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Abstract

This paper has the following contributions. First, this paper develops a new criterion for iden-
tifying whether or not a particular time series variable is a common factor in the conventional
approximate factor model. Second, by modeling observed factors as a set of potential factors to
be identified, this paper reveals how to easily pin down the factor without performing a large
number of estimations. This allows the researcher to check whether or not each individual in the
panel is the underlying common factor and, from there, identify which individuals best represent
the factor space by using a new clustering mechanism. Asymptotically, the developed proce-
dure correctly identifies the factor when N and T jointly approach infinity under the minimal
assumptions of Bai and Ng (2002). The procedure is shown to be quite effective in the finite
sample by means of Monte Carlo simulation. The procedure is then applied to an empirical ex-
ample, demonstrating that the newly-developed method identifies the unknown common factors

accurately.

JEL Classifications: C33
Key words: Asymptoticially Weak Factor, Dominant Leader, Cross Section Dependence, Prin-

cipal Component Analysis, Common Factor Model

*We thank Ryan Greenaway-McGrevy, Chirok Han, and the two anonymous referees for their helpful comments.



1 Introduction

In the last two decades there has been rapid development in analyzing cross-sectional dependence by
using the approximate common factor structure. Among many others, Ahn and Horenstein (2013),
Ahn and Perez (2010), Amengual and Watson (2007), Bai and Ng (2002), Hallin and Liska (2007),
Harding (2013), Kapetanios (2010), and Onatski (2009) suggest consistent estimation procedures
for the number of common factors, while Bai (2003, 2004), Bates, Plagborg-Mgller, Stock, and
Watson (2013), Choi (2012), Forni, Hallin, Lippi, and Reichlin (2000, 2005), and Stock and Watson
(2002a, 2002b) propose consistent estimators for the common factors.

However, the most thorny challenge in this literature is the identification of these unknown
common factors. Without identification, a common factor model of an economic phenomenon is
fundamentally incomplete. Presently, empirical researchers have two general identification strate-
gies. First, some researchers are forced to settle for simply describing the factors using their shape,
correlation to observed series, and factor loadings (e.g. Ludwigson and Ng 2007, Reis and Watson
2010). The problem with this approach is that the factor is only described, not pinned down.
Sometimes researchers propose a name for the factor, but such a name is completely arbitrary.
The other approach is to directly compare a (m x 1) vector of potentially true factors P, with the
(r x 1) vector of unknown latent factors G;. Of course, the true factors G; are not observable, so
Bai and Ng (2006) propose several tests to check whether or not a linear combination among the
principal component (PC, hereafter) estimates of G; is identical to the potential factors P;. Their
methods require some restrictive assumptions. As we will show later, when the potential factors
are slightly different from the true factors, even for only one time period, the tests proposed by Bai
and Ng (2006) fail as the number cross-sectional units (V) and time series observations (1') go to
infinity. Furthermore, the Bai and Ng (2006) tests cannot identify which components of P; align
with particular components of G;. The solution to this problem does not seem to exist unless it
can be assumed that the estimated factors are identical to the true factors.

The purpose of this paper is to provide a novel and intuitive approach to identify whether or not
an observed time series is asymptotically equal to an unobserved true factor. The newly suggested
identification strategy does not require any identification restrictions for the PC estimators. The
underlying logic is based on the notion of an ‘asymptotically weak factor.” When a panel data set
has only asymptotically weak factors, the estimated number of common factors in the panel declines
to zero with probability one as both N and T go to infinity. For example, the PC estimates of the
idiosyncratic components have asymptotically weak factors. Obviously, conventional factor number
estimation such as Bai and Ng (2002) or Hallin and Liska (2007) will estimate a factor number of
zero with panel data which only has asymptotically weak factors. We are utilizing this principle to

identify whether or not the vector of the potentially true factors, P;, is indeed a linear combination



of the true latent factors, G;. Let Pj; be the jth element of P;. Then, it is easy to show that the
regression residuals from the regression of one of the potential factors and any (r — 1) vector of
the estimated common factors have only asymptotically weak factors, so the conventional factor
number estimators can be used to examine whether or not a potential factor is the true common
factor. Of course, if Pj; is not a true factor, then the regression residuals must have at least one
strong factor. This simple but novel idea does not require any identification restrictions either on
the PC estimators, the latent factors, or the latent factor loadings.

Moreover, this paper models the factor as potentially being one particular individual which
appears in the panel. When one individual is exactly equal to the factor, we call this individual a
‘dominant leader.” If the individual is not a factor in the finite sample, but becomes a factor as N
and T go to infinity, the individual is called an ‘approximate dominant leader.’

This leadership model has a powerful interpretation: one or more of the individuals act(s) as the
source(s) of the cross-sectional dependence in the factor model, spreading its/their influence over
the other individuals in accordance with the factor loadings. Consider the following hypothetical
example of leadership: In industrial organization, one or a few dominant firms can set a price for
their product, and the rest of firms in the market more or less adopt that price. This type of
causal relationship can be observed in many areas including the social, agricultural, and behavioral
sciences. In natural science, earthquakes and the spread of viruses are potential examples of this
pattern. In such situations, a few individuals or locations become leaders or sources of epidemic
events. Therefore, an important task is to identify the leaders from a set of individuals.

Since the factor identification strategy above must be performed separately for each individual,
there could be some failure probability when NV is large. To control this probability, we provide a
method based on ranking R? values from regressions of the estimated PC factors on each individual
time series separately. Individuals with high R? are considered ‘leader candidates’ to be considered
as the potential factors or leaders, Pj;.

It is worth mentioning that two papers have already used our identification strategy. Gaibulloev,
Sandler and Sul (2013) find that Lebanon is the main determinant of transnational terrorism.
Greenaway-McGrevy, Mark, Sul and Wu (2014) utilize our method to find three key currencies as
the main determinants for local exchange rates.

The remainder of the paper is organized as follows. Section 2 provides information about
the setting as well as the definition of weak factors. Section 3 discusses leadership modeling and
testing. Detailed asymptotic analyses are also provided. Section 4 demonstrates the finite sample
performance of our test and also compares our results with Bai and Ng (2006). Section 5 provides
an empirical example to show the effectiveness of our test. Section 6 concludes. Mathematical

proofs are provided in the Appendix. Gauss code for the procedures as well as extra Monte Carlo



simulations are available on the authors’ website.

2 Preliminary

Before we proceed, we define the variables that are used in the paper. y;; is the panel data of interest
where the cross-sectional dependence can be expressed in a static common factor representation.
G is the r x 1 vector of potentially correlated, latent common factors. Fy is the r x 1 vector of
the PC estimator, # (y;;) is the true number of common factors of y;; and # (yit) is the estimated
number of common factors of y;;. y5, is the idiosyncratic component to y;;.

To provide an intuitive explanation of how factor number estimation can be used to identify
the true factors, we consider the following static factor structure with two factors (r = 2) as an
example.

yit = a1;G 1y + 2iGoy + Y, (1)

where aj; is the true factor loading coefficient for the ith individual and to the jth factor. We
define y, G, F, and A as the T x N matrix of y values, the T' x r matrix of latent factors, the
T x r matrix of estimated factors (when the factor number is known), and the N X r matrix of
true factor loadings, respectively. We also define H = (A’ A/N) (G’F/T) Vyr to be the r x r
rotation/rescaling matrix as defined in Bai (2003), where Viyr is the r x r diagonal matrix of the
first r eigenvalues of (IV T)f1 y'y in decreasing order. In (1) and in the equations that follow, we
exclude any non-zero constant terms for notational simplicity. Including constant terms does not
change the results at all.

