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TRANSITION MODELING AND ECONOMETRIC
CONVERGENCE TESTS

By PETER C. B. PHILLIPS AND DONGGYU SUL!

A new panel data model is proposed to represent the behavior of economies in tran-
sition, allowing for a wide range of possible time paths and individual heterogeneity.
The model has both common and individual specific components, and is formulated as
a nonlinear time varying factor model. When applied to a micro panel, the decompo-
sition provides flexibility in idiosyncratic behavior over time and across section, while
retaining some commonality across the panel by means of an unknown common growth
component. This commonality means that when the heterogeneous time varying idio-
syncratic components converge over time to a constant, a form of panel convergence
holds, analogous to the concept of conditional sigma convergence. The paper provides
a framework of asymptotic representations for the factor components that enables the
development of econometric procedures of estimation and testing. In particular, a sim-
ple regression based convergence test is developed, whose asymptotic properties are
analyzed under both null and local alternatives, and a new method of clustering panels
into club convergence groups is constructed. These econometric methods are applied
to analyze convergence in cost of living indices among 19 U.S. metropolitan cities.

KEYWORDS: Club convergence, relative convergence, common factor, convergence,
log ¢ regression test, panel data, transition.

1. INTRODUCTION

IN THE PAST DECADE, the econometric theory for dynamic panel regressions
has developed rapidly alongside a growing number of empirical studies involv-
ing macro, international, regional, and micro economic data. This rapid devel-
opment has been stimulated both by the availability of new data sets and by the
recognition that panels help empirical researchers to address many new eco-
nomic issues. For example, macro aggregated panels such as the Penn World
Table (PWT) data have been used to investigate growth convergence and eval-
uate the many diverse determinants of economic growth. Durlauf and Quah
(1999) and Durlauf, Johnson, and Temple (2005) provided excellent overviews
of this vast literature and the econometric methodology on which it depends.
Similarly, micro panel data sets such as the PSID have been extensively used to
analyze individual behavior of economic agents across section and over time;
see Ermisch (2004) and Hsaio (2003) for recent overviews of micro panel re-
search. A pervasive finding in much of this empirical panel data research is the
importance of individual heterogeneity. This finding has helped researchers to
build more realistic models that account for heterogeneity, an example being
the renewed respect in macroeconomic modeling for micro foundations that

'Our thanks go to two referees and a co-editor for helpful comments on an earlier version.
Phillips acknowledges partial research support from a Kelly Fellowship and the NSF under Grant
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accommodate individual heterogeneity; see Browning, Hansen, and Heckman
(1999), Krusell and Smith (1998), Givenen (2005), and Browning and Carro
(2006).

Concerns about capturing heterogeneous agent behavior in economic theory
and modeling this behavior in practical work have stimulated interest in the
empirical modeling of heterogeneity in panels. One popular empirical model
involves a common factor structure and idiosyncratic effects. Early economet-
ric contributions of this type analyzed the asymptotic properties of common
factors in asset pricing models (e.g., Chamberlain and Rothschild (1983) and
Connor and Korajczyk (1986, 1988)). Recent studies have extended these fac-
tor models in several directions and developed theory for the determination of
the number of common factors and for inference in panel models with nonsta-
tionary common factors and idiosyncratic errors (e.g., Bai (2003, 2004), Bai and
Ng (2002, 2006), Stock and Watson (1999), Moon and Perron (2004), Phillips
and Sul (2006)). There is much ongoing work in the econometric development
of the field to better match the econometric methods to theory and to the needs
of empirical research.

To illustrate some of the issues, take the simple example of a single factor
model

(1) Xii = 0iju + €5,

where 6; measures the idiosyncratic distance between some common factor w,
and the systematic part of X;,. The econometric interpretation of w, in appli-
cations may differ from the prototypical interpretation of a “common factor”
or aggregate element of influence in micro or macro theory. The factor w,
may represent the aggregated common behavior of X, but it could also be
any common variable of influence on individual behavior, such as an interest
rate or exchange rate. The model then seeks to capture the evolution of the
individual X, in relation to u, by means of its two idiosyncratic elements: the
systematic element (8;) and the error (e;;).

