Panel Data Econometrics: Common Factor Analysis for

Empirical Researchers

R software companion guide

Steven Parker

February 2020

Contents

1 Basics

1.1 Loading CSV data

2 Tidyverse for data manipulations
2.1 Manipulating the data with dplyr
2.2 Summarizing data
2.3 Plotting L

2.4 Some tips about dplyr verbs Lo

3 Factor number identification
3.1 Crime rates

3.2 Priceindices

10

11

13

15

4 Decomposition of panel

4.1 Principal component estimation

4.2 Standardisation and estimation of PC factors

5 Identification of common factor

5.1 Identifying common factors
5.2 Leadership model

5.3 Multiple variables as single factor

6 Static and dynamic relationships

6.1 Common-dynamic relationship
6.2 Idio-dynamic relationship.
6.3 GHS method
6.4 Iterative PC: Bai’s Estimator

6.5 PLM package for CCE regressions

7 Convergence
7.1 weak o-convergence test

7.2 Replication of economic transition and growth

Appendix

References

23

23

25

29

29

31

34

37

38

41

44

46

48

51

51

95

57

58

1 Basics

The purpose of this guidebook is to enable R users the ability to use the tools and techniques
discussed in the book Panel Data Econometrics: Common Factor Analysis for
Empirical Researchers (Sul, 2019). R is a free software for statistical analysis available
from www.r-project.org (R Core Team, 2017). The R workflow is based upon the idea of
replicability and R’s use is growing in economics. See Racine (2017) for a discussion of the

workflow as it applies to economics.

The first 2 chapters are not intended to teach R but provide a minimal introduction to
some packages and instructions which were used to edit the data into usable formats. A
good introductory tutorial on R can be found here Wickham and Grolemund (2016). The
remaining chapters are a rough/basic guide for replicating the applications from the text.
Importantly, this guidebook only helps you implement the software that is provided with the

text on the text’s website in R. The text is still needed to understand many of the details.

You will need to load the accompanying package PDEwCF. In the first instance, to load
the PDEwCF package you will need to install if from the local drive using install then
selecting package archive file. Then navigate to the location of the PDEwCFtar file. Al-
ternatively, the command install.packages("location/PDEwCF_0.1.0.tar.gz", repos
= NULL, type = "source") can be used from the cursor, where location is the location of
the file. The PDEwCF package contains the data in RData format and direct ports of all the
functions created by Donggyu Sul for his book Panel Data Econometrics: Common Factor

Analysis for Empirical Researchers.

1.1 Loading CSV data

This is a package name package and this is a command or result from R.

The following code snippet shows how to load the data and organsie it for graphing. Note

that the data is now in CSV format so that we can use readr. First we need to load readr
into the workspace with the library command. This makes the function read_csv available.
The input to this function is the location of the file and the number of rows to skip when

reading the file into the workspace. The symbol <- means assign.

The data we load is the personal consumption expenditure (PCE) price index that has
been produced by the Bureau of Economic Analysis (BEA). The ‘MATn46_ t39.csv’ includes
annual PCE prices for 46 detailed items from 1978 to 2016 (n = 46, T = 39). This data is

used in Chapter 3.

library(readr)

mat <- read_csv("data/MATn46_t39.csv", skip = 2)

Parsed with column specification:
cols(

.default = col_double(),

“%> = col_logical(),
0@ = col_logical()
##t)

See spec(...) for full column specifications.

The notifications above tell us that the data was mostly considered of double type (numeric).
This should be checked as ocassionally missing values are coded in as NA and you will need

to adjust the readr: :read_csv command to include NAs.

A tibble: 5 x 8
W "7?° "Food and nonal~ “Alcoholic beve~ “Food produced ~ Clothing

#i# <lgl> <dbl> <dbl> <dbl> <dbl> <dbl>

##

##

#it

#i#

#i#t

##

1 NA 1978 171. 23.8

2 NA 1979 190. 26.8

3 NA 1980 208 30

4 NA 1981 222. 32.4

5 NA 1982 231. 34.7

... with 2 more variables: “Footwear 2° <dbl>, Housing <dbl>

80.2

85.5

91.1

99.4

103.

A 7 before the name of a function gives information about the function and its inputs. So

to obtain information about the read_csv function we can type ?read_csv in the console.

After running the above commands the data is loaded into the workspace. The data is in a

tibble, a type of dataframe. We also look at the data using the function head which shows

the first 6 rows by default. The output shows that the some editing is required.

From here we can clean the data as the column names have unnecessary characters. We use

the str_replace function from the stringr package. colnames is a function that obtains

the column names of a dataframe. The first instance obtains the column names while the

last instance assigns the updated names. Note that # indicates a comment and everything

after is ignored. The str_replace inputs are the string, find value and the replacement

value.

library(stringr)

rename columns

mat_nms <- colnames(mat)

mat_nms <- str_replace(mat_nms, "\\?", "Year")
mat_nms <- str_replace(mat_nms, "@", "Empty")
mat_nms <- str_replace(mat_nms, "%", "Empty2")

colnames(mat) <- mat_nms

We can save this data into R format using the command save(data, file="location/name.RData").

Use the command load(file="location/name.RData") to load .Rdata files into R.

2 Tidyverse for data manipulations

The tidyverse (Wickham, 2017) is a collection of packages, including those used in chapter 1,
that makes it easy to manipulate data. The key package is dplyr which provides a collection
of verbs (i.e. mutate, summarize, rename) for manipulating data. While some of the code
looks longer than in the text, but it has an advantage that it is very easy to read. The pipe
function %>% is used heavily and it tells R then do this. Usually you will not need to input
the data once the data is referenced in the first line of a series of commands (see the code

snippets). The pipe function works with dataframes and tibbles only.
We will start here with a clean workspace.!

Load data and packages.? We leave the details of the loaded packages shown so that you
can see the packages we used, in case there are any future issues with the code.® To load

data from a package, once the package is loaded, use the data command.
library(tidyverse)

library (PDEwCF)

load data
data("MATn46_t39")
use below 1f you have converted the data to r already and

are not using the package data.

load("data/MATn6_t39.RData")

Note the data is now sorted alphabetically. So the outputs are in a slightly different order

1Use the rm command. 1s() is list of all objects in the environment.

2In this text we only load them once, but if you are working through this in separate sessions you will
need to load the packages each session.

30ccasionally packages change giving unintended results, e.g. when a package is updated a function no
longer exists or compatible. An example would be PHTT for panel data analysis with heterogeneous time
trends (Bada and Liebl, 2014).

than in the text.

We show a small snippet of the data below using the head command. In this chapter we will

show how to go from the csv file to this file.

head (MATn46_t39)

A tibble: 6 x 3

#it Year inflation

<dbl> <chr>

1 1978 Food and nonalcoholic beverages purchased for off-premises consum~
2 1979 Food and nonalcoholic beverages purchased for off-premises consum~
3 1980 Food and nonalcoholic beverages purchased for off-premises consum~
4 1981 Food and nonalcoholic beverages purchased for off-premises consum~
5 1982 Food and nonalcoholic beverages purchased for off-premises consum~

6 1983 Food and nonalcoholic beverages purchased for off-premises consum~

2.1 Manipulating the data with dplyr

In this section we rely on the pipe indicator %>% from the magrittr package and the verbs
from the dplyr package for data transformations. The structure of piped command is data

use a plpe use a command use a more commands.

