, we have

E (uisjuis > �ai � xis�) = E (uitjuit > �ai � xis�)

Hence if we use the observations where (1) yit > (xit � xis)�; (2) yis > � (xit � xis)�; (3)
yit > 0; (4) yis > 0; then we have

(yit � yis) = (xit � xis)� + (�it � �is) :

The OLS estimator becomes consistent.

Since � is unknown, the LS estimator can be obtained by maximinzing the following sum

of square errors.

nX
i=1

n
(�yi ��xi�)2 1 fyi1 � ��xi�; yi2 � �xi�g

+y2i11 fyi1 > ��xi�; yi2 < �xi�g

+ y2i21 fyi1 < ��xi�; yi2 > �xi�g
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14 Treatment E¤ects

14.1 De�nition and Model

di =

(
1

0
; treatment

yi =

(
yi1 if di = 1

yi0 if di = 0
; outcome

We can�t observe both yi1 and yi0 at the same time

14.1.1 Regression Model

yi = a+ �di + "i (13)

If �̂ 6= 0 signi�cantly, we say treatment is e¤ective. This becomes true if di is not correlated
with "i:

Suppose that

d�i = wi
 + ui

di = 1 fd�i > 0g

and ui is correlated with "i: Then we have

E (yijdi = 1) = a+ � + E ("ijdi = 1)

= a+ � + ��"� (�wi
) 6= a+ �

Hence the treatment e¤ect will be over-estimated.

14.1.2 Bias in Average Treatment E¤ects

In general, the true treatment e¤ect is given by

E (yi1 � yi0jdi = 1) = TE;

but it is impossible to observe E (yi0jdi = 1) : Instead of this, we are using

ATE = E (yi1jdi = 1)� E (yi0jdi = 0) ;
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which is called �average treatment e¤ect�. In the above, we show that this will be upward

biased (and inconsistent). To see this, we expand

E (yi1jdi = 1)� E (yi0jdi = 0) = E (yi1 � yi0jdi = 1) + E (yi0jdi = 1)� E (yi0jdi = 0)

= ATE + [E (yi0jdi = 1)� E (yi0jdi = 0)]

6= ATE

Of course, if treatment e¤ects are not endogenous (alternatively exogenous or forced to get

the treatment), then

E (yijdi = 1) = a+ � + E ("ijdi = 1) = a+ �

so that there will be no bias. We call this type of treatment �randomized treatment�.

14.2 Estimation of Average Treatment E¤ects (ATE)

14.2.1 Linear Regression

The inconsistency of �̂ in (13) can be interpreted as endogeneous inconsistency due to miss-

ing observations. The typical solution in this case is including control variables, wi; in the

regression. That is,

yi = a+ �di + 
wi + �i: (14)

This is the most crude estimation method for estimating average treatment e¤ects. The con-

sistency of �̂ requires the following restriction.

De�nition: Unconfoundedness: Conditional on a set of covariate w, the pair of counter-

factual outcomes, (yi0; yi1) ; is independent of d: That is

(yi0; yi1) ? d j w

Under unconfoundedness, the OLS estimator in (14) becomes consistent, that is

�̂ !p �

and the estimator of ATE becomes �̂:

Typical linear treatment regression is given by

yi = a+ �di + 
1wi + 
2w
2
i + "i;

but there is no theoretical justi�cation of why di has a linear relationship with wi
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14.2.2 Propensity Score Weighting Method

We learn �rst what propensity score is.

De�nition: Propensity Score The conditional probability of receiving the treatment is

call �propensity score�

e (w) = Pr [di = 1jwi = w] = E [dijwi = w]

How to estimate the propensity score: Use LPM, logit or probit, and estimate the

propensity scores.

di = 1 fd�i = wi
 + ui > 0g

e (ŵi) = F (wi
̂) =
exp (wi
̂)

1 + exp (wi
̂)
for a logit case

Now, the average outcomes for treated and controls are given by

�̂ =

P
diyiP
di jtreated

�
P
(1� di) yiP
(1� di) jcontrolled

is biased.