The present paper makes two contributions in this regard. First, we extend
(1) in a simple manner by allowing the systematic idiosyncratic element to
evolve over time, thereby accommodating heterogeneous agent behavior and
evolution in that behavior by means of a time varying factor loading coefficient
8. We further allow 6; to have a random component, which absorbs €;, in
(1) and allows for possible convergence behavior in §;, over time in relation to
the common factor w,, which may represent some relevant aggregate variable
or possible representative agent behavior. The new model has a time varying
factor representation

(2) Xy = ainuﬂt,

where both components 6;, and u, are time varying and there may be some spe-
cial behavior of interest in the idiosyncratic element §;, over time. As discussed
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in Section 4, we model the time varying behavior of §;, in semiparametric form
as

(3) 8y =8+ a:& L()'t7°,

where §; is fixed, &, is iid(0, 1) across i but weakly dependent over ¢, and L(t)
is a slowly varying function (like log¢) for which L(¢) — oo as t — oo (see
equation (24)). This formulation ensures that §;, converges to §; for all & > 0,
which therefore becomes a null hypothesis of interest. If this hypothesis holds
and 8; = §; for i # j, the model still allows for transitional periods in which
6, # 8, thereby incorporating the possibility of transitional heterogeneity or
even transitional divergence across i. As shown later, further heterogeneity
may be introduced by allowing the decay rate « and slowly varying function
L(t) to be individual specific.

Such formulations accommodate some recent models of heterogeneous
agent behavior. For example, heterogeneous discount factor models typically
assume that the heterogeneity is transient and that the discount factors be-
come homogeneous in the steady state (e.g., Uzawa (1968), Lucas and Stokey
(1984), Obstfeld (1990), Schmidt-Grohe and Uribe (2003), Choi, Mark, and
Sul (2006)). In such cases, §;, contains information relating to these assumed
characteristics. The parameter of interest is then §8;,, and particular attention
is focused on its temporal evolution and convergence behavior.

The second contribution of the paper addresses this latter issue and involves
the development of an econometric test of convergence for the time varying
idiosyncratic components. Specifically, we develop a simple regression based
test of the hypothesis H,:6;, — 6 for some é as + — oo. The approach has
several features that make it useful in practical work. First, the test does not
rely on any particular assumptions concerning trend stationarity or stochastic
nonstationarity in X; or w,. Second, the nonlinear form of the model (2) is
sufficiently general to include a wide range of possibilities in terms of the time
paths for §;, and their heterogeneity over i. By focusing on §;,, our approach
delivers information about the transition path of §;, and allows for the impor-
tant case in practice where individual behavior may be transitionally divergent.

The remainder of the paper is organized into eight sections. Section 2 mo-
tivates our approach in terms of some relevant economic examples of factor
models in macroeconomic convergence, labor income evolution, and stock
prices. A major theme in our work is the analysis of long run equilibrium and
convergence by means of a transition parameter, £;. This parameter is con-
structed directly from the data X, and is a functional of §;, that provides a
convenient relative measure of the temporal evolution of §;,. Under certain
regularity conditions, we show in Section 3 that 4, has an asymptotic repre-
sentation in a standardized form that can be usefully interpreted as a relative
transition path for economy i in relation to other economies in the panel.

Section 4 introduces a new regression test of convergence and a procedure
for clustering panel data into clubs with similar convergence characteristics.
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We call the regression test of convergence the log ¢ test because it is based on a
time series linear regression of a cross section variance ratio of the £;, on log«.
This test is very easy to apply in practice, involving only a simple linear regres-
sion and a one-sided regression coefficient test with standard normal critical
values. The asymptotic properties of this test are obtained and a local asymp-
totic power analysis is provided. The regression on which this test is based also
provides an empirical estimate of the speed of convergence. This section pro-
vides a step by step procedure for practical implementation of this test and its
use as a clustering algorithm to find club convergence groups. An analysis of
the statistical properties of the convergence test and club convergence cluster-
ing algorithm is given in the Appendix.

Section 5 reports the results of some Monte Carlo experiments that evaluate
the performance of the convergence test in finite samples. The experiments
are set up to include some practically interesting and relevant data generating
processes.

Section 6 contains an empirical application of our methods to test for con-
vergence in the cost of living across 19 metropolitan U.S. cities using consumer
price indices. The empirical results reveal no convergence in cost of living
among U.S. cities. Apparently, the cost of living in major metropolitan cities
in California is increasing faster than in the rest of the United States, while the
cost of living in St. Louis and Houston is decreasing relative to the rest of the
United States.

Section 7 concludes the paper. The Appendices contain technical material
and proofs.

2. TIME VARYING FACTOR REPRESENTATION AND CONVERGENCE

Panel data X, are often usefully decomposed as
4) Xir = gt + air,

where g;, embodies systematic components, including permanent common
components that give rise to cross section dependence, and a;, represents tran-
sitory components. For example, the panel X; could comprise log national
income data such as the PWT, regional log income data such as the 48 con-
tiguous U.S. state log income data, regional log consumer price index data, or
personal survey income data among many others. We do not assume any par-
ticular parametric specification for g; and a;, at this point, and the framework
includes many linear, nonlinear, stationary, and nonstationary processes.