Once again we load the PCE data into the work space and rename the columns (As shown
in chapter 1). This time we dont need to call the individual libraries as they are part of the
tidyverse package. The data in mat will look like what was seen previously and the first 5

entries of mat is shown.

price

<dbl>
171.
190.
208
222.
231.

239.

mat <- read_csv("data/MATn46_t39.csv", skip = 2)
rename columns

mat_nms <- colnames(mat)

mat_nms <- str_replace(mat_nms, "\\?", "Year")
mat_nms <- str_replace(mat_nms, "Q@", "Empty")
mat_nms <- str_replace(mat_nms, "%", "Empty2")

colnames(mat) <- mat_nms

A tibble: 5 x 8

Empty2 Year "Food and nonal~ “Alcoholic beve~ “Food produced ~ Clothing

<lgl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA 1978 171. 23.8 1.2 80.2
2 NA 1979 190. 26.8 1.3 85.5
3 NA 1980 208 30 1.2 91.1
4 NA 1981 222. 32.4 1.2 99.4
5 NA 1982 231. 34.7 1.1 103.
... with 2 more variables: “Footwear 2° <dbl>, Housing <dbl>

In the following code we use the verb select to select a column which contains the text
“empty”. In Chapter 1 we renamed some extra columns empty so here we wish to remove
them as the there is a - sign before the contains command. Then next we wish to gather
the data. This creates a long panel, or stacked panel. The key is the value to stack on,
value is the name of the new variable created holding our data values (prices in this case),
and we do not wish to include year, so we negate it with -. This gather command is similar
to reshape in Stata or Matlab. The opposite of gather is spread. When we gather the data
it is called narrow while spread data is called wide (Wide data is like a matrix of T rows and

N columns).

Table 1: The inflation data in narrow format

Year inflation price

1978 Food and nonalcoholic beverages purchased for off-premises consumption 171.1
1979 Food and nonalcoholic beverages purchased for off-premises consumption 190.3
1980 Food and nonalcoholic beverages purchased for off-premises consumption 208.0
1981 Food and nonalcoholic beverages purchased for off-premises consumption 221.7
1982 Food and nonalcoholic beverages purchased for off-premises consumption 231.3

make the data tidy (narrow format)
MATn46_t39 <- mat %>%
dplyr: :select(-contains("Empty")) %>%

gather (key = inflation, value = price, -Year)

2.2 Summarizing data

In the following code snippet we use the verbs groupby and summarise to summarise the
data by groups. In this case we want to see a summary of the data by time. To see by

inflation component we would use group_by(inflation).

by_time <- MATn46_t39 7>%
group_by(Year) %>
summarise(Mean = mean(price),

Median = median(price),

Min = min(price),

Max = max(price),
Std.dev = sd(price),
IQR = IQR(price),

N = n())

10

Table 2: Yearly summary of the inflation data

Year Mean Median Min Max Std.dev IQR N

1978 30.86 1715 0.2 1945 41.20 23.38 46
1979 34.39 18.45 0.4 218.0 46.25 25.85 46
1980 38.00 20.20 0.7 246.6 51.80 25.83 46
1981 42.09 22.00 08 2779 57.36 27.10 46
1982 44.98 23.10 1.0 303.0 61.27 28.52 46

2.3 Plotting

We can plot the data using ggplot. In this example I select the first 4 subindices using the
filter command. The symbol | means or and == is a test of equality. Other useful symbols
are != not equal and & for and. The filter command is very flexible for data manipulation
for groups. With these 4 series we plot them as a time-series. Time series are best plot with
lines so we use the geom_line.To plot the data you need to use aes for the aesthetics. In
this case I assign Year to the x axis, the value of the index to the y axis and the inflation

component as the color. theme minimal removes some chart junk.

plot a subsample of the data
MATn46_t39 %>%

filter(inflation == "Food and nonalcoholic beverages purchased for off-premises consun

inflation "Alcoholic beverages purchased for off-premises consumption" |

inflation == "Food produced and consumed on farms" |
inflation == "Clothing") %>%
ggplot() +

geom_line(aes(x = Year, y = price, color = inflation)) + theme_minimal()

ggplot allows for a large amount of customization to the graph objects through theme

commands.
We can also use other chart types such as bar charts (geom_bar) and histograms

11

price

800

600

400

200

inflation
Alcoholic beverages purchased for off-premises consumption
—— Clothing
—— Food and nonalcoholic beverages purchased for off-premises consumption

Food produced and consumed on farms

1980199020002010
Year

Figure 1: Quick time series plot of some inflation series

12

(geom_histogram) for example, but below we demonstrate the use of kernel densities with

geom_density.

MATn46 _t39 %>%

filter(inflation == "Food and nonalcoholic beverages purchased for off-premises consun
inflation == "Alcoholic beverages purchased for off-premises consumption" |
inflation == "Food produced and consumed on farms" |
inflation == "Clothing") %>%

ggplot () +

geom_density(aes(x = price, color = inflation)) +
theme_minimal() +
facet_wrap(~inflation, scales = "free") + # creates a grid of plots

theme (legend.position = "none") # removes legend

2.4 Some tips about dplyr verbs

The dplyr verbs select and lag should be prefaced with dplyr:: so that in the case of
other packages that use these verbs as functions the verbs you need from dplyr will be
used rather than those from other packages. These are the 2 main cases of I have found.
When the packages load, the conflicts warning provides some ideas of potential clashes (see

warnings and messages above).

13

density

0.012

0.009

0.006

0.003

0.000

0.0020

0.0015

0.0010

0.0005

0.0000

lic beverages purchased for off-premises consu Clothing

0.005

0.004

0.003

0.002

0.001

0.000
50 100 100 150 200 250 300

alcoholic beverages purchased for off-premises Food produced and consumed on farms

200

15
1.0
0.5

0.0
400 600 800 0.25 0.50 0.75 1.00 1.25
price

Figure 2: Quick density plot of some inflation series

3 Factor number identification

In this chapter we replicate the practice exercises at the end of the chapter. In terms of

coding we introduce the loop programming structure and functions.

3.1 Crime rates

We start with the first practice exercise which uses the crime dataset. We load the data and
set up a list (panel_list) for our loop. The data are shown. The labels in panel list

match those in the column Crime_Type.

load the data
load("data/crime_data.RData")

data("crime data")

panel list <- c("violent", "murder", "robbery",
"rape", "assault'", "property",
"burglary", "larceny", "motorv")

Inspect the data with head(crime_data).