The number of factors in ¥y, is naturally zero, even if ¥, has some weak cross-sectional depen-
dence. Interestingly, the estimate of y5, — the panel of regression residuals of g, from running y;; on
Gt — does not include any significant common factor either, as long as the least squares estimator

for the factor loading coefficients is consistent. That is,
Ui = Yy + (a1 — dag) Gg + (a2i — ;) Gag = Yy + Op (T_l/Q) ) (2)

where é&1; and d; are the least squares estimates for aq; and o, respectively. Even though g5,
has two common factors in the finite sample, asymptotically 35, does not have any common factors
since the common components vanish asymptotically. We call such factors ‘asymptotically weak
factors.’

Let z¢, be the random variables which satisfy Bai and Ng (2002)’s Assumption C for the idio-
syncratic components. Define z; = ¢/Z; + x9,, where v; and Z; are factor loadings and common

factors of x;, respectively. Then, formally, the asymptotically weak factor can be defined as



Definition: (Asymptotically Weak Factors) x;; has asymptotically weak factors if and only
if YiZy =0, (C;,lT) where Cn7 = min [\/N, \/T] )

Note that Chudik and Pesaran (2013) use the terminology of ‘weak factor’ to define the cross-
sectionally weak dependence where the common factor is O, (1) but the factor loadings are O, (N -1/ 2).
Hence, the notion of asymptotically weak factors used in this paper is weaker than the concept of
‘weak factor.’

Next, the following lemma can be directly established. Recall that in the beginning of this
section we defined # (x;) as the true factor number of x;; and # (z4) as the estimator for the

factor number of x;;.

Lemma 1 (Asymptotic Factor Number for Weak Factors) As N,T — oo jointly,

N,lji“rgoo Pr {# (i) = 0} =1. (3)

See the Appendix for the proof. Intuitively, if x;; has only asymptotically weak factors, then
asymptotically the cross-sectional dependence among x;; is equivalent to that among zf,, which
leads to (3). According to Lemma 1, it becomes clear that Pr [# (95,) = 0} — 1las N, T — oc.
Hence, if G; are true factors of y;;, then the regression residuals g§, should not have any strong
factors. However, the opposite is not true in general. Consider a variable Wy which is not correlated
with y;; at all. Then, as long as W, is included as a regressor with GG, the new regression residuals

will only have asymptotically weak factors. That is, consider the following regression:
Yit = @1,G1t + a2iGar + Wi + ygy,
and define the new residuals as
U5 = Yit — G1:Ge — GiGop — asiWy =y + 0, (1)

where &g; is the least squares estimate for ag;. Since ag; —P 0 as T — oo, W, becomes an asymp-
totically weak factor of gf,. However, the asymptotically weak factor status of W; does not imply
that it is a common factor of y;;.

Accordingly, our interest becomes the identification of variables one at a time. If the latent
factors were known, such identification could be achieved. Note that G} is not observable but can
be estimated by H’ _1}3}, where H is the invertible 2 x 2 rotation/rescaling matrix defined above

(in this example). Let \; be the PC estimators for oj;. Rewrite (1) as

yit = MEy + 99, (4)

ot



where the residual, 5, is defined as
B =vi— (M=ol ™) B ol (B - H'G) (5)

It is well-known that under the suitable conditions given in Bai (2003), X; — o/ H'"! = O, (T-1/2)
and (ﬁ’t — H’Gt) =0, (N_l/Q) . In other words, the regression residuals of g, in (5) also have
only asymptotically weak factors.

Here, we rewrite F} as a linear function of GG; and error terms.

€1t
_l’_
Eat

where from Bai (2003) Theorem 1, £1; and €9 are O, (N_l/z) if /N /T approaches zero as N,T —

0o or Op (T™1) otherwise and where H = [h;;]. In order to perform the identification one at a

Py
Fy

Gt
Gat

ha1 hosa

[ hi1 hia

time, consider regressing y;; on both G1; and Fb in the following equation.
yir = a1;Ghe + o For + ugy, (6)

where af;, = oy — hi%hglagi and aj; = hiéagi and where H = [h; ;]. Because €3y = O, (N_l/Q),
aj3; and &3, are consistent as N,T" — oo. Hence, as long as hg 2 doesn’t approach zero, 4;; will have
an asymptotically weak factor structure and Pr [# (i) = O] — 1 as N,T — oo. Interestingly, a
similar result can be found if FQt is replaced by F 1t as long as h1 2 doesn’t approach zero. Hence, this
strategy will not allow us to separately identify which latent factor corresponds to which estimated
factor since the estimated factors are only estimated up to a rotation. However, this process will
allow us to identify which time series is a latent factor, and this identification is the primary goal
of the paper.

Next, we consider the following alternative case. Define L1, = G4 + v¢, where vy = O, (1). Due
to the random error of v, Ly; is not a true factor. Similar to (6), we can consider the following
regression.

yit = af; L1 + agzﬁgt + ug;. (7)

It is straightforward to see that &9, -, ai; as N,T" — oo. Hence, 4§, will have a factor structure
which is not asymptotically weak, and Pr {# (ag,) = 0} —0as N,T — co.

In sum, as long as we are interested in identifying whether or not an observed time series is
one of the true factors, we do not need any identification restriction on the rotation matrix H.
See Bai and Ng (2013) for restriction conditions under which the latent factors can be estimated
asymptotically without rotation.

We formally present the identification procedure in the next section.



3 Definitions and Identification Procedure

Before we start to provide identification procedures and strategies, we provide conceptual definitions

of the empirical true factors: Dominant and approximate dominant leaders.

3.1 Definitions

Let P, = [P, ...,Pmt]' be the m x 1 vector of potential true factors which researchers want to
examine. Note that m is not necessarily equal to . We will discuss the reason shortly. If P; are
the true factors, then the inclusion of P, into the panel data y; = [y1y,-.., ynt] always leads to
more accurate estimation of the common factors (See Boivin and Ng, 2006). Also, it is possible
that a few leaders are the true common factors of the panel data. An example of this endogenous
estimation appears in Gaibulloev, Sandler and Sul (2013), which finds that transnational terrorism
in Lebanon is the main determinant of transnational terrorism for the rest of the world. Hence,
without loss of generality, we can include P; as a part of the panel data {y;;} and re-order them
as {Yit, - Ymt, Ym+1.t ...,yN+m7t} so that the first m individuals are the potential true common

factors to {yit} .

Definition (Dominant Leaders): The jth unit is an exact dominant leader if and only if

Yt = Gjg.

In general, the maximum number of dominant leaders should be the same as the number of true
common factors. However, sometimes the number of leaders can be larger than the number of the

factors, especially when there are many approximate dominant leaders. These can be defined as,

Definition (Approximate Dominant Leaders): The jth unit becomes an approzimate domi-
nant leader for the jth true factor if and only if Gji = yji + (it for j =1,...,r where (j; = ejt/\/T

2

and Var(ejt) = 0]2- where 0 = maxa?- and 0 < 5% < oo even as N,T — 0.

When 0]2» =0, the jth unit of {y1, ..., yN4m,} becomes a dominant leader. The non-zero variance
of 0']2- implies that the jth unit may lose his leadership temporarily for a fixed set of time periods,
7. That is,
Yjt = { Cit ?ft ¢7 for Var (5;) = 0]2- > 0.
Gjt—i—ej-t ifteT
The number of elements of 7 will be denoted as p, which is fixed as N,T" — oo. Thus y;; is not

the leader for p time periods. Then the variance of the deviation between the common factor and



the dominant leader, y;; — G, becomes

T 2
1 pos
2 2
oir=E|= g_ (yjt — Gjr) ] = —Z for a small constant p > 1.

t=1

When there are approximate dominant leaders, then the number of these leaders can be larger than
the number of true common factors. Also note that it is impossible to asymptotically distinguish

approximate dominant and dominant leaders.