As it stands, the specification (4) may contain a mixture of both common
and idiosyncratic components in the elements g;, and a;,. To separate common
from idiosyncratic components in the panel, we may transform (4) to the form
of (2), namely

g+ a;
M

(5) X, = (

>,ut =0;u, foralliandt,
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where u, is a single common component and §;, is a time varying idiosyn-
cratic element. For example, if u, represents a common trend component in
the panel, then §;, measures the relative share in u, of individual i at time ¢.
Thus, 6;; is a form of individual economic distance between the common trend
component u, and X;,. The representation (5) is a time varying factor model
of the form (2) in which w, is assumed to have some deterministic or stochasti-
cally trending behavior that dominates the transitory component a;, as t — oo.
Factoring out a common trend component w, in (5) leads naturally to specifi-
cations of the form (3) for §;,. Additionally, under some regularity conditions
it becomes possible to characterize a limiting relative transition path for X,
as discussed in Section 3. When both g; and a;, behave like 7 (0) variables over
time, this limiting characterization is not as relevant and factoring such as (5)
with transition properties for §,, like those of (3) are less natural.?

The following examples illustrate how the simple econometric representa-
tion (5) usefully fits in with some micro- and macroeconomic models that are
commonly used in applied work.

Economic Growth: Following Parente and Prescott (1994), Howitt and
Mayer-Foulkes (2005), and Phillips and Sul (2006), and allowing for hetero-
geneous technology progress in a standard neoclassical growth model, log per
capita real income, log y;;, can be written as

(6) logy;, =logy’ + (logy,y — log y;")e‘ﬁ“ +log A;y = a; +log A,

where logy; is the steady state level of log per capita real effective income,
log y, is the initial log per real effective capita income, B, is the time varying
speed of convergence rate, and log A4;, is the log of technology accumulation
for economy i at time ¢. The relationship is summarized in (6) in the terms a;,
and log A;,, where a;, captures transitional components and log A4;, includes
permanent components. Within this framework, Phillips and Sul (2006) further
decomposed log A4;,; as

log A;; =log Ay + v log A,

writing current technology for country i in terms of initial technology accu-
mulation, log 4;, and a component, vy; log A,, that captures the distance of
country i technology from publicly available advanced technology, log A,, at
time ¢. The coefficient vy;, that measures this distance may vary over time and
across country. If advanced technology log A, is assumed to grow at a constant
rate a, then

i« +log A, i« log A
gy = (4 e+ g

)at = 8y,

“Nonetheless, when factor representations like (5) do arise in the 7(0) case, some related
modeling possibilities for the transition curves are available and these will be explored in later
work.
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corresponding to (5) and 6;, may be modeled according to (3). Phillips and
Sul called &;, a transition parameter and w, a common growth component. Both
components are of interest in this example. In the analysis of possible growth
convergence or divergence over time and in the study of heterogeneous tran-
sition paths across economies, the time varying component §;, is especially im-
portant.

Labor Income: In labor economics (e.g., Katz and Autor (1999), Moffitt and
Gottschalk (2002)), personal log real income logy; within a particular age
group is commonly decomposed into components of permanent income, g,
and transitory income, a;;, so that

log yi = gir + ;s

Typically, transitory income is interpreted as an idiosyncratic component and
permanent income is regarded as having some common (possibly stochastic)
trend component. Again, this model may be rewritten as in (5) by factoring
out the common stochastic trend component. The main parameter of interest
then becomes the time profile of the personal factor loading coefficient 6;,.
The evolution of this parameter may then be modeled in terms of individual
attributes and relevant variables, such as education, vocational training, or job
experience.

For example, gender wage differences might be examined by modeling wages
as log y;, = 8,1, with 8;, satisfying

PO R for i € M (male),
" 6r forieF (female),

where u, represents a common overall wage growth component. Alternatively,
wages might be modeled as log y;, = 6yt + OFi s, With possibly distinct
male and female growth components ), and wr, that both influence overall
wage growth but with coefficients satisfying

(7 Omit —> Oy, Opiy— 0 for ieM,

8Mit_>0: 6Fit_) 1 for ieF.