A tibble: 5 x 5

#i# Year Crime_Type State Ilncrime id

<dbl> <chr> <chr> <dbl> <int>
1 1965 violent Alabama 8.84 1
2 1966 violent Alabama 9.00 1
3 1967 violent Alabama 9.04 1
4 1968 violent Alabama 9.02 1
5 1969 violent Alabama 9.09 1

15

We then create the variables named in table 3.1 of the text (Sul, 2019) and a list of their

names. The data is spread

crime data <- crime_data %>%

group_by(Crime Type, State) %>%
mutate(dlncrime = lncrime - dplyr::lag(lncrime, 1), # dy

lncrime_plus = lncrime/sd(lncrime, na.rm = TRUE), # y+

dlncrime_plus = dlncrime/sd(dlncrime, na.rm = TRUE)) %>} # dy+
ungroup() %>%
gather (key = variable, value = vals, -Year, -Crime_Type, -State, -id) %>%
dplyr: :select(-id) %>%
spread(key = State, value = vals) %>%
arrange (Crime_Type)
var_list <- c("lncrime", "lncrime plus", "dlncrime", "dlncrime_ plus")

A tibble:

8 x 8

#i# Year Crime_Type variable Alabama Alaska Arizona Arkansas California
<dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#i#t 1965 assault dlncrime NA NA NA NA NA

1965 assault dlncrime_plus NA NA NA NA NA

1965 assault Incrime 5.00 4.44 4.74 4.56 4.96
#i# 1965 assault Incrime_plus 15.5 8.91 14.1 12.3 12.9
1966 assault dlncrime 0.175 -0.0359 0.0720 0.195 0.107
#i# 1966 assault dlncrime_plus 1.74 -0.290 0.777 2.09 1.40
1966 assault Incrime 5.18 4.41 4.81 4.76 5.07
1966 assault Incrime plus 16.0 8.84 14.3 12.8 13.2

In the following code snippet we set up a matrix called store_crime_ic to store the output

16

from the two loops. The purpose of the loops is loop through each panel then each variable
and then apply the BaiNgIC() function to find the number of factors for each variable. The
loop structure in R uses the command for(i in 1:n), telling the counter to go from 1 to
n, where : is a sequence indicator. The { } group the code to be run through the loop.

An example is shown below.

for(i in 1:5){
some code here

print (i) # prints loop counter %

R also provides an alternative to loops: the apply function. Details can be found with
7apply. The following code has comments explaining each line. To access output from a
function which has multiple outputs we use the $. In the code below, BaiNgIC(dat)$ic2

access the Bai Ng information criteria number 2.

store_crime_ic <- matrix(NA, nrow = length(panel list), ncol = 4)

loop through the crime panels
for(i in 1:length(panel list)){
use this wvalue in the next loop to filter the data
filt_val = panel list[i]
loop through the four wariables
for(v in 1:length(var_list)){
get the wariable to use for input

v_val = var_list[v]

organize the data to fit the input for the function BailNgIC

17

dat <- crime_data %>7
jointly filter the panel and vartiable
filter(Crime _Type == filt_val & variable == v_val) %>/
remove unnecessary columns
dplyr: :select(-Year, -Crime_Type, -variable) %>%

na.omit () # remove NA wvalues

find the number of factors based on the IC2 information criteria and store it
store_crime_ic[i, v] <- BaiNgIC(dat)$ic2 # this s a scalar output

} # close loop v

} # close loop ©

tab31 <- data.frame(store_crime_ic)
colnames(tab31) <- var_list

tab31l <- cbind(panel_list, tab31)

The output from this code is Table 3.1 of the text. There is a small difference in column 4

(Ay;t), the violent factor number is 2 instead of 1 as in the text.

3.2 Price indices

First load the data. This data is called PCE.csv in the text. We load the version which is

included in the package using data() we worked on early.

load the data

data("MATn46_t39")

18

Table 3: Table 3.1

Series yie Y Ay Ay
violent 6 8 2 1
murder 5 2 3 1
robbery 7 7 3 1
rape 7 6 1 1
assault 6 8 1 1
property 7 7 1 1
burglary 8 8 2 1
larceny 6 7 1 1
motorv 8 8 1 1

inflation data <- MATn46 t39 7>
group_by(inflation) %>%

mutate(dp = (price - dplyr::lag(price))/ dplyr::lag(price), # create inflation

dpl = (dp - lag(dp)), # whiten data

pdp = dp/sd(dp, na.rm = TRUE), # standardize

ddp = dpl/sd(dpl, na.rm = TRUE)) %>% # standardize whitened data
ungroup ()

To undertake the rolling window analysis we set up a function. The structure is name of
the function then keyword function with the required inputs in (). Setting an input =
to a value, e.g roll window = 25 sets a default value. Just like loops, the internal code
is found between {}. This function repeats much of the material in the previous loops but
adds a new filtering proecess based on the years. As such this function is set up requiring a
start_year input. We follow the text and use 1978, and window size roll window = 25.

Importantly, the last line of code is a return(), this returns the output you want.

undertake a window analysis

ic2_window_analysis <- function(xdat, start_year, roll window = 25, white coef = 0.5){

19

store_dxs <- as.numeric() # for results
store _xxs <- as.numeric()
year_labs <- as.character()
labstore <- as.character()
maxyear <- max(xdat$Year, na.rm = TRUE)
WW <- maxyear - roll_window - start_year + 1
xdat2 <- xdat %>
dplyr: :select(Year, inflation, price) %>%
group_by(inflation) %>%
then compute measures
mutate(dp = (price - dplyr::lag(price))/ dplyr::lag(price)) %>} # create inflation

ungroup ()

for(w in 1:(WW)){
Year_1 = start_year + w
Year 25 = Year_1 + roll window - 1

year_labs <- pasteO(as.character(Year_ 1), "-", as.character(Year_25))

get years of data

xdat3 <- xdat2 %>’
filter(between(Year, Year 1, Year 25)) %>%
group_by(inflation) %>%

mutate(dx = dp - (white_coef * lag(dp, 1)), # whiten data

xxs = dx/sd(dx, na.rm = TRUE), # standardize whitened data
dxs = dp/sd(dp, na.rm = TRUE)) %>/ # standardize
ungroup ()

xdat4 <- xdat3 %>%

20

dplyr: :select(Year, inflation, dxs) %>%
spread(key = inflation, value = dxs) %>%
na.omit () %>%

dplyr::select(-Year)

the ic

store_dxs[w] <- BaiNgIC(xdat4)$ic2

xdat5 <- xdat3 %>
dplyr::select(Year, inflation, xxs) %>%
spread(key = inflation, value = xxs) %>%
na.omit() %>%
dplyr::select(-Year)

store_xxs[w] <- BaiNgIC(xdatb)$ic2

labstore[w] <- year_labs

YA w

out <- cbind.data.frame(sample = labstore,
standardized = store_dxs,
white_standardized = store_xxs)

return(out)

} # close function

Here we use the function to replicate the text figure 3.4. gather the ic2_robust data for

convenience as it allows the aesthetics (aes) to be easily applied.

21

ic2_robust <- ic2_window_analysis(inflation_data, 1978, 25)

ic2 robust %>%
gather (key = Series, value = number_of factors, -sample) %>%
-sample leaves sample as its own column
ggplot() +
geom_point(aes(x = sample, y = number_of_ factors,
shape = Series, color = Series), size = 2.5, alpha = 0.6) +
some minor dressing
theme _minimal() +
labs(y = "Estimated number factors", x = "Sample") +

theme (axis.text.x=element_text(angle=90,hjust=1))

3.0

N
o

Series
standardized

white_standardized

Estimated number factors
N
o

=
o

1.0 4 4 o
™ < o (o] N~ o [o)] o — N o™ < Lo} ©
o o o o o o o — — - - — — —
o o o o o o o o o o o o o o
R N S S S N N N N N
[} o — A ™ < Lo (o] N~ o0} (@)] o — AN
N~ o o [ee] o o [ee] o o [ee] o (e} (o] (o2}
[o)] (o2} (o)} (o] (o2} (o)} (o] (o2} (o)} (o] (o2} (o)} (o] (o2}
- — — - — — - — — - — — - —
Sample

22

4 Decomposition of panel

In this chapter we practice with common factors estimation.