3.2 Identification Procedures

The identification procedures differ depending on whether or not potential leaders are given or
selected by the researcher. We first consider the simplest case, where potential leaders are given
or known. We also assume that the number of the true factors is known. This assumption is fairly
reasonable since Bai and Ng (2002)’s criteria perform fairly well when the panel data are rather

I Note that we are identifying whether or not a time series is either a dominant or

homogeneous.
approximate dominant leader for th for j =1, ..., 7, since the true statistical factors are unknown.

For clarity, we use a case where r = 2 but m = 3 throughout this section. That is, G; and F,
are 2 x 1 vectors but the potential factor, P, is the 3 x 1 vector.

Even when H is an identity matrix, the first PC estimator Flt can be Go; depending on the
values of factor loadings in (1) and the variance-covariance matrix of Gy, §2. However, regardless
of the ordering, the point of interest becomes whether or not Fy; can be identified by P for
s=1,..,m. Let

Gjt — Py = ’Yjsest/ﬁ + 5js§sta (8)

where Var(es) = 02, and Var(£y) = Ug , for positive and finite constants o2 ; and O'Z - By definition,
if §;5 = 0 but ;5 # 0, then Py; becomes the approximate dominant leader for G ;. Note that all Py
could be approximate dominant leaders for only G4 or Ga;. Alternatively, some of Py (for example,
Py, and Py;) are the approximate dominant leaders for Gy, and the other Py (for example, Ps;)
become the approximate dominant leaders for Ga;.

To identify whether or not Py is a dominant or approximate dominant leader, we suggest

examining whether or not the regression residuals from the following regressions have any strong

"When we refer to panel homogeneity in this paper, we are specifically refering to the panel being constructed of
one central variable, such as state-level unemployment rates over time. In terms of the factor structure, homogeneity
appears when the order of intergration is the same across cross-secitonal units and when the idiosyncratic variances

are not seriously heterogeneous.



common factors.

Yit = 62,sipst + a§75ip2t + y§g7it7 (9)
Yit = P1,siPst + aisiﬁlt + Y75 it (10)

Suppose that P;; = G1; exactly. Even in this case it is possible that Py # Flt but instead Py
becomes a linear function of Flt and th. Depending on the values aj; and ag;, the estimated
number of the common factors in either one or both of §§, ;, and ¢, ,, becomes zero. For r > 2,

(9) and (10) can be written as
Yit = BjsiPst + 0] Fji+ 1yl for j=1,...,m, (11)
where F_N = ﬁ’lt, ...,Fj_Lt,FjH,t, ...,Frt] and oz;‘7_j = [az‘l, ...,a;‘j_l,afjﬂ, ...,a*m] . When r =

1, F,j,t and a;’_; are not present in (11). Thus more formally, we have

Theorem 1 (Identification of Estimated Factors: Known Potential Leaders) Under the
assumptions in Bai and Ng (2002),
(i) If (Sij = 0, then

ylim P [# (9%50) = 0 or # (95140) = 0 0rseeey # (9710) = 0} =1 (12)
(ZZ) If (Sij 75 0, then
N}}Iiloo Pr [# (@tfj,z‘t) =0or # (@gj,z‘t) =0or,., j (@?jzt) = 0} =0 (13)

Many times when leaders are unknown and N is large, applying our criterion to each individual
in the panel could lead to over-estimation of the number of approximate dominant leaders, since the

‘size’ of the procedure is non-zero. One solution to this problem is to run the following regression:
Fy = css Pyt + cs,_sﬁ'_&t + ¢}, for each P; and for each s = 1,..,r, (14)

where css and cs s are regression coefficients. Next, obtain the R2-statistics. For each factor,
F., the individuals, Pj, with high R? values have high estimated partial correlation to the fac-
tor. Choosing to test only these individuals avoids over-estimation of the number of approximate
dominant leaders. It is easy to show that this procedure is consistent as N and T' go to infinity.

By running (9) and (10) for r = 2, or more generally (11) for any r > 2, approximate dominant
leaders can be identified for any G, but the dominant leaders for a particular G are not known.
To distinguish the leaders, we suggest the following method to cluster approximate dominant leaders
to each Gg;.



3.3 Clustering Method

For clear exposition, we continue to use the above example where the number of approximate
dominant leaders is three and the number of true common factors is two. Since the true factors
are unknown, it is impossible to identify which approximate dominant leader Pj; for j = 1,2,3
is associated with G for s = 1,2. However, there is a way to cluster Pj; into two groups. Let

Py 12 = [Pt Py, Py 1,3) = [Pt Py, and Py (2,3) = [P, Py’ . Consider the following regressions.

vit = N2 P2 + i)
Yit = )\:7,(173)Pt,(173) + Vi 1,3) (15)
yit = )\:7,(273)Pt’(273) + y;)t?(273)
where A7 (11.12) is the 2x1 vector of the regression coefficients for {1 = 1,2 and I2 = 2,3 but [1 # [2.
If P;; and Py are the approximate dominant leaders for the same common factor (either G4 or

Gat), then as N, T — oo, the estimated number of the common factors of the regression residuals

of y;7(172) becomes 1. That is,

i () =1] 1 1

However, if P;; and Ps; are the approximate dominant leaders for GG1; and Goy, respectively, then

i Prl# (i) = 0] =1 (7

For example, suppose that P;; and Ps; are the approximate dominant leaders for Gy; and Ps;

is the approximate dominant leader for Go;, then as N,T — oo,

. [ ~0 _ 1 _

VPl (i) =1 =1
. [ A0 _ T _

Jm Pl (dh0) =0 = 1 (18)
. [ A0 _ T _

Jim P (3 00) =0 = 1

This method is easily extended pairwise to cases where there are more or fewer leaders. Note that
it is impossible to identify whether or not each Pj; is a specific G without further identifying

restrictions since G is unknown.

3.4 Comparison to Extant Testing Method

Bai and Ng (2006) consider a similar factor identification problem. Their test is originally designed
to examine whether or not observed vectors of variables, P;, are true factors, G;. They do not

explicitly discuss whether P, can be members of {y;;} and consider only “outside” macro and
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financial variables in their empirical application. However, it is straightforward to extend their
method to identify dominant leaders in the leadership model.
Their test is based on the following. If Pj; is one of the exact dominant leaders, then it should
hold that
Py = A;Gy + 7y, for mj =0 all ¢. (19)

Their test is examining whether or not m;; are statistically zero for all . Pjt is constructed to be
the fitted values from the following regression equation

Pj; = Bth + mjt. (20)
Hence, their test is based on the following statistic

n(j) = b (21)

v (#x)

In their Monte Carlo simulation, they found that the performance of the max 7 test works well.
The max 7; test is defined as

M(5) = (g 22

(7) éltag;ln Il (22)

where 7; (j) is obtained with the estimate of V <Z5jt>.
In the case of approximate dominant leaders, the above test fails. Let mj; = €1/ VT where

