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Abstract

Out-of-sample forecasts of exchange rates in the late 1990s and 2000s generated by time-
series regression models have fared poorly. In mean-square error, these forecasts are typi-
cally dominated by the driftless random walk. On the other hand, pooled regression models
estimated on panel data (and allowing for fixed effects) have, in many instances, performed
much better than forecasts generated by time-series regression models. In this essay we
investigate the conditions under which pooled regression forecasts generate more accurate
exchange rate predictions than time-series regressions when the available econometric the-
ory says that you should not pool. We offer an explanation that is based on finite sample
considerations.



1 Introduction

Out-of-sample forecasts of exchange rates in the late 1990s and 2000s generated by time-series

regression models have fared poorly. These forecasts are typically dominated (in mean-square

error) by the driftless random walk. On the other hand, pooled regression models estimated

on panel data (allowing for fixed effects) have, in many instances, performed much better than

forecasts generated by time-series regression models. The superior predictive performance of

the pooled panel data models is a puzzle because the evidence also tells of significant underlying

model heterogeneity, in which case econometric theory tells us that pooling is inappropriate.

Groen (2005), Rapach and Wohar (2004), Westerlund and Basher (2010) address the question

about whether or not it is appropriate to pool. In this essay we ask when is it (under what

conditions) that pooled regression forecasts generate more accurate exchange rate predictions

than time-series regressions when the available econometric theory says that you should not

pool.

The empirical literature upon which we focus traces its origin to, and is motivated toward

overturning the findings of Meese and Rogoff (1983), who in studying floating exchange rates

in the post Bretton Woods era, demonstrated that the driftless random walk model dominated

economic theory based econometric models (e.g., purchasing-power parity models or simple

monetary models) in out-of-sample forecast accuracy. Using time-series regression models, Mark

(1995) and Chinn and Meese (1995) were able to overturn Meese and Rogoff by examination

of long-horizon forecasts with error-correction models. The success of these papers was only

temporary, however, because it was found that as time passed and more recent data from the

1990s and the 2000s were added to the time-series, the earlier findings of predictability became

insignificant (Groen (1999), Cheung et al. (2005), Faust et al. (2003)). At the same time, other

research (Lothian and Taylor (1996) and Rapach and Wohar (2002)) added observations to the

front-end of the sample by constructing long historical time-series spanning over a hundred

years or more. These studies found that simple monetary models and purchasing power parity

based models have significant predictive ability. These papers are notable because their findings

suggest that the inability to predict exchange rates with time-series regression models is a small-

sample issue. The long time-span studies can be criticized, however, because they employed

data that spanned across both fixed and flexible exchange rate regimes but they did not control

for regime changes. The interpretation of the ability to predict out of sample based on a

forecasting model estimated across different regimes is not entirely obvious.

One reaction to this state of affairs was to restrict attention to the post Bretton Woods

float and to increase sample size in the cross-sectional dimension and exploiting panel data,
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as in Mark and Sul (2001), Groen (2005), Cerra and Saxena (2010), and Ince (2010). These

studies found that forecasts built from pooled regression models estimated on panel-data domi-

nate those of time-series regression forecasts as well as random walk forecasts in mean square.1

However, the data also tell us that there is significant heterogeneity across countries in the

coefficients of the forecasting equation. Econometric theory instructs us in this case that one

should not pool. But allowing for heterogeneous constants and slopes would generate little

advantage over time-series regression, except to the extent that you could exploit correlated

errors and do seemingly unrelated regression. Pooling when there is slope coefficient hetero-

geneity appears to commit, in the cross-sectional dimension, the same sort of error that failure

to account for regime changes does in the time-series context.

The next section describes the methodology employed in the panel data exchange rate fore-

casting literature. In Section 3, we discuss the econometric theory that gives us some guidance

in seeing the consequences from pooling when there is underlying heterogeneity. Section 4

contains a small Monte Carlo study that illustrates some of the ideas and predictions from the

econometric theory. Section 5 is an application to data and Section 6 concludes.

2 Panel data exchange rate determination studies

In a data set of N countries indexed by i ∈ [1, N ] and T time-series observations indexed by

t ∈ [1, T ], let xit be a (scalar) prediction variable for si,t+k, the log exchange rate for country

i. Mark and Sul (2001) and Cerra and Saxena (2010) investigate the empirical link between

the monetary model fundamentals and the exchange rate. They set xi,t to be the deviation of

today’s exchange rate si,t from the long-run equilibrium value predicted by economic theory.

