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Abstract

Model selection by BIC is well known to be inconsistent in the presence of incidental pa-

rameters. This paper shows that, somewhat surprisingly, even without fixed effects in dynamic

panels BIC is inconsistent and overestimates the true lag length with considerable probability.

The reason for the inconsistency is explained and the probability of overestimation is found

to be 50% asymptotically. Three alternative consistent lag selection methods are considered.

Two of these modify BIC and the third involves sequential testing. Simulations evaluate the

performance of these alternative lag selection methods in finite samples.

Keywords: BIC, Dynamic panel, Lag selection, X-differencing, Sequential testing

JEL Classification Number: C33.

∗We thank two referees, an associate editor, and the editor for helpful comments. Chengcheng Jia provided ex-

cellent research assistance. Phillips acknowledges support from the NSF under Grant Nos SES 09-56687 and 12-

58285. Han thanks support from the National Research Foundation of Korea Grant funded by the Korean Government

(2012S1A5A8025004).

1



1 Dynamic Panel Lag Order Estimation

Specification of the appropriate lag order to capture response time and feedback is a delicate econo-

metric issue in time series models. Some early work by Peter Schmidt (1971, 1973, 1974) and

Schmidt and Sickles (1975) partly addressed this problem in the context of Almon distributed lag

models and suggested various solutions. In dynamic panel models the problem is known to be even

more complex in part because of the presence of fixed effects which mean that the dimension of

the parameter space increases with the sample size.

Stone (1979) first demonstrated the inconsistency of the Schwarz (1978) information criterion

(hereafter BIC) in a simple incidental parameter context. Since then some generalized criteria

have been developed for this problem that have better properties and correspond more closely to

Bayes factors (Berger et al, 2003; Chakrabarti and Ghosh, 2006; Lee, 2011). The inconsistency

of BIC that was studied in Stone (1979) arises specifically because of the presence of incidental

parameters. That outcome seems unsurprising at least in panel models given the well known bias

effects of incidental parameters in dynamic panels.

Much more surprising, however, is the fact that BIC fails to produce a consistent lag order

estimator in simple dynamic panels. The present paper shows, somewhat remarkably, that BIC is

inconsistent for lag order estimation even in panel models with no fixed effects. Thus, the large

sample good behavior of BIC is compromised in dynamic panel models even in the absence of an

incidental parameter problem. The reason for the failure of BIC even in simple dynamic models

with no fixed effects is that the BIC penalty is too small to compensate for the additional terms

from cross section averaging (O (n) such terms) that enter into the BIC model fit comparison

when overfitting.1 These additional terms arise from differences in the number of time series

observations used in the calculation of the residual variance estimates (σ̂2k, σ̂
2
k0

) in a panel model

with k and k0 lags. As we show, they satisfy a CLT and are of Op(
1√
nT

) in relation to the BIC

penalty of O( lognT
nT

). So they produce a strong tendency to overfit the panel autoregression as

n→∞. The overfitting tendency is as high as 50% asymptotically.

To address the inconsistency of BIC, the paper develops some modified information criteria that

are consistent in dynamic panels. These criteria involves simple modifications to BIC and are easy

to implement in practice. They are compared in simulations to assess finite sample performance of

the various criteria. Some comparisons are also made with standard sequential testing procedures

1These terms also arise in conventional time series applications of BIC, but produce no overfitting tendency because

there are only a finite number of these terms. In a panel context this finite number is scaled by the number of cross

section observations, thereby disturbing the asymptotic properties of BIC.
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for lag order determination.

For brevity we consider the following simple panel AR(k) process

(1) yit =
∑k

s=1
ρsyit−s + εit, where εit ∼ iid N(0, σ2), i = 1, .., n; t = 1, ..., T

which will be sufficient to make the main points of the paper. Let k0 be the true value of the lag

order in (1). Define Xk,it = (yit−1, . . . , yit−k)
′ and βk = (ρ1, . . . , ρk)

′. Conditioning on the initial

observations {yi1, . . . , yik}, the Gaussian log-likelihood is

(2) lnL(βk, σ
2) = −nTk

2
ln 2π − nTk

2
lnσ2 − 1

2σ2

n∑
i=1

T∑
t=k+1

(yit − β′kXk,it)
2,

where Tk = T − k. In view of (2), the maximum likelihood estimator (MLE) of βk is the same

as pooled least squares (OLS), viz., β̂k = (
∑n

i=1

∑T
t=k+1Xk,itX

′
k,it)

−1(
∑n

i=1

∑T
t=k+1Xk,ityit),

with corresponding error variance estimator σ̂2k = (nTk)
−1∑n

i=1

∑T
t=k+1 ε̂

2
k,it, where ε̂k,it = yit −

X ′k,itβ̂k.

Let k0 be the true lag length in the model (1), i.e., k0 = min{k : ρk 6= 0, ρj = 0 ∀j > k}.
The order parameter k is frequently estimated using an information criterion (IC) according to the

typical extremum rule k̂ = arg mink≤kmax IC0(k) for some given kmax ≥ k0 where IC commonly

satisfies

(3) IC0(k)− IC0(k0) = ln(σ̂2k/σ̂
2
k0

) + (k − k0)cnT ,

and cnT is some penalty function. The BIC penalty has the typical form

(4) cnT = ln (nT ) /nT,

which reflects the overall sample size nT in this panel data case.

To fix ideas and provide a rigorous development we make the following high level assumptions,

which are easily shown to hold for stationary and asymptotically stationary panels.

Assumption A. (i) (nTk)
−1∑n

i=1

∑T
t=k+1Xk,itX

′
k,it converges in probability to a positive defi-

nite matrix for all fixed k;

(ii) (nTk)
−1/2∑n

i=1

∑T
t=k+1 Xk,itεit = Op(1) for all k;

(iii) β̂k − βk = Op(n
−1/2T

−1/2
k ) for k ≥ k0.

These conditions can be considerably relaxed at the cost of additional complexity. For in-

stance, the zero intercept and normality in (1) are unnecessary and the iid error condition can be
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replaced with independence over i and uniformly bounded heteroskedasticity and higher moments

(supi,t E( |εit|4+δ) = M < ∞ for some δ > 0). Under uniformly bounded fourth moments, the

means of the second moments of ε2it are well defined so that the main results of this paper go

through.2 While normality is not needed for the limit theory, it is conventionally employed to

justify the form of the IC criterion (3) by means of the explicit likelihood (2). That formula can,

of course, be easily generalized to allow for nonnormality by using an asymptotic development

of the Bayes factor (e.g., Hartigan 1983; Phillips, 1996; Phillips and Ploberger, 1996) or by other

mechanisms that may be more expressive functions of the whole data distribution (as noted by

Ebrahimi et al, 1999, in their discussion of entropy measures in ranking distributions). Also, while

Assumption A does not hold for nonstationary panels with a unit root in (1), we expect that all

our main results continue to apply in that case under a suitably modified form of Assumption A

with convergence rates adjusted for the directions of nonstationarity and stationarity – see Phillips

(2007) and Cheng and Phillips (2009, 2012) for related time series model selection cases.

