
1 Panel Robust Variance Estimator

The sample covariance matrix becomes
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and its associated t-statistic becomes
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Consider two regressors: First let

�i = X
0
iûi = [x1;iûi x2;iûi]

where

xk;i = (xk;i1; :::; xk;iT )
0

Then calculate
PN
i=1 �

0
i�i which is T � T matrix.

Read Lecture note in Econometric I and �nd out the potential issue on this panel robust

variance estimator.

2 Monte Carlo Studies

2.1 Why Do We need MC?

1. Verify asymptotic results. If an econometric theory is correct, the asymptotic results

should be replicatable by means of Monte Carlo studies.

(a) Large sample theory: /T or N must be very large. At least T = 500:

(b) Generalize assumptions. See if a change in an assumption makes any di¤erence in

asymptotic results.

2. Examine �nite sample performance. In �nite sample, asymptotic results are just ap-

proximation. We don�t know if or not an econometric theory works well in the �nite

sample.

(a) Useful to compare with various estimators.

(b) MSE and Bias become important to the estimation methods.

(c) Size and Power become issues on various testing procedures & covariance estimation.
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2.2 How to do MC

1. Need a data generating process (DGP), and distributional assumption.

(a) DGP depends on an econometric theory and its assumptions.

(b) Need to generate pseudo random variables from a certain distribution

2.2.1 Example 1: Verifying asymptotic result of OLSE

DGP:

Model: yi = a+ xi� + ui

Now we take a particular case like

ui � iidN (0; 1) ; xi � iidN (0; Ik)

where a = � = 0:

Step by Step procedure

1. Find out the parameters of interest. (here we are interested in consistency of OLSE)

2. Generate n pseudo random variables of u; x and y: Since a = � = 0; yi = ui:

3. Calculate OLSE for � and a: (plus the estimates of parameters of interest)

4. Repeat 2 and 3 S times. record all �̂:

5. calculate mean of �̂ and variance of them. (how do we know the convergence rate?)

6. Repeat 2-5 by changing n:

2.2.2 Example 2: Verifying asymptotic result of OLSE Testing

DGP:

Model: yi = a+ xi� + ui

Now we take a particular case like

ui � iidN (0; 1) ; xi � iidN (0; Ik)

where a = � = 0:
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Step by Step procedure

1. Find out the parameters of interest. (t�statistic)

2. Generate n pseudo random variables of u; x and y: And calculate t ratio for � and a:

3. Repeat 2 and 3 S times. record all t�̂:

4. Sort t�̂ and �nd out the lower and upper 2.5% values. Compare them with the asymptotic

critical value.

5. Repeat 2-4 by changing n:

2.2.3 Exercise 1: Use NW estimator and calculate t ratio. Compare the size and

power of the tests (ordinary and NW t-ratios)

Asymptotic theory: Both of them are consistent. The ordinary t ratio becomes more e¢ cient.

Why?

Size of the test Change step 4 in Example 2 as follows:

Let

t� =
��̂t���

sort t�. Find when t�j > 1:96: And 1� j�=S becomes the size of the test.

Power of the test Change � = 0:01; 0:05; 0:1; 0:2:

Repeat the above procedures, and �nd 1� j�=S: This becomes the power of the test.

2.2.4 Exercise 2: Re-do Bertrand et al.
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3 Review Asymptotic Theory

3.1 Most Basic Theory

yi = �xi + ui

where

ui � iid
�
0; �2u

�
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3.2 Addition Constant term

yi = a+ �xi + ui

where

xi = ax + x
o
i ; yi = ay + y

o
i :

ui � iid
�
0; �2u

�
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First let
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Next,
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4 Power of the Test (Local Alternative Approach)

Consider the model

yi = �xi + ui

and under the null hypothesis, we have

� = �o

Now we want to analyze the power of the test asymptotically. Under the alternative, we have

� = �o + c

where c 6= 0:
Suppose that we are interested in comparing two estimates, let say OLSE and FGLSE (�̂1

and �̂2). Then we have
p
n
�
�̂1 � �

�
r
V
�
�̂1

� !d N (0; 1) +Op

�
N�1=2

�
or p

n
�
�̂1 � �o

�
r
V
�
�̂1

� !d N (0; 1) +
p
nc+Op

�
N�1=2

�
Hence as long as c 6= 0; the power of the test goes to one. In other words, the dominant term
becomes the second term (

p
nc)

Similary, we have
p
n
�
�̂2 � �o

�
r
V
�
�̂2

� !d N (0; 1) +
p
nc+Op

�
N�1=2

�

Hence we can�t compare two tests.