Var(ej;) > 0 even as N, T — oo. Thus,
Py = A;HVE, — A;H Y [Ft - H’Gt} + T2,
To find Aj, just use the standard formula for least squares, or
By =T PP = B4~ T'F' [P — GH| H ' Ay + T2 e,
Interestingly,
VN (Bj— H ' A5) = =N'2T ' [F - GH| H 7V 45+ NVAT %2 Fe; = 0, (VN/T)),

which is exactly the same as in the exact dominant leaders case, and accordingly, both the exact
and the approximate cases require the condition that vV N/T — 0 as N,T — oo. However, unique

to the approximate dominant leaders case is that VN <Pjt - P ) resolves into
\/N <pjt - Pj ) = \/N (AjH_ll |:Ft — H/Gt]> - \/N (AjH_ll - B]) Ft -+ Ejt\/N/ 5
which can be further reduced to®
VN (P = Pi) = VNA;H [~ H'G| + 0, (VN]T) . (23)

*We thank an anonymous referee for pointing out this problem with Bai and Ng (2006)’s tests.
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VNA;H™Y [Ft - H’Gt] is the term for which the variance is estimated in (21). However, the
Oy («/N/T) term must approach zero in order for 7; (j) to converge to N (0,1), which is a very

restrictive condition. Therefore, in order to detect approximate dominant leaders, the M (j) test
requires that N/T approaches zero as N,T — oo, and even in the exact dominant leaders case,

N/T? must approach zero as N, T — oo.

3.5 Utilizing Other Factor Number Estimation Methods

In this paper, the Bai and Ng (2002) criterion is used to estimate the number of factors in the
residuals. Recently, other procedures have been suggested for estimating the number of factors
in panel data sets. For instance, Hallin and Liska (2007), Onatski (2009, 2010), and Ahn and
Horenstein (2013) have suggested alternative methods. Here we briefly discuss other factor number
estimation methods.

Let o; be the ith largest eigenvalue of the (NT') ™! §°4° matrix where §° is the 7' x N matrix
of the residual of g,. The Bai and Ng (2002) criteria maximize the following statistic.

h
QBN = arg min |:111 (Zi:k+1 Q’L> + k x p (Na T):| 3

0<k<kmax

where p (N, T) is a penalty or threshold function, h = min [T, N], and kpax is the maximum factor
number usually assigned by a practitioner.

Onmatski (2009, 2010) propose two methods for consistent factor number estimation. Onatski
(2009)’s test is for the general dynamic factor model but can be used for the static factor model
under the assumption of Gaussian idiosyncratic errors. Onatski (2010)’s criteria is for the ap-
proximate static factor model which does not require Gaussianality. Onatski (2010)’s estimator is
defined as

Qonat = max {i < kmax : 0i — 0i+1 > 0},

where ¢ is a fixed positive number. See Onatski (2010) for a detailed procedure of how to calibrate
d.

Hallin and Liska (2006) propose modified criteria for the factor number in the general dynamic
factor model based on Bai and Ng (2002) criteria. However, their method can be directly utilized
in the static factor model, as demonstrated in Alessi, Barigozzi and Capasso (2010). The Hallin
and Liska (2006) criterion uses subsamples of the panel, 0 < N3 < Ny < --- < N = N and

(L,m) 1 A

0<Ty <T5<---<Ty =T. Denote g; as the eigenvalues of (N;T},)” " §”9° computed using

only the values of ¢, where ¢ < N; and t < T},,. Let

h

k ¢,l,m) = argmin |In (»l’m)>+k><c>< N, T
a { ) oszcggkmax[ <Zi=k+1 “ PN T)

12



This is the subsample, scaled analog of the Bai and Ng (2002) IC' criterion. kpn is a function of a
positive constant ¢ which controls the sensitivity of the estimator. When ¢ is small, kpy does not
penalize extra factors, so the estimator finds kpax as the number of factors. When c is large, lAcB N
over-penalizes the factors, so kgy finds zero factors in the residual. The S (¢) function is defined
by

1/2
1 - 1 > ’
S (c) = (LM Zl,m (kBN (e,lsm) = 77 th kpn <c,l,m)) ) :

Under Bai and Ng (2002) there is no control for the coefficient, ¢, before the penalty function. In
other words, Bai and Ng (2002) choose the value: kgy = kpy (1, L, M). Hallin and Liska (2007)
use subsamples to choose ¢ = ¢, in a region where S vanishes. Because of this control, the penalty
function is less sensitive to the size of N and T l;:H 1 is equal to k pN evaluated at ¢,, that is to say
ki = kpn (co, L, M).

Ahn and Horenstein (2013)’s criteria are free from the choice of the threshold function p (N, T).
They proposed the following two criteria

= a , = ax In|[Vi_1/Vi]/In|Vy/Viiq],
QAH,ER pnax Ok/0k+1, QAHGR p A 0 [Vi—1/Vi] / In [Vie/ Vi)

h
where Vi = > 0, 0i.

4 Practical Suggestions and Monte Carlo Studies

This section summarizes the procedure we discussed in earlier sections and reports the results of

Monte Carlo simulations.

4.1 Identifying Procedures

Here we present a step-by-step procedure used in the Monte Carlo simulation and empirical exer-

cises.

Step 1 (Estimation of Factor Number and Common Factors):

Before estimating the factor number and common factors, one should standardize each
time series by its standard deviation. In our empirical examples, we usually take logs,
difference, and then standardize the sample. The factor number, r, and the common
factors should then be estimated. For the factor number estimation, we use Bai and Ng
(2002)’s ICq because it performs better than the other Bai and Ng criteria. We don’t
report the simulation results with Hallin and Liska’s ICy here but note that all detailed

results are available on the authors’ website.
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Step 2 (Identifying Potential Leaders by using R?):

Here we select potential leaders by using an R? criterion. From (14), the following

regressions can be performed for the case of r = 2.

Fyy = eny Py + c12F + €5, (24)

th = Cglpjt + CQQFlt + E;t (25)
If Py = G, or Pjy = Gy + (¢ for (1 = ejt/\/T, then as N, T — oo, the variance of €7,
approaches zero. Alternatively, if Pj; = G1; + €;; where €j; has a finite variance, then
the variance of €7, should not be close to zero. Similarly, if Pj; = G or Pjy = Gt + (jit,
then the variance of €5, also goes to zero as N,T" — oo. By utilizing this fact, we select
the first m potential leaders for which R? is the highest. The size of m must be selected
to be larger than r since each factor could have multiple approximate dominant leaders.

We commonly select m to be around 10% of the size of N. Later we will show that this

R? method detects potential leaders very precisely.

Step 3 (Identifying Approximate Dominant Leaders):

Run (9) or (10) and obtain the regression residuals. Check whether or not the esti-
mated factor number is zero. Following Theorem 1, identify whether or not Pj; is an

approximate dominant leader. Collect all of the dominant leaders found.

Step 4 (Clustering Approximate Dominant Leaders):
Calculate the correlation matrix among approximate dominant leaders if they are many.

Group the leaders by running (15).

See the next section for a demonstration of the above four steps.

4.2 Monte Carlo Results

By means of Monte Carlo simulation, we verify our theoretical claims and investigate the finite
sample performance. All pseudo data used in simulations are generated from the following data

generating process with some restrictions.
yit = a1;G1t + agiGay + VoYY, (26)

where 6 controls the signal to noise ratio. As # increases, the signal-to-noise ratio also increases.
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The common factors are serially correlated and also dependent on one another. Specifically, we

generate Gy as follows.
Gy =AWy, Wy = psWst—1 + gst, for s =1,2,

where g5 ~ itdN (O, 1-— pz) and A is the upper triangular matrix of the Cholesky decomposition

of 2, which is the covariance and variance matrix of G;. That is,

Q1 Q2
Q12 Qoo

0=

The factor loadings are generated from
.. 2 .
o ~ 1MdN (uak, Uak) for k=1,2.