Lag order may also be selected by sequential (general to specific, hereafter GS) t-testing in

which case k̂ is determined as

(5) k̂ = max
{
k :
∣∣tρ̂k∣∣ ≥ d and |tρ̂j | < d for all j = k + 1, ..., kmax

}
where tρ̂k = ρ̂k/se (ρ̂k) and d is the critical value used in the test sequence. This GS testing

procedure will be used in simulations later in the paper for comparisons with BIC and its various

consistent modifications.

2 Asymptotics of Information Criteria

The maximal log-likelihood in (2) leads to the usual formulation of the BIC criterion as IC0(k) =

ln σ̂2k + k ln(nT )/(nT ) or IC∗0(k) = ln σ̂2k + k ln(nTk)/(nTk), after adjusting for degrees of free-

dom. This traditional form of BIC prevents under-estimation as desired but typically overestimates

k0 with considerable probability, as we now discuss.

We start with two useful preliminary lemmas that lead to Theorem 1 below. These results hold

as nT → ∞, covering cases of fixed T and T → ∞. Proofs of these lemmas and the subsequent

2It is sufficient for our main result that the following CLT

1√
n

n∑
i=1

k∑
t=k0+1

(
ε2it − Eε2it

)
⇒ N

(
0,

k∑
t=k0+1

lim
1

n

n∑
i=1

E
(
ε2it − Eε2it

)2)

holds for all fixed k which is so by virtue of independence over i and the existence of fourth moments of εit.
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theorems are given in the Appendix.

Lemma 1. For k0 ≥ 1 and k < k0, plimnT→∞(σ̂2k − σ̂2k0) > 0.

Lemma 2. (i) For k > k0 and T fixed as n→∞,

√
nTk(σ̂

2
k − σ̂2k0)⇒ N

(
0, 2σ4 (k − k0) (1 +

k − k0
Tk

)

)
.

(ii) For k > k0, as n, T →∞,
√
nTk(σ̂

2
k − σ̂2k0)⇒ N (0, 2σ4 (k − k0)) .

The variance expressions in these limit distributions of
√
nTk(σ̂

2
k − σ̂2k0) hold when εit ∼ iid

N (0, σ2) and clearly need adjustment in heterogeneous and non-normal error cases.

Theorem 1 (Inconsistency of BIC). Let k̂ = arg min0≤k≤kmax IC0 (k) . Then, as n → ∞ and

provided
ln(nT )√

n
→ 0,

(i) P{k̂ < k0} → 0,

(ii) P{k̂ > k0} → 0.5.

The heuristics of Theorem 1 are as follows. By virtue of the central limit theory of Lemma 2,
√
nTk ln(σ̂2k/σ̂

2
k0

) ∼
√
nTk(σ̂

2
k − σ̂2k0)/σ2 which converges weakly to a centered Gaussian distrib-

ution, whereas
√
nT ln(nT )/(nT ) → 0 as n → ∞ for any T satisfying the condition

ln(nT )√
n
→ 0.

Thus for k > k0,
√
nT [IC0(k) − IC0(k0)] converges to a centered normal distribution for which

there will be an asymptotic 50% chance that IC0(k) < IC0(k0) as n→∞. In effect, the probabil-

ity of overestimation can be as large as 50% as n→∞. The underlying reason for the overestima-

tion is that, when k > k0, the residual variance estimates σ̂2k and σ̂2k0 can contain many terms that

are mutually independent. In particular, σ̂2k0 contains innovations that relate to t = k0+1, ..., k none

of which enter the formula for σ̂2k. In a panel model, there are a total of n (k − k0) of such terms

(as compared with k−k0 such terms in a simple time series model3), which is comparable in mag-

nitude to nT unless T →∞. In consequence, ln(σ̂2k/σ̂
2
k0

) ∼ (σ̂2k− σ̂2k0)/σ̂
2
k0

= Op

(
n−1/2T

)
rather

than Op (n−1T ). The result is that the order of the BIC penalty term ln (nT ) / (nT ) is dominated

by ln(σ̂2k/σ̂
2
k0

) as n → ∞ for k > k0 and the BIC penalty term does not prevent overestimation.

Note that a degrees of freedom adjustment in the penalty does not change this outcome.

3Note that when kmax →∞ the number of such terms potentially becomes large in a time series setting.
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There are two obvious solutions to correct the criteria and avoid the problem of overestimation.

First, the penalty can be adjusted so that it decreases slowly enough to dominate ln(σ̂2k/σ̂
2
k0

) for

k > k0 as n increases. Since ln(σ̂2k/σ̂
2
k0

) is of order
√
nT , we may correspondingly adjust the

penalty to
√
nT ln(

√
nT ). This adjustment is designed to deal with the difficulty explained in the

preceding paragraph.

A second solution is to truncate the sample so that both σ̂2k and σ̂2k0 are computed using the

same observations. That is, for all k we estimate βk and σ2 using t = kmax + 1, . . . , T (in-

stead of using t = k + 1, . . . , T ). Let these estimates be denoted by (β̃k, σ̃
2
k) and (β̃k0 , σ̃

2
k0

),

i.e., σ̃2k = (nT∗)
−1∑n

i=1

∑T
t=kmax+1

ε̃2k,it, where T∗ = T − kmax, ε̃k,it = yit − X ′k,itβ̃k and

β̃k = (
∑n

i=1

∑T
t=kmax+1

Xk,itX
′
k,it)

−1(
∑n

i=1

∑T
t=kmax+1

Xk,ityit) for all k. While the original BIC

criterion is inconsistent and overestimates k0 frequently, these modified BIC criteria are designed

to produce consistent lag order estimators, as we now demonstrate.

To fix ideas suppose IC0 is the original panel BIC criterion and let IC1 use
√
nT ln(

√
nT ) as

the penalty, and IC2 truncate the data so that observations for t = kmax + 1, . . . , T are used in the

regressions for all k. Define

IC1(k) = ln σ̂2k + k ln(
√
nTk)/(

√
nTk),

IC2(k) = ln σ̃2k + k ln(nT∗)/(nT∗), where T∗ = T − kmax.

It is asymptotically unimportant, but we may also use the correct degrees of freedom for the com-

putation of σ̂2k and σ̃2k by using the standardizations nTk − k − 1 and nT∗ − k − 1, respectively, in

these estimates. Let k̂(j) = arg min0≤k≤kmax ICj(k) for some given kmax ≥ k0 and j = 1, 2. Both

IC1 and IC2 are consistent.