Now, to avoid this, let

� = �o +
cp
n

so that � ! � as n!1: Then we have
p
n
�
�̂� � �

�
r
V
�
�̂�

� !d N (c; 1) +Op

�
N�1=2

�
:

Hence depending on the value of c; we can compare the power of the test (across di¤erent

estimates).
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5 Panel Regression

5.1 Regression Types

1. Pooled OLS estimator (POLS)

yit = a+ �xit + zit + uit

2. Least squares dummy variables (LSDV) or Withing group (WG) or Fixed e¤ects (FE)

estimator

yit = ai + �xit + zit + uit

3. Random E¤ect (RE) or PFGLS estimator

yit = a+ �xit + zit + eit; eit = ai � a+ uit

Let X = (x11; x12; :::; x1T ; x21; :::; xNT )
0 ; xi = (xi1; :::; xiT )

0 ; xt = (x1t; :::; xNt)
0 : De�ne

Z; zi and zt in the similar way. Let W = (X Z)0 : Then

5.2 Covariance estimators:

1. Ordinary estimator: �̂2u (W
0W )�1

2. White estimator

(a) Cross sectional heteroskedasticity: NT (W 0W )�1
�
1
N

Pn
i=1 û

2
iw

0
iwi
�
(W 0W )�1

(b) Time series heteroskedasticity: NT (W 0W )�1
�
1
T

PT
t=1 û

2
tw

0
twt

�
(W 0W )�1

(c) Cross and Time heteroskedasticity: NT (W 0W )�1
�

1
NT

PN
i=1

PT
t=1 û

2
itwitw

0
it

�
(W 0W )�1

3. Panel Robust Covariane estimator: N (W 0W )�1
�
1
N

PN
i=1w

0
iûiû

0
iwi

�
(W 0W )�1

4. LRV estimator ? Why not?

5.3 Pooled GLS Estimators

�̂ =
�
W 0 �
�1 
 I�W ��1 �W 0 �
�1 
 I� y�

7



5.3.1 How to estimate 
 :

1. Time Series Correlation:

(a) AR1: easy to extend. 
 =

2664
1 �T�1

...
. . .

...

�T�1 1

3775
(b) Unknown. 
̂sh = 1

N

PN
i=1 ûisûih: Required small T and large N:

2. Cross sectional correlation

(a) Spatial: Easy.

(b) Unknown. 
̂sh = 1
T

PT
t=1 ûstûht

5.4 Seemingly Unrelated Regression

�̂ =
�
W 0 �I 
 
�1�W ��1 �W 0 �I 
 
�1� y�
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6 Bootstrap

Reference: �The BOOTSTRAP�by Joel L. Horowitz (Chapter 52 in Handbook of Economet-

rics Vol 5)

6.1 What is the bootstrap

It is a method for estimating the distribution of an estimator or test statistics by resampling

the data.

Example 1 (Bias correction) Model

yt = a+ �yt�1 + et;

where et is a white noise process. It is well known that E(�̂� �) = �
1 + 3�

T
+O

�
T�2

�
: Here

I am explaining how to reduce Kendall bias (not eliminating) by using the following bootstrap

procedure.

1. Estimate OLSE for a and �; denote them as â and �̂: Get OLS residual êt = yt�â��̂yt�1:

2. generate T + K random variables from the uniform distribution of U (1; T � 1) : Make
them as integers.

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+�oor(ind); % make integers. 0.1 => 1.

