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Abstract

This paper proposes a new class of estimators for the autoregressive coefficient of a dynamic

panel data model with random individual effects and nonstationary initial condition. The new

estimators we introduce are weighted averages of the well-known first difference (FD) GMM/IV

estimator and the pooled ordinary least squares (POLS) estimator. The proposed procedure

seeks to exploit the differing strengths of the FD GMM/IV estimator relative to the pooled OLS

estimator. In particular, the latter is inconsistent in the stationary case but is consistent and

asymptotically normal with a faster rate of convergence than the former when the underlying

panel autoregressive process has a unit root. By averaging the two estimators in an appropriate

way, we are able to construct a class of estimators which are consistent and asymptotically

standard normal, when suitably standardized, in both the stationary and the unit root case.

The results of our simulation study also show that our proposed estimator has favorable finite

sample properties when compared to a number of existing estimators.

JEL Classification Code: C33

Keywords: Nonstationary initial condition, Mean average estimator, Smoothing Threshold, POLS,

FDIV
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1 Introduction

Pathbreaking research on the estimation of dynamic panel data models was done in the early 1980s

by Nickell (1981) and by Anderson and Hsiao (1981, 1982). The former analyzed the bias properties

of the least-squares dummy variable (LSDV) estimator and the pooled OLS estimator, whereas the

latter two papers introduced the first-difference (FD) GMM/IV estimator. The three decades since

these pioneering papers have witnessed the rapid development of the literature on dynamic panel

regression. Among the important contributions to this literature are those of Arellano and Bond

(1991), Ahn and Schmidt (1995), Arellano and Bover (1995), Kiviet (1995), Blundell and Bond

(1998), Moon and Phillips (2000), Hahn and Kuersteinder (2002), Hsiao, Pesaran and Tahmiscioglu

(2002), Alvarez and Arellano (2003), Bun and Kiviet (2006), Kiviet (2007), Phillips and Sul (2007),

and Han, Phillips, and Sul (2011, 2014).

Within this vast literature, the work of Kiviet (2007) and Arellano (2003) have considered

dynamic panel data settings with the most general form of nonstationary initial condition. In

particular, they study a model of the form

yit = ai (1− ρ) + ρyit−1 + εit, yi0 = α0 + α1ai + α2εi0 (1)

where εit ∼ i.i.d.
(
0, σ2

)
for t ≥ 0 and ai ∼ i.i.d.

(
µ1, σ

2
a

)
. Kiviet notes that modeling initial

condition in this way results in three additional unknown parameters: α0, α1, α2. Under this setting,

Arellano (2003) shows that the following moment conditions hold regardless of nonstationary initial

conditions and the restriction of time series heteroskedasticity.

E [yit − ρyit−1 − µ1 (1− ρ)] = 0 (2)

E [yit − ρyit−1 − µ1 (1− ρ)] [∆yit−1 − ρ∆yit−2] = 0 (3)

E [yit−s] [∆yit − ρ∆yit−1] = 0 for s > 2 (4)

Using the moment conditions in (2) through (4) yields consistency of GMM estimator. However,

as is well-known, the moment condition becomes weaker as ρ approaches unity. Under stationary

initial condition, several alternative estimators have been proposed to overcome the weak instrument

problem. For example, Choi, Mark and Sul (2010) use backward recursive mean adjustment to

reduce the bias especially when ρ is near to unity. Han, Phillips and Sul (2011, 2014) propose

‘X-differencing’ method to eliminate the bias completely regardless the value of ρ including unit

root case. However under nonstationary initial condition, this paper shows that the X-differencing

estimator becomes inconsistent.

The main objective of the current paper is add to this impressive list of contributions by in-

troducing a new class of estimators which can be shown to have good asymptotic properties when

used to estimate a dynamic panel data regression with nonstationary initial condition. A main
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reason for considering nonstationary initial conditions is that they arise naturally in a number of

situations where the panel data set is generated from laboratory experiments. Our estimation pro-

cedure is motivated by the observation that although it is well-known that the GMM/IV estimator

is well-behaved in the case where |ρ| is bounded away from one, this estimator suffers from a slower

rate of convergence in the unit root case when ρ = 1, due to a weak instrument problem. On

the other hand, the pooled OLS estimator, while inconsistent in the case where |ρ| < 1, becomes

consistent with a faster rate of convergence than the FD GMM/IV estimator in the unit root case

when N,T →∞. The present paper seeks to exploit the differing strengths of GMM/IV vis-à-vis

pooled OLS in different regions of the parameter space by introducing a class of mean average

estimators which are weighted averages of these two estimators.

Several alternative weighting functions for mean average estimation are considered in our paper.

In particular, we generate different weighting functions based on taking alternative transformations

of a class of information criteria used to evaluate the validity of the unit root hypothesis. The

class of information criteria we consider are variants of the Bayesian Information Criterion (BIC).

Alternative transformations which we consider include the logistic-type transformation, which has

previously been used in Buckland, Burnham, and Augustin (1997), Burham and Anderson (2002),

Hjort and Claeskens (2003), Hansen (2007), and Chao (2013); although none of those papers

consider the problem of estimating a dynamic panel data model, as we do here. In addition, we

also consider a Gaussian type transformation which was originally introduced in Chao (2013).

The remainder of the paper proceeds as follows. In section 2, we briefly discuss the dynamic

panel regression studied in this paper and give the assumptions used in our subsequent large sample

analysis. Section 3 of the paper provides some asymptotic results for the FD GMM/IV and the

pooled OLS estimators. Section 4 introduces our mean average estimator and provides large sample

results for this estimator. The results of a Monte Carlo study comparing different versions of the

mean average estimator with several existing estimators are given in section 5. We briefly conclude

in section 6 of the paper. Proofs and supporting lemmas are given in the Appendices.

A few words on notations before we proceed. In this paper, we use =⇒ to denote weak con-

vergence and
p→ to denote convergence in probability. In addition, we let χ2ν denote a chi-square

random variable with ν degrees of freedom, and let Wi (r), r ∈ [0, 1], denote the Wiener process,

or standard Brownian motion.
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2 Model and Assumptions

We consider the following dynamic panel data model written in unobserved components form

yit = ai + xit, (5)

xit = ρxit−1 + εit, (6)

for i = 1, ...N and t = 1, ..., T . Here, {yit} denotes the observed data, whereas ai denotes an

(unobserved) random effect and {xit} is generated by a latent AR(1) process. The initial condition
for this model is given by

yi0 = ai + xi0. (7)

We make the following assumptions on the model given by equations (5)-(7).

Assumption 1: (Idiosyncratic Errors)

(a) {εit} ≡ i.i.d.
(
0, σ2

)
across i and t, σ2 > 0;

(b) E
[
ε4it
]
<∞.

Assumption 2: (Random Effects)

(a) {ai} ≡ i.i.d.
(
µ1, σ

2
a

)
across i, σ2a > 0;

(b) E
[
a4i
]
<∞.

Assumption 3: (Initial Condition)

(a) {xi0} ≡ i.i.d.
(
m1, σ

2
x

)
across i, σ2x > 0;

(b) E
[
x4i0
]
<∞.

Assumption 4:

εit, ai, and xi0 are mutually independent for all i and t.
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Remarks:

(i) As Kiviet (2007) suggests, we can model the initial condition as (1). However there are too

many parameters to characterize the initial conditions. To simplify the parameterization, we

consider the following latent AR(1) model.

yit = ai + xit, xit = ρxit−1 + εit, (8)

of which regression model at time t = 1 can be rewritten as

yi1 = ai (1− ρ) + ρyi0 + εi1. (9)

Modelling the initial condition based on the latent model in (8) is much easier than doing

based on the actual regression model in (9). To see this, let treat yi1 as the initial condition

by setting yi0 = 0 in (9), then we have yi1 = ai (1− ρ)+εi1 and need to model εi1. Meanwhile

let xi0 = 0 and use the latent model in (8), then we have yi1 = ai + xi1. Hence we need

to model xi1. Define the steady state mean of yit as limt→∞E (yit) = ai. Then the initial

condition based on the latent model can be rewritten as xi1 = yi1 − limt→∞E (yit) . Hence it

becomes more attractive in terms of economic implication. Now change the time from t = 1

to t = 0 and treat yi0 as the initial condition. Then we have

yi0 = lim
t→∞

E (yit) + xi0 = ai + xi0 = ci, (say). (10)

Note that xi0 = ρxi,−1 + εi0. Hence, without loss of generality, we may let εi0 = 0. In this

case, the latent model can be assumed to be

yit = ai + xi0ρ
t +wit, (11)

where

wit =
t∑

j=0

ρjεit−j where εi0 = 0. (12)

Hence this approach identifies three unknown parameters in Kiviet (2007)’s model. That is,

α0 = xi0, α1 = 1 and α2 = 0. The basic but standard model can be obtained by setting

xi0 = 0.

(ii) We can also allow for heterogeneous variance for εit across i, but for notational convenience

we do not consider this extension here.

(iii) Note that Assumption 1 does not allow for cross-sectional dependence in the idiosyncratic

errors {εit}. This assumption is reasonable in experimental games since subjects are randomly
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selected. It is also important to note that Assumption 1 does not imply cross sectional

independence among the experimental outcome yit. Motivated by the possibility of common

game setting and learning, the outcome variable is cross-sectionally correlated. In fact, the

cross sectional structure can be thought of as an approximate factor model. Observe that

equations (5)-(7) imply that

yit = ai + xi0ρ
t +wit

where

wit =
t∑

j=0

ρjεit−j, with εi0 = 0.