The function pc operates exactly as the Matlab version in the text, which is explained in

section 4.6.1.
4.1 Principal component estimation

Load the data if needed using data(MATn46_t39).

prepare data for analysts
inflation data <- MATn46_t39 7>
group_by(inflation) %>%

mutate(dp = (price - dplyr::lag(price))/ dplyr::lag(price), # create inflation

dpl = (dp - lag(dp)), # whiten data

pdp = dp/sd(dp, na.rm = TRUE), # standardize

ddp = dpl/sd(dpl, na.rm = TRUE)) %>% # standardize whitened data
ungroup ()

A tibble: 4 x 7

Year inflation price dp dpl pdp ddp
<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1978 Food and nonalcoholic beverages purc~ 171. NA NA NA NA
2 1979 Food and nonalcoholic beverages purc~ 190. 0.112 NA 4.74 NA

3 1980 Food and nonalcoholic beverages purc~ 208 0.0930 -0.0192 3.93 -0.887

4 1981 Food and nonalcoholic beverages purc~ 222. 0.0659 -0.0271 2.78 -1.25

Note, the data is now sorted by the inflation components so the output is in a different order

23

than the text. We use the BaiNgIC from the previous chapter to find the number of factors

the whitened data.

Spread the data wide

ddp <- inflation_data %>%
dplyr::select(Year, inflation, ddp) %>%
na.omit () %>%
spread(key = inflation, value = ddp) %>%

dplyr: :select(-Year)

Use Bai Ng information criteria

k <- BaiNgIC(ddp)$ic2

There is k = 1 factor. Now estimate the factors with pc on the standardized inflation rates.

pdp <- inflation_data %>%
dplyr: :select(Year, inflation, pdp) %>%
na.omit() %>%
spread(key = inflation, value = pdp) %>%

dplyr: :select(-Year)

pc estimation

fact.est.pdp <- pc(pdp, k)

f.pdp <- fact.est.pdp$fl # factor
l.pdp <- fact.est.pdp$lambdal # loadings
e.pdp <- fact.est.pdp$vi # R2

v.pdp <- fact.est.pdp$el # fized effect + idiosyncratic term

24

4.2 Standardisation and estimation of PC factors

In this section we use a new data set. The data is from the ‘int99.cvs’ file which has the
one-month interest rates for 28 industrial countries from January 1999. to November 2015.

Load the data.

data("MATint99")

150
Country
—— Australia —— Norway
—— Brazil — Nz
—— Canada —— Philippines
100 —— Chile — Poland
" — Colombia — Romania
O .
§ —— Czech —— Singapore
‘g — Euro —— South Africa
p:) —— Hungary —— Sweden
c
- — Iceland —— Switzerland
50
— India —— Tawian
— lIsrael —— Thailand
— Japan —— Turkey
— Korea — UK
— Mexico — US
0
2000 2005 2010 2015
Date

Figure 3: Interest rate data

find country with greatest wvariance
var.big <- MATint99 %>’
group_by (Country) %>%

mutate(var= var(Interestrate),

25

n=mn0) %%
ungroup() %>%
mutate(max = ifelse(max(var) == var, 1, 0)) %>%
filter(max == 1) %>%
dplyr: :select (Country) %>%
unique() %>%

as.character()

raw data

sq <- MATint99 7%>7
dplyr: :select(Date, Country, Interestrate) %>/
na.omit() %>%
spread(key = Country, value = Interestrate) %>/

dplyr: :select(-Date)

fact.est.sq <- pc(sq, 1, stand = FALSE)

repeat with standardization
sql <- MATint99 %>%
group_by (Country) %>
mutate(sql = Interestrate / sd(Interestrate)) %>%
ungroup () %>%
dplyr::select(Date, Country, sql) %>%
na.omit () %>%
spread(key = Country, value = sql) %>%

dplyr: :select(-Date)

26

pc estimation standarized data

fact.est.sql <- pc(sql, 1)

Label.int.rate <- pasteO("Interest rate - ", var.big)
prepare data for plotting
ff.dta <- MATint99 7>
filter(Country == var.big) %>%
bind_cols(fl = -fact.est.sq$fl, f2 = -fact.est.sql$fl) %>%
dplyr: :select (-Country) %>%
gather(key = col, value = ff, -Date) %>%

group_by(col) %>%

mutate (ff ff- mean(ff),
ff = ff/sd(ff),

Labels for plots

col = ifelse(col == "Interestrate",
Label.int.rate, ifelse(col == "f2'",
"PC Factor after standardization",
"PC Factor before standardization"))) %>%
ungroup ()

Plot both cases here

ff.dta %>%
ggplot () +
geom_line(aes(x = Date, y = ff, color = col)) +
geom_point(aes(x = Date, y = ff, color = col, shape = col)) +
theme_minimal() +

labs(y = "") + theme(legend.title = element_blank())

27

—o— |nterest rate — Romania
—— PC Factor after standardization

—=— PC Factor before standardization

2000 2005 2010 2015

Figure 4: Figure 4.5

Note the Matlab and R code standardize the data inside the program, so figure 4.5 in the

text may be different from the reproduction here.

28

5 Identification of common factor

5.1 Identifying common factors

We are back to our familiar inflation dataset. We prepare in the same manner as previously.
We use new names with the created variables to keep it aligned with the text. You will also
need to load this dataset MATn3_t39. It has three inflation components—service, durable,

nondurable—and is shown below.

data("MATn3_t39")

A tibble: 5 x 3

Year inflation price
<dbl> <chr> <dbl>
1 1978 Durable 90.3
2 1979 Durable 96.3
3 1980 Durable 105.
4 1981 Durable 112.

5 1982 Durable 116.

We introduce a new function bind_rows which appends a dataframe with another. The
columns should have the same names. This saves us some processing and we can recover the

variables using the list term index_3_list in a dplyr::filter command.

index_3_list <- c("Durable", "Nondurable", "Service")

prepare data for analysis
inflation _data <- MATn46 t39 7>

bind_rows (MATn3_t39) %>%

29

=
o
o

—— Durable

— Nondurable

Price index

— Service
50

1980 1990 2000 2010
Year

Figure 5: Three sub inflation indices

group_by(inflation) %>%
mutate(dp = (price - dplyr::lag(price))/ dplyr::lag(price), # create inflation

d2p = (dp - lag(dp)),

dps = dp/sd(dp, na.rm = TRUE),
d2ps = d2p/sd(d2p, na.rm = TRUE)) %>%
rename(pl = price) %>%

ungroup ()

spread and find factors
dps <- inflation_data %>/
dplyr::select(Year, inflation, dps) %>%
filter(!inflation %in’, index_3_list) %>) # remove the eztra 3 categories
na.omit () %>%
spread(key = inflation, value = dps) %>%

dplyr: :select(-Year)

30

k_dps <- BaiNgIC(dps, 8)$ic2

d2ps <- inflation_data %>%
dplyr: :select(Year, inflation, d2ps) %>%
filter(!inflation %in’ index_3_list) %>/ # remove the exztra 3 categories
na.omit () %>%
spread(key = inflation, value = d2ps) %>%

dplyr: :select(-Year)

k_d2ps <- BaiNgIC(d2ps, 8)$ic2

for later
n <- ncol(d2ps)

bigT <- nrow(d2ps)