Then log y;, = (8 (r/ tre) + OFi) por, = 8i1 4y, in which case the transition
coefficient §; may diverge if trend wage growth is higher for males than fe-
males. In either case, we can model wages as a single common factor without
loss of generality within each convergent subgroup, and overall convergence
and divergence may be assessed in terms of the time evolution of §;,.
Importantly also, by analyzing subgroup-convergent behavior among the
idiosyncratic transition coefficients §;,, one may locate the sources of diver-
gence in a panel. Suppose, for instance, that wage inequality arises because of
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gender differences as well as certain other factors. By identifying convergence
clubs in the wage transition coefficients and analyzing the characteristics of
these clubs, the sources of wage inequality may be identified empirically.

Stock Price Factor Modeling: Models with a time varying factor structure
have been popular for some time in finance. For example, Fama and French
(1993, 1996) modeled stock returns R;, as

(8) Rii = 1,01 + v2,i 02 + 3,003 + €5,

where the 6, are certain “common” determining factors for stock returns,
while the v, ; are time varying factor loading coefficients that capture the in-
dividual effects of the factors. It has often been found convenient in applied
research to assume that the time varying loading coefficients are constant over
short time periods. Ludvigson and Ng (2007), for instance, recently estimated
the number of common factors in a model of the form (8) based on time invari-
ant factor loadings. On the other hand, Adrian and Franzoni (2005) relaxed the
assumption and attempted to estimate time varying loadings by means of the
Kalman filter under the assumption that the factor loadings follow an AR(1)
specification.

Alternatively, as in Menzly, Santos, and Veronesi (2002), we may model
stock prices, X;;, instead of stock returns in (8) with multiple common factors,
writing

(9) th - Z 61 th‘jt + ezt _— <Z 6/ it M]t + _>M1; + elt - SU/.Lt,

1t
so that the time varying multiple common factor structure can be embedded
in the framework (5) of a time varying single common factor structure. If the
common trend elements in (9) are drifting /(1) variables of the form

t
Mj,:mjt—#Zejs for j=1,...,J, with m; #0,

s=1

then
Mie _ mit+ 3 €s _m ., )
B mit+ Y€ M !
and we have

J
m,
8i = Za,-,,-l;i{l +o,()}, = p
=1
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Convergence occursif §;;, — 6; Vj as t — oo and then §;, — Z}J.:I oj(mj/my) =
4. It is not necessary to assume that there is a dominant common factor for this
representation to hold. Moreover, as in (7), we may have certain convergent
subgroups {G,:a =1, ..., A} of stocks for which §, ;,, — & for i € G, and then

8y — 8% = ijl Sj’(m,« /my) for i € G,. In such cases, the X, diverge overall,
but the panel may be decomposed into 4 convergent subgroups. We will dis-
cuss how to classify clusters of convergent subgroups later in Section 4.

2.1. Long Run Equilibrium and Convergence

An important feature of the time varying factor representation is that it pro-
vides a new way to think about and model long run equilibrium. Broadly speak-
ing, time series macroeconomics presently involves two categories of analysis:
long run equilibrium growth on the one hand and short run dynamics on the
other. This convention has enabled extensive use of cointegration methods for
long run analysis and stationary time series methods for short run dynamic be-
havior. In the time varying factor model, the use of common stochastic trends
conveniently accommodates long run comovement in aggregate behavior with-
out insisting on the existence of cointegration and it further allows for the mod-
eling of transitional effects. In particular, idiosyncratic factor loadings provide
a mechanism for heterogeneous behavior across individuals and the possibility
of a period of transition in a path that is ultimately governed by some common
long run stochastic trend.

If two macroeconomic variables X;, and X, have stochastic trends and are
thought to be in long run equilibrium, then the time series are commonly hy-
pothesized to be cointegrated and this hypothesis is tested empirically. Coin-
tegration tests are typically semiparametric with respect to short run dynamics
and rely on reasonably long time spans of data. However, in micro panels such
long run behavior is often not empirically testable because of data limitations
that result in much shorter panels. In the context of the nonlinear factor model
(5), suppose that the loading coefficients 8;, slowly converge to é over time, but
the data available to the econometrician are limited. The difference between
two time series in the panel is given by X;, — X, = (8;, — ;) .. If u, is unit
root nonstationary and 8;, # d;,, then X, is generally not cointegrated with X;,.
But since §;, and §;, converge to some common & as { — oo, we may think of
X, and X, as being asymptotically cointegrated. However, even in this case, if
the speed of divergence of y, is faster than the speed of the convergence of 6;,,
the residual (6, — 6;,) u, may retain nonstationary characteristics and standard
cointegration tests will then typically have low power to detect the asymptotic
comovement.