Theorem 2 (Consistency of Modified BIC). Under Assumption A, P{k̂(j) = k0} → 1 as nT∗ →
∞ for j = 1, 2.

Some remarks and discussion of this result now follow.

Remark 1 (Local to zero coefficients). It is well known that model selection criteria are blind

to local alternatives (Phillips and Ploberger, 2003; Leeb and Pötscher, 2005). Hence, in station-

ary time series models with sample size T, BIC is unable to identify the correct lag order if ρk0
is in an O(T−1/2) neighborhood of zero. For example, when k0 = 1 and ρ1 = O(T−1/2) in

the model above, we have σ̂2k = 1
T

∑T
t=1 ε

2
t + Op(T

−1) for both k = 0 and k = 1 so that

ln
(
σ̂20/σ̂

2
1

)
= Op (T−1). This variance ratio fails to dominate the penalty (lnT )/T and so BIC
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systematically under-estimates the lag order. For panel data information accumulates with n, and

eventually the probability of under-estimation diminishes to zero for every T as n → ∞. But

when the autoregressive parameter is close to zero, the cross-sectional dimension n required to

avoid under-estimation with reasonable probability can be impractically large, especially for IC1

as the following remark discusses.

Remark 2 (Small-sample performance of IC1). For an AR(1), IC1 can under-estimate the

lag order with high probability compared to IC0 or IC2 when the autoregressive parameter (ρ)

is close to zero. Because σ̂21 = σ2 + Op(
1√
nT

) and σ̂20 = σ2

1−ρ2 + Op(
1√
nT

), we have IC1(1) −
IC1(0) = ln(1 − ρ2) + ln

√
nT√
nT

+ Op(
1√
nT

). So, loosely speaking, n and T should be such that
ln
√
nT√
nT

< − ln(1−ρ2) in order to avoid under-estimation with non-trivial probability. For example,

if ρ = 0.1 (so − ln(1 − ρ2) ' ρ2 = 0.01), then
√
nT needs to be at least 644. For T = 10, this

means that n should be at least as large as 4200. According to simulations, even for n = 5000

and T = 10,
ln
√
nT√
nT
' 0.0093 and the probability of under-estimation is still about 50%. (With

n = 10, 000 and T = 10,
ln
√
nT√
nT
' 0.007 and the probability of under-estimation by IC1 falls to

about 5%.) This is because
ln
√
nT√
nT

decreases very slowly as n increases while the variance ratio is

distributed around a value close to unity when ρ ' 0. When the true parameter is ρ = 0.05, in

order to expect performance of IC1 similar to the case n = 4200, T = 10 and ρ = 0.1, we would

need n to be larger than 100,000 (with T = 10)!

Remark 3 (Impact of over-estimation). Under-estimation is usually considered more problem-

atic than over-estimation because under-estimation causes inconsistency. Theorem 1 indicates that

IC0 does not under-estimate lag length asymptotically. Thus, some practitioners may be comfort-

able using IC0 in practice. On the other hand, we lose nk observations for an AR(k) specification

and the efficiency loss due to unnecessarily large k can be substantial especially in short panels.

Remark 4 (The unit root case). Suppose that yit = yit−1 + εit and n, T →∞. Then β̂k − β =

Op

(
n−1/2T−1

)
for k = k0 = 1 and βk − β = Op

(
n−1/2T−1/2

)
for k > k0 = 1. Also, for both

k = 1, 2 we find that (c.f., Phillips, 2008)

σ̂2k =
1

nTk

n∑
i=1

T∑
t=k+1

ε̂2it =
1

nTk

n∑
i=1

T∑
t=k+1

ε2it +Op

(
1

nT

)
.

Hence, for k = 2, ln(σ̂2k/σ̂
2
k0

) = Op

(
n−1/2T−1

)
as in the proof of Lemma 2. Meanwhile the

penalty function for IC1, ln
(
n1/2T

)
/
(
n1/2T

)
goes to zero much slower than ln(σ̂2k/σ̂

2
k0

). In other
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words, Pr(k̂ > k0) → 0 as nT → ∞. For IC2, we have ln(σ̃2k/σ̃
2
k0

) = Op (n−1T−1) as in the

proof of theorem 2. But the penalty function for IC2 is O (ln (nT ) / (nT )). Hence both IC1 and

IC2 estimate k0 consistently.

Remark 5 (Models with fixed effects). For panel dynamic models with fixed effects, it is well

known that the within-group (WG) estimator is inconsistent and the bias is O(T−1). In this case,

we expect none of the above methods to work well unless T is large. The WG estimator has

downward bias of order O(T−1) so the zeros of ρj for j > k0 are likely to be estimated by negative

numbers of order 1/T . Thus, for k > k0, there can beO(T−1) differences between ln σ̂2k and ln σ̂2k0 ,

while the penalties decrease as n → ∞. Thus, for large n, the penalty may be dominated by the

differences in ln σ̂2k, in which case for any given T the considered information criteria will lead to

over-estimation. For the panel AR(1) model, IC2 asymptotically selects kmax as n/T → ∞. The

general-to-specific sequential testing procedure that we explain below behaves similarly. It seems

of little interest to analyze the properties of lag selection methods that are based on inconsistent

estimators, especially when there are alternative consistent procedures. We can instead use the

consistent estimation method based on X-differencing recently proposed in Han, Phillips and Sul

(2011, 2012). For other recent work on dynamic panels with fixed effects that utilize the results of

the present paper to achieve consistent lag order selection, see Lee and Phillips (2013).

Lag Selection Using Sequential Testing

An obvious alternative approach that avoids the data loss involved in IC2 is a general-to-specific

(GS) sequential modeling procedure. This selection procedure may be implemented in the usual

way. The sequence begins by estimating the largest model – the panel AR(kmax) model for some

given kmax – and tests the significance of ρ̂kmax . If the null hypothesis that ρkmax = 0 is not rejected

at the chosen level, then the panel AR(kmax−1) model is fitted and the null hypothesis ρkmax−1 = 0

is tested. This sequential process of estimating and testing is continued until the null hypothesis

is rejected, and k̂ is defined as the largest k value such that the regressor yit−k is significant, as

specified in (5). All available time series observations are fully utilized in this process, giving the

approach a finite sample advantage over IC2.

The GS methodology applies conventional statistical tests. If the significance level of the tests

is fixed, then the order estimator inevitably allows for a nonzero probability of overestimation.

Furthermore, as is typical in sequential tests, this overestimation probability is bigger than the

significance level when there are multiple steps in the order reductions from kmax because the
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probability of false rejection accumulates as k step downs from kmax to k̂.