In this representation, the initial condition parameter xi0 can be interpreted as a factor loading

coefficient and the learning parameter ρt can be taken to be a common factor. However, in

the stationary case, the cross-sectional dependence goes away quickly since ρt decays to zero

geometrically as t increases.

3 Consistency of Existent Estimators

There are many consistent estimators available when the initial condition is stationary. As we

discussed in Introduction, only FDIV estimator, which is using the last moment condition in (4),

becomes consistent. Other GMM/IV estimator such as forward orthogonal demeaning by Arellano

and Bond (1998) does not satisfy the moment conditions. Hence our interest is rather focusing on

two existent estimators: Exact mean unbiased (EMU) estimator by Phillips and Sul (2007) and X-

differencing estimator proposed by Han, Phillips and Sul (2011,2014). Throughout this subsection,

we consider only N asymptotics. That is, we consider a fixed T but let N →∞.

We assume researchers run the following panel AR(1) regression with fixed effects regardless of

the true latent models.

yit = αi + ρyit−1 + εit, t = 1, ..., T + 1 (13)

Even though yit has a time varying mean, the panel AR(1) regression in (13) is not misspecified.

To see this, we calculate the quasi-difference in yit as

yit − ρyit−1 =
[
ai + xi0ρ

t +wit
]
−
[
ρa+ xi0ρ

t + ρwit−1
]
= ai (1− ρ) + εit

3.1 Non-Existence of MUE based on Within Group Estimator

First we consider the within group (WG) estimator. It is well known that WG estimator suffers

from the asymptotic bias with small T. Here we derive the exact bias form first and then see if
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the bias function is monotonic over ρ. If so, we may consider the exact mean unbiased estimator

considered by Phillips and Sul (2007). First, define the WG estimator

ρ̂wg =

∑N∑T ỹit−1ỹit∑N∑T ỹ2it−1
,

and rewrite it as

ρ̂wg − ρ =

∑N∑T ỹit−1ũit∑N∑T ỹ2it−1
:=

ANT
BNT

, (14)

Let EN =plimN→∞. Then we have the following.

ENANT =

(
− 1

1− ρ
+

1− ρT

(1− ρ)2 T

)
σ2

but

ENBNT = ENBNT = σ2x

(
ρ2(1−ρ2T )
1−ρ2

− ρ2(1−ρT )
2

(1−ρ)2T

)
+B1T ,

B1T = σ2
(

T
1−ρ2

− (1+ρ)2+ρ2−ρ2+2T

(1−ρ2)2
+

ρ(1−ρT )(2+ρ−ρ1+T )
(1−ρ2)(1−ρ)2T

)
,

where B1T is the expected value of the denominator term with stationary initial condition. There-

fore the bias of the WG estimator under nonstationary initial condition is less than that under

stationary initial condition since usually ENBNT is less than B1T .When T is large, the Nickell bias

under nonstationary initial condition is given by

EN
(
ρ̂wg − ρ

)
= −1 + ρ

T
+O

(
T−2

)
,

which is the same as the Nickell bias under stationary initial condition. It is due to the local

nonstationarity of yit.

Nonetheless, if the first derivative of a function does not change its sign, then the function is

monotonic by definition. Alternatively, we can say if either maximum or minimum of the first

derivatives of a function is negative or positive, respectively, then the function is monotonic. Let

BT = EN
(
ρ̂wg − ρ

)
and CT = EN ρ̂wg. Then BT becomes the asymptotic inconsistency function of

the WG estimators meanwhile CT becomes the asymptotic mean function. We calculate numerically
and find that BT and CT are not monotonic at all. Due to this non-monotonicity, the exact mean
unbiased estimator cannot exist.

3.2 Inconsistency of X-differencing Estimator

The basic reason of why X-differencing method eliminates the bias completely with stationary

initial conditions can be seen as follows. First consider the following cross differencing by using the

(s− 1)th and sth observations where 1 ≤ s < t− 1.

yit − yis−1 = ρ (yit−1 − yis) + eit, for eit = xi0
(
ρs+1 − ρs−1

)
+ (ρ− 1)wis−1 + εis + εit.
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Under stationary initial condition, Eeit (yit−1 − yis) = 0 for all 1 ≤ s < t − 1. However under

nonstationary initial condition, this moment condition becomes invalid. That is,

Eeit (yit−1 − yis)

= m2

(
ρs+1 − ρs−1

) (
ρt−1 − ρs

)
+ σ2

[
(ρ− 1)

(
ρt+1 − ρ

) ρ2 − ρ2s−2

1− ρ2
+ ρt−s−1 − 1

]
�= 0

for all 1 ≤ s < t− 1.

To evaluate the inconsistency, we can consider only partial aggregation since full aggregation

gives more inconsistency. The probability limit of the numerator term becomes by setting s = 1.

EN
∑T−1

t=1
eit (yit−1 − yi1) = −

[
σ2 −m2

(
1− ρ2

)]
ρT +O (1) . (15)

Meanwhile the probability limit of the denominator is given by

EN
∑T−1

t=1
(yit−1 − yi1)

2 =
m2ρ

2
(
1− ρ2

)
+ σ2

(
2− ρ2

)

1− ρ2
T +O

(
T−2

)
. (16)

Finally the inconsistency of X-differencing estimator, ρ̂x, becomes

EN (ρ̂x − ρT ) =
ρ
(
1− ρ2

) (
σ2 −m2

(
1− ρ2

))

m2ρ2 (1− ρ2) + σ2 (2− ρ2)
+O

(
T−1

)
. (17)

Therefore the inconsistency of ρ̂x is dependent on many nuisance values of m2 and σ2.

4 Asymptotic Properties of FD GMM/IV and Pooled OLS Esti-

mators

To motivate the construction of our proposed mean average estimator given in the next section, we

first provide some preliminary asymptotic results on two well-known estimators, the FD GMM/IV

estimator and the pooled OLS estimator. As proposed originally by Anderson and Hsiao (1981,

1982), the FD GMM/IV estimator uses yit−2 as an instrument to estimate the first differenced

dynamic panel model

∆yit = ρ∆yit−1 +∆εit

resulting in an estimator of the form

ρ̂IV =

(
N∑

i=1

T∑

t=2

yit−2∆yit−1

)−1( N∑

i=1

T∑

t=2

yit−2∆yit

)
. (18)

On the other hand, running pooled OLS on the level specification

yit = αi + ρyit−1 + εit
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results in the estimator

ρ̂pols =

[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1 [ N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

) (
yit − yN,T

)
]

where

y−1,N,T =
1

N (T − 1)

N∑

i=1

T∑

t=2

yit−1, yN,T =
1

N (T − 1)

N∑

i=1

T∑

t=2

yit,

The asymptotic results we give below are for the case where N and T are both large, with

the order of magnitude of T not exceeding that of N , as this covers many panel data settings of

interest to economists. We consider both the case where the panel AR(1) process is stationary with

ρ ∈ (0, 1) and also the unit root case where ρ = 1.

Theorem 1:

Suppose that Assumptions 1-4 hold. Then, the following statements are true.

(a) If ρ ∈ (0, 1), √
NT (ρ̂IV − ρ) =⇒ N (0, 2 [1 + ρ])

as N,T →∞ such that T/N → κ ∈ [0,∞).

(b) If ρ = 1, √
T (ρ̂IV − 1) =⇒ 2

Z1
Z2

as N,T → ∞ such that T/N → κ ∈ [0,∞). Here, Z1 ≡ N (0, 1) and Z2 ≡ N (0, 1) and Z1

and Z2 are independent.

Theorem 2:

Suppose that Assumptions 1-4 hold. Then, the following statements are true.

(a) If ρ ∈ (0, 1),

ρ̂pols
p→ ρ+

σ2a (1− ρ)
(
1− ρ2

)

σ2a (1− ρ2) + σ2
.

as N,T →∞ such that T/N → κ ∈ [0,∞).

(b) If ρ = 1, √
NT

(
ρ̂pols − 1

)
=⇒ N (0, 2) .

as N,T →∞ such that T/N → κ ∈ [0,∞).
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Remarks:

(i) Note that Theorems 1 and 2 show that the relative desirability of FD GMM/IV vis-à-vis the

pooled OLS estimator depends on whether the panel AR(1) is stationary or has a unit root.

In the stationary case, pooled OLS is inconsistent whereas FD GMM/IV is both consistent

and asymptotically normal. On the other hand, in the unit root case, both FD GMM/IV and

pooled OLS are consistent but the latter has a faster rate of convergence. In addition, in the

unit root case, FD GMM/IV, due the weak instrument problem, is no longer asymptotically

normal and has a limiting distribution which is a scaled Cauchy distribution, being proportion

to the ratio of two independent standard normal variates.

(ii) Note that some of the results reported in the above theorems are not completely new to this

paper. In particular, part (b) of Theorem 1 has been shown recently by Phillips (2014). In

related results, Kruiniger (2009) has also shown a Cauchy-like limiting distribution for the

FD GMM/IV estimator in situations with persistent data where N is large and T is fixed.