To fix ideas, suppose

6 forieG,,
(10) B — { 8" forieG,,
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so that there is convergence within each of the two subgroups G, and G,. Un-
der model (3) for the transition coefficients, the following relation then holds
between series X;; and X, fori € G, and j € G:

d, 4 S,

X — a_ijt = (3n - a—bajt>Mt = {O'ifiz - 87%‘5,}}%-
Hence, X;, — 6,/6,X, is 1(0) when u, = O,(L(#)t*), and then any two se-
ries from subgroups G, and G, are cointegrated. For example, when u, =
pL(t)re+ > ¢ for some stationary sequence {,, then each individual series
X, follows a unit root process with nonlinear drift, and is cointegrated with
other series in G, with cointegrating vector (1, —1) and is cointegrated with
series in G, with cointegrating vector (1, —8,/9,). However, if L(¢)~'t~*u, di-
verges (e.g., when a =1/2 and u, = O,(t)), then the series X;, and X, are not
cointegrated even though we have convergence (10) in subgroups G, and G,
when o« > 0 and

6a . .
5i,—6—5jt—>,,0 for ieG,, jeGy,
b

0y —0;;,—,0 for i,jeG,.

In effect, the speed of convergence is not fast enough to ensure cointegrated
behavior.

These examples show that for economists to analyze comovement and con-
vergence in the context of individual heterogeneity, and to analyze evolution
in the heterogeneity over time and across groups, some rather different econo-
metric methods are needed. In particular, under these conditions, conventional
cointegration tests do not serve as adequate tests for convergence. Clearly, the
two hypotheses of cointegration and convergence are related but have distinct
features. As the above examples illustrate, even though there may be no em-
pirical support for cointegration between two series X;, and X, it does not
mean there is an absence of comovement or convergence between X, and X ;,.

Accordingly, a simple but intuitive way to define “relative” long run equilib-
rium or convergence between such series is in terms of their ratio rather than
their difference or linear combinations. That is, relative long run equilibrium
exists among the X, if

Xi . .
(11)  lim =% =1 foralland j.

k00 A jiik

In the context of (5), this condition is equivalent to convergence of the factor
loading coefficients

(12)  Jim &, =8
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On the other hand, if X;, and X, are cointegrated, then the ratio X;,/ X, typi-
cally converges to a constant or a random variable, the former occurring when
the series have a nonzero deterministic drift.

2.2. Relative Transition

In the general case of (5), the number of observations in the panel is less than
the number of unknowns in the model. It is therefore impossible to estimate
the loading coefficients §;, directly without imposing some structure on §;, and
M. Both parametric and nonparametric structures are possible. For example,
if 8;, evolved according to an AR(1), while u, followed a random walk with a
drift, it would be possible to estimate both &;, and u, by a filtering technique
such as the Kalman filter. Alternatively, as we show below, under some regu-
larity conditions, it is possible to use a nonparametric formulation in which the
quantities of interest are a transition function (based on ;) and a growth curve
(based on w,). Some further simplification for practical purposes is possible by
using a relative version of §; as we now explain.

Since u, is a common factor in (5), it may be removed by scaling to give the
relative loading or transition coefficient

o Xa b
T 1IN T 1IN ’
N Zi:l Xit N Zi:l 5it

which measures the loading coefficient §;, in relation to the panel average at
time 7. We assume that the panel average N Zfi 1 0; and its limit as N — oo
differ from zero almost surely, so that 4, is well defined by the construction
(13). In typical applications, X;, u;, and §;, are all positive, so the construc-
tion of this relative coefficient presents no difficulty in practice. Like 6;, h;
still traces out a transition path for economy i, but now does so in relation to
the panel average. The concept is useful in the analysis of growth convergence
and measurement of transition effects, as discussed in some companion em-
pirical work (Phillips and Sul (2006)) where h;, is called the relative transition
parameter.

Some properties of 4;, are immediately apparent. First, the cross sectional
mean of £, is unity by definition. Second, if the factor loading coefficients §;,
converge to 8, then the relative transition parameters /4; converge to unity. In
this case, in the long run, the cross sectional variance of 4;, converges to zero,
so that we have

(13) hy,

1 N
(14) 0,2=ﬁ;(h,-,—1)2—>0 as t— oo.

Later in the paper, this property will be used to test the null hypothesis of
convergence and to group economies into convergence clusters.
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3. ASYMPTOTIC RELATIVE TRANSITION PATHS

In many empirical applications, the common growth component w, will have
both deterministic and stochastic elements, such as a unit root stochastic trend
with drift. In that case, u, is still dominated by a linear trend asymptotically.
In general, we want to allow for formulations of the common growth path w,
that may differ from a linear trend asymptotically, and a general specification
allows for the possibility that some individuals may diverge from the common
growth path u,, while others may converge to it. These extensions involve some
technical complications that can be accommodated by allowing the functions to
be regularly varying at infinity (that is, they behave asymptotically like power
functions). We also allow for individual standardizations for X, so that ex-
pansion rates may differ, as well as imposing a common standardization for
.. Appendix A provides some mathematical details of how these extensions
and standardizations can be accomplished so that the modeling framework is
more general. The present section briefly outlines the impact of these ideas and
shows how to obtain a nonparametric formulation of the model (5) in which
the quantities of interest are a nonparametric transition function §(-) and a
growth curve w(-).