Consider the following expectation of the simple weighting

E

�
d � y
e (w)

�
= E

�
d � y (1)
e (w)

�
= E

�
E

�
d � y (1)
e (w)

jw
��

= E

�
E

�
e (w) � y (1)

e (w)

��
= E fy (1)g

Similarly we have

E

�
(1� d) y
1� e (w)

�
= E fy (0)g ;

which implies that

�̂p =
1

N

nX
i=1

�
diyi
e (wi)

� (1� di) yi
1� e (wi)

�
=
1

N

nX
i=1

f!�i yi � !ciyig

where !�i is the weight for treated units.

However, this estimator is not an attractive estimator since the weight is not always one

in the �nite sample. To balance out the weight, we consider the following weighting over

weighting estimator

�̂pw =
1

N

nX
i=1

�
!�iPn
i=1 !

�
i

yi

�
� 1

N

nX
i=1

�
!ciPn
i=1 !

c
i

yi

�
:

Hirano, Imbens and Ridder (2003) show that this estimator is e¢ cient.
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14.2.3 Matching

There are several matching methods. Among them, propensity score matching is usually used.

The idea of matching is simple. Suppose that a subject j in the controlled group has the same

covariate value (wj) with a subject i in the treated group. That is

wi = wj :

In this case, we can calculate the average treatment e¤ect without any bias. Several matching

methods are available. Alternatively we can use propensity score to match. That is

pi = pj :

Of course, it is ine¢ cient if many observations should be dropped. Here I show only two

examples of matching methods.

Exact Matching Drop subjects in treated and controlled if wi 6= wj or pi 6= pj :

Propensity Matching 1. Cluster samples such that

jpi � pj j < "1 for the �rst group

"1 � jpi � pj j < "2 for the second group
...

2. Calculate the average treatment e¤ects by taking

�̂m =
1

S

SX
s=1

(
1

ns

nsX
i=1

(yis (1)� yjs (0))
)

14.3 Panel Treatment E¤ects

14.3.1 When T = 2

Example: (Card and Krueger, 1994) New Jersey raised the minimum wage in Jan. 1990. (I

don�t know the exact year). Meanwhile Pennsylvania didn�t do so both in 1990 and 1991. In

the below, the number of net employed persons are shown during these periods.

Before After Di¤erence

NJ 20.44 21.03 0.59

PENN 23.33 21.17 -2.16

Di¤erence -2.89 -0.14 2.76
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Now estimate the e¤ect of the higher minimum wage.

Let yit be the outcome and xit be treatment. Then for NJ, we have

E (y10jx10 = 0) = �1

E (y11jx11 = 1) = �1 + 
 + �

Meanwhile for Penn,

E (y20jx20 = 0) = �2

E (y21jx21 = 0) = �2 + 


Note that the withine di¤erence is

E (y11jx11 = 1)� E (y10jx10 = 0) = 
 + �

E (y21jx21 = 0)� E (y20jx20 = 0) = 


so that we can get the treatment e¤ects by taking di¤erence in di¤erence.

[E (y11jx11 = 1)� E (y10jx10 = 0)]� [E (y21jx21 = 0)� E (y20jx20 = 0)] = �

In the regression context, we run

yit = a+ �Si + 
t+ �txit + "it; for t = 1; 2

where Si is a state dummy, t is trend.

Now for a large t; we consider a case of (0; 1; 1) and (0; 0; 0).

E (y10jx10 = 0) = �1

E (y11jx11 = 1) = �1 + 
1 + �

E (y12jx12 = 1) = �1 + 
2 + �

E (y20jx20 = 0) = �2

E (y21jx21 = 0) = �2 + 
1

E (y22jx22 = 0) = �2 + 
2

Then we can estimate the ATE by

E (y11jx11 = 1)� E (y21jx21 = 0) = �1 � �2 + �

E (y10jx10 = 0)� E (y20jx20 = 0) = �1 � �2
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and also we can do

E (y12jx12 = 1)� E (y22jx22 = 0) = �1 � �2 + �:

Hence overall we can estimate the ATE by running

yit = ai + �t + �xit + "it
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