These problems can be mitigated (and overcome at least asymptotically) by letting the level

of the test be dependent on the sample size. More precisely, following Bauer, Pötscher and Hackl

(1988), we can set the critical value dnT in such a way that (i) dnT → ∞, and (ii) r−1nTdnT → 0 as

n, T →∞, where rnT is the convergence rate of the estimator. (Here, condition (i) prevents over-

estimation and condition (ii) prevents underestimation.) The critical value in this case corresponds

to the standard normal critical value for the significance level αnT = 2[1− Φ(dnT )], where Φ(·) is

the standard normal cdf.

The following rule was found to work well in our simulations:

(6) αnT = exp{ln(p)
√
nT/10}, p = 0.25.

This choice of αnT delivers a nominal size of 25% for nT = 100, so under-estimation is prevented

at the cost of over-fitting for small samples. Because ln p < 0, we have αnT → 0 as nT →∞, and

the associated critical value dnT = Φ−1(1−αnT/2) satisfies Bauer et al.’s (1988) conditions stated

above. Note that under a local alternative in which the long run autoregressive coefficient has the

form ρ =
∑p

j=1 ρj = c/
√
T , the GS method identifies the true length asymptotically well as long

as n→∞ irrespective of the size of T, which is corroborated in the simulation results that follow.

3 Simulations

We use two data generating processes to examine the finite sample performance of the suggested

methods: a panel AR(1) and panel AR(3) specified as follows:

(7) yit =
∑p

j=1
ρjyit−j + uit, uit ∼ iid N (0, 1) .

We discard the first 100 observations to avoid the impact of the initial observation on estimation.

Table 1 reports the simulation results for an AR(1) coefficient of ρ = 0.1, which is intentionally

small in order to give an exacting test of the procedures. The maximal lag order kmax is set to 2

for this experiment (results for larger values of kmax are reported in Table 3 and 4. We discuss

the performance of the BIC criteria first. The first 9 columns show the under-, exact- and over-

estimation frequencies of the BIC criteria IC0, IC1 and IC2. Note that the conventional BIC

criterion IC0 estimates the true lag length consistently only when T → ∞ with n fixed. The

first four rows in Table 1 corroborate the good performance of IC0 in this case for small fixed n.

All lag selection methods estimate the true lag consistently as T → ∞ but there are differences
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in performance for moderate T. When kmax = 2 the GS method is marginally superior but the

performance of all the other estimators is also good. When T is small and n is larger, the four

order estimators show major differences. Notably, IC0 seriously overestimates the true lag as

n → ∞, in some cases by over 40%, corroborating Theorem 1. The finite sample performance

of IC1 is somewhat disappointing even though IC1 is consistent. In particular, when T is small,

IC1 underestimates the lag length with significant probability as n increases. Only when T is

large enough (for example T = 30), does the performance of IC1 substantially improve with very

large n, as suggested in Remark 2 to Theorem 1. In contrast, IC2 performs very well as an order

estimator. When either n or T increases, the finite sample performance of IC2 noticeably improves

and by a significant margin.4

The last 9 columns in Table 1 show the performance of various versions of the GS method.

To highlight the differences, we show the consistent data dependent rule (6) as well as GS order

selection applied with fixed critical values at the 5% and 25% levels. Obviously with 5% and 25%

significance levels, the over-estimation probability converges to 0.05 and 0.25, respectively. Later

we will consider the impact of varying kmax on GS methods with fixed significance levels. Com-

pared to the inconsistency of GS methods based on fixed significance levels, the data dependent

rule (6) exhibits its consistent behavior as either n or T increases. In fact, except for a couple of

cases, the performance of the data determined GS selector dominates the BIC methods.

Table 2 shows results for the local to zero case where the AR(1) coefficient is set to 1/
√
T .

As we discussed in Remark 1, all methods fail to identify the true lag length in this case with

univariate time series because information criteria are blind to local departures. As Table 2 shows,

this behavior is manifest for small n (n = 5), where the under-estimation probability approaches

one for all methods, especially IC1. However as n increases, performance improves and for large

enough, all of the consistent methods estimate the true lag length with high probability. This

simulation evidence corroborates Theorem 1 and the discussion in Remarks 1 and 2.

Table 3 demonstrates the impact of kmax on the performance of both BIC and the GS meth-

ods. Somewhat surprisingly, the finite sample performance of the GS data dependent rule is little

affected by the larger maximum lag length. However, the performance of IC2 is more seriously

influenced, especially with small n and T . This outcome is explained by the fact that IC2 suffers a

loss of an additional 4n observations when kmax = 6 comparing to when kmax = 2. Nonetheless,

4A referee suggested the Hannan-Quinn (1979, HQ hereafter) penalty function ln (ln
√
nTk) / (

√
nTk) instead of

IC1. The HQ penalty is much weaker than IC1. We examined their respective finite sample performance and found

that the HQ criteria performs better than IC1 only when n is large. Moreover, as discussed shortly, IC2 outperforms

IC1 and the HQ criteria. Hence, the finite sample performance of the HQ criterion is not reported here.
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both under-estimation and over-estimation rates go to zero quickly as n or T increases. On the

other hand, the GS selector with fixed significance levels is heavily dependent on the choice of

kmax and, as kmax increases, the probability of over-estimation increases.

Table 4 considers the AR(3) model with ρ1 = ρ2 = ρ3 = 0.1 and kmax = 6. Apparently, the

finite sample performances worsen as the true lag length increases. This holds for all methods and

comparisons among the methods is not clear cut for small n and T . However as n or T increases,

both IC2 and the GS data dependent selector work well.

Table 5 shows the impact of a unit root on the performance of both BIC and GS methods for

models with fixed effects. In the experiment here we consider only the consistent X-differencing

estimator. For when ρ < 1, we found that the finite sample performance of IC2 and the GS selector

using X-differencing is similar to that of pooled OLS estimator without fixed effects. Hence we

do not report results for the stationary case. And we report results only for the data dependent GS

selector in view of its better performance. Interestingly the over-estimation probabilities of IC2

are much higher than those of GS. However as T increases, the over-estimation probabilities of

IC2 gradually decrease to zero.

Table 6 reports the impact of lag selection on panel estimation bias and variance of the X-

differenced estimator when ρ = 1. As Table 5 reveals, the under-estimation probability of all

methods goes to zero quickly as T increases. Correspondingly, the evidence in Table 6 confirms

that the bias of the X-differencing estimator also tends to zero as T increases. However for small

T , the biases arising from estimation based on IC1 and IC2 model selection are larger in absolute

value than those based on IC0 selection. Overall the data based GS selection leads to estimation

with the minimum bias. As noted in Remark 2, over-estimation affects variance. Since the over-

estimation probability under GS selection is smallest, coefficient estimation variance based on GS

is correspondingly smallest. The main differences arise for small T. For moderate values of T

there is little difference in either estimation bias or variance among the procedures.