For the case of asymptotically weak factors, we set the variance of Jzk to be dependent on either
T or N. The value of pq is set to one for the asymptotically weak factors case, whereas it is set to
zero for the other cases.

The idiosyncratic errors are generated from

J
Yo=Y v+ B8 Y i
JA0.4=—17
where vy ~ itdN (O,Ji2 [1 — ¢2] / [1 + QJBQ]) . To avoid the impact of the initial observation and
boundary condition, we generate (7" + 100) x (N + 20) pseudo variables. Next we discard the first
T, observations over time and select the middle of N cross-sectional units.

Note that the data generating process is similar to Bai and Ng (2002), Onatski (2010) and
Ahn and Horenstein (2013). Here we allow the common factors to be correlated with one another.
For all simulations, we set the simulation size to be 2,000 with N = [25,50,100,200] and T =
[25, 50,100, 200] . The signal-to-noise ratio, 6, is set to be unity; otherwise the second factor is not
well-estimated. While the above data generating process is quite general, we will be considering

three restrictions on the idiosyncratic errors.

Case I (Independent, Identically Distributed Errors): The idiosyncratic errors have no
serial correlation (¢ = 0) and no cross-sectional dependence (8 = J = 0), and the errors are

homoskedastic with unit variance (¢ = 1 for all 7).

Case II (Serially Correlated Errors): The idiosyncratic errors have serial correlation with
¢ = 0.5 and no cross-sectional dependence (5 = J = 0), and the errors are homoskedastic with

unit variance (02 = 1 for all 7).
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Case III (Serially Correlated and Cross-Sectionally Dependent Errors): The idiosyn-
cratic errors have serial correlation with ¢ = 0.5 and cross-sectional dependence 8 = 0.1 and J = 4,

and the errors are homoskedastic with unit variance (02 = 1 for all ).

In Bai and Ng (2002), cross-sectional dependence in the errors is essentially set so that 5 = 0.2
and J = 10, and in Ahn and Horenstein (2013), it was set so that § = 0.2 and J = 8. The data
generating process described in Case III is slightly different because we consider small 7" and N
cases. As N and T grow, the finite sample performance is less influenced by the values of 8 and J.

Unless otherwise stated, we will be assuming that p; = ps = 0.5.

4.2.1 The Factor Number Estimation of Asymptotically Weak Factors

Here, we verify Lemma 1 first, and then we examine the finite sample performance of factor number
estimation on a panel of data which contains only asymptotically weak factors. We consider only
the case where there is a single factor. An asymptotically weak factor is generated by setting
aq; ~ dN (1,1/T) or aq; ~ iidN (1,1/N). To save space, we report the former case only. Even
though the variance of ay; is decreasing over time, the mean of «y; is not equal to zero. Hence
the estimated factor number of y;, # (yit) should be one asymptotically. Meanwhile, the cross-
sectionally demeaned series §;; = yit — N ' Zf\; 1 ¥it has only an asymptotically weak factor. Hence

by Lemma 1, the estimated factor number of ¢, # (Jit), should be zero as N,T — oo. We also

consider the case where the variance of the factor loadings, ¢2,, is small. That is, we set ay; ~

al
iidN (1,0.2) . Even though o2, is small, the cross-sectionally demeaned series §;; is found to have
a single strong factor as N,T — oo.

Table 1 reports the estimated probabilities. The first three columns in Table 1 show the esti-
mated probability of # (yit) = 1. For Case I, even with small N and 7', the factor number is very
accurately estimated. As we introduce serial dependence in the idiosyncratic error (Case II), the
performance of 1Cy deteriorates, especially when T is small. However, as T increases, the factor
number is estimated more accurately. Note that as Bai and Ng (2002) showed, the factor number
is over-estimated. When the idiosyncratic error has both serial and cross-sectional dependence
(Case III), the ICy performs badly either with small N or 7. Again, as both N and T increase, the
accuracy of ICsy is restored. The next three columns in Table 1 display the frequencies of finding
that # (i) = 0. As Lemma 1 shows, the number of the common factors should be zero since the
cross-sectionally demeaned series, g;;, has only an asymptotically weak factor. Overall the factor
number is accurately estimated except when T is small. The last three columns report the esti-
mated probability of # (f;;) = 0 with o2, = 0.2. When both N and T are small, the probability
of false estimation is moderately large. However, as either N or T increases, the false estimation

probability decreases quickly. Interestingly, the false estimation probability in Case I is higher
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than that in Case III. This happens because the factor number is over-estimated more when the
idiosyncratic errors are more serially and cross-sectionally dependent.

We considered the case of 8 = 0.2 but don’t report the result here. Overall the performance
is worse when N and 7T are small, but when N and T are large (N > 100 and 7" > 100), the
performance is improved. We also examined the performance of H Ly and found that it is similar

but slightly worse (better) than that of /Cy when N and T are large (small).

4.2.2 Identifying True Factors with Given Potential Factors

Here we assume that the potential factors and the number of factors are known and evaluate
how often the leadership method identifies the potential factor as a leader (either correctly or
incorrectly) when the potential factor is truly an exact, approximate, or false leader. We also report
the performance of Bai and Ng (2006)’s M (j) test under the same conditions for comparison.

We set ag; ~ dN (0,1) (i.e., piar, =0, 02, = 1). We also set [Q11, 12, Q2] = [2,0.5,1], 0 = 1,
and ps = 0.5 for s = 1,2. In the ‘Exact’ case, the potential factors are defined to be Py = Gyt so
that both Py; and Py are exact dominant leaders. In the ‘Approximate’ case, the potential factors
are defined to be Py = Gt + €xt/ VT so that both Py, and Py are approximate dominant leaders.
In the ‘False’ case, the potential factors are defined to be Py = Gpy + € so that both Py and Ps;
are not leaders. In both the ‘Approximate’ and ‘False’ cases, we let g ~ iidN (0, 1).

Table 2 reports the estimated probability of how often the ICs criterion identifies the first
potential factor as a leader. The results seem quite good in Case I as the method correctly identifies
both ‘Exact’ and ‘Approximate’ factors almost perfectly and only frequently misidentifies ‘False’
factors when N and T are both greater than 50. Case II tells a similar story; however here
correct identification of ‘Exact’ and ‘Approximate’ factors happens very often only when N and
T are both 50 or greater. Case III is more dramatic and here correct identification of ‘Exact’ and
‘Approximate’ factors is only quite likely when N and T are both greater than 50. Note that
in Cases II and III, identification of ‘False’ factors performs almost perfectly, with the possible
exception of N = T = 25 since the factor number is usually over-estimated in Cases II and III.
While also not reported, H Ly’s performance initially seems better for small sample sizes. However,
when N and T are both large H Lo has some trouble identifying ‘Exact’ and ‘Approximate’ factors
when there is cross-sectional dependence in the errors (Case III). These unreported results are all
available on the authors’ website.

Table 3 reports the size and power for Bai and Ng (2006)’s M (j) test under the same condi-
tions for comparison. Note that the M (j) test requires there to be no serial and cross-sectional
dependence. In Case I, the M (j) test works properly, but as serial dependence is introduced (Case

IT), the M (j) test suffers from somewhat serious size distortion. Under serial and cross-sectional
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dependence (Case III), the size distortion of the M (j) test is much worse than that in Case II. As
predicted from (23), the M (j) test fails to identify approximate leaders when N is greater than
or equal to T'. It should be noted that we used the heteroskedastic variance estimator in our esti-
mation. If you control for cross correlated errors instead of heteroskedastic, there would be some
improvement to the size in Case III when N is smaller than T. However, since there is also serial
correlation here, Case II would not improve by using cross correlated standard errors, and Case 111
would not improve beyond Case IT and would certainly have serious problems as N becomes large.