5 Mean Average Estimator

More precisely, the construction of our estimator begins with two existing estimators: the first

difference IV estimator, ρ̂IV and the pooled OLS estimator ρ̂pols. Our reason for choosing the

pooled OLS estimator for this construction stems in part from its good finite sample properties in

cases where ρ is close to unity. Some evidence of ρ̂pols’s good finite sample performance relative to

other existing estimators for ρ close to unity is provided in our simulation results reported below.

Given these estimators, our proposed mean average estimator can be written as

ρ̂avg = wIC ρ̂IV + (1−wIC) ρ̂pols.

where wIC is a weighting function based on a BIC-type information criterion, denoted by ∆IC

below. When the weighting function is based on the logistic-type transformation, we have the

explicit expression

wIC,1 =
1

1 + exp
{
1
2∆IC

} ; (19)

and when the Gaussian-type tranformation is used, we have

wIC,2 = Pr (Z > ∆IC) (20)

where Z denotes the standard normal random variable.
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We also consider alternative specifications for∆IC . More specifically, we consider an information

criterion of the general form

∆IC (α, β) ≡ TN,T + α ln (N) + β ln (T ) ,

where α ≥ 2 and β ≥ 1 are pre-specified (positive) integers and where TN,T denotes the usual

t-statistic for testing the presence of a unit root in dynamic panel data model, i.e.,

TN,T =
ρ̂pols − 1√

σ̂2/
∑N
i=1

∑T
t=1

(
yit−1 − 1

NT

∑N
i=1

∑T
t=2 yit−1

)2 .

Next, we analyze the asymptotic properties of this mean average estimator. To do so, we first

introduce the following normalization function

νNT = wIC

(
2

NT
[1 + ρ̂IV]

)−1/2
+ (1−wIC) σ̂

−1

[
N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2
.

Our main asymptotic result is given by the following theorem.

Theorem 3:

Suppose that Assumptions 1-4 hold. Then, the following statements are true.

(a) If ρ ∈ (0, 1),

νNT
(
ρ̂avg − ρ

)
=⇒ N (0, 1) .

as N,T →∞ such that T/N → κ ∈ [0,∞).

(b) If ρ = 1,

νNT
(
ρ̂avg − 1

)
=⇒ N (0, 1) .

as N,T →∞ such that T/N → κ ∈ [0,∞).

Note that Theorem 3 shows that the mean average estimator ρ̂avg improves upon both the

FD GMM/IV and the pooled OLS estimator, in that when appropriately normalized, it has an

asymptotic standard normal distribution in both the stationary and the unit root case. It is also

easily seen that it has a faster rate of convergence vis-à-vis the FD GMM/IV estimator when the

underlying panel AR(1) process has a unit root.
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6 Monte Carlo Simulation

For our Monte Carlo study, we consider the following data generating process:

xi0 ∼ i.i.d. N (5, 1) , ai ∼ i.i.d. N (1, 1) , {εit} ∼ i.i.d. N (0, 1) .

Parameters which have important impact on the finite sample performance of different estimators

include ρ, N , T , and m1 = E [xi0]. In our study, we vary ρ = 0.7, 0.8, 0.85, 0.9, 0.95; N = 100, 200;

and T = 10, 15, 20, 25, 30, 40, 50, 100. To keep the dimension of the parameter space manageable,

we fix the mean of the initial condition,m1, to be 5 in all our experiments. In unreported simulation

results, we have found that our simulation results are not much affected by changes in m1, except

when m1 is very small.

As mentioned earlier, we consider four versions of the mean average estimator. These alternative

versions differ only in terms of the information criterion used in the weighting function. More

specifically, given the general form of the information criterion used here, i.e.,

∆IC (α, β) = TN,T + α ln (N) + β ln (T ) ,

we consider four alternative specifications given by

BIC1: α = 1 β = 1

BIC2: α = 2 β = 1

BIC3: α = 2 β = 2

BIC4: α = 2 β = 3

.

Note that of these four specifications, BIC4 carries the strongest penalty function against overpa-

rameterization and, everything else being equal, would tend to favor the more parsimonious unit

root hypothesis. On the other hand, BIC1 has the weakest penalty function and, in consequence,

most strongly favor the stationary case. It follows that, of the four variants, the mean average

estimator based on BIC4 would tend to put the heaviest weight on the POLS estimator in finite

sample, whereas the estimator based on BIC1 would put a heavier weight on the FDIV estimator

relative to the other three specifications.

Tables 1 and 2 give the sample mean of the simulated estimators over 2,000 replications. Looking

at these tables, we see that the WG estimator suffers from serious downward (asymptotic) bias, the

POLS estimator shows a mild upward bias, whereas the X-differencing estimator exhibits a more

significant upward bias. Also, in terms of bias, all four mean average estimators tend to perform

better than WG, X-Dif and POLS; but the estimator with the smallest bias across all values of ρ

examined under our experimental design is the FD GMM/IV estimator.

Tables 3 and 4 give the relatively mean squares error (MSE) of the different estimator relative

to that of the X-differencing estimator. Note first that variants of the mean average estimator
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based on BIC3 and BIC4 have uniformly better MSE than the X-differencing estimator across all

data generating processes considered in our simulation study. The FD GMM/IV estimator also

performs well in MSE and, in fact, does better than BIC3 and BIC4 in cases where ρ = 0.7, 0.8.

However, the MSE of FD GMM/IV deteriorates drastically as ρ moves closer to unity so that, when

ρ = 0.95, FD GMM/IV not only performs much worse than BIC3 and BIC4 in terms of MSE but

its MSE is also larger than that of the X-differencing estimator in this case. Note also that the

mean average estimators also tend to perform better in terms of MSE than POLS, especially in

cases where ρ is not so close to unity such as when ρ = 0.7 or 0.8.

7 Conclusion

In this paper, we introduce a new class of estimators, which are constructed by taking a weighted

average of the FD GMM/IV and the pooled OLS estimators. We show that an advantage of

this mean average estimator is that it is consistent and asymptotically normal when appropriately

standardized, regardless of whether the underlying AR(1) process is stationary or has a unit root.

Our simulation study also shows that this estimator performs well in finite sample relative to a

number of other estimators that have been proposed in the panel data literature.
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Table 1: Means of Various Estimators (N = 100)

ρ T WG Xdif POLS FDIV BIC1 BIC2 BIC3 BIC4

0.95 10 0.695 0.998 0.957 0.953 0.957 0.957 0.957 0.957

0.95 20 0.833 0.987 0.955 0.949 0.955 0.955 0.955 0.955

0.95 30 0.875 0.980 0.954 0.950 0.954 0.954 0.954 0.954

0.95 50 0.907 0.972 0.954 0.951 0.953 0.953 0.954 0.954

0.95 100 0.929 0.962 0.954 0.950 0.951 0.951 0.953 0.954

0.9 10 0.710 1.053 0.917 0.901 0.916 0.916 0.917 0.917

0.9 20 0.814 0.999 0.914 0.899 0.911 0.911 0.913 0.913

0.9 30 0.843 0.974 0.913 0.900 0.909 0.907 0.911 0.913

0.9 50 0.865 0.949 0.913 0.901 0.904 0.903 0.909 0.912

0.9 100 0.882 0.927 0.914 0.900 0.900 0.900 0.902 0.908

0.85 10 0.700 1.082 0.879 0.851 0.876 0.875 0.877 0.878

0.85 20 0.777 0.990 0.875 0.849 0.864 0.862 0.870 0.874

0.85 30 0.800 0.952 0.875 0.850 0.857 0.856 0.865 0.873

0.85 50 0.818 0.917 0.877 0.851 0.852 0.852 0.857 0.868

0.85 100 0.833 0.886 0.879 0.850 0.850 0.850 0.850 0.854

0.8 10 0.671 1.085 0.842 0.800 0.833 0.830 0.837 0.840

0.8 20 0.733 0.968 0.839 0.800 0.813 0.810 0.824 0.834

0.8 30 0.752 0.920 0.841 0.800 0.805 0.804 0.814 0.830

0.8 50 0.769 0.877 0.844 0.801 0.802 0.801 0.804 0.818

0.8 100 0.783 0.841 0.847 0.800 0.800 0.800 0.800 0.801

0.7 10 0.589 1.036 0.773 0.700 0.740 0.733 0.753 0.765

0.7 20 0.637 0.886 0.777 0.700 0.710 0.707 0.723 0.750

0.7 30 0.654 0.829 0.782 0.700 0.703 0.702 0.709 0.733

0.7 50 0.671 0.780 0.787 0.701 0.701 0.701 0.702 0.710

0.7 100 0.684 0.741 0.793 0.700 0.700 0.700 0.700 0.700
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Table 2: Means of Various Estimators (N = 200)