While these simulations cover a range of interesting alternative models and procedures, the

results in this section apply only to the considered data generating processes and further studies

are warranted for a more thorough comparison.

4 Concluding Remarks

Practical empirical work with dynamic panel models relies on the choice of lag order in the dy-

namics. Test outcomes, consistency, and estimation efficiency are all likely to be dependent on
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correct lag length selection. While it is well known that the presence of incidental parameters like

fixed effects and incidental trends disturb model selection procedures and can lead to inconsisten-

cies in order estimation, the present paper shows that these difficulties also arise in the absence

of such effects. In particular, application of the conventional BIC selection criterion in dynamic

panels with no intercepts yields inconsistent lag order selection and typically leads to considerable

overestimation of lag order. This result may be surprising to many, given that received wisdom

has primarily focused on the obstacles posed by fixed effects and other incidental parameters in

dynamic panel estimation. The reason for the failure of BIC even in simple dynamic models with

no fixed effects is that the BIC penalty is too small to compensate for the additional terms from

cross section averaging that enter into the model fit comparison ln(σ̂2k/σ̂
2
k0

) when k > k0 in the

BIC criterion, producing a strong tendency to overfit the panel autoregression as n→∞.

To address the deficiency of BIC, three alternative lag selection methods are suggested here,

each of which is consistent. The first two methods modify BIC by increasing the penalty and by

adjusting the sample fit comparisons so that they are homogeneous in the sample observations used

by means of sample truncation. The final method involves GS sequential testing and our suggested

procedure involves a data-determined critical value that ensures consistent order selection. Sim-

ulation findings indicate that modified BIC using sample truncation and data-determined GS lag

order selection both perform well in finite samples for a range of different sample sizes (n, T ),

including cases with small T , and models with a unit root.
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A Appendix

We use the notation Tk = T − k for all k ≥ 0 and T∗ = T − kmax. Recall that Xk,it =

(yit−1, . . . , yit−k)
′, ε̂k,it = yit −X ′k,itβ̂k and σ̂2k = 1

nTk

∑n
i=1

∑T
t=k+1 ε̂

2
k,it.

A.1 Inconsistency of IC0

Proof of Lemma 1. For k < k0 define β̂
+

k = (β̂
′
k, 0
′
k0−k)

′ so X ′k,itβ̂k = X ′itβ̂
+

k for all t > k, where

Xit = Xk0,it for notational brevity. (Note that the identity holds even though some elements of Xit

are unobservable for t ≤ k0.) As ε̂k,it = εit − (X ′k,itβ̂k −X ′itβ) = εit −X ′it(β̂
+

k − β), we have

(8) σ̂2k =
1

nTk

n∑
i=1

T∑
t=k+1

ε2it −
2

nTk

n∑
i=1

T∑
t=k+1

εitX
′
it(β̂

+

k − β) + (β̂
+

k − β)′Q̂k(β̂
+

k − β).

The first term converges in probability to σ2 as nTk → ∞, the second term is Op(1/
√
nTk) by

Assumption A because β̂
+

k − β is stochastically bounded, and the third term is asymptotically

strictly positive because plim β̂
+

k 6= β (since ρk0 6= 0 by assumption) and Q̂k is asymptotically

nonsingular. The stated result then holds as nT → ∞, and in particular as n → ∞ for both fixed

T and as T →∞.

Proof of Lemma 2. (i): For all k ≥ k0 we have ε̂k,it = εit −X ′it(β̂k − βk) so that

(9) σ̂2k =
1

nTk

n∑
i=1

T∑
t=k+1

ε2it + (β̂k − βk)′Qk(β̂k − βk)−
2

nTk

n∑
i=1

T∑
t=k+1

εitX
′
k,it(β̂k − βk),

where Qk = (nTk)
−1∑n

i=1

∑T
t=k+1Xk,itX

′
k,it. When β̂k − βk = Op(n

−1/2T
−1/2
k ), the second and

third terms are Op(n
−1T−1k ), and thus

σ̂2k0 − σ̂
2
k =

1

nTk0

n∑
i=1

T∑
t=k0+1

ε2it −
1

nTk

n∑
i=1

T∑
t=k+1

ε2it +Op(n
−1T−1∗ )

=
1

n

n∑
i=1

ξiT +Op(n
−1T−1∗ ),(10)

where T∗ = T − kmax as before and

ξiT =
1

Tk0

T∑
t=k0+1

ε2it −
1

Tk

T∑
t=k+1

ε2it

=
1

Tk0

k∑
t=k0+1

ε2it +
Tk − Tk0
Tk0Tk

T∑
t=k+1

ε2it

=
1

Tk0

k∑
t=k0+1

(
ε2it − σ2

)
− k − k0
Tk0Tk

T∑
t=k+1

(
ε2it − σ2

)
(11)
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The mean of ξiT is zero and the variance of n−1
∑n

i=1 ξiT is

1

n
Eξ2iT =

(k − k0)
nT 2k0

var
(
ε2it
)

+

(
k − k0
Tk0Tk

)2
Tk
n

var
(
ε2it
)

=
(k − k0) + T−1k (k − k0)2

nT 2k0
var
(
ε2it
)

=
(k − k0)
nT 2k0

var
(
ε2it
)(

1 +
k − k0
Tk

)
which shows that

√
nT (σ̂2k0 − σ̂

2
k) = Op (1). The result holds as n → ∞ for both fixed T and as

T →∞. Next, using (10), (11), and standard central limit arguments as n→∞ with T fixed

√
nTk0(σ̂

2
k0
− σ̂2k) =

Tk0√
n

n∑
i=1

ξiT +Op(n
−1/2)

⇒ ζk−k0,T =d N

(
0, 2σ4 (k − k0)

{
1 +

k − k0
Tk

})
,(12)

giving (i) as n→∞. When n→∞ and T →∞ we have

√
nT (σ̂2k0 − σ̂

2
k) =

1√
n

n∑
i=1

k∑
t=k0+1

(
ε2it − σ2

)
+ op (1)

⇒ ζk−k0 =d N
(
0, 2σ4 (k − k0)

)
,

giving (ii).

Proof of Theorem 1. (i): This follows by Lemma 1 and the fact that ln(1 + x) > 0 for all x > 0.

Thus,

IC0(k)− IC0(k0) = ln(σ̂2k/σ̂
2
k0

) + (k − k0) (lnnT )/(nT )

= ln

(
1 +

σ̂2k − σ̂2k0
σ̂2k0

)
+O

(
lnnT

nT

)
so that P(k̂ < k0)→ 0 as n→∞ for both fixed T and as T →∞.