In all cases and for all the selected values of N and T', the power of the M (j) test is almost perfect.

4.2.3 Identifying True Factors when Potential Leaders are Unknown

When the potential leaders are unknown, they must be estimated. To do this, we use the R?
criterion as discussed in Section 3. The DGP is as defined in (26) with [Q;1, Q12, Q22] = [1,0.2, 1].

We generate two approximate dominant leaders for each factor as follows.
Pjt = Glt +€]t/\/T for _] = ].,2, and -Pjt = G2t -‘r-Ejt/\/T for j = 3,4

The first four approximate factors are included in the panel data y;;. That is, y;; = Pj for i =

1,2,3,4. For the remaining y;;, we impose the following restriction on the idiosyncratic variance.

T

ygy ~ 1idN (O, 0'1-2) , for 02-2 = 111; Cft, Cy = aGy. (27)

Without imposing this restriction, there is always a chance that some y;; for ¢ > 4 becomes an

approximate common factor with high a;; and ag;. We also generate ;s from a uniform distribution

without imposing the restriction in (27), but since the results are very similar, we only report this
case.

We choose four potential leaders, each by maximizing the R? statistics from (24) and (25).
Thus, the maximum number of potential leaders becomes eight. Next, we check whether or not
each potential leader is truly a common factor by estimating the number of common factors of the
regression residuals in (9) and (10).

Table 4 reports the frequencies with which approximate dominant leaders are selected as the
true factors by combining the sieve method with the R? criterion together. The first column reports
the correct inclusion rate that all four approximate dominant leaders are selected as the true factors.
The second column shows the frequency that any false dominant leader is selected as a true factor.
Evidently, the sieve method with the R? criterion suggested in Section 3 works very well. When
T is moderately large (T' > 50), the suggested method selects only correct approximate dominant

leaders as the true factors.
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Finally, Table 5 reports the clustering results. As it shown in Table 4, the accuracy of identifying
the true factor is fairly sharp. Hence we assume that the approximate dominant leaders are given.
We use the criteria in (16) and (17) since the selected leaders are only four. The first column in
Table 5 reports the frequency that the clustering algorithm selects correct members. The second
column shows the false inclusion rate. Obviously the criteria in (16) and (17) demonstrate pinpoint

accuracy.

5 Empirical Examples: Fama-French Three Factor Model

One of the most popular examples in factor analysis is the Fama-French portfolio theory. Fama and
French (1993) found three key factors for portfolio returns, denoted as follows: ‘Market’, ‘SMB’,
and ‘HML’. Hence, if our method is accurate, these three factors should be identified as the true
factors. Note that Bai and Ng (2006) failed to identify Market as one of the true factors by using
the annual data from 1960 to 1996. We will show shortly that we find that all three factors are well
identified by using our proposed method. While these time series are provided on Fama’s website,
they are constructed so that Market is correlated with the fluctuation of the overall stock market,
SMB (small and medium business) is correlated with the fluctuation of small market capitalization
stocks, and HML (high minus low) is correlated with the fluctuation of stocks with high book-to-
market ratios. We are interested in testing if these empirical factors are actually the underlying
unobserved. This is not a leadership model; rather, this is an exogenous factor test. The famous

Fama-French three factor model is given by
Yit = Tt + o (Mkty — 74) + a2:SMB; + o HML; + v,

where 74 is the risk-free return rate. For our analysis, we use annual average value portfolio
returns for 96 portfolios plus the three Fama-French factors from 1964 to 2008. The data available
on Kenneth French’s website begins in 1927 and ends in 2012. Our sample is chosen to avoid missing
data before 1964 and structural market changes from the 2008 financial collapse. The returns are
demeaned (by time series averages) and standardized. The maximum factor number is set to be
10. Before cross-sectionally demeaning, we estimate the number of common factors in y;;. We find
3 factors here, and this result is robust across subsamples. This result is different from Bai and
Ng (2006). They considered only 89 portfolios due to missing data and chose rather the largest
estimated factor number by using Bai and Ng (2002)’s PC,, criteria where PC), = Vi, +kxp (N, T).

According to the theory, 1;; shares the same common factor of ry;. Hence we take off the cross-
sectional average first, and then choose Mkt, SMB and HML as the known potential factors. We
estimate the number of common factors after standardizing the sample. We denote this sample as

7;¢ to distinguish it from the sample y;; where the cross sectional averages are not taken off. Table
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6 reports the summary of the results. First, both IC5 and H Ly estimate the factor number as two,
surprisingly. This result does not change at all depending on the different ending years. This result
implies that if the Fama-French three factor model is indeed correct, then one of the three factor
loadings must be homogeneous. Moreover, if we don’t take off the cross-sectional average, then we
find three factors.

To identify the factors, we ran (15). That is, the panel is regressed on each hypothesized factor,
Mkt, SMB, and HML:

Uit = Vi Pjt + €5t

where j = Mkt, SM B, and HM L separately, one at a time. The factor number is estimated for
each of the residual panels from these regressions. SMB and HML are found to be leaders. ‘Market’
is not found to be a leader. While this result may be initially surprising, it should be noted that
it in no way contradicts the literature. Many others have found that the loadings on the market
factor are almost constant (e.g., Ahn, Perez, and Gadarowski; 2013). Furthermore, Fama and
French (1992) explicitly finds that the market factor does not affect stock returns. The important
note here is that these are stock portfolios. Fama and French (1993) found that the market factor
affects bond portfolios, but could not find that it affects stock portfolios.

Next, the following regression is performed to see if SMB and HML become the same or different
factors:

~ * * *
Uit =71 PsmBt + 72, PumL e + €

The estimated factor number of the residual is found to be zero. Hence, SMB and HML must
account for different factors.

To see whether or not the factor loading coefficients on Mkt are homogeneous, we estimate the
first common factor without taking off the cross-sectional average, y;;, and then we regress 13'1,5 on
the risk free rate, ry;, and Mkt; — ry. This regression identifies the weighting coefficients between

rge and Mkty — rg;. The fitted value, Fy,, is approximated with the following weights.
Fiy = —0.0227r5; — 0.0032 (Mkty — 1pt) .

Next, in Figure 1 we plot the estimated first common factor, the fitted value of Fy;, and Mkt; —r it
together after standardization of each series. Evidently, the fitted value, Fyy, is more similar to
the estimated factor than the fit by only market. After 1972, Mkt-Rft beats the fitted values by
Rft and Mkr-Rf in only 3 time periods. From this empirical evidence, we conclude that the factor

loadings on Mkt are almost homogeneous across each portfolio.
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Table 6: Fama French Subsample Analysis for Leadership
Estimation by Ending Year (Starting Year: 1964; N = 99)
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Figure 1: Missing Factor by Taking off Cross-Sectional Average
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6 Conclusion

Factor analysis has become an increasingly popular tool in empirical research. Because there is
no well-defined strategy for factor identification, researchers have been forced to choose between
two outcomes. A researcher can either ignore any economic interpretation of the factor (perhaps
the most important part of their model), or the researcher can speculate about the determinant
without any concrete justification.

While this testing issue is a central problem, the thorny issue is identifying which particular time
series to claim is the determinant. In many contexts, after estimating a factor the investigator is left
with a time series which could be any marcoeconomic variable. A strategy is needed for selecting
which variables could be an underlying factor. This issue become even more complicated when
there are multiple factors because PC estimation yields a rotation of the underlying factors. Any
particular variable could be a determinant even when such a variable has somewhat low correlation
with each estimated factor.