ρ T WG Xdif POLS FDIV BIC1 BIC2 BIC3 BIC4

0.95 10 0.695 0.999 0.958 0.953 0.958 0.958 0.958 0.958

0.95 20 0.833 0.987 0.955 0.949 0.955 0.955 0.955 0.955

0.95 30 0.876 0.980 0.955 0.950 0.955 0.954 0.955 0.955

0.95 50 0.907 0.972 0.954 0.950 0.953 0.952 0.954 0.954

0.95 100 0.929 0.962 0.954 0.950 0.951 0.950 0.951 0.953

0.9 10 0.711 1.053 0.918 0.901 0.918 0.917 0.918 0.918

0.9 20 0.814 0.999 0.914 0.899 0.912 0.907 0.912 0.914

0.9 30 0.843 0.974 0.914 0.900 0.908 0.903 0.907 0.912

0.9 50 0.865 0.949 0.913 0.900 0.901 0.900 0.901 0.906

0.9 100 0.882 0.927 0.914 0.900 0.900 0.900 0.900 0.900

0.85 10 0.701 1.082 0.880 0.851 0.878 0.872 0.877 0.879

0.85 20 0.777 0.990 0.876 0.849 0.862 0.853 0.860 0.869

0.85 30 0.800 0.953 0.876 0.850 0.853 0.851 0.853 0.861

0.85 50 0.818 0.917 0.877 0.850 0.850 0.850 0.850 0.852

0.85 100 0.833 0.886 0.879 0.850 0.850 0.850 0.850 0.850

0.8 10 0.672 1.086 0.843 0.801 0.835 0.819 0.830 0.838

0.8 20 0.733 0.968 0.840 0.799 0.807 0.801 0.805 0.816

0.8 30 0.753 0.921 0.842 0.800 0.801 0.800 0.801 0.806

0.8 50 0.769 0.877 0.844 0.800 0.800 0.800 0.800 0.801

0.8 100 0.783 0.840 0.848 0.800 0.800 0.800 0.800 0.800

0.7 10 0.590 1.037 0.774 0.700 0.734 0.710 0.723 0.743

0.7 20 0.637 0.886 0.778 0.699 0.702 0.700 0.701 0.708

0.7 30 0.655 0.829 0.783 0.700 0.701 0.700 0.700 0.702

0.7 50 0.670 0.780 0.788 0.700 0.700 0.700 0.700 0.700

0.7 100 0.684 0.741 0.794 0.700 0.700 0.700 0.700 0.700
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Table 3: Relative Mean Squares Errors against X-Differencing (N = 100)

ρ T WG Xdif POLS FDIV BIC1 BIC2 BIC3 BIC4

0.95 10 18.22 1.000 0.069 2.071 0.069 0.069 0.069 0.069

0.95 20 8.574 1.000 0.055 1.383 0.056 0.057 0.055 0.055

0.95 30 5.734 1.000 0.056 1.329 0.059 0.063 0.056 0.056

0.95 50 3.737 1.000 0.071 1.499 0.107 0.141 0.072 0.070

0.95 100 2.755 1.000 0.149 2.467 1.022 1.288 0.225 0.147

0.9 10 1.508 1.000 0.022 0.120 0.021 0.021 0.021 0.021

0.9 20 0.768 1.000 0.027 0.131 0.026 0.027 0.026 0.027

0.9 30 0.610 1.000 0.041 0.170 0.045 0.054 0.037 0.040

0.9 50 0.513 1.000 0.083 0.250 0.148 0.170 0.079 0.076

0.9 100 0.484 1.000 0.291 0.485 0.464 0.471 0.375 0.204

0.85 10 0.425 1.000 0.020 0.038 0.018 0.017 0.019 0.019

0.85 20 0.276 1.000 0.037 0.057 0.027 0.028 0.029 0.034

0.85 30 0.252 1.000 0.068 0.082 0.052 0.057 0.043 0.057

0.85 50 0.242 1.000 0.168 0.129 0.116 0.120 0.092 0.102

0.85 100 0.250 1.000 0.659 0.260 0.258 0.259 0.252 0.212

0.8 10 0.209 1.000 0.025 0.022 0.019 0.017 0.021 0.023

0.8 20 0.166 1.000 0.059 0.039 0.027 0.028 0.032 0.047

0.8 30 0.165 1.000 0.123 0.059 0.049 0.052 0.045 0.075

0.8 50 0.170 1.000 0.332 0.095 0.092 0.093 0.086 0.100

0.8 100 0.187 1.000 1.360 0.196 0.196 0.196 0.195 0.187

0.7 10 0.114 1.000 0.050 0.015 0.021 0.018 0.030 0.041

0.7 20 0.121 1.000 0.174 0.032 0.029 0.029 0.036 0.083

0.7 30 0.134 1.000 0.410 0.051 0.049 0.050 0.049 0.095

0.7 50 0.149 1.000 1.192 0.085 0.085 0.085 0.084 0.090

0.7 100 0.175 1.000 5.053 0.184 0.184 0.184 0.184 0.183
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Table 3: Relative Mean Squares Errors against X-Differencing (N = 200)

ρ T WG Xdif POLS FDIV BIC1 BIC2 BIC3 BIC4

0.95 10 21.93 1.000 0.050 1.206 0.050 0.050 0.050 0.050

0.95 20 9.040 1.000 0.040 0.728 0.040 0.042 0.040 0.040

0.95 30 5.694 1.000 0.044 0.679 0.044 0.058 0.044 0.044

0.95 50 3.746 1.000 0.056 0.791 0.075 0.278 0.069 0.056

0.95 100 2.743 1.000 0.133 1.275 0.908 1.196 0.747 0.170

0.9 10 1.503 1.000 0.018 0.059 0.018 0.017 0.018 0.018

0.9 20 0.762 1.000 0.025 0.065 0.021 0.025 0.021 0.023

0.9 30 0.589 1.000 0.039 0.084 0.034 0.061 0.034 0.033

0.9 50 0.503 1.000 0.081 0.131 0.110 0.127 0.106 0.061

0.9 100 0.474 1.000 0.292 0.250 0.249 0.249 0.248 0.236

0.85 10 0.417 1.000 0.018 0.018 0.017 0.013 0.016 0.017

0.85 20 0.272 1.000 0.036 0.028 0.018 0.023 0.018 0.024

0.85 30 0.242 1.000 0.067 0.040 0.033 0.039 0.034 0.029

0.85 50 0.235 1.000 0.167 0.068 0.067 0.068 0.067 0.061

0.85 100 0.243 1.000 0.670 0.134 0.134 0.134 0.134 0.133

0.8 10 0.203 1.000 0.024 0.011 0.017 0.010 0.014 0.019

0.8 20 0.162 1.000 0.059 0.019 0.016 0.018 0.016 0.019

0.8 30 0.158 1.000 0.123 0.029 0.027 0.028 0.027 0.025

0.8 50 0.165 1.000 0.334 0.050 0.050 0.050 0.050 0.049

0.8 100 0.180 1.000 1.393 0.101 0.101 0.101 0.101 0.101

0.7 10 0.110 1.000 0.050 0.007 0.014 0.007 0.010 0.020

0.7 20 0.118 1.000 0.177 0.016 0.015 0.016 0.015 0.016

0.7 30 0.127 1.000 0.411 0.025 0.025 0.025 0.025 0.025

0.7 50 0.144 1.000 1.211 0.046 0.046 0.046 0.046 0.046

0.7 100 0.166 1.000 5.218 0.096 0.096 0.096 0.096 0.096
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8 Appendix

This appendix is divided into two parts. In the first part, we prove the main results of the paper.

In the second part, we state and prove a number of supporting lemmas which are used in proving

the main results. Throughout this appendix, we let C denote a generic positive constant that may

be different in different uses.

8.1 Proofs of Theorems

Proof of Theorem 1:

To show part (a), first write

√
NT (ρ̂IV − ρ) =

(
1

NT

N∑

i=1

T∑

t=2

yit−2∆yit−1

)−1
1√
NT

N∑

i=1

T∑

t=2

yit−2∆εit.

Note that by tedious but straightforward calculations, we can show that

1

NT

N∑

i=1

T∑

t=2

yit−2∆yit−1

= − (1− ρ)
1

NT

N∑

i=1

T∑

t=2

t−3∑

j=0

t−3∑

k=0

ρj+kεit−2−jεit−2−k +Op
(
T−1

)
+Op

(
N−1

)

= − (1− ρ)
1

NT

N∑

i=1

T∑

t=2

t−3∑

j=0

t−3∑

k=0

ρj+kεit−2−jεit−2−k +Op
(
T−1

)

and

− (1− ρ)
1

NT

N∑

i=1

T∑

t=2

t−3∑

j=0

t−3∑

k=0

ρj+kεit−2−jεit−2−k
p→−

[
σ2

1 + ρ

]

as N,T →∞ such that T/N → κ ∈ [0,∞). It follows that

1

NT

N∑

i=1

T∑

t=2

yit−2∆yit−1
p→−

[
σ2

1 + ρ

]

as N,T →∞ such that T/N → κ ∈ [0,∞).

Next, note that

1√
NT

N∑

i=1

T∑

t=2

yit−2∆εit =
1√
NT

N∑

i=1

T∑

t=3

wit−2∆εit +Op
(
T−1/2

)

where

wit−2 =
t−3∑

k=0

ρkεit−2−k.
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From the proof of Lemma A1 below, it is evident that

1√
NT

N∑

i=1

T∑

t=3

wit−2∆εit =⇒ N

(
0,

2σ4

1 + ρ

)
.

as N,T →∞ such that T/N → κ ∈ [0,∞).

It follows by the Cramér Convergence Theorem that

√
NT (ρ̂IV − ρ) =⇒ −

(
1 + ρ

σ2

)
N

(
0,

2σ4

1 + ρ

)
≡ N (0, 2 [1 + ρ]) ,

as required.