(ii): For k > k0, we have σ̂2k − σ̂2k0 = op (1) and

√
nT [IC0(k)− IC0(k0)] =

√
nT ln

{
1 +

σ̂2k − σ̂2k0
σ̂2k0

}
+ (k − k0)

ln (nT )√
n

= ÂnT {1 + op(1)}+ (k − k0)
ln (nT )√

n
,
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where ÂnT =
√
nT (σ̂2k − σ̂2k0)/σ2 = Op (1) by virtue of Lemma 2. Further, by (12) and Lemma 2

we deduce that

ÂnT = − T√
nσ2

n∑
i=1

ξiT +Op(n
−1/2)

⇒

 N
(

0, 2 (k − k0)
{

1 + k−k0
Tk

})
:= ζk−k0,T for T fixed

N (0, 2 (k − k0)) := ζk−k0 when T →∞.

Thus, provided ln (nT ) /
√
n→ 0 we have

√
nT [IC0(k)− IC0(k0)]⇒ ζ∗ = ζk−k0,T1T fixed + ζk−k01T→∞,

and then

P{IC0(k) < IC0(k0)} → P{ζ∗ < 0} = 0.5.

This implies that limP{k̂ > k0} > 0 and proves the stated result for both fixed T and T → ∞
provided

ln(nT )√
n
→ 0. On the other hand, if (lnnT )/

√
n → ∞ or equivalently e

√
n/T → 0, then

P{IC0(k) > IC0(k0)} → 1, implying that P{k̂ > k0} → 0. Thus, BIC is consistent only if T

tends to infinity extremely rapidly relative to n.

A.2 Consistency of IC1 and IC2

Proof of Theorem 2. Lemma 1 continues to apply for j = 1. With minor adjustments to the

proof of Lemma 1, we find that for j = 2, k0 ≥ 1, and k < k0 we have plimnT∗→∞(σ̃2k− σ̃2k0) > 0.

It therefore suffices to show that P{ICj(k) > ICj(k0)} → 1 for j = 1, 2 when k > k0. For j = 1,

and k > k0, we find by virtue of the proof of Lemma 2 that

√
nT [IC1(k)− IC1(k0)] = ÂnT {1 + op(1)}+ (k − k0) ln (nT )→∞,

as nT →∞ so that P{IC1(k) > IC1(k0)} → 1 for k > k0. In a similar fashion we have

nT∗[IC2(k)− IC2(k0)] = ÃnT {1 + op(1)}+ (k − k0) ln (nT∗) ,

where ÃnT = nT∗(σ̃
2
k − σ̃2k0)/σ2k0 , for k > k0. Now, proceeding as in the proof of Lemma 2, we

find that

nT∗(σ̃
2
k − σ̃2k0) = nT∗

{
1

nT∗

n∑
i=1

T∑
t=kmax+1

ε2it −
1

nT∗

n∑
i=1

T∑
t=kmax+1

ε2it

}
+Op (1) = Op (1) .

Hence

nT∗[IC2(k)− IC2(k0)] = Op(1) + (k − k0) ln (nT∗)→∞,

from which it follows that P{IC2(k) > IC2(k0)} → 1, giving the required result.
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Table 1: Finite Sample Performance of BIC, Modified BIC, and GS with no Fixed Effects under Fixed Alternative: 

(AR(1), 0.1  , kmax = 2) 
 
 

  IC0 IC1 IC2 GS GS with 5% GS with 25% 
N T k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 
5 50 72.5 22.5 5.1 93.6 6.2 0.3 80.8 18.3 1.0 47.3 40.3 12.4 63.5 30.4 6.2 26.0 48.0 26.0 
5 100 58.6 36.4 5.1 86.8 13.1 0.2 63.6 35.8 0.6 41.1 53.6 5.4 39.3 55.1 5.7 12.4 61.4 26.3 
5 200 34.0 60.8 5.3 71.3 28.6 0.2 32.7 66.7 0.7 27.5 71.5 1.1 12.6 82.5 5.0 1.7 73.3 25.0 
5 1000 0.0 96.5 3.5 0.3 99.7 0.1 0.0 99.9 0.2 0.1 99.9 0.0 0.0 95.9 4.1 0.0 77.1 23.0 
50 5 60.6 26.7 12.8 98.8 1.2 0.0 93.3 6.7 0.1 52.7 36.4 11.0 69.9 25.0 5.1 29.5 44.2 26.4 
50 10 50.4 32.6 17.0 98.5 1.5 0.0 73.3 26.5 0.3 43.6 51.9 4.6 41.5 53.6 5.0 12.8 61.2 26.1 
50 20 37.7 43.8 18.6 97.6 2.4 0.0 36.8 62.9 0.4 28.7 70.3 1.1 13.2 81.3 5.5 2.6 71.6 25.9 
50 30 23.3 55.7 21.1 96.5 3.6 0.0 16.6 83.1 0.4 17.2 82.5 0.4 3.5 91.6 5.0 0.2 73.4 26.4 
100 5 52.4 31.4 16.3 99.8 0.2 0.0 87.9 12.0 0.2 48.8 46.6 4.7 47.5 47.4 5.2 14.6 61.0 24.5 
100 10 39.4 38.6 22.1 99.4 0.6 0.0 46.6 53.0 0.5 31.6 67.2 1.3 14.6 80.7 4.8 3.1 72.7 24.3 
100 20 19.6 54.7 25.7 97.6 2.4 0.0 8.2 91.3 0.6 10.6 89.0 0.5 0.8 93.6 5.7 0.1 76.6 23.3 
100 30 8.8 63.1 28.1 94.5 5.6 0.0 0.8 98.8 0.4 3.3 96.7 0.1 0.0 95.2 4.9 0.0 75.5 24.5 
200 5 43.8 35.7 20.5 100.0 0.1 0.0 70.6 29.3 0.1 36.5 62.5 1.0 18.2 76.9 5.0 3.5 72.8 23.7 
200 10 25.7 45.6 28.7 99.4 0.6 0.0 13.7 85.8 0.6 11.4 88.3 0.3 0.9 93.7 5.5 0.1 76.2 23.8 
200 20 6.7 60.0 33.4 96.6 3.4 0.0 0.0 99.6 0.4 0.7 99.3 0.0 0.0 94.9 5.2 0.0 75.2 24.9 
200 30 1.5 66.4 32.2 87.8 12.2 0.0 0.0 99.7 0.4 0.1 99.9 0.0 0.0 95.5 4.5 0.0 75.3 24.7 

1000 5 17.5 50.6 32.0 100.0 0.0 0.0 1.9 97.9 0.3 1.3 98.7 0.1 0.0 93.8 6.2 0.0 74.8 25.3 
1000 10 2.0 57.6 40.5 98.8 1.2 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 94.5 5.6 0.0 75.7 24.4 
1000 20 0.1 58.8 41.2 67.2 32.9 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 95.3 4.8 0.0 74.4 25.6 
1000 30 0.0 60.2 39.9 9.8 90.2 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 95.4 4.6 0.0 75.8 24.3 
 