5.2 Leadership model

We get the names of the sub-indices to identify which sub-index may be a latent factor and

then bind it to the output.

store_bn <- matrix(NA, nrow = n, ncol = 2)
nms <- colnames(d2ps)
for(i in 1:n){

if (i == 1{

xx <- d2ps[,2:n]

if(i >1 & i == n){

31

Table 4: Latent factor identification for inflation indices data

Name Column Factors
Accommodations 17 1 1
Alcoholic beverages purchased for off-premises consumption 1
Clothing 3 0
Commercial and vocational schools 15 4 1
Educational books 5) 1
Financial services 6 1
Food and nonalcoholic beverages purchased for off-premises consumption 7 1
Food produced and consumed on farms 8 1
Food services 9 1
Footwear 2 10 0
Foreign travel by U.S. residents 11 1
Furniture, furnishings, and floor coverings 5 12 1

xx <- d2psl[,-1i]

}
if(i == n){

xx <- d2ps[,1:(n-1)]
}

x1 <- cbind.data.frame(1,d2ps[,i])
xl <- as.matrix(x1)

prx <- defactor(as.matrix(xx), as.matrix(x1))
store _bn[i,1] <- i
store_bn[i,2] <- BaiNgIC(prx, 8)$ic2

}

colnames(store_bn) <- c("Column", "Factors")

out <- cbind.data.frame(Name = nms, store_bn)

32

The robust check is computed below. Note that we now store the subsamples (SS) horizon-

tally.

store_bn <- matrix(NA, nrow = n, ncol = 11)
nms <- colnames (d2ps)
for(i in 1:n){

if (i == 1{

xx <- d2ps[,2:n]

if(i >1 & i == n){

xx <- d2ps[,-i]

}
if (i == n){

xx <- d2ps[,1:(n-1)]
}

store bn[i,1] <- i

for(j in 1:10){
x2 <- xx[j:bigT,]
x3 <- cbind.data.frame(1,d2ps[j:bigT,i])
x3 <- as.matrix(x3)

prx <- defactor(as.matrix(x2), as.matrix(x3))
store bn[i,j + 1] <- BaiNgIC(prx, 8)$ic2
Y # g

Y # 4

colnames(store_bn) <- c("Column", pasteO("SS", 1:10))

33

Table 5: Robust check for latent factor identification for inflation indices data

Name Column SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10
Accommodations 17 1 1 1 1 1 1 1 1 1 1 1
Alcoholic beverages purchased for off-premises consumption 2 1 1 1 1 1 1 1 1 1 1
Clothing 3 0 0 0 0 0 1 1 1 1 1
Commercial and vocational schools 15 4 1 1 1 1 1 1 1 1 1 1
Educational books 5 1 1 1 1 1 1 1 1 1 1
Financial services 6 1 1 1 1 1 1 1 1 1 1
Food and nonalcoholic beverages purchased for off-premises consumption 7 1 1 1 1 1 1 1 1 1 1
Food produced and consumed on farms 8 1 1 1 3 1 1 1 1 1 1
Food services 9 1 1 1 1 1 1 1 1 1 1
Footwear 2 10 0 0 0 1 1 1 1 1 1 1
Foreign travel by U.S. residents 11 1 1 1 1 1 1 1 1 1 1
Furniture, furnishings, and floor coverings 5 12 1 1 1 1 1 1 1 1 1 1

out_robust <- cbind.data.frame(Name = nms, store_bn)

The results are slightly different but the interpretation is the same as in the text.

5.3 Multiple variables as single factor

Early we loaded the three subindices (durable, nondurable and services) into R. They are

now in the inflation data.

d2p <- inflation_data %>%
dplyr: :select(Year, inflation, d2p) %>%
filter(!inflation %in% index 3 list) %>%

na.omit ()

md2p <- d2p %>%
group_by(Year) %>%

summarise (md2p = mean(d2p))

~

"~summarise() ungrouping output (override with ~.groups™ argument)

34

d3p <- inflation_data %>%
dplyr: :select(Year, inflation, dp3 = dp, d2p3 = d2p, d23ps = d2ps) %>%
filter(inflation %in% index 3 list) %>%

na.omit ()

Now we use the data to examine the possibility of a common factor.

d2p3 <- d3p %>Y%
na.omit () %>%
dplyr::select(Year, inflation, d2p3) %>%
spread(key = inflation, value = d2p3) %>%

dplyr: :select(-Year) # make as mat

store_m_bn <- matrix(NA, nrow = 10, ncol = 5)

for(j in 1:10){
store_m bn[j, 1] <- j
md2p_mat <- as.matrix(md2pl[j:bigT,])

d2ps_mat <- as.matrix(d2ps[j:bigT,])

try wvarious combinations

x1 <- cbind.data.frame(1,d2p3[j:bigT,]) %>% as.matrix() # all three wvars as in text
x12 <- cbind.data.frame(1,d2p3[j:bigT,-3]) %>% as.matrix()
x13 <- cbind.data.frame(1,d2p3[j:bigT,-2]) %>) as.matrix()

x23 <- cbind.data.frame(1,d2p3[j:bigT,-1]) %>% as.matrix()

hx = x1 %), solve(crossprod(xl)) %*} t(x1) %*% md2p_mat

35

hx12 = x12 %x*J, solve(crossprod(x12)) %*J t(x12) %+’ md2p_mat
hx13 = x13 %*J, solve(crossprod(x13)) %*% t(x13) %*% md2p_mat
hx23 = x23 *}% solve(crossprod(x23)) %x% t(x23) %*’% md2p_mat

x1 <- cbind.data.frame(1,hx) %>% as.matrix()
x12 <- cbind.data.frame(1,hx12) %>% as.matrix()
x13 <- cbind.data.frame(1,hx13) %>% as.matrix()

x23 <- cbind.data.frame(1,hx23) %> as.matrix()

prx <- d2ps_mat - x1 %*J, solve(crossprod(xl)) %*}% t(x1) %*% d2ps_mat

prx12 <- d2ps_mat - x12 %xJ, solve(crossprod(x12)) %) t(x12) %*} d2ps_mat

prx13 <- d2ps_mat - x13 %xJ, solve(crossprod(x13)) %x*) t(x13) %*} d2ps_mat

prx23 <- d2ps_mat - x23 %*% solve(crossprod(x23)) %x*% t(x23) %*) d2ps_mat

store_m_bn[j, 2] <- BaiNgIC(prx12, 8)$ic2
store_ m bn[j, 3] <- BaiNgIC(prx13, 8)$ic2
store_m_bn[j, 4] <- BaiNgIC(prx23, 8)$ic2

store_m_bn[j, 5] <- BaiNgIC(prx, 8)$ic2

Y # 5

colnames(store_m_bn) <- c("Sub sample", paste(index_3_list[c(1,2)], collapse = ", "),
paste(index_3_list[c(1,3)], collapse = ", "),
paste(index_3 list[c(2,3)], collapse = ", "), "All variables'

out_multiple <- cbind.data.frame(store_m_bn)

36

Table 6: Examination of multiple variables as single factor for inflation data

Sub sample Durable, Nondurable Durable, Service Nondurable, Service All variables

O O 00 IO Tk W+
—_ = = = = = = e e
—_ = = = = = = = e
—_ = = = = = = = e
— = = = = = = = =