Part (b) can be shown by modifying the argument given in Phillips (2014) for the case with

Gaussian errors. For brevity, the proof is omitted here. �

Proof of Theorem 2:

To show part (a), write

ρ̂pols

=

[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1

×
[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

) (
yit − yN,T

)
]

=

[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1

×
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)
(
ai (1− ρ) + ρyit−1 + εit −

1

N (T − 1)

N∑

i=1

T∑

t=2

[ai (1− ρ) + ρyit−1 + εit]

)

where

y−1,N,T =
1

N (T − 1)

N∑

i=1

T∑

t=2

yit−1, yN,T =
1

N (T − 1)

N∑

i=1

T∑

t=2

yit,

It follows that

ρ̂pols − ρ

=

[
N∑

i=1

T∑

t=2

(
yit−1 − yN,T

)2
]−1 N∑

i=1

T∑

t=2

(
yit−1 − yN,T

)
[ai − aN ] (1− ρ)

+

[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1 N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)
(εit − εN,T )

=

[
N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1 N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)
[ai (1− ρ) + εit]
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where

aN =
1

N

N∑

i=1

ai, εN,T =
1

N (T − 1)

N∑

i=1

T∑

t=2

εit.

We can show by tedious but straightforward calculations that, as N,T →∞ such that T/N →
κ ∈ [0,∞),

1

NT

N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
= σ2a +

σ2

1− ρ2
+Op

(
T−1

)
+Op

(
1√
NT

)

and

1

NT

N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)
[ai (1− ρ) + εit] = (1− ρ)σ2a +Op

(
1

T

)
+Op

(
1√
NT

)
.

It follows by Slutsky’s theorem that

ρ̂pols − ρ

=

[
1

NT

N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)2
]−1

1

NT

N∑

i=1

T∑

t=2

(
yit−1 − y−1,N,T

)
[ai (1− ρ) + εit]

=
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σ2a +

σ2

1− ρ2

]−1
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[
1 +Op

(
1

T

)
+Op

(
1√
NT

)]

so that

ρ̂pols
p→
[
σ2a +

σ2

1− ρ2

]−1
(1− ρ)σ2a =

σ2a (1− ρ)
(
1− ρ2

)

σ2a (1− ρ2) + σ2

as required.

To show part (b), write

√
NT

(
ρ̂pols − 1

)

=

[
1

NT 2

N∑

i=1

T∑

t=2

(
yit−1 − yN,T

)2
]−1

1√
NT

N∑

i=1

T∑

t=2

(
yit−1 − yN,T

)
εit

Define

wit−2 =
t−2∑

j=1

εij

and note that by direct calculation and using Lemma A6 below, we obtain, as N,T →∞ such that

T/N → κ ∈ [0,∞),
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[
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1 +Op
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σ4

2
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≡ N (0, 2) .

as required. �

Proof of Theorem 3:

We will prove this result only for the case where the weighting function is based on a logistic

type transformation, i.e.,

wIC,1 =
1

1 + exp
{
1
2∆IC

} ,

Asymptotic results when the weight function is of the form given by (20) can be proved similarly;

hence, for purposes of brevity, we omit its proof.

To proceed, consider first part (a), where we assume that ρ ∈ (0, 1). In this case, note that by

part (a) of Theorems 1 and 2 and Lemma A7, we have that

√
NT (ρ̂IV − ρ) =⇒ N (0, 2 [1 + ρ]) ,

ρ̂pols = ρ+
σ2a (1− ρ)

(
1− ρ2

)

σ2a (1− ρ2) + σ2
+Op

(
T−1

)
,

and
TNT

(NT )
1

2
−ε

p→−∞

for any ε > 0, as N,T →∞ such that T/N → κ ∈ [0,∞).

It follows that in this case,

∆IC = TNT + α ln (N) + β ln (T ) ∼ −
√
NT

which implies that

wIC =
1

1 + exp
{
1
2∆IC

} = 1+Op

(
exp

{
−1

2

√
NT

})
.
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Hence,
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(
exp

{
−1

2

√
NT

})]
(2 [1 + ρ̂IV])

−1/2

+

[
1− 1 +Op

(
exp

{
−1

2

√
NT

})]
Op
(√

NT
)}

×
{[

1 +Op

(
exp

{
−1

2

√
NT

})]
ρ̂IV − ρ+

[
1− 1 +Op

(
exp

{
−1

2

√
NT

})]
Op (1)

}

=

[√
NT (2 [1 + ρ̂IV])

−1/2 +Op

(√
NT exp

{
−1

2

√
NT

})]

×
[
ρ̂IV − ρ+Op

(
exp

{
−1

2

√
NT

})]

= (2 [1 + ρ̂IV])
−1/2

√
NT (ρ̂IV − ρT ) +Op

(√
NT exp

{
−1

2

√
NT

})

=⇒ N (0, 1)

Next, consider part (b), where we assume that ρ = 1. Now, by Theorem 1 part (b), we have,

as N,T →∞ such that T/N → κ ∈ [0,∞),

√
T
(
ρ̂IV − ρN,T

)
=⇒ 2Z1

Z2
where Z1 ≡ N (0, 1), Z2 ≡ N (0, 1), and Z1 and Z2 are independent. Moreover, by Theorem 2 part

(b) and Lemma A7,

√
NT

(
ρ̂pols − ρT

)
=⇒ N (0, 2) ,

TNT = Op (1)

as N,T →∞ such that T/N → κ ∈ [0,∞).

It follows that in this case

∆IC = TNT + α ln (N) + β ln (T ) = Op (max {α ln (N) , β ln (T )})
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which implies that

wIC =
1

1 + exp
{
1
2∆IC

}

=
1

1 +Op (exp {max {α ln (N) , β ln (T )}})

=
1

1 +Op (max {Nα, T β})

= Op

(
1

max {Nα, T β}

)
= op (1) .

It follows that

νNT
(
ρ̂avg − 1

)

=



wIC

(
2

NT
[1 + ρ̂IV]

)−1/2
+ (1−wIC) σ̂

−1

[
N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2


×
(
wIC ρ̂IV + (1−wIC) ρ̂pols − 1

)

=

{
Op

(
1

max {Nα, T β}
√
NT

)

+

(
1−Op

(
1

max {Nα, T β}

))
σ̂−1

[
1

NT 2

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2√
NT





×
[
ρ̂pols − 1 +Op

(
1

max {Nα, Tβ}

)]

= σ̂−1

[
1

NT 2

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2√
NT

(
ρ̂pols − ρT

)
+Op

(
1

Nα−3/2

)

= σ̂−1
[
σ2

2
+Op

(
1

T

)]1/2
2

σ2
1√
NT

N∑

i=1

T∑

t=2

wit−1εit

+σ̂−1
[
σ2

2
+Op

(
1

T

)]1/2
Op

(
1√
T

)
+Op

(
1

Nα−3/2

)

so that

νNT
(
ρ̂avg − 1

)
=

1√
2

2

σ2
σ2√
2
Z +Op

(
1√
T

)

= Z +Op

(
1√
T

)

=⇒ Z,

where Z ≡ N (0, 1), as required. �
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8.2 Supporting Lemmas

Lemma A1:

Suppose that Assumptions 1-4 hold, and let ρ ∈ (0, 1). Then, as N,T →∞ such that T/N →
κ ∈ [0,∞),

1

ωN,T

N∑

i=1

T∑

t=3

wit−2∆εit =⇒ N (0, 1)

where

wit−2 =
t−3∑

k=0

ρkεit−2−k,

ω2N,T =
N∑

i=1

ω2i,T =
N∑

i=1

E
[
(Xi,T + Yi,T )

2
]

and

Xi,T =
1√
T

T∑

t=3

εit−2εit−1,

Yi,T = (ρ− 1)
1√
T

T∑

t=3

wit−3εit−1

Proof:

To proceed, note first that, by Abel’s partial summation formula,

N∑

i=1

T∑

t=3

wit−2∆εit

=
N∑

i=1

{
T∑

t=3

(wit−3 −wit−2) εit−1

}
+

N∑

i=1

wiT−2εiT −
N∑

i=1

wi1εi2

=
N∑

i=1

T∑

t=4

(
t−4∑

k=0

ρkεit−3−k −
t−3∑

k=0

ρkεit−2−k

)
εit−1 +

N∑

i=1

T−3∑

k=0

ρkεiT−2−kεiT −
N∑

i=1

εi1εi2

Note that

E

(
N∑

i=1

T−3∑

k=0

ρkεiT−2−kεiT

)2

=
N∑

i=1

N∑

j=1

T−3∑

k=0

T−3∑

�=0

ρkρ�E [εiT−2−kεjT−2−�εiT εjT ]

= σ4
N∑

i=1

T−3∑

k=0

ρ2k

= σ4N

[
1− ρ2(T−2)

1− ρ2

]
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so that
N∑

i=1

T−3∑

k=0

ρkεiT−2−kεiT = Op
(√

N
)

Moreover,

E

(
N∑

i=1

εi1εi2

)2
=

N∑

i=1

N∑

j=1

E [εi1εj1εi2εj2] = σ4N

so that
N∑

i=1

εi1εi2 = Op
(√

N
)
.

It follows that

1√
NT

N∑

i=1

T∑

t=3

wit−2∆εit

=
1√
NT

N∑

i=1

T∑

t=3

(wit−3 −wit−2) εit−1 +Op

(
1√
T

)

= − 1√
NT

N∑

i=1

T∑

t=3

(εit−2 −wit−3 + ρwit−3) εit−1 +Op

(
1√
T

)

= − 1√
NT

N∑

i=1

T∑

t=3

[εit−2 + (ρ− 1)wit−3] εit−1 +Op

(
1√
T

)
.