 



Table 2: Finite Sample Performance of BIC, Modified BIC, and GS with no Fixed Effects under Local to Zero: 
(AR(1), 1/ T  , kmax = 2) 

 
 

  IC0 IC1 IC2 GS GS with 5% GS with 25% 
N T k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 
5 50 54.0 39.2 6.8 82.9 16.7 0.5 59.6 39.2 1.3 25.5 62.2 12.4 39.9 54.0 6.2 11.9 62.0 26.2 
5 100 58.6 36.4 5.1 86.8 13.1 0.2 63.6 35.8 0.6 41.1 53.6 5.4 39.3 55.1 5.7 12.4 61.4 26.3 
5 200 65.0 31.3 3.8 91.5 8.6 0.0 69.0 30.6 0.5 63.4 35.7 1.0 40.2 55.0 4.9 11.5 63.7 24.9 
5 1000 71.7 27.0 1.3 95.8 4.3 0.0 75.6 24.3 0.1 95.8 4.2 0.0 38.4 57.2 4.5 12.0 65.4 22.7 
50 5 0.3 79.1 20.6 15.0 84.9 0.2 0.2 99.2 0.7 0.0 88.6 11.5 0.0 94.8 5.2 0.0 74.6 25.4 
50 10 0.2 75.4 24.5 16.5 83.4 0.2 0.0 99.2 0.9 0.0 95.6 4.5 0.0 95.0 5.0 0.0 74.3 25.7 
50 20 0.3 75.9 23.9 23.0 77.0 0.1 0.0 99.5 0.6 0.0 99.0 1.1 0.0 94.5 5.5 0.0 74.0 26.0 
50 30 0.2 74.9 24.9 26.7 73.4 0.0 0.0 99.6 0.5 0.0 99.6 0.4 0.0 95.1 5.0 0.0 73.3 26.7 
100 5 0.0 75.2 24.8 1.6 98.5 0.0 0.0 99.4 0.6 0.0 95.4 4.6 0.0 95.2 4.9 0.0 76.8 23.2 
100 10 0.0 70.8 29.3 2.0 98.1 0.0 0.0 99.2 0.8 0.0 98.5 1.5 0.0 95.6 4.4 0.0 76.0 24.1 
100 20 0.0 70.8 29.2 3.4 96.7 0.0 0.0 99.4 0.7 0.0 99.6 0.4 0.0 94.3 5.8 0.0 77.2 22.9 
100 30 0.0 70.7 29.3 3.9 96.1 0.0 0.0 99.4 0.6 0.0 99.9 0.1 0.0 95.2 4.8 0.0 75.6 24.5 
200 5 0.0 73.5 26.6 0.0 100.0 0.0 0.0 99.7 0.3 0.0 98.8 1.2 0.0 95.1 5.0 0.0 75.3 24.7 
200 10 0.0 66.3 33.7 0.0 100.0 0.0 0.0 99.6 0.4 0.0 99.8 0.3 0.0 95.0 5.0 0.0 75.1 25.0 
200 20 0.0 65.8 34.3 0.0 100.0 0.0 0.0 99.5 0.5 0.0 100.0 0.0 0.0 94.9 5.1 0.0 74.8 25.2 
200 30 0.0 67.5 32.5 0.1 100.0 0.0 0.0 99.7 0.4 0.0 100.0 0.0 0.0 95.8 4.3 0.0 75.0 25.0 

1000 5 0.0 64.8 35.3 0.0 100.0 0.0 0.0 99.8 0.3 0.0 100.0 0.1 0.0 94.2 5.8 0.0 73.1 27.0 
1000 10 0.0 59.4 40.7 0.0 100.0 0.0 0.0 99.9 0.2 0.0 100.0 0.0 0.0 94.3 5.8 0.0 75.8 24.2 
1000 20 0.0 58.9 41.2 0.0 100.0 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 95.0 5.0 0.0 75.3 24.7 
1000 30 0.0 60.0 40.0 0.0 100.0 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 95.8 4.3 0.0 76.1 24.0 
 
 
 



 
Table 3: Role of Kmax Value on Lag Selection with no Fixed Effects under Fixed Alternative: 

(AR(1), 0.1  , kmax = 6) 
 
 

  IC0 IC1 IC2 GS GS with 5% GS with 25% 
N T k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 
5 50 71.5 21.7 6.8 93.6 6.2 0.3 81.9 17.0 1.2 29.8 24.9 45.4 51.9 25.0 23.2 8.2 16.5 75.4 
5 100 58.3 36.0 5.8 86.8 13.1 0.2 65.4 33.8 0.9 33.9 44.8 21.3 31.7 45.0 23.4 3.7 19.7 76.7 
5 200 33.7 60.5 5.9 71.3 28.6 0.2 33.7 65.5 0.8 26.2 68.2 5.7 10.6 67.6 21.9 0.8 22.4 76.8 
5 1000 0.0 95.7 4.3 0.3 99.7 0.1 0.0 99.8 0.3 0.1 99.8 0.2 0.0 77.8 22.3 0.0 21.6 78.4 
50 10 45.4 27.9 26.8 98.5 1.5 0.0 88.4 11.4 0.3 35.3 42.9 21.9 32.3 43.6 24.2 3.6 18.1 78.3 
50 20 35.0 37.5 27.6 97.6 2.4 0.0 51.0 48.7 0.4 27.2 66.2 6.7 10.4 65.7 24.0 0.8 22.8 76.4 
50 30 21.3 48.4 30.4 96.5 3.6 0.0 22.9 76.7 0.5 16.9 81.3 1.9 2.9 74.4 22.8 0.0 22.5 77.5 
100 10 34.4 32.3 33.3 99.4 0.6 0.0 79.8 19.7 0.6 30.0 63.7 6.4 11.8 65.1 23.2 0.8 22.4 76.9 
100 20 17.4 45.3 37.3 97.6 2.4 0.0 18.2 81.2 0.7 10.6 88.1 1.4 0.8 77.3 22.0 0.1 24.2 75.8 
100 30 7.8 51.5 40.8 94.5 5.6 0.0 2.1 97.3 0.6 3.2 96.7 0.1 0.0 77.7 22.4 0.0 24.7 75.3 
200 10 20.6 35.3 44.2 99.4 0.6 0.0 55.3 44.7 0.1 11.4 87.6 1.1 0.7 76.5 22.8 0.0 24.4 75.7 
200 20 4.9 44.8 50.3 96.6 3.4 0.0 0.8 98.6 0.7 0.7 99.3 0.0 0.0 77.4 22.7 0.0 23.7 76.3 
200 30 1.1 49.4 49.6 87.8 12.2 0.0 0.0 99.6 0.4 0.1 99.9 0.0 0.0 77.9 22.2 0.0 24.6 75.5 