This paper provides simple and effective solutions to these problems. First, a new method is
described for testing if a particular variable is the common factor. Second, by modeling endogenous
common factors, a strategy is developed for picking which variables could be determinants without
requiring researchers to pore over the universe of exogenous variables. The performance of these
methods is studied both in theory and in practice. Theoretically, the developed procedure correctly
identifies the leader when N and T jointly approach infinity under the minimal assumptions of Bai
and Ng (2002). Monte Carlo simulation shows that the procedure performs quite well in the finite
sample. The procedure is then applied to an empirical example. The resulting estimation performs

very well in practice.
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Appendix

Proof of Lemma 1 (Asymptotic Factor Number for Weak Factors) The only requirement
is to show that the difference in the residual sum of squares between using no factors and using k

factors is small as N, T — oo; i.e.,
V(0) =V (k) =0, (Cx%), (28)

for the following reason. The criterion function, IC), is defined by: IC, (k) = In[V (k)] + kpn,T,

where py 7 — 0 and C%VTPN,T — 00 as N,T — oo. Hence,

1C, (0) = IC, (k) = In [“;%] T~

From Bai and Ng (2002), V (0) — V (k) = O, (Cx%) implies In [V (0) /V (k)] = O, (Cn%) whereas
the penalty goes to infinity when multiplied by C%,. Therefore, as N,T — oo, the penalty
dominates In [V (0) /V (k)] no matter which & > 0 is chosen. Hence, it is only necessary to show
(28).

The eigenvalues of a rank k matrix A are denoted as g1 (A),..., 0k (A), ordered from largest

to smallest. Proceed by expressing the difference in eigenvalue form,

V(0>—V(k>=§j@l<§;)—l§j o (3) (29)
= =k+

Now use the model of x;; to show
AN (OZ' + 2°) (2T 4 x°)
01 NT |~ 01 NT
B NIANAM n W7 20 + % 20 n 2% x°
“e\TNr NT NT |-

From the Hermitian matrix eigenvalue inequality,

'z < \IANA N UZ'x° 4+ ' 20! N % ° (30)
a\NT ) =9\ NT o NT CLUNT

=I+I11+1I1.

Note that 111 = g1 (z”z°/NT) follows O, (C’;,QT) from the regularity conditions described above.
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To bound the IT term, re-express the quantity using the Lo-norms3:

V220 + 2920\ || W22 + 2 2
o NT - NT

2

Next the triangle inequality can be applied:
U7'x0 + ' 20 < AR ' 20’
o NT =\ N7 |, TN |,

First consider:

AN
NT

_ \/ 01 ((NT)—2 xo'Z\Iﬂ\I/Z/xo) .
2

Then,

o ((NT)’2 :UO'Z\II’\IIZ’x"> < tr [(NT)’2 mO’Z\If’\pZ’xO} — tr

T
o 1
N-T 2277 (N ZWM) Z'x"]
=1
Without loss of generality, assume that the loadings follow ¢; = O, (C’K,%F) 4 Hence,

o1 ((NT) 227 20" W 2'2°) = O, (C2) tr [N~ T2 Z 7' 2°
p NT

1 1 &
= <TCJ%T> Z ZZ”C”

1 1 & ’
- - 70
<T1/2CNT) T ; tTy )

This is straightforward to bound because Bai and Ng (2002) makes the following exogeneity as-

2

Y

2

so that,

H‘IJZ, 0

sumption regarding the factors and errors:

11 & ’

N Z 70 g | <M.
=1

t=1

2

Therefore, ||(NT) ™' wZ'a?|| | = 0, (T2 x C3}) = 0, (C3) - Also |(NT) 222w
similarly bounded. Hence, I1 = O, (CNT)

can be

1/2
/2 Tn our proof, we use

*In Bai and Ng (2002), the commonly used norm is the Frobenius norm, ||A||, = tr[A’A]
the Le-norm, ||A|l, = o1 (A'A)1/2 For any matrix A, ||A]|, < ||A]| with equality if and only if rank(A) = 1. Hence,
for any vector, ||A||, = ||A|| . We occasionally state a Bai and Ng (2002) assumption in terms of the Lo-norm, which

is valid because of this equality for vectors.
"We know that ¢;Z; = O, (Cyr) so we can always rewrite ¢jZ; = [, Z; = p;A’A™"Z; so that ||Av|l, =
O, (Cyy) and ||[A™YZ||, = Op (1).
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Now, it is enough to show that I = O, (C’;fT) If V| Zy = O, (C;,lT), we can assume without
loss of generality that Z; = O, (C’K,lT) while ¢; = O, (1). From here, it is straightforward to bound

I:
\ VA 1 (1«
S )=o) | v
Ql( T > 01 thl t4¢

PSR AV
=0 (Op (CNzT) N >

and the loadings can be bounded by,
A T 1 1 &
<t — "y = — 12
o () <] =% > vl = 3 Wl
Since the loadings are absolutely bounded (max; |||y = ),
VU 1 n oy
< = E =
QI<N>Ni:1w wa
and because any bounded variable is O, (1),

vzZ'zv _ VA _
o (M) =0 e () = on (et

Therefore, from (29) and (30), (28) is clear, and the lemma is proven.[

Proof of Theorem 1 (Identification of Estimated Factors: Known Potential Leaders):
Begin under the conditions for (i). Pj; must be correlated with at least one of the latent factors,

. o o

Ggt. It is only necessary to show that Ysj it has a weak factor structure. Express Ysjit 88
~0 . 2 .. p. ~ k) - N A D, ~ %/ - o
Ysjit = Yit — Bs,jiPjt — O‘i,—sF*S,t = o;Gy — Bs jiPji — O‘i,—sF*S,t + Ysjit-

R /
If Pj; is a leader, then there exists a rotation of the latent factors, H*, which aligns [Pjt, " s,t}
with the latent factors,
H* = (G'G) ¢ [P Foy
There is a ‘better’ rotation (in terms of minimizing the sum of squared residuals), but g, ;, has
a weak factor structure using only the ‘poor’ rotation H*, as is shown here. |[H*||, = O, (1) and

HH*_1H2 = O (1) follows from Stock and Watson (1998) and Bai and Ng (2002). Thus,

A

~ / N
Yo = ;G — [55,3'1', 072:'_3} <[Pjta Fis,t] - H*'Gt) - [55,3'1, @Z/_s} HYGy+ ygi

~ ~ ~ !
_ (a;H**I' - [m,ﬁ, @;LSD HYG, — [55% a;’,s} <[Gt, Fis,t} - H*’Gt> 2
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Using the proper alignment H*,

ot o] oo
2
follows from Bai and Ng (2003). Since, the factor is accurately estimated,
it~ 2], =00 (7).
follows from a simple least-squares analysis. Recognizing that H [Bsyﬂ,d;’f&} ‘2 = O, (1) and

|H¥ G|l = Op (1), it is evident that Ys;i has a weak factor structure. Therefore, # (ggm) —0

as N,T — oc.
Under the conditions for (ii), it is clear that the factors in §g;;, do not vanish as N,T — oo

(the proof is straightforward).O
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Table 1: Detecting Asymptotically Weak Factors (1C2)
yit = a1iGe + Y, Gt = pGre + g1t, g1t ~ iidN (0,1)
yz‘ot = ¢y§’t_1 + v + 8 Z};o,j:_(} Vitj,ty Vit ~~ 1idN (07 1) )