3. Draw (T +K)� 1 vector of e�t from êt:

esta = e(ind,:);

4. Recentering e�t to make its mean be zero. Generate pseudo y
�
t from e�t ; and discard the

�rst K obs.

esta = esta - mean(esta); ysta = esta;

for i=2:t+k;

ysta(i,:) = ahat+rhohat*ysta(i-1,:) + esta(i,:);

end;

ysta =ysta(k+1:t+k,:);
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5. Estimate â� and �̂� with y�t :

6. Repeat step 2 and 5 M times.

7. Calculate the sample mean of �̂�: Calculate the bootstrap bias, B = 1
M

PM
m=1 �̂

�
m � �̂

where �̂�m is the mth time bootstrapped point estimate of �: Subtract B from �̂:

�̂mue = �̂�B

where mue stands from mean unbiased estimator. Note that

E (�̂mue � �) = O
�
T�2

�
:

6.2 How the bootstrap works

First let the estimates be a function of T: For example, �̂ be �̂T : Now de�ne

�̂T =

P
~yit~yit�1P
~y2it�1

= g (z) ; let say

where z is a 2� 1 vector. That is, z = (z1; z2) and z1 = 1
T

P
~yit~yit�1 and z2 = 1

T

P
~y2it�1:

From A Tyalor expansion (or Delta method), we have

�̂T = �+
@g

@z
(z � zo) +

1

2
(z � zo)0

�
@2g

@z@z0

�
(z � zo) +Op

�
T�2

�
Now taking expectations yields

E (�̂T � �) = E
@g

@z
(z � zo) +

1

2
E (z � zo)0

�
@2g

@z@z0

�
(z � zo) +O

�
T�2

�
=

1

2
E (z � zo)0

�
@2g

@z@z0

�
(z � zo) +O

�
T�2

�
since E (z � zo) = 0 always.

The �rst term in the above becomes O
�
T�1

�
, that is �1 + 3�

T
: We want to eliminate this

part (not reduce it). The bootstrapped �̂�T becomes

�̂�T = �̂T +
@g

@z
(z� � zo) +

1

2
(z� � zo)0

�
@2g

@z@z0

�
(z� � zo) +Op

�
T�2

�
where z� = (z�1 ; z

�
2) ; and z

�
1 =

1
T

P
~y�it~y

�
it�1; etc. Note that we generate y

�
it from �̂T ; �̂

�
T can be

expanded around �̂T not around the true value of �: Now taking expectation E
� in the sense

that

E� ! E as M;T !1:

10



Then we have

E� (�̂�T � �̂T ) =
1

2
E� (z� � zo)0

�
@2g

@z@z0

�
(z� � zo) +O

�
T�2

�
= B�

Note that in general

B� = B +O
�
T�2

�
hence we have

�̂mue = �̂T �B� = �̂T � E� (�̂�T � �̂T )

6.3 Bootstrapping Critical Value

Example 2. (Using the same example 1) Generate t-ratio for �̂�m M times. Sort them,

and �nd 95% critical value from the bootstrapped t-ratio. Compare it with the actual t-ratio.

Asymptotic Re�nement Notation:

F0 is the true cumulative density function. For an example, cdf of normal distribution.

t� is the t-statistic of �:

tn;� is the sample t-statistic of �̂ where n is the sample size.

G (� ; F0) = P (t� � �). That is the function G is the true CDF of t� :
Gn (� ; F0) = P (tn;� � �) : The function Gn is the exact �nite sample CDF of tn;�

Asymptotically Gn ! G as n ! 1: Denote that Gn (� ; Fn) is the bootstrapped function
for t�n;� where Fn is the �nite sample CDF:

De�nition: Pivotal statistics If Gn (� ; F0) does not depend on F0; then tn;� is said to be

pivotal.