Now, let

UN,T = −
N∑

i=1

(Xi,T + Yi,T )

where Xi,T and Yi,T are as defined in the statement of the lemma. Next, note that

E [Xi,T ] =
1√
T

T∑

t=4

E [εit−2εit−1] = 0

E [Yi,T ] = (ρ− 1)
1√
T

T∑

t=3

t−3∑

k=0

ρkE [εit−3−kεit−1]

= (ρ− 1)
1√
T

T∑

t=3

t−3∑

k=0

ρkE [εit−3−k]E [εit−1]

= 0

and, thus,

E
[
UN,T

]
= −

N∑

i=1

(E [Xi,T ] +E [Yi,T ]) = 0
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In addition, note that

E
[
X2
i,T

]
=

1

T

T∑

t=4

T∑

s=4

E [εit−2εit−1εis−2εis−1] =
1

T

T∑

t=4

E
[
ε2it−2

]
E
[
ε2it−1

]

= σ4
(
T − 3

T

)

= σ4 +O

(
1

T

)
,

E
[
Y 2i,T

]
= (ρ− 1)2

1

T

T∑

t=3

T∑

s=3

t−3∑

k=0

s−3∑

�=0

ρkρ�E [εit−3−kεis−3−�εit−1εis−1]

= σ4 (1− ρ)2
1

T

T∑

t=3

t−3∑

k=0

ρ2k

= σ4 (1− ρ)2
1

T

T∑

t=3

1− ρ2(t−2)

1− ρ2

=
σ4

T

(1− ρ)2

1− ρ2

{
(T − 2)− ρ2

1− ρ2(T−2)

1− ρ2

}

=
σ4

T

1− ρ

1 + ρ

{
(T − 2)− ρ2

1− ρ2(T−2)

1− ρ2

}

= σ4
(
1− ρ

1 + ρ

)
+O

(
1

T

)

and

E [Xi,TYi,T ] = (ρ− 1)
1

T

T∑

t=3

T∑

s=3

t−3∑

k=0

ρkE [εit−3−kεit−1εis−2εis−1] = 0

It follows that

ω2i,T = E
[
(Xi,T + Yi,T )

2
]

= σ4 + σ4
(
1− ρ

1 + ρ

)
+O

(
1

T

)

= σ4
1 + ρ+ 1− ρ

1 + ρ
+O

(
1

T

)

=
2σ4

1 + ρ
+O

(
1

T

)

ω2N,T =
N∑

i=1

ω2i,T =
2σ4

1 + ρ
N

[
1 +O

(
1

T

)]

Hence, to prove the required result, it suffices to show that

UN,T
ωN,T

=
1

ωN,T/
√
N

−1√
N

N∑

i=1

(Xi,T + Yi,T )
d→ N (0, 1)
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as N,T →∞ such that T/N → κ ∈ [0,∞). To show this, write

UN,T =
1

ωN,T/
√
N

−1√
N

N∑

i=1

(Xi,T + Yi,T )

Next, note that by direct calculations, we have

ω2N,T
N

=
1

N

N∑

i=1

ω2i,T =
2σ4

1 + ρ

1

N
N

[
1 +O

(
1

T

)]
=

2σ4

1 + ρ
+O

(
1

T

)
.

Since 0 < σ4 <∞ by assumption, it follows that there exists a positive constant C

0 <
1

C
≤ ωN,T√

N
≤ C <∞ eventually as N,T →∞.

Hence, to show the asymptotic normality of UN,T , it suffices to show that

lim
N,T→∞

N∑

i=1

E

[
1√
N

UN,T

]4
= lim
N,T→∞

1

N2

N∑

i=1

E
[
(Xi,T + Yi,T )

4
]
= 0

To show this, note first that by Loève’s cr inequality, we have that

1

N2

N∑

i=1

E
[
(Xi,T + Yi,T )

4
]

≤ 1

N2

N∑

i=1

8



E



(

1√
T

T∑

t=4

εit−2εit−1

)4
+E



(
(ρ− 1)

1√
T

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4





= 8
1

N2T 2

N∑

i=1

E



(

T∑

t=4

εit−2εit−1

)4
+ 8

(ρ− 1)4

N2T 2

N∑

i=1

E



(

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4

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Now,

E



(

T∑

t=4

εit−2εit−1

)4


=
T∑

r=4

T∑

s=4

T∑

t=4

T∑

u=4

E [εitr−2εis−2εit−2εiu−2εir−1εis−1εit−1εiu−1]

=
T∑

t=4

E
[
ε4it−2

]
E
[
ε4it−1

]
+ 6

T∑

s=6

s−2∑

t=4

E
[
ε2is−2

]
E
[
ε2is−1

]
E
[
ε2it−2

]
E
[
ε2it−1

]

+6
T−1∑

t=4

E
[
ε2it
]
E
[
ε4it−1

]
E
[
ε2it−2

]

=
(
E
[
ε4it−1

])2
(T − 3) + 6σ8

T∑

s=6

(s− 5) + 6E
[
ε4it−1

]
σ4 (T − 4)

= 6σ8
(T − 5) (T − 4)

2
+
(
E
[
ε4it−1

])2
(T − 3) + 6E

[
ε4it−1

]
σ4 (T − 4)

= 3σ8T 2
[
1 +O

(
1

T

)]

Moreover,

E



(

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4


=
T∑

r=3

T∑

s=3

T∑

t=3

T∑

u=3

r−3∑

h=0

s−3∑

j=0

t−3∑

k=0

u−3∑

�=0

ρhρjρkρ�E [εir−2−hεis−2−jεit−2−kεiu−2−�εir−1εis−1εit−1εiu−1]

≤ C

{
T∑

t=3

t−3∑

k=0

ρ4kE
[
ε4it−2−k

]
E
[
ε4it−1

]
+

T∑

t=4

t−1∑

s=3

s−3∑

�=0

ρ2�ρ2(t−s−1)E
[
ε2is−2−�

]
E
[
ε4is−1

]
E
[
ε2it−1

]

+
T∑

t=4

t−1∑

s=3

s−3∑

�=0

ρ2�ρ2(t−s+�)E
[
ε4is−2−�

]
E
[
ε2is−1

]
E
[
ε2it−1

]

+σ8
T∑

t=5

t−1∑

s=4

s−1∑

r=3

r−3∑

h=0

ρhρt−s−1ρs−r−1ρt−r+h

∣∣∣∣∣+
T∑

t=5

t−1∑

r=3

r−3∑

h=0

ρhρ2(t−r−1)ρt−r+h
∣∣E
[
ε3it−1

]∣∣ ∣∣E
[
ε3ir−1

]∣∣σ2
}
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for some positive constant C. Thus, given Assumption 1, there exists a positive constant C

E



(

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4


≤ C

[
T∑

t=3

t−3∑

k=0

ρ4k +
T∑

t=4

t−1∑

s=3

ρ2(t−s−1)
s−3∑

�=0

ρ2� +
T∑

t=4

t−1∑

s=3

ρ2(t−s)
s−3∑

�=0

ρ4�

+
T∑

t=5

t−1∑

s=4

s−1∑

r=3

r−3∑

h=0

ρ2(t−r−1+h) +
T∑

t=5

t−1∑

r=3

r−3∑

h=0

ρhρ2(t−r−1)ρt−r+h

]

= C

[
T∑

t=3

1− ρ4(t−2)

1− ρ4
+

T∑

t=4

t−1∑

s=3

ρ2(t−1−s)
1− ρ2(s−2)

1− ρ2
+

T∑

t=4

t−1∑

s=3

ρ2(t−s)
1− ρ4(s−2)

1− ρ4

+
T∑

t=5

t−1∑

s=4

ρ2(t−s)
s−1∑

r=3

ρ2(s−1−r)
1− ρ2(r−2)

1− ρ2
+

T∑

t=5

ρ3t
t−1∑

r=3

ρ−(3r+2)
1− ρ2(r−2)

1− ρ2

]

= C

[
T∑

t=3

1− ρ4(t−2)

1− ρ4
+

1

(1− ρ2)2

T∑

t=4

(
1− ρ2(t−3)

)

− 1

(1− ρ2)

T∑

t=4

(t− 3) ρ2(t−3) +
1

(1− ρ4) (1− ρ2)

T∑

t=4

ρ2
(
1− ρ2(t−3)

)

− 1

(1− ρ4) (1− ρ2)

T∑

t=4

ρ2(t−1)
(
1− ρ2(t−3)

)
+

1

(1− ρ2)2

T∑

t=5

t−1∑

s=4

ρ2(t−s)
(
1− ρ2(s−3)

)

− 1

(1− ρ2)

T∑

t=5

ρ2(t−3)
(t− 4) (t− 3)

2
+

1

(1− ρ3) (1− ρ2)

T∑

t=5

ρ
(
1− ρ3(t−3)

)

− 1

(1− ρ2) (1− ρ)

T∑

t=5

ρ2(t−1)−3
(
1− ρ(t−3)

)]

= C [I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9]

Next, note that using parts (a), (b), and (c) of Lemma A2, we obtain

I3

= − 1

(1− ρ2)

T∑

t=4

(t− 3) ρ2(t−3)