In brief, we proceed as follows. Our purpose is to standardize X, in (5) so
that the standardized quantity approaches a limit function that embodies both
the common component and the transition path. To do so, it is convenient
to assume that there is a suitable overall normalization of X, for which we
may write equation (5) in the standardized form given by (15) below. Suppose
the standardization factor for X, is d;r = T W,(T) for some y; > 0 and some
slowly varying function® W;(T), so that X;, grows for large ¢ according to the
power law t¥ up to the effect of W;(¢) and stochastic fluctuations. We may
similarly suppose that the common trend component u, grows according to
t*Z(t) for some y > 0 and where Z is another slowly varying factor. Then we
may write

1 1 ai + i t t
1 —Xii= t = oir\ & ) 1),
I T%'W,-(T)( » )“ 8T<T>“T<T>+O()

where we may define the sample functions w7 and b;r as

Y t Yi—Y (L
T T Z(T) T T W(T)Z(3T)

as shown in Appendix A.

3That is, W;(aT)/W(T) — 1 as T — oo for all a > 0. For example, the constant function,
log(T), and 1/log(T) are all slowly varying functions.
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Now suppose that ¢ = [Tr], the integer part of 7'r, so that r is effectively the
fraction of the sample T corresponding to observation ¢. Then, for such values
of ¢, (15) leads to the asymptotic characterization

1 T T
an - X~ air<¥>m<[—;}> ~ i1 (Pyr(r).

In (17), pr(r) is the sample growth curve and 8;7(r) is the sample transition
path (given T observations) for economy i at time 7. It is further convenient to
assume that these functions converge in some sense to certain limit functions
as T — oo. For instance, the requirement that 6,7 and wr satisfy

(18) wr(r) =, w(r), 8 (r)—,8:(r) uniformlyinr €0, 1],

where the limit functions w(r) and 8;(r) are continuous or, at least, piecewise
continuous, seems fairly weak. By extending the probability space in which the
functions 6,7 and pr are defined, (18) also includes cases where the functions
may converge to limiting stochastic processes.* The limit functions u(r) and
8;(r) represent the common steady state growth curve and limiting transition
curve for economy i, respectively. Further discussion, examples, and some gen-
eral conditions under which the formulations (17) and (18) apply are given in
Appendix A.

Combining (17) and (18), we have the following limiting behavior for the
standardized version of X;:

(19) dL_TXit—w Xi(r) = 06;(ryu(r).
With this limiting decomposition, we may think about w(r) as the limiting form
of the common growth path and about §;(r) as the limiting representation of
the transition path of individual i as this individual moves toward the growth
path w(r). Representation (19) is sufficiently general to allow for cases where
individuals approach the common growth path in a monotonic or cyclical fash-
ion, either from below or above w(r).

To illustrate (19), when u, is a stochastic trend with positive drift, we have
the simple standardization factor d;r = T and then

_ [T7] _
T 1I~Lz:[Tr] = mT + OP(T 1/2) —p mr

4For example, if u, is a unit root process, then under quite general conditions we have the
weak convergence T~V 7, = ur(r) = B(r) to a limit Brownian motion B (e.g., Phillips and
Solo (1992)). After a suitable change in the probability space, we may write this convergence in
probability, just as in (18).
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for some constant m > 0. Similarly, the limit function 8;(r) may converge to
d; as T — oo. Combining the two factors gives the limiting path X;(r) = §;mr
for individual i, so that the long run growth paths are linear across individuals.
When there is convergence across individuals, we have limit transition curves
,(r) each with the property that 8;(1) = 6, for some constant é > 0, but which
may differ for intermediate values (i.e., 8;(r) # 6;(r) for some and possibly
all r < 1). In this case, each individual may transition in its own way toward
a common limiting growth path given by the linear function X (r) = émr. In
this way, the framework permits a family of potential transitions to a common
steady state.