—_

6 Static and dynamic relationships

Start by loading the data into the workspace (environment).

load data
data("spot")

data("price")

Here we obtain the US price data and join it to the main price data. We join with the
left_join() command. The tidyverse contains a number of join functions based upon SQL
join commands. We use a left join, joining by date: we match the dates on the us_dta to

the dates of the price data. We alos do some manipulations to standardiz e the data.

price data
us_dta <- price %>%
filter (Country == "US") %>%

dplyr: :select(Date, US = price)

p_dta <- price %>%

37

filter(Country != "US") %>%
left_join(us_dta, by = "Date") %>%
mutate(p = log(price/US)) %>%
group_by (Country) %>

mutate(dp = p - dplyr::lag(p, 1),

d2p = dp - dplyr::lag(dp, 1),

sdp = dp/sd(dp, na.rm = TRUE),

sd2p = d2p/sd(d2p, na.rm = TRUE))

6.1 Common-dynamic relationship

We follow the method employed in the book here. First we make the individual data matrices.

dp_dta <- p_dta %>%
dplyr: :select(Date, Country, dp) %>%
ungroup() %>%
spread (key = Country, value = dp) %>%

na.omit ()

d2p_dta <- p_dta %>7%
dplyr: :select(Date, Country, d2p) %>%
ungroup() %>%
spread(key = Country, value = d2p) %>%

na.omit ()

sdp_dta <- p_dta %>%

dplyr::select(Date, Country, sdp) %>%

38

ungroup() %>%
spread(key = Country, value = sdp) %>%

na.omit ()

sd2p_dta <- p_dta %>%
dplyr: :select(Date, Country, sd2p) %>%
ungroup () %>%
spread (key = Country, value = sd2p) %>%

na.omit ()

make the spot rates data

s_dta <- spot %>%
filter(Date <= max(dp_dta$Date)) %>%
mutate(s = log(price)) %>%
group_by (Country) %>
mutate(ds = s - dplyr::lag(s, 1)) %>%
dplyr: :select(Date, Country, s) %>%

ungroup ()

euro_dta <- s_dta %>%
filter(Country == "EURO") %>%

dplyr: :select(Date, EURO = s)

deu dta <- s_dta %>%
filter(Country != "EURO") %>%
left_join(euro_dta, by = "Date") %>%

mutate(seu = s - EURO) %>%

39

group_by (Country) %>%

mutate(deu = seu - dplyr::lag(seu, 1)) %>%
dplyr::select(Date, Country, deu) %>%
spread(key = Country, value = deu) %>%

na.omit ()

ds_dta <- spot %>%
filter(Date <= max(dp_dta$Date)) %>%
mutate(s = log(price)) %>%
group_by (Country) %>
mutate(ds = s - dplyr::lag(s, 1)) %>%
dplyr::select(Date, Country, ds) %>%
spread(key = Country, value = ds) %>%
dplyr::select(-US) %>%

na.omit ()

clean up workspace

rm("euro_dta", "s_dta", "spot", "us_dta", "price")

Now, we estimate the regression coefficients for the cross-section averaged data.
Estimation the common-dynamic relationship

csa based factors

mdus = apply(ds_dta[-1], 1, mean)

mdeu =apply(deu_dtal[-1], 1, mean)

mdp =apply(dp_dta[-1], 1, mean)

40

Table 7: Beta estimates of the common-dynamic relationship

Factors Coefs beta sig tstat
2 (Intercept) -0.002 0.001 -1.335

mdp 2.559 0.619 4.137

3 (Intercept) -0.002 0.001 -1.169

mdp 2.520 0.675 3.731

mdeu -0.193 0.081 -2.399

dta.l <- cbind.data.frame(mdus, mdp)
dta.2 <- cbind.data.frame(mdus, mdp, mdeu)
beta_2 facts <- olshac(dta.l, 6)

betas_3_facts <- olshac(dta.2, 6)

6.2 Idio-dynamic relationship
First identify the number of factors in the price data.

T2 <- dim(dp_dta) [1]

n2 <- dim(dp_dta) [2]

loop through dataframe in samples of 50, whiten data, find IC2
pp_dta <- p_dta %>%

dplyr: :select(-sdp, -sd2p) %>%

filter(Date > min(p_dta$Date)) %>%

group_by(Country) %>%

mutate(rn = row_number()) %>% # for each country

ungroup() %>%

dplyr: :select(rn, everything())

41

mx_rn <- max(pp_dta$rn)

ic_store <- matrix(NA, 50, 3)

colnames(ic_store) <- c("Sample", "sdp", "sd2p")

for(i in 1:50){
tmp_sdp_dta <- pp_dta %>%

filter(rn >= i) %>Y%
group_by (Country) %>%
mutate(sdp = dp/sd(dp, na.rm = TRUE)) %>%
dplyr: :select(Date, Country, sdp) %>%
ungroup () %>%
spread(key = Country, value = sdp) %>%

dplyr: :select(-Date)

tmp_sd2p_dta <- pp_dta %>%
filter(rn >= i+1) %>%
group_by (Country) %>%
mutate(sd2p = d2p/sd(d2p, na.rm = TRUE)) %>%
dplyr::select(Date, Country, sd2p) %>%
ungroup() %>%
spread(key = Country, value = sd2p) %>%

dplyr: :select(-Date)

ic_storel[i,1] <- 1
ic_store[i,2] <- BaiNgIC(tmp_sdp_dta)$ic2

ic_store[i,3] <- BaiNgIC(tmp_sd2p_dta)$ic2

42

Table 8: Number of factors in the price data

Factors sdp sdp2

1 41 20
2 9

tab_factors_sdp <- summary(as.factor(ic_storel[,2]))

tab_factors_sdp2 <- summary(as.factor(ic_storel[,3]))

We don’t show the full table of ic_store, only the summary of the results.

We compute the coefficients for one factor and two factors below.

xx1 <- cbind.data.frame(l, mdp, mdus)

xx1 <- as.matrix(xx1)

xtxl <- solve(crossprod(xxl))

dsc <- as.matrix(ds_dtal,2:ncol(ds_dta)]) - xx1 %*% xtxl %*’% t(xxl) %*/ as.matrix(ds_dt
dpc <- as.matrix(dp_dtal[,2:ncol(dp_dta)]) - xx1 %*% xtxl %*% t(xxl) %*) as.matrix(dp_dt

bccel <- sum(sum(dsc*dpc))/sum(sum(dpc*dpc))

xx2 <- cbind.data.frame(l, mdp, mdus, mdeu)
xx2 <- as.matrix(xx2)

xtx12 <- solve(crossprod(xx2))

dsc <- as.matrix(ds_dtal,2:ncol(ds_dta)]) - xx2 %*% xtx12 %*J t(xx2) %*/ as.matrix(ds_d
dpc <- as.matrix(dp_dtal[,2:ncol(dp_dta)]) - xx2 %*J xtx12 %*} t(xx2) %*% as.matrix(dp_d

bcce2 <- sum(sum(dsc*dpc))/sum(sum(dpc*dpc))

43

The results of bccel are 0.71 and bcce?2 are 0.671.