In the case of the monetary model, xi,t = fi,t − si,t, where fi,t = (mi,t −m0,t)− λ (yi,t − y0,t) ,
country ‘0’ is the base country, m is the log money stock and y is log real income. They used

the panel exchange rate predictive regression

si,t+k − sit = βxit + ηi,t+k

where ηi,t+k = γi+ θt+k + εi,t+k has an error-components representation with individual (fixed)

effect γi, common time effect θt and idiosyncratic effect εi,t+k. Rapach and Wohar (2004) reject

the null hypothesis of slope coefficient homogeneity at the one-percent level using Mark and

Sul’s data set.
1Groen (2000), Husted and MacDonald (1998) exploit panel data to test restrictions implied by the monetary

model and find the evidence for the monetary model to be much stronger using panel data but these papers do

not engage in out-of-sample prediction. Rogoff and Stavrakeva (2008) find that panel data models with time

dummies do not produce robust forecasting results.
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Groen (2005) uses a four-country panel and pools a vector error correction model (VECM).

Letting Xi,t = (si,t, (mi,t −m0,t) , (yi,t − y0,t))′ and Zi,t−1 =
(
X ′i,t−1, 1

)′
, the model he works

with is

∆Xi,t = α (1,−1, φ, ci)Zi,t−1 +

P∑
j=1

Γi,j∆Xi,t−j + εi,t,

where (1,−1, φ) is the common cointegrating vector and ci is the regression constant. He

finds that out-of-sample forecasts with the pooled VECM, beat the random walk and beat the

unpooled (individual country) VECM forecasts.

In addition to forecasting studies, panel data has been used extensively in exchange rate

research. Beginning with Frankel and Rose (1996), many studies have employed panel data to

study long-run purchasing power parity (Papell (2006), Papell and Theodoridis (1998, 2001),

Choi et al. (2006)), and cointegrating restrictions imposed by monetary models (Husted and

MacDonald (1998), Groen (2000) and Rogoff and Stavrakeva (2008)). To the extent to which

these papers pooled in the presence of cross-sectional heterogeneity, our comments may also

have applicability. Engel, Mark and West (2010) employ factor models to predict the exchange

rate. This is another use of panel data, but this sort of work is the topic of a separate paper.

3 Asymptotic consequences of pooling

Let yi,t+k = si,t+k − si,t, where si,t is the exchange rate between country i and the base

country, in logarithms. Suppose that economic theory suggests to us that xit contains predictive

information for future si,t. For example, we might think that the real exchange rate is mean

reverting. In this case, we might let xit be the deviation from purchasing power parity if we

thought that the nominal exchange rate chases the relative price differential after a shock.

Alternatively, we might let xit be the deviation of sit from a long-run specification of the

equilibrium exchange rate. Simple monetary models suggest using some linear combination of

the logarithm of country i′s money stocks, interest rates, and real GDP relative to those of the

base country. Macroeconomic panel data sets typically have T > N. The existence of predictive

ability has been investigated in two ways. The preferred method in the finance literature is

to estimate a predictive regression for asset returns–that is a regression of future returns on

currently observed data–and drawing inference on the slope coefficients using the full data set

(Fama and French (1988), Daniel (2001), Stambaugh (1999)). The preferred method in research

on exchange rates has been to employ out-of-sample prediction procedures and to examine the

properties of the prediction errors.
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3.1 Predictive regression estimated on full sample

Suppose that the truth is

yi,t+1 = βxit + εi,t+1, (1)

where εt = (ε1,t, ..., εN,t)
iid∼
(
0, σ2ε

)
. This is the case where the slope is identical across countries.

In practice, one always includes a (possibly heterogeneous) constant in the regression but we

will ignore it in the exposition. This is a predictive regression in the sense that future changes

in the exchange rate are projected onto current values of xit.We will assume that this is a well-

behaved regression. This will be true if xit is econometrically exogenous. If this assumption

seems too strong, one may assume that an appropriate bias correction method is applied. The

asymptotic results that we discuss will not be affected if this is the case. The existence of

predictive ability can be tested by estimating the predictive equation (1) in the full sample

(i = 1, ..., N, t = 1, ..., T ) and doing a t-test of the null hypothesis H0 : β = 0 against the

alternative HA : β 6= 0.