Example 3 (exact �nite sample CDF for AR(1) with a unknown constant) From

Tanaka (1983, Econometrica), the exact �nite sample CDF for t�̂ is given by

P (tT;�̂ � x) = � (x) +
� (x)p
T

2�+ 1p
1� �2

+O
�
T�1

�
where � is the CDF of normal distribution and � is PDF of normal. Here Tanaka assumes F0

is normal. That is, yt is distributed as normal. Of course, if yt has a di¤erent distribution,
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the exact �nite sample PDF is unknown. However, tT;�̂ is pivotal since as T !1; its limiting
distribution goes to � (x) :

Now under some regularity conditions (see Theorem 3.1 Horowitz), we have

Gn (� ; F0) = G (� ; F0) +
1p
n
g1 (� ; F0) +

1

n
g2 (� ; F0) +

1

n3=2
g3 (� ; F0) +O

�
n�2

�
uniformly over � :

Meanwhile the bootstrapped t�̂ has the following properties

Gn (� ; Fn) = G (� ; Fn) +
1p
n
g1 (� ; Fn) +

1

n
g2 (� ; Fn) +

1

n3=2
g3 (� ; Fn) +O

�
n�2

�

When tn;�̂ is not a pivotal statistic In this case, we have

Gn (� ; F0)�Gn (� ; Fn) = [G (� ; F0)�G (� ; Fn)] +
1p
n
[g1 (� ; F0)� g1 (� ; Fn)] +O

�
n�1

�
Note that G (� ; F0) � G (� ; Fn) = O

�
n�1=2

�
. Hence the bootstrap makes an error of size

O
�
n�1=2

�
: Also note that Gn (� ; F0) also makes an error of size O

�
n�1=2

�
; so that the boot-

strap does not reduce (neither increase) the size of the error.

When tn;�̂ is a pivotal In this case, we have

G (� ; F0)�G (� ; Fn) = 0

by de�nition. Then we have

Gn (� ; F0)�Gn (� ; Fn) =
1p
n
[g1 (� ; F0)� g1 (� ; Fn)] +O

�
n�1

�
and g1 (� ; F0)� g1 (� ; Fn) = O

�
n�1=2

�
: Hence we have

Gn (� ; F0)�Gn (� ; Fn) = O
�
n�1

�
;

which implies that the bootstrap reduces the size of an error.

6.4 Exercise: Sieve Bootstrap

(Read Li and Maddala, 1997)

Consider the following cross sectional regression

yit = a+ �xit + uit (3)

We want to test the null hypothesis of � = 0:We suspect that xit and uit are serially correlated,

but not cross correlated. Consider the following sieve bootstrap procedure
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1. Run (3) and get â; �̂, and ûit:

2. Run the following regression"
xit

uit

#
=

"
�x

0

#
+

"
�x 0

0 �u

#"
xit

uit

#
+

"
eit

"it

#

and get �̂x; �̂x; �̂u and their residuals of êit and "̂it: Recentering them.

3. Generate pseudo x�it and u
�
it:

ind = rand(t+k,1)*(t-1); % generate from U(0,T-1).

ind = 1+�oor(ind); % make integers. 0.1 => 1.

F = [ehat espi]; % êit and "̂it

Fsta = F(ind,:); % use the same ind. Important!

repeat what you learnt before....

4. Generate y�it under the null,

y�it = â+ u
�
it:

5. Run (3) with y�it and x
�
it; and get the bootstrapped critical value.
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7 Maximum Likelihood Estimation

7.1 The likelihood function

Let y1; :::; yn; fyig ; be a sequence of random variables which has iidN
�
�; �2

�
: Its probability

density function f
�
yj�; �2

�
can be written as

f
�
y = yij�; �2

�
=

1p
2��2

exp

�
� 1

2�2
(yi � �)2

�
:

Note that this pdf states that with given � and �2; the probability of yi = y: Now let think

about the joint density of y such that

f
�
y1; :::; ynj�; �2

�
= f

�
y1j�; �2

�
� � � � � f

�
ynj�; �2

�
=

nQ
i=1
f
�
yij�; �2

�
due to independence

That is, with given � and �2; the joint pdf states that the probability of a sequence of y to be

fyig : This concept is very useful when we do both/or MC and bootstrap.
Now consider the mirror image case. Given fyig ; what are the most probable estimates for

� and �2? To answer this question, we consider the likelihood (probability) of � and �2: Let

� =
�
�; �2

�
: Then we can re-interpret the joint pdf as the likelihood function. That is,

f (yj�) = L (�jy) :

And then we maximize the likelihood with given fyig :

argmax
�
L (�jy) :

However it is often di¢ cult to maximize directly L function due to nonlinearity. Hence alter-

natively we maximize the log likelihood

argmax
�
lnL (�jy) :

In practice (computer programming) it is much easier to minimize the negative log likelihood

such that

argmin
�
� lnL (�jy)

Of course, we have to get the �rst order conditions with respect to �; and �nd the optimal

values of �:
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Example 1 Normal random variables. fyig ; i = 1; :::; n: Want to estimate � and �2.