Next we consider the asymptotic behavior of the relative transition parame-
ter. Taking ratios to cross sectional averages in (15) removes the common trend
. and leaves the standardized quantity

(20) m(i>— dir Xu ou(y)
AT

AN X Y 8r(4)]

which describes the relative transition of economy i against the benchmark
of a full cross sectional average. Clearly, h;r depends on n also, but we omit
the subscript for simplicity because this quantity often remains fixed in the
calculations. In view of (18), we have

[Tr]) 8(r)
21 hir\ —— hi(r) =1+ T :
(21) T( T —, hi(r %ijl 57) as — 00

and the function 4;(r) then represents the limiting form of the relative transi-
tion curve for the individual i.

For practical purposes of implementation when the focus of interest is long
run behavior in the context of macroeconomic data, it will often be prefer-
able to remove business cycle components first. Extending (5) to incorporate a
business cycle effect k;,, we can write

X = 61'[#’[ + Ki.

Smoothing methods offer a convenient mechanism for separating out the cycle
ki, and we can employ filtering, smoothing, and regression methods to achieve
this. In our empirical work with macroeconomic data, we have used two meth-
ods to extract the long run component &, u,. The first is the Whittaker—
Hodrick-Prescott (WHP) smoothing filter.’ The procedure is popular because

SWhittaker (1923) first suggested this penalized method of smoothing or “graduating” data
and there has been a large subsequent literature on smoothing methods of this type (e.g., see
Kitagawa and Gersch (1996)). The approach has been used regularly in empirical work in time
series macroeconomics since the 1982 circulation of Hodrick and Prescott (1997).
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of its flexibility, the fact that it requires only the input of a smoothing para-
meter, and does not require prior specification of the nature of the common
trend u,; in X;,. The method is also suitable when the time series are short. In
addition to the WHP filter, we employed a coordinate trend filtering method
(Phillips (2005)). This is a series method of trend extraction that uses regres-
sion methods on orthonormal trend components to extract an unknown trend
function. Again, the method does not rely on a specific form of u, and is ap-
plicable whether the trend is stochastic or deterministic.

The empirical results reported in our applications below were little changed
by the use of different smoothing techniques. The coordinate trend method has
the advantage that it produces smooth function estimates and standard errors
can be calculated for the fitted trend component. Kernel methods, rather than
orthonormal series regressions, provide another general approach to smooth
trend extraction and would also give standard error estimates. Kernel methods
were not used in our practical work here because some of the time series we use
are very short and comprise as few as 30 time series observations. Moreover,
kernel method asymptotics for estimating stochastic processes are still largely
unexplored and there is no general asymptotic theory to which we may appeal,
although some specific results for Markov models have been obtained in work
by Phillips and Park (1998), Guerre (2004), Karlsen and Tjgstheim (2001), and
Wang and Phillips (2006).

Using the trend estimate é,-, = b/i;ﬁ, from the smoothing filter, the estimates

~

0
1 no )
n Zi:l O;

of the transition coefficients 4; = 6;,/(n~'>__, §;,) are obtained by taking ra-
tios to cross sectional averages. Assuming a common standardization® d;r = dr
for simplicity and setting ¢t = [Tr], we then have the estimate fzi(r) = fzim] of
the limiting transition curve 4;(r) in (21). We can decompose the trend esti-
mate éi, as

(22)  hy=

~ e;
(23) 0,=10;+e¢e;,= |:8iz + j}”f’
t

where e;, is the error in the filter estimate of 6. Since u,; is the common
trend component, the condition e;,/u, — , 0 uniformly in i seems reasonable.’

SAlternatively, if the standardizations d;r were known (or estimated) and were incorporated
directly into the estimates 6;,, then hi = 6, [ Y 6::) would correspondingly build in the
individual standardization factors. Accordingly, 4, is an estimate of 4;, = h;r( %) as given in (20).

"Primitive conditions under which e;,/u, — , 0 holds will depend on the properties of u, and
the selection of the bandwidth/smoothing parameter/regression number in the implementation
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Then
A [5im~1 + L'[ﬂ] Sir (L
hl‘(r) = - _ M[Tr]ej[’”] = . T( T) t + Op(l)
n Zi:l[SﬂTﬂ + m] n Z/=1 5;‘T(7)
0,(r)

o,
_)P %Z;;l 61‘(7’) (r)

so that the relative transition curve is consistently estimated by hi(r).

4. MODELING AND TESTING CONVERGENCE

A general theory for the calculation of asymptotic standard errors of fitted

curves of the type fti(r) that allow for deterministic and stochastic trend com-
ponents of unknown form is presently not available in the literature and is be-
yond the scope of the present paper. Instead, we will confine ourselves to the
important special case where the trend function involves a dominating stochas-
tic trend (possibly with linear or polynomial drift) and the transition coefficient
h;, is modeled semiparametrically. Our focus of attention is the development
of a test for the null hypothesis of convergence and an empirical algorithm of
convergence clustering.