6.3 GHS method

This is a direct port of the GHS three factor code.

sdsl <- ds_dta %>%
gather (key = Country, value = ds, -Date) %>%
group_by(Country) %>%
mutate(m = mean(ds),
sd= sd(ds),
sds = (ds - m)/sd) %>%
dplyr: :select(Country, Date, sds) %>%
spread(key = Country, value = sds) %>%

dplyr: :select(-Date) ’>% as.matrix()

sdpl <- dp_dta %>%
gather (key = Country, value = dp, -Date) %>%
group_by(Country) %>%
mutate(sdp = (dp - mean(dp))/sd(dp)) %>%
dplyr::select(Country, Date, sdp) %>%
spread(key = Country, value = sdp) %>%

dplyr: :select(-Date) ’%>% as.matrix()

get factors

fs <- pc(sdsl, 2)$f1

fp <- pc(sdpl, 1)$f1

44

create

ymat
xmat
y_3 <
ymat

x_3 <

bel <

xmat

ymat

y_3b

ymat

x_3b

be3 <

<- ds_dtal[,-1]

<- cbind(1, fs, fp)

- defactor(y_mat = ymat, x_mat = xmat)
<- dp_dtal ,-11]

- defactor(y_mat = ymat, x_mat = xmat)

- sum(sum(x_3*y_3))/sum(sum(x_3*x_3))

<- cbind(1, fs, fp, mdp, mdus, mdeu)

<- ds_dtal ,-1 1]

<- defactor(y_mat = ymat, x_mat = xmat)

<- dp_dtal ,-11]

<- defactor(y_mat = ymat, x_mat = xmat)

- sum(sum(x_3b*y_3b))/sum(sum(x_3b*x_3b))

Panel Robust t-ratio =====

re <-
re =
xq <-
xq <-
invxx
xq <-
xq <-

tr <-

y_3b - x_3b * be3

re * x_3b

apply(re, 2, sum)
crossprod (xq)

<- 1/sum(sum(x_3b * x_3b));
invxx %*% xq %*% invxx
sqrt(diag(xq))

be3 / xq

45

Table 9: GHS estimates of the idio-dynamic relationship

b tstat
0.531 4.384

ghs 3_facts <- cbind(b = be3, tstat = tr)

6.4 Iterative PC: Bai’s Estimator

The loop to iterate Bai’s fixed effects estimator are shown. There is 500 iterations (iters)

and the tolerance is set to 10”°-10 (tol).

bb <- be3
ds mat <- as.matrix(ds_dtal ,-1 1)

dp_mat <- as.matrix(dp_dtal ,-1 1)

tol <- 107-10
iters <- 500
for(i in 1:iters){
rs <- ds_mat - dp_mat * bb
rss <- stand_mat(rs)
k3 = BaiNgIC(rss, 8)$ic2
fr <- pc(rs, k3)$f1
ff <- cbind(1, fr)
ff <= cbind(1, fr, mdp, mdus, mdeuw)
y4 <- defactor(ds_mat, ff)

x4 <- defactor(dp_mat, ff)

46

bed <- sum(sum(x4*y4))/sum(sum(x4*x4))

if ((be4 - bb) < tol){

break
}
bb <- bed
}

After i = 19 iterations bed = 0.749. Now we repeat the the procedure including the cross-

section averages starting with bb = be4.

for(i in 1:iters){
rs <- ds_mat - dp_mat * bb
rss <- stand_mat(rs)
k3 = BaiNgIC(rss, 8)$ic2
fr <- pc(rs, k3)$f1
ff <- cbind(1, fr)
ff <- cbind(1, fr, mdp, mdus, mdeu)
y4 <- defactor(ds_mat, ff)

x4 <- defactor(dp_mat, ff)

bed <- sum(sum(x4*y4))/sum(sum(x4*x4))

if ((be4 - bb) < tol){

break
}
bb <- bed
}

The results of the estimators are summarized below.

47

Table 10: Summary of the estimates of the idio-dynamic relationship

CCE 2 factors CCE 3 factors GHS 3 factors IFE PC only factors IFE PC and CSA factors
0.71 0.671 0.531 0.749 0.719

6.5 PLM package for CCE regressions

We can use the plm package (Croissant and Millo, 2008) to compute the simple pooled CCE
model. First we organize the data into the format for plm and then use the pdata.frame
command to tell R that we have a panel data for plm. Since we have heterogeneity only
in the factor loadings we use the pooled version, model="p", in the command pcce with

formula ds ~ dp.

library(plm)

##

Attaching package: 'plm'

The following objects are masked from 'package:dplyr':
##

between, lag, lead

dta_dp_n <- dp_dta %>%

gather (key = Country, value = dp, -Date)
deu dta_n <- deu_dta %>%
gather (key = Country, value = deu, -Date)

ds_dta_n <- ds_dta %>’

gather(key = Country, value = ds, -Date) %>’

48

left_join(dta_dp_n, by = c("Date", "Country")) %>%
left_join(deu_dta_n, by = c("Date", "Country")) %>%

pdata.frame(index = c("Country", "Date"))

mod_pcce <- pcce(ds ~ dp, data = ds_dta_n, model="p")

for mean group use model = "mg"

mod_mgcce <- pcce(ds ~ dp, data = ds_dta_n, model="mg")

summary (mod_pcce)

Common Correlated Effects Pooled model

##

Call:

pcce(formula = ds ~ dp, data = ds_dta_n, model = "p")
##

Balanced Panel: n

27, T = 202, N = 5454

#i#

Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.1146363 -0.0107980 -0.0002515 0.0000000 0.0100780 0.1935946
#it

Coefficients:

##t Estimate Std. Error z-value Pr(>|zl)

dp 0.70966 0.13067 5.4309 5.606e-08 **x

——-

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

49

Total Sum of Squares: 4.2012
Residual Sum of Squares: 2.1156

HPY R-squared: 0.48663

50

7 Convergence

The first example in this chapter analyses weak o convergence of the crime data. The crime
data is kept as csv files and has not been converted to R format. The first code chunk reads

in the violent crime data into R and processes it for the weak_converge function.

7.1 weak o-convergence test

violent mat <- read_csv('"data/violent mat.csv")

Parsed with column specification:
cols(
.default = col double()

)
See spec(...) for full column specifications.

violent mat nms <- colnames(violent mat)
violent mat nms <- str_replace(violent mat _nms, "%", "Year")

colnames(violent mat) <- violent mat nms

organize data

violent dat <- violent mat %>
gather(key = State, value = Crimes, - Year) %>%
mutate(lncrimes = log(Crimes)) %>%
dplyr: :select(-Crimes) %>%

spread(key = State, value = lncrimes) %>’

51

dplyr::select(-Year) %>%

data.frame()

The weak_converge takes data as a data.frame rather than a matrix. We store the output
from this function into a matrix called store_mat with standard errors computed with 3

and 4 lags.

wc_3_out <- weak_converge(violent_dat, 3)

wc_4 _out <- weak_converge(violent_dat, 4)

store mat <- matrix(NA, nrow = 9, ncol = 6)
store_mat[1,1] <- round(100 * wc_3_out$phi, 3)
store_mat[1,2] <- round(wc_3_out$tstats, 3)

store mat[1,3] <- round(wc_4 out$tstats, 3)

final file list
final list <- c("violent_dat")

panel list <- c("violent")

The process can be repeated using the PC factors. We only show the case for violent crimes.