Prifwo)=1] | Pri#@G)=0] | Prl[#@)=0)

i ~ 4dN (1,1/T) | ag; ~ iidN (1,1/T) | a1; ~ iidN (1,0.2)
T N 1 I 111 I II 111 I II 111
25 25 | 1.00 091 0.58 |1.00 097 0.79 |0.80 0.73 0.55
25 50 |1.00 078 0.44 |1.00 093 071 |0.54 040 0.27
25 100 | 1.00 0.64 0.38 |1.00 086 0.66 |0.34 0.20 0.14
25 200|100 052 030 |1.00 081 065 |0.20 0.10 0.08
50 256 | 1.00 099 0.60 |1.00 1.00 0.75 |0.49 0.55 0.32
50 50 |1.00 1.00 0.92 |1.00 1.00 097 |0.33 041 0.33
50 100 | 1.00 1.00 0.93 | 1.00 1.00 0.98 |0.05 0.07 0.06
50 200 | 1.00 1.00 0.97 | 1.00 1.00 099 |0.01 0.01 0.01
100 25 | 1.00 1.00 061 |1.00 1.00 0.73 |0.24 041 0.19
100 50 | 1.00 1.00 094 |1.00 1.00 0.98 |0.04 0.10 0.06
100 100 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.00 0.01 0.00
100 200 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.00 0.00 0.00
200 25 |1.00 100 0.66 |1.00 1.00 0.74 |0.13 0.30 0.13
200 50 |1.00 1.00 098 |1.00 1.00 0.99 |0.00 0.03 0.01
200 100 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.00 0.00 0.00
200 200|100 100 1.00 |1.00 1.00 1.00 | 0.00 0.00 0.00
Note:

Lp=05¢=p8=J=0.
p=¢=058=.J=0.

I p=¢ =0.5,8=0.1,J = 4.
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Table 2: Estimated Probability of Detecting True Factors (1C?2)
yit = 01iG1 + a2iGar + Yy, Gst = pGst + gst,
yft == stft_l + Vit + ﬁ Z;'JyéO,j:—J Vitj,ty Oki ™~ 11dIN (0, 1) , Uit ™~ 11dIN (O, 1) s

2 0.5
T L GdN (0,9Q), Q= .
g2t 05 1
Exact Approximate False
Py =Gy Py =Gy +en/VT Py =G+ e

T N I II II1 I II II1 I II 111

25 25 [096 049 0.15|096 052 017 |0.22 0.09 0.02
25 50 |1.00 045 0.15|1.00 046 0.16 | 0.16 0.04 0.02
25 100 | 1.00 0.34 0.14 | 1.00 035 0.14 |0.10 0.01 0.00
25 200|100 0.24 0.13 100 024 0.13 |0.07 0.01 0.00
50 25 (094 0.66 0.07|094 0.67 007 |0.11 0.06 0.00
50 50 |1.00 098 0.68|1.00 098 069 |0.11 0.07 0.04
50 100 [ 1.00 0.98 0.74 | 1.00 0.98 0.74 | 0.05 0.03 0.02
50 200 | 1.00 0.99 0.87|1.00 099 087 |0.03 0.01 0.01
100 25 | 091 084 0.02]092 084 0.02 |0.06 0.05 0.00
100 50 | 1.00 1.00 0.54|1.00 1.00 0.54 |0.05 0.03 0.01
100 100 | 1.00 1.00 0.98 | 1.00 1.00 0.98 | 0.03 0.02 0.01
100 200 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 0.01 0.00 0.00
200 25 089 092 001|089 092 001 |0.056 0.04 0.00
200 50 |1.00 1.00 0.45|1.00 1.00 045 |0.03 0.02 0.01
200 100 | 1.00 1.00 0.97|1.00 1.00 097 | 0.01 0.00 0.00
200 200 | 1.00 1.00 1.00|1.00 1.00 1.00 | 0.00 0.00 0.00

Note:
Lp=05¢9p=0=J=0.
Im:p=¢=05=J=0.

I: p=¢ =0.5,4=0.1,J = 4.
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Table 3: Rejection Rates of Bai and Ng’s max;7; Test (Size: 5%)
yit = a1iG1e + @2iGar + Yy, Gst = pGst + gst
yft == qf)yf}_l + Vit + B Z‘;'Iio?j:_(] Vitj,ty Okg 11dN (O, 1) , Ve 11dN (0, 1) s

[g”]w'djv(o,sz), Q:[ 2 0'5].

got 0.5 1
Size (5%) Power
Exact Approximate False
Py =Gy Py =Gu+e/VT Py =G+ e
T N I II II1 I 11 111 I 11 111

25 25 011 0.15 017039 039 042 |0.99 0.99 0.99
25 50 |0.09 013 0.15|0.67 0.65 0.67 |1.00 1.00 1.00
25 100 | 0.07 0.12 0.13 092 091 091 |1.00 1.00 1.00
25 200 0.06 0.16 0.17|1.00 1.00 1.00 | 1.00 1.00 1.00
50 25 |0.12 0.13 0.17 030 0.28 032 | 1.00 1.00 1.00
50 50 | 0.09 0.11 0.12 | 049 0.44 047 | 1.00 1.00 1.00
50 100 | 0.07 0.08 0.09 | 0.80 0.75 0.77 | 1.00 1.00 1.00
50 200 | 0.05 0.08 0.09 | 098 098 098 | 1.00 1.00 1.00
100 25 |0.15 0.15 0.16]0.26 0.25 0.26 |1.00 1.00 1.00
100 50 | 0.09 0.10 0.12|0.32 0.29 0.31 |1.00 1.00 1.00
100 100 | 0.07 0.10 0.09 | 0.57 0.49 0.49 | 1.00 1.00 1.00
100 200 | 0.06 0.07 0.08 |0.89 0.82 0.83 |1.00 1.00 1.00
200 25 | 0.18 0.18 0.200.23 0.24 0.24 |1.00 1.00 1.00
200 50 |0.11 0.11 0.120.22 0.21 0.22 | 1.00 1.00 1.00
200 100 | 0.08 0.08 0.10 | 0.34 0.29 0.30 | 1.00 1.00 1.00
200 200 | 0.07 0.08 0.08 | 0.64 0.54 0.52 | 1.00 1.00 1.00

Note:
Lp=05¢p=0=J=0.
mp=¢=05=J=0.

I: p=¢ =0.5,4=0.1,J = 4.
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Table 4: Identifying Potential Leaders by using R?

T N | All Pj; Selected False Selection Rate
25 25 0.98 0.52
25 50 0.94 0.42
25 100 0.93 0.32
25 200 0.94 0.35
50 25 0.99 0.03
50 50 0.99 0.00
50 100 0.97 0.00
50 200 0.98 0.00
100 25 1.00 0.00
100 50 1.00 0.00
100 100 0.99 0.00
100 200 0.99 0.00
200 25 1.00 0.00
200 50 1.00 0.00
200 100 1.00 0.00
200 200 1.00 0.00
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Table 5: Clustering Frequency

T N | Correctly Clustered False Inclusion Rate
25 25 0.99 0.00
25 50 1.00 0.00
25 100 1.00 0.00
25 200 1.00 0.00
50 25 1.00 0.00
50 50 1.00 0.00
50 100 1.00 0.00
50 200 1.00 0.00
100 25 1.00 0.00
100 50 1.00 0.00
100 100 1.00 0.00
100 200 1.00 0.00
200 25 1.00 0.00
200 50 1.00 0.00
200 100 1.00 0.00
200 200 1.00 0.00
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