_ As condition (12) states, under convergence, the cross sectional variation of
h;(r) converges to zero as t — co. We note, however, that decreasing cross

sectional variation of /;(r) does not in itself imply overall convergence. For
example, such decreasing cross sectional variation can occur when there is a
local convergence within subgroups and overall divergence. Such a situation is
plotted in Figure 1.

To design a statistical test for convergence, we need to take such possibilities
of local subgroup convergence into account. As discussed earlier, the approach
we use for this purpose is semiparametric and assumes the following general
form for the loading coefficients §;;:

=% 4>1, o>0 foralli
L(t)t

(24) 0 =0;+ 0ui, Oy
where the components in this formulation satisfy the following conditions.
Some generalization of (24) is possible, including allowance for individual spe-
cific decay rates «; and slowly varying functions L;(¢) that vary over i. These

of the filter. In the case of the WHP filter, this turns on the choice of the smoothing parameter
(A) in the filter and its asymptotic behavior as the sample size increases. For instance, if u, is
dominated by a linear drift and A — oo sufficiently quickly as 7' — oo, then the WHP filter will
consistently estimate the trend effect. Phillips and Jin (2002) provided some asymptotic theory
for the WHP filter under various assumptions about A and the trend function.



1786 P. C. B. PHILLIPS AND D. SUL

hi(r)

s e

FIGURE 1.—Stylized club convergence with two subgroups.

extensions are discussed later in Remark 6. Our theory is now developed under
(24) and the conditions below.

ASSUMPTION Al: &, is iid(0, 1) with finite fourth moment s over i for each
t, and is weakly dependent and stationary over t with autocovariance sequence
Yi(h) = E(&i&irn) satisfying >, hly:;(h)| < oo. Partial sums of &, and &, — 1
over t satisfy the panel functional limit laws

[Tr]

25 — s=>B;(r) as T — oo foralli,
(25) ﬁ;a (r) f
1 [Tr] )
26 — c—1)=By(r) as T — oo foralli,
( ) ﬁ;(flt ) 2() f

where B; and B,; are independent and form independent sequences of Brownian
motions with variances w;; and w;, respectively, over i.

ASSUMPTION A2: The limits

N N
lim N7 o7 =v,, lim N> o=u,,
i=1 i=1

N—o00 N—o0
N N
lim N~! olw; = w? lim N~! olwy = w?
N—o0 ! " & N—oo0 ! " n’
i=1 i=1

o0

N -1 N
lim N7 % ofo7 Y vy, lim N7'Y 8,=35

N—oo
i=2 j=1 h=—00 i=1

all exist and are finite and 6 # 0.
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ASSUMPTION A3: Sums of ;, = 0;&, and (&, — 1) over i satisfy the limit
laws

N
27) N2> g = N(O,v)),

i=1
N

28) N2> (& —1) = N0, vay(pag — 1))
i=1

as N — oo for all t, and the joint limit laws

T

N
(29) T71/2N71/2 Z Z O-ifit = N(O, (L)é),

t=1 i=1

T N
(30) TN N Col(E -1 = N0, o)),
t=1 i=1
N i-1

Gl TP NN oioiéng

=2 j=1

N i-1 00
:sN(O,}éiix;N?ZZo?af > vi(h)vj(h>>

=2 j=1 h=—00

hold as N, T — oo.

ASSUMPTION A4: The function L(t) in (24) is slowly varying (SV)), increasing,
and divergent at infinity. Possible choices for L(t) are log(t + 1), logz(t + 1), or
loglog(t+1).

Panel functional limit laws such as (25) and (26) in Assumption Al are
known to hold under a wide set of primitive conditions and were explored
by Phillips and Moon (1999). These conditions allow for the variances w;
to be random over i, in which case the limit in (25) is the mixture process
B;(r) = w}/ 2Vi(r), where V; is standard Brownian motion. The central limit re-
sults (27) and (28) hold under Assumptions Al and A2, and also for cases
where the components ¢, are not identically distributed provided a uniform
moment condition, such as sup, E(£},) < oo, holds. The joint limit laws (29)-
(31) are high level conditions that hold under primitive assumptions of the type
given in Phillips and Moon (1999).

In Assumption A4, the slowly varying function L(¢) — oo as t — oo. In ap-
plications, it will generally be convenient to set L(¢) =log(¢ + 1) or a similar
increasing slowly varying function. The presence of L(¢) in (24) ensures that
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0y —p 6; as t — oo even when a = 0.