1000 10 1.2 35.6 63.3 98.8 1.2 0.0 0.1 99.8 0.1 0.0 100.0 0.0 0.0 76.8 23.2 0.0 25.0 75.1 
1000 20 0.0 38.1 62.0 67.2 32.9 0.0 0.0 99.9 0.2 0.0 100.0 0.0 0.0 76.5 23.5 0.0 22.6 77.4 
1000 30 0.0 39.6 60.5 9.8 90.2 0.0 0.0 99.9 0.1 0.0 100.0 0.0 0.0 77.1 23.0 0.0 24.4 75.6 
 
 
 
 
 
 
 



Table 4: Role of AR order on Lag Selection with no Fixed Effects under Fixed Alternative: 
(AR(3), 1 2 3 0.1     , kmax = 6) 

 
 
 

  IC0 IC1 IC2 GS GS with 5% GS with 25% 
N T k<3 k=3 k>3 k<3 k=3 k>3 k<3 k=3 k>3 k<3 k=3 k>3 k<3 k=3 k>3 k<3 k=3 k>3 
5 50 88.6 8.7 2.8 99.3 0.7 0.1 93.7 6.0 0.4 38.8 31.0 30.3 59.3 27.1 13.7 16.4 25.9 57.8 
5 100 72.3 23.9 3.9 97.6 2.4 0.1 78.6 21.0 0.5 38.2 48.7 13.1 36.0 49.5 14.5 6.0 35.6 58.4 
5 200 39.7 55.3 5.0 84.0 16.0 0.1 36.4 63.0 0.7 25.7 70.6 3.7 10.6 75.9 13.6 0.8 41.0 58.3 
5 1000 0.0 96.0 4.1 0.3 99.7 0.1 0.0 99.7 0.4 0.2 99.8 0.1 0.0 85.6 14.5 0.0 39.1 60.9 
50 10 71.6 15.4 13.1 100.0 0.0 0.0 97.1 2.8 0.2 47.9 37.9 14.3 46.0 38.3 15.8 10.7 30.9 58.5 
50 20 48.0 30.3 21.7 100.0 0.0 0.0 61.4 38.0 0.6 32.6 63.1 4.4 14.6 70.3 15.2 1.9 39.3 58.9 
50 30 30.2 45.0 24.9 99.9 0.1 0.0 24.7 75.0 0.4 19.3 79.8 0.9 3.6 82.5 14.0 0.3 41.0 58.7 
100 10 56.5 25.2 18.4 100.0 0.0 0.0 90.7 9.3 0.1 44.3 52.2 3.6 20.7 64.6 14.7 2.8 39.5 57.8 
100 20 26.3 41.9 31.9 100.0 0.0 0.0 18.3 81.2 0.5 14.9 84.6 0.6 1.5 85.1 13.5 0.1 42.6 57.3 
100 30 9.2 53.6 37.3 99.7 0.3 0.0 1.9 97.9 0.3 4.1 95.9 0.1 0.0 86.8 13.2 0.0 41.8 58.2 
200 10 38.1 32.5 29.4 100.0 0.0 0.0 61.9 37.8 0.3 25.4 74.2 0.5 3.2 82.9 14.0 0.3 43.6 56.2 
200 20 8.8 47.5 43.8 99.9 0.1 0.0 0.6 99.1 0.3 1.8 98.3 0.0 0.0 86.6 13.5 0.0 42.5 57.5 
200 30 1.9 53.4 44.8 97.9 2.2 0.0 0.0 99.8 0.2 0.0 100.0 0.0 0.0 86.7 13.4 0.0 43.9 56.2 

1000 10 5.7 43.6 50.8 100.0 0.0 0.0 0.2 99.7 0.1 0.1 100.0 0.0 0.0 85.6 14.5 0.0 44.0 56.1 
1000 20 0.0 44.6 55.4 91.3 8.7 0.0 0.0 99.8 0.3 0.0 100.0 0.0 0.0 85.1 14.9 0.0 41.7 58.4 
1000 30 0.0 43.7 56.3 24.4 75.7 0.0 0.0 99.9 0.2 0.0 100.0 0.0 0.0 85.5 14.5 0.0 41.9 58.2 
 
 
 
 
 
 
 



 
Table 5: Lag Selection with X-differencing under fixed effects 

AR(1), Unit Root Case, kmax = 2, N= 200 
 
 
 

 IC0 IC1 IC2 GS 
 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 k<1 k=1 k>1 
5 1.4 0.0 98.7 53.2 0.0 46.8 0.0 57.0 43.1 0.0 98.3 1.8 
6 0.6 1.2 98.3 37.2 15.5 47.4 0.0 61.6 38.4 0.0 99.3 0.8 
7 0.0 5.6 94.4 0.1 67.9 32.0 0.0 63.5 36.6 0.0 99.6 0.4 
8 0.0 10.7 89.4 0.0 82.3 17.7 0.0 62.1 38.0 0.0 99.6 0.4 

10 0.0 21.2 78.9 0.0 94.1 5.9 0.0 64.7 35.3 0.0 99.8 0.3 
20 0.0 42.5 57.6 0.0 99.9 0.2 0.0 72.7 27.4 0.0 100.0 0.0 
30 0.0 52.3 47.7 0.0 100.0 0.0 0.0 78.6 21.4 0.0 100.0 0.0 
50 0.0 59.3 40.8 0.0 100.0 0.0 0.0 84.2 15.8 0.0 100.0 0.0 

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Impact of Lag Selection on Biases and Variances 
with X-differencing under fixed effects 

AR(1), Unit Root Case, kmax = 2, N= 200. 
 

 Bias Variance 
 IC0 IC1 IC2 GS IC0 IC1 IC2 GS 
5 -0.0124 -0.5362 -0.0531 -0.0003 3.2973 25.3016 0.8830 0.6279 
6 -0.0067 -0.3800 -0.0275 -0.0003 1.2215 23.0854 0.3586 0.2684 
7 -0.0022 -0.0098 -0.0168 0.0003 0.3007 0.2953 0.1996 0.1604 
8 -0.0054 -0.0061 -0.0138 -0.0008 0.1772 0.1333 0.1379 0.1160 
10 -0.0048 -0.0024 -0.0087 -0.0011 0.0855 0.0684 0.0763 0.0668 
20 -0.0019 -0.0007 -0.0026 -0.0007 0.0146 0.0134 0.0143 0.0134 
30 -0.0009 -0.0004 -0.0012 -0.0004 0.0059 0.0057 0.0059 0.0057 
50 -0.0004 -0.0002 -0.0005 -0.0002 0.0020 0.0019 0.0019 0.0019 

 
 
 
 
 
 
 
 