L
�
�; �2jy

�
=

nQ
i=1

1p
2��2

exp

�
� 1

2�2
(yi � �)2

�
=

�
1p
2��2

�n
exp

"
� 1

2�2

nX
i=1

(yi � �)2
#

since

exp (a) exp (b) = exp (a+ b) :

Hence

lnL = �n
2
ln (2�)� n

2
ln�2 � 1

2

nX
i=1

"
(yi � �)2

�2

#
Note that

@ lnL

@�
=

1

�2

nX
i=1

(yi � �) = 0;

@ lnL

@�2
= � n

2�2
+

1

2�4

nX
i=1

(yi � �)2 = 0

From this, we have

�̂mle =
1

n

nX
i=1

yi

and

�̂2mle =
1

n

nX
i=1

(yi � �̂mle)2

Properties of an MLE (Theorem 16.1 Green)

1. Consistency: �̂mle !p �

2. Asymptotic normality

�̂mle !d N
�
�;
h
I (�)�1

i�
where

I (�) = �E
�
@2 lnL

@�@�0

�
= �E (H)

where H is the Hessian matrix.

3. Asymptotic E¢ ciency: �̂mle is asymptotically e¢ cient and achieves the Cramer-Rao lower

bound for consistent estimators.
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8 Sample Midterm Exam

Model

yit = ai + �xit + uit; t = 1; :::; T ; i = 1; :::; N (4)

uit = �uit�1 + vit; xit = �xit�1 + eit for time series and panel cases (5)

where vit,eit are independent each other.

8.1 Matlab Exercise:

1. Estimators

(a) Cross section: Let t = 1; N = n: Provide matlab codes for OLS, WLS (weighted

least squares)

(b) Time series: Let N = 1; T = T: Provide matlab codes for OLS.

(c) Panel data: Provide matlab codes for POLS, LSDV, PGLS (infeasible GLS)

2. t-statistics

(a) Cross section: provide t ratios for ordinary and white.

(b) Time series: provide t ratios for ordinary and NW.

(c) Panel Data: provide t ratios for ordinary and panel robust.

3. Monte Carlo Study. Assume all innovations are iidN(0,1). (Don�t need to write up

matlab codes)

(a) want to show that �̂LSDV is inconsistent. Write down how you can do by means of

MC.

(b) want to show that t�̂ = �̂LSDV =

s
�̂2u=

�PN
i=1

PT
t=1

�
xit � 1

T

PT
t=1 xit

�2�
su¤ers

from size distortion. Write down step by step procedure how you can show it by

means of MC.

4. Bootstrap.

(a) write up the bootstrap procedure (step by step) how to construct the bootstrapped

critical value for t�̂ in 3.b. under the null hypothesis � = 0:
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8.2 Theory

1. Basic: Derive the limiting distribution of �̂LSDV in (1) and (2)

2. Suppose that

uit = �t + "it (6)

where �t is independent from xit:

(a) You run eq. (1). (y on ai and xit). Show �̂LSDV is consistent.

(b) Further assume that "it is a white noise but �t follows an AR(1) process. How can

you obtain more e¢ cient estimator by using a simple transformation. (Don�t think

about MLE)

3. Now we have

uit = �i�t + "it

(a) Show that �̂LSDV is still consistent as long as uit is independent from xit:

(b) Can you eliminate �i�t? If so, how?

4. DGP is given by

yit = a+ �xit + !it; !it = (ai � a) + uit; uit = �uit�1 + "it; "it � iidN
�
0; �2"

�
: (7)

(a) you want to estimate the set of parameters by maximizing log likelihood function.

Write down the set of parameters.

(b) Write down the log likelihood function and its F.O.C.

(c) Derive MLEs when � = 0 and this information is given to you.
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