= − ρ

2 (1− ρ2)

{
2ρ− [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ2
(
1− ρ2(T−3)−1

)

(1− ρ)2

}

= O (1)
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I6

=
1

(1− ρ2)2

T∑

t=5

t−1∑

s=4

ρ2(t−s)
(
1− ρ2(s−3)

)

=
ρ2

(1− ρ2)3

T∑

t=5

(
1− ρ2(t−4)

)
− 1

(1− ρ2)2

T∑

t=5

ρ2(t−3) (t− 4)

=
ρ2

(1− ρ2)3

{
(T − 4)− ρ2

1− ρ2(T−4)

1− ρ2

}
− 1

(1− ρ2)2

T∑

t=5

ρ2(t−3) (t− 4)

=
ρ2

(1− ρ2)3

{
(T − 4)− ρ2

1− ρ2(T−4)

1− ρ2

}

− ρ

2 (1− ρ2)2

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4
(
1− ρ2T−9

)

(1− ρ)2
− ρ3

(
1− ρ2(T−4)

)

(1− ρ2)

}

= O (T )

I7

= − 1

(1− ρ2)

T∑

t=5

ρ2(t−3)
(t− 4) (t− 3)

2

= − 1

2 (1− ρ2)

ρ2

4

{
12ρ2 − [2 (T − 3) + 1] 2 (T − 3) ρ2(T−3)−1

1− ρ
+

8ρ3 − 2 [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2

+
2
[
ρ4 − ρ2(T−3)+1

]

(1− ρ)3

}
+

1

2 (1− ρ2)

ρ

4

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4 − ρ2(T−3)+1

(1− ρ)2

}

= − ρ2

8 (1− ρ2)

{
12ρ2 − [2 (T − 3) + 1] 2 (T − 3) ρ2(T−3)−1

1− ρ
+

8ρ3 − 2 [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2

+
2
[
ρ4 − ρ2(T−3)+1

]

(1− ρ)3

}
+

ρ

8 (1− ρ2)

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4 − ρ2(T−3)+1

(1− ρ)2

}

= O (1) .

In addition, by direct calculations, we have

I1 =
T∑

t=3

1− ρ4(t−2)

1− ρ4
=

1

1− ρ4

{
(T − 2)− ρ4

1− ρ4(T−2)

1− ρ4

}
= O (T )

I2 =
1

(1− ρ2)2

T∑

t=4

(
1− ρ2(t−3)

)

=
1

(1− ρ2)2

{
(T − 3)− ρ2

1− ρ2(T−3)

1− ρ2

}

= O (T )
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I4 =
1

(1− ρ4) (1− ρ2)

T∑

t=4

ρ2
(
1− ρ2(t−3)

)

=
ρ2

(1− ρ4) (1− ρ2)

{
(T − 3)− ρ2

1− ρ2(T−3)

1− ρ2

}

= O (T )

I5 = − 1

(1− ρ4) (1− ρ2)

T∑

t=4

ρ2(t−1)
(
1− ρ2(t−3)

)

= − ρ6

(1− ρ4) (1− ρ2)2

(
1− ρ2(T−3)

)
+

ρ8

(1− ρ4)2 (1− ρ2)

(
1− ρ4(T−3)

)

= O (1)

I8 =
1

(1− ρ3) (1− ρ2)

T∑

t=5

ρ
(
1− ρ3(t−3)

)

=
ρ

(1− ρ3) (1− ρ2)

{
(T − 4)− ρ6

1− ρ3(T−4)

1− ρ3

}

= O (T )

I9 = − 1

(1− ρ2) (1− ρ)

T∑

t=5

ρ2(t−1)−3
(
1− ρ(t−3)

)

= − ρ5
(
1− ρ2(T−4)

)

(1− ρ2)2 (1− ρ)
+

ρ7
(
1− ρ3(T−4)

)

(1− ρ3) (1− ρ2) (1− ρ)

= O (1)

Putting these results together, we have

E



(

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4
 = O (T )

Hence,

1

N2

N∑

i=1

E
[
(Xi,T + Yi,T )

4
]

≤ 8
1

N2T 2

N∑

i=1

E



(

T∑

t=4

εit−2εit−1

)4
+ 8

(ρ− 1)4

N2T 2

N∑

i=1

E



(

T∑

t=3

t−3∑

k=0

ρkεit−2−kεit−1

)4


= O

(
1

N2T 2
NT 2

)
+O

(
1

N2T 2
NT

)

= O
(
N−1

)
,

as required. �
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Lemma A2:

(a)

T∑

t=4

(t− 1) ρ2(t−3)

=
ρ

2

{
2ρ− [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ2
(
1− ρ2(T−3)−1

)

(1− ρ)2

}
+

2ρ2
(
1− ρ2(T−3)

)

1− ρ2

(b)

T∑

t=5

ρ2(t−3) (t− 4)

=
ρ

2

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4
(
1− ρ2T−9

)

(1− ρ)2

}
− ρ4

(
1− ρ2(T−4)

)

2 (1− ρ2)

=
ρ

2

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4
(
1− ρ2T−9

)

(1− ρ)2
− ρ3

(
1− ρ2(T−4)

)

1− ρ2

}

(c)

T∑

t=5

(t− 4) (t− 3) ρ2(t−3) =
ρ2

4

{
12ρ2 − [2 (T − 3) + 1] 2 (T − 3) ρ2(T−3)−1

1− ρ

+
8ρ3 − 2 [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2
+

2
[
ρ4 − ρ2(T−3)+1

]

(1− ρ)3

}

−ρ

4

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4 − ρ2(T−3)+1

(1− ρ)2

}
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Proof:

To show part (a), note that

T∑

t=4

(t− 3) ρ2(t−3)

=
ρ

2

T∑

t=4

2 (t− 3) ρ2(t−3)−1

=
ρ

2

2(T−3)∑

s=2

sρs−1

=
ρ

2

∂

∂ρ



ρ2

2(T−3)∑

s=2

ρs−2





=
ρ

2

∂

∂ρ

{
ρ2

1− ρ2(T−3)−1

1− ρ

}

=
ρ

2

∂

∂ρ

{
ρ2 − ρ2(T−3)+1

1− ρ

}

=
ρ

2

{
2ρ− [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ2
(
1− ρ2(T−3)−1

)

(1− ρ)2

}

To show part (b), note that

T∑

t=5

(t− 4) ρ2(t−3)

=
ρ

2

T∑

t=5

2 (t− 3− 1) ρ2(t−3)−1

=
ρ

2

T∑

t=5

2 (t− 3) ρ2(t−3)−1 − ρ

2

T∑

t=5

ρ2(t−3)−1

=
ρ

2

2(T−3)∑

s=4

sρs−1 − ρ4

2

T∑

t=5

ρ2(t−5)

=
ρ

2

∂

∂ρ



ρ4

2(T−3)∑

s=4

ρs−4



−

ρ4
(
1− ρ2(T−4)

)

2 (1− ρ2)

=
ρ

2

∂

∂ρ

{
ρ4

1− ρ2(T−3)−3

1− ρ

}
− ρ4

(
1− ρ2(T−4)

)

2 (1− ρ2)

=
ρ

2

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4
(
1− ρ2T−9

)

(1− ρ)2

}
− ρ4

(
1− ρ2(T−4)

)

2 (1− ρ2)

=
ρ

2

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4
(
1− ρ2T−9

)

(1− ρ)2
− ρ3

(
1− ρ2(T−4)

)

1− ρ2

}
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Finally, to show part (c), note that

T∑

t=5

(t− 4) (t− 3) ρ2(t−3)

=
ρ2

4

T∑

t=5

[2 (t− 3)− 1] 2 (t− 3) ρ2(t−3)−2 − ρ2

4

T∑

t=5

2 (t− 3) ρ2(t−3)−2

=
ρ2

4

T∑

t=5

[2 (t− 3)− 1] 2 (t− 3) ρ2(t−3)−2 − ρ

4

T∑

t=5

2 (t− 3) ρ2(t−3)−1

=
ρ2

4

2(T−3)∑

s=4

[s− 1] sρs−2 − ρ

4

2(T−3)∑

s=4

sρs−1

=
ρ2

4

∂2

∂ρ2



ρ4

2(T−3)∑

t=4

ρs−4



−

ρ

4

∂

∂ρ



ρ4

2(T−3)∑

s=4

ρs−4





=
ρ2

4

∂2

∂ρ2

{
ρ4
(
1− ρ2(T−3)−3

)

1− ρ

}
− ρ

4

∂

∂ρ

{
ρ4
(
1− ρ2(T−3)−3

)

1− ρ

}

=
ρ2

4

{
12ρ2 − [2 (T − 3) + 1] 2 (T − 3) ρ2(T−3)−1

1− ρ
+

4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2

+
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2
+

2
[
ρ4 − ρ2(T−3)+1

]

(1− ρ)3

}

−ρ

4

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4 − ρ2(T−3)+1

(1− ρ)2

}

=
ρ2

4

{
12ρ2 − [2 (T − 3) + 1] 2 (T − 3) ρ2(T−3)−1

1− ρ
+

8ρ3 − 2 [2 (T − 3) + 1] ρ2(T−3)

(1− ρ)2

+
2
[
ρ4 − ρ2(T−3)+1

]

(1− ρ)3

}
− ρ

4

{
4ρ3 − [2 (T − 3) + 1] ρ2(T−3)

1− ρ
+

ρ4 − ρ2(T−3)+1

(1− ρ)2

}

Lemma A3 (Phillips and Moon, 1999, Theorem 3): Suppose that Yi,T = CiQi,T , where the

(m× 1) random vectors Qi,T are i.i.d. (0,ΣT ) across i for all T and the Ci are (m×m) nonzero

and nonrandom matrices. Assume the following conditions hold.