out_pc_violent <- pc(violent_dat, 1)

f1 <- as.matrix(out_pc_violent$fl) # pc factors

xx <- matrix(c(matrix(1, nrow = nrow(violent dat)), f1), ncol = 2)
b <- solve(t(xx) %*% xx) %*% t(xx) Ux*% as.matrix(violent _dat)

b2 <- t(as.matrix(b[2,]1))

z <- violent dat - f1 %x*J b2

52

Table 11: (#tab:ch0703,)Summary of the weak sigma-convergence tests with various crime
rates

Series CSA phix 100 t (lags =3) t (lags=4) PCphix 100 t (lags=3) ¢t (lags=4)

violent -1.491 -4.504 -4.120 -0.779 -1.910 -1.744
murder -0.447 -5.402 -5.237 -0.282 -2.440 -2.287
robbery -0.518 -2.204 -2.026 -0.487 -2.309 -2.126
rape -0.382 -9.667 -8.900 -0.163 -2.490 -2.279
assault -0.277 -2.344 -2.153 -0.222 -2.064 -1.892
property -0.192 -5.749 -5.276 -0.190 -5.855 -5.370
burglary -0.490 -4.668 -4.264 -0.401 -3.592 -3.280
larceny -0.240 -6.321 -5.794 -0.176 -10.703 -10.154
motorv -0.189 -2.097 -1.968 -0.242 -2.630 -2.449

wc_violent 3 <- weak_converge(z, 3)

wc_violent 4 <- weak_converge(z, 4)

store_mat[1,4] <- round(100 * wc_violent_ 3$phi, 3)
store mat[1,5] <- round(wc_violent 3$tstats, 3)

store mat[1,6] <- round(wc_violent 4$tstats, 3)

We repeat this process (load data, process, test, store) in a loop for which only the output
is shown. If you use a loop, you will need to set a common location for all the csv files and

make sure they are all set up the same: consistent headings and columns.

In the next part we wish to explore some of the properties of the data.

store_dta_props <- matrix(NA, nrow = length(final list), ncol = 4)

r <-1

for(i in final list){

data_rel <- get(i) # assigns ¢ to data_rel

how many negative

53

my <- apply(data_rel, 2, min)
percent_neg <- mean(ifelse(my < 0, 1, 0))

store_dta_props[r, 2] <- percent_neg

number trending
trd <- 1l:nrow(data_rel)
ols store <- matrix(NA, nrow = ncol(data_rel), ncol = 3)
for(ii in 1:ncol(data_rel)){
modldta <- cbind.data.frame(y = data_rell[,iil], trd) # make dataframe
modl <- 1lm(modidta)
res <- modl$residuals
sig <- NeweyWestvcov(res, 3)
xx <- model.matrix(modl)
xtx1l <- solve(crossprod(xx))
sig <- c(sig) * diag(xtxl)
tstat <- modl$coefficients/sqrt(sig)
ols storel[ii, 1] <- ii
ols store[ii, 2] <- modi$coefficients[2]
ols_storel[ii, 3] <- tstat[2]
}
lessthan <- mean(ifelse(ols_store[,3] <= -1.65, 1, 0))
store_dta_props[r, 1] <- lessthan
modlogt <- logtregress(data_rel)
store_dta_props[r, 3] <- modlogt$b

store_dta_props[r, 4] <- modlogt$ t stat"

r<-r +1

o4

Table 12: Partial replication of table 7.3

Series t less than -1.65 (%) y less than 0 (%)

violent 0.00 0.00
murder 0.66 0.10
robbery 0.12 0.00
rape 0.02 0.02
assault 0.02 0.00
property 0.18 0.00
burglary 0.00 0.00
larceny 0.08 0.00
motorv 0.40 0.00

7.2 Replication of economic transition and growth

Last we replicate the example of relative convergence given in the ConvergenceClubs pack-

age (Sichera and Pizzuto, 2018) which is a replication of Phillips and Sul (2009).

library(ConvergenceClubs)

data("filteredGDP")
clubs <- findClubs(filteredGDP, dataCols=2:35, unit_names = 1, refCol=35,time_trim = 1/:

summary (clubs)

Number of convergence clubs: 7
Number of divergent units: O

#i#

| # of units | beta | std.err | tvalue | cstar

##

##

#it

#i#

#i#t

##

#it

clubil

club2

club3

club4d

clubb

clubb

club7

50

30

21

24

14

11

.382

.24

.11

.131

.19

.003

.47

56

.041

.035

.032

.064

111

.166

.842

.282

.904

.402

.0565

.701

.024

.559

Appendix

A list of the functions in the PDEwCF package is provided. They are direct ports of the code
provided on the text’s website at https://personal.utdallas.edu/~dxs093000/book/panel.
htm. They contain minimal documentation and the users should see the text for usage.
They are also specifically designed to replicate the text and the estimators in chapter 6 are

not multiple regressors.

1. NeweyWestvcov
2. olshac

3. weak converge
4. pc

5. BaiNgIC

6. defactor

7. stand mat
Data includes

1. assault dat
2. burglary dat

crime data

-~ W

larceny dat
MATint99
MATn3_ t39
MATn46_ t39

motorv_dat

© 0 N & W

murder dat

10. price

57

https://personal.utdallas.edu/~dxs093000/book/panel.htm
https://personal.utdallas.edu/~dxs093000/book/panel.htm

11. property dat
12. rape dat

13. robbery_dat
14. spot

15. violent dat

References

Bada, O., Liebl, D., 2014. PHTT: Panel data analysis with heterogeneous time trends in r.

Journal of Statistical Software, Articles 59, 1-33. https://doi.org/10.18637/jss.v059.i106

Croissant, Y., Millo, G., 2008. Panel data econometrics in R: The plm package. Journal of
Statistical Software, Articles 27, 1-43. https://doi.org/10.18637 /jss.v027.102

Phillips, P.C.B., Sul, D., 2009. Economic transition and growth. Journal of Applied Econo-

metrics 24, 1153-1185. https://doi.org/10.1002/jae.1080

Racine, J.S., 2017. Energy, economics, replication & reproduction. Energy Economics.

https://doi.org/%2010.1016/j.eneco.2017.06.027

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria.
Sichera, R., Pizzuto, P., 2018. ConvergenceClubs: Finding convergence clubs, (r package).

Sul, D., 2019. Panel data econometrics: Common factor analysis for empirical researchers.

Taylor & Francis.
Wickham, H., 2017. Tidyverse: Easily install and load the ’tidyverse’

Wickham, H., Grolemund, G., 2016. R for data science. Import, tidy, transform, visualize,

and model data. "O’Reilly Media'.

58

https://doi.org/10.18637/jss.v059.i06
https://doi.org/10.18637/jss.v027.i02
https://doi.org/10.1002/jae.1080
https://doi.org/%2010.1016/j.eneco.2017.06.027

	Basics
	Loading CSV data

	Tidyverse for data manipulations
	Manipulating the data with dplyr
	Summarizing data
	Plotting
	Some tips about dplyr verbs

	Factor number identification
	Crime rates
	Price indices

	Decomposition of panel
	Principal component estimation
	Standardisation and estimation of PC factors

	Identification of common factor
	Identifying common factors
	Leadership model
	Multiple variables as single factor

	Static and dynamic relationships
	Common-dynamic relationship
	Idio-dynamic relationship
	GHS method
	Iterative PC: Bai's Estimator
	PLM package for CCE regressions

	Convergence
	weak \sigma-convergence test
	Replication of economic transition and growth

	Appendix
	References