(i) Let σ2T = λmin (ΣT ) and lim infT σ2T > 0;

(ii) max1≤i≤n ‖Ci‖2 /λmin
(∑N

i=1
CiC

′
i

)
= O (1/N) as N →∞;

(iii) ‖Qi,T‖2 are uniformly integrable in T ;

(iv) limN,T (1/N)
∑N

i=1
CiΣTC

′
i = Ω > 0.
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Then,

XN,T =
1√
N

N∑

i=1

Yi,T =⇒ N (0,Ω) , as N,T →∞.

Lemma A4 (Phillips and Moon, 1999, Corollary 1): Suppose that Yi,T = CiQi,T , where

Qi,T are i.i.d. across i for all T , and the Ci are (m×m) nonrandom matrices for all i. Assume that

Qi,T are integrable for all T and Qi,T =⇒ Qi as T → ∞. Assume that C = limN (1/N)
∑N

i=1
Ci

exists. If ‖Qi,T‖ is uniformly integrable in T for all i, and if supi ‖Ci‖ <∞, then

1

N

N∑

i=1

Yi,T
p→ CE [Qi]

as N,T →∞.

Lemma A5: Suppose that Assumption 1 holds and define

wit−1 =
t−1∑

k=0

εit−1−k

with εi0 = 0. Then,

(a)

1

T

T∑

t=2

wit−1εit =⇒
σ2

2

[
χ21 − 1

]
= σ2

∫ 1

0
Wi (r) dWi (r) ,

as T →∞.

(b)

1

T 2

T∑

t=2

w2it−1 =⇒ σ2
∫ 1

0
[Wi (r)]

2 dr

as T →∞.

Joint weak convergence of (a) and (b) also apply.

Proof:

These results are well-known from the unit root literature, so we omit the proof. �

Lemma A6: Suppose that Assumption 1 holds. Then,

(a)

1

T

T∑

t=2

wit−1εit =⇒ N

(
0,

σ4

2

)
,

as N,T →∞ such that T/N → κ ∈ [0,∞).
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(b)

1

NT 2

N∑

i=1

T∑

t=2

w2it−1
p→ σ2

2

as N,T →∞ such that T/N → κ ∈ [0,∞)

Proof:

To show part (a), we verify the conditions of Theorem 3 of Phillips and Moon (1999), given

above as Lemma A3. To proceed, first define

Qi,T =
1

T

T∑

t=2

wit−1εit.

and note that by direct calculation

lim inf
T→∞

σ2T = lim inf
T→∞

E
[
Q2i,T

]

= lim
T→∞

E
[
Q2i,T

]

= lim
T→∞

1

T 2

T∑

t=2

T∑

s=2

t−1∑

k=1

s−1∑

�=1

E [εikεi�εitεis]

= lim
T→∞

1

T 2

T∑

t=2

t−1∑

k=1

E
[
ε2ik
]
E
[
ε2it
]

= σ4 lim
T→∞

T (T − 1)

2T 2

=
σ4

2
> 0

so that condition (i) of Lemma A3 is satisfied. Moreover, in this case, we have

Ci = 1 for all i

so that

max
1≤i≤n

‖Ci‖2 /λmin
(∑N

i=1
CiC

′
i

)
= 1/N = O (1/N)

as required by condition (ii). Next, observe that by part (a) of Lemma A5, we have that as T →∞,

Qi,T =
1

T

T∑

t=2

wit−1εit =⇒
σ2

2

[
χ21 − 1

]
≡ Q

so that by the continuous mapping theorem

Q2i,T =⇒ Q2 ≡ σ4

4

[
χ21 − 1

]2
, as T →∞
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In addition,

E
[
Q2
]

=
σ4

4

{
E
[
χ21
]2 − 2E

[
χ21
]
+ 1
}

=
σ4

4

{
V ar

[
χ21
]
+
(
E
[
χ21
])2 − 2E

[
χ21
]
+ 1
}

=
σ4

4
{2 + 1− 2 + 1}

=
σ4

2
,

and note that, as T →∞,

lim
T→∞

E
[
Q2i,T

]
= σ4 lim

T→∞

T (T − 1)

2T 2
=

σ4

2
= E

[
Q2
]
.

It follows from Theorem 5.4 of Billingsley (1968) that
{
Q2i,T

}
is uniformly integrable, so that

condition (iii) of Lemma A3 is satisfied. Finally, note that in this case

lim
N,T

(1/N)
∑N

i=1
CiΣTC

′
i = lim

N,T
(1/N)

∑N

i=1
E
[
Q2i,T

]
=

σ4

2
> 0

so that condition (iv) is satisfied as well. It follows then from Lemma A3 that

Qi,T =
1

T

T∑

t=2

wit−1εit =⇒ N

(
0,

σ4

2

)

as N,T →∞.

To show part (b), we verify the conditions of Corollary 1 of Phillips and Moon (1999), given

here as Lemma A4. To proceed, define now

Qi,T =
1

T 2

T∑

t=2

w2it−1.

Note that Qi,T is integrable in light of Assumption 1 and by part (b) of Lemma A5, we have that,

as T →∞

Qi,T =
1

T 2

T∑

t=2

w2it−1 =⇒ σ2
∫ 1

0
[Wi (r)]

2 dr = Qi.

Again, we have in this case

Ci = 1 for all i

so that trivially,

C = lim
N

(1/N)
∑N

i=1
Ci = 1 <∞.

and

sup
i
‖Ci‖ = 1 <∞.
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Moreover, in this case,

E [|Qi,T |] = E [Qi,T ]

=
1

T 2

T∑

t=2

E
[
w2it−1

]

=
1

T 2

T∑

t=2

t−1∑

k=1

t−1∑

�=1

E [εikεi�]

=
1

T 2

T∑

t=2

t−1∑

k=1

E
[
ε2ik
]

= σ2
T (T − 1)

2T 2

so that, as T →∞,

lim
T→∞

E [|Qi,T |] = σ2 lim
T→∞

T (T − 1)

2T 2
=

σ2

2
= σ2

∫ 1

0
E [Wi (r)]

2 dr = E [Qi] for all i.

It follows from Theorem 5.4 of Billingsley (1968) that {|Qi,T |} is uniformly integrable in T for all

i. Hence, all the conditions of Lemma A4 are satisfied, and we deduce from this lemma that

1

N

N∑

i=1

Qi,T =
1

NT 2

N∑

i=1

T∑

t=2

w2it−1
p→ CE [Qi] =

σ2

2

as N,T →∞. �

Lemma A7: Under Assumptions 1-4, the following statements are true.

(a) If ρ ∈ (0, 1) ,
TNT

(NT )
1

2
−ε

p→−∞

for any ε > 0, as N,T →∞ such that T/N → κ ∈ [0,∞).

(b) If ρ = 1,

TNT =⇒ N (0, 1) ,

as N,T →∞ such that T/N → κ ∈ [0,∞).

Proof:

To show (a), note from part (a) of Theorem 2 that in this case

ρ̂pols = ρ+
σ2a (1− ρ)

(
1− ρ2

)

σ2a (1− ρ2) + σ2
+Op

(
T−1

)
,
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so that

ρ̂pols − 1
p→− (1− ρ) +

σ2a (1− ρ)
(
1− ρ2

)

σ2a (1− ρ2) + σ2
= − σ2 (1− ρ)

σ2a (1− ρ2) + σ2
< 0

as N,T →∞ such that T/N → κ ∈ [0,∞). Note also that

N∑

i=1

T∑

t=2

(
yit−1 − y−1,NT

)2
= Op (NT )

where

y−1,NT =
1

N (T − 1)

N∑

i=1

T∑

t=2

yit−1

It follows that for any ε > 0

TNT

(NT )
1

2
−ε

=
ρ̂pols − 1

(NT )
1

2
−ε

√√√√σ̂2

[
N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]−1

= σ̂−1

[
1

NT

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2 √
NT

(
ρ̂pols − 1

)

(NT )
1

2
−ε

= σ̂−1

[
1

NT

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2
(NT )ε

(
ρ̂pols − 1

) p→−∞

Next, consider part (b), where we assume that ρ = 1. In this case, by part (b) Theorem 2, we have

√
NT

(
ρ̂pols − ρT

)
=⇒ N (0, 2)

as N,T →∞ such that T/N → κ ∈ [0,∞). Moreover, in this case, we have

1

NT 2

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2 =

1

NT 2

N∑

i=1

T∑

t=2

w2it−1 +Op

(
1

T

)
p→ σ2

2

It follows that

TNT

=
ρ̂pols − 1√√√√σ̂2

[
N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]−1

=

[
1

NT 2

N∑

i=1

T∑

t=2

(yit−1 − yNT )
2

]1/2 √
NT

(
ρ̂pols − 1

)

σ̂
=⇒ σ√

2

N (0, 2)

σ
≡ N (0, 1)

as N,T →∞ such that T/N → κ ∈ [0,∞), thus, establishing the required result. �
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