Asymptotic distribution theory tells us there are advantages to pooling if the truth is given

by (1). An easy way to see this is by looking at the convergence rate of the pooled least-squares

estimator,
√
NT

(
β̂ − β

)
d→ N

(
0, σ2εQ

−1) (2)

where Q =plim
(

(NT )−1
∑

i

∑
t x

2
it

)
. Thus, the pooled estimator converges in distribution at

the rate
√
NT whereas the least-squares estimator for the time-series regression (not pooled)

converges at rate
√
T . This suggests that asymptotically, there is an informational advantage

to be gained by expanding the available observations in the cross-sectional dimension when the

slopes are identical across i.

Now to compare to the case where there is underlying heterogeneity in the regression slopes,

let the truth be

yi,t+1 = βixi,t + εi,t+1 (3)

βi
iid∼
(
β, σ2β

)
. (4)

Eq. (4) characterizes the underlying heterogeneity of the slopes. Evidence of underlying hetero-

geneity in the slope coefficients across individuals has been reported by Groen (2005), Rapach

and Wohar (2004), and Westerlund and Basher (2010). Pooling in the presence of heterogeneous

slopes distorts the error term ui,t+1 in

yi,t+1 = βxit + ui,t+1,

ui,t+1 = (βi − β)xit + εi,t+1.
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As a result of this distortion, the asymptotic distribution of the pooled estimator is
√
NT

(
β̂ − β

)
d→ N

(
0,
(
ω2Q−1 + σ2εQ

−1)) (5)

where ω2 and σ2ε are the asymptotic variances of
(

1√
NT

∑N
i=1

∑T
t=1 (βi − β)x2it

)
and

(
1√
NT

∑N
i=1

∑T
t=1 εi,t+1

)
respectively.

To discuss the pros and cons of pooling, we compare the asymptotic distribution of the

time-series regression (OLS) estimator with the pooled regression estimator. Under the null

hypothesis of no predictability, (βi = β = 0), let us rewrite the asymptotic distribution of the

pooled estimator (5)) as

√
T
(
β̂ − 0

)
d→ N

(
0,
ω2Q−1 + σ2εQ

−1

N

)
. (6)

The asymptotic distribution of the OLS estimator in the time-series case is of course,
√
T
(
β̂i − 0

)
d→ N

(
0, σ2εQ

−1) . (7)

Now comparing (6) and (7) we see that the asymptotic variance of the pooled regression can

easily be smaller than that of the time-series regresssion estimator due to the N in the denom-

inator. This suggests that under the null hypothesis, the test of the null may be better sized

than the pooled regression. This is only a suggestion, however, because in practice there may

be many nuisance parameter issues such as cross sectional and serial dependencies that need

to be dealt with and these complications can substantially distort the size of the test. These

complications are assumed away here.

An alternative way to see potential advantages from pooling in the presence of slope hetero-

geneity is through an analysis of local alternative power. Let the sequence of local alternatives

be given by

βi =
ci√
T
, βN =

b√
T

where b = 1
N

∑N
i=1 ci = O (1) . Here we consider only the time T dimension under the local

alternative in order to compare the power of the test between by pooling and not pooling. Under

these circumstances, the estimators in the time-series regression and the pooled regression have

the (respective) asymptotic distributions,
√
T
(
β̂i − 0

)
√
σ2εQ

−1
d→ N

(
ci√
σ2εQ

−1
, 1

)
, (8)

√
NT

(
β̂ − 0

)
√

Ω

d→ N

(
b√
Ω
N, 1

)
. (9)
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where Ω = ω2Q−1 + σ2εQ
−1. Hence the pooled test is potentially more powerful with even

a moderately large N because the local alternative parameter is bN/
√

Ω. This means as N

increases, the alternative moves farther away from the null which increases the power of the

test.

To summarize, if the goal is to test for predictive power, it might make sense to pool whether

or not one believes that there is underlying heterogeneity in the slope coefficients. This is not to

say that one can obtain more accurate forecasts using the pooled prediction equation, however.

We are saying only that the test of the null hypothesis of no predictability can be easier to

reject. There are a different set of issues involved in whether or not the pooled forecasts are

actually more accurate. We now turn to an analysis of this topic.

3.2 Out-of-sample prediction

In the exchange rate literature, it is common to assess predictive ability with an analysis of

out-of-sample forecasts. We let the full sample size in the time dimension be T = S + P.

The model is estimated on the sample t ∈ [1, S] and the observations t ∈ [S + 1, S + P ] are

reserved for assessing forecast accuracy. The asymptotic results discussed below assume that

S, P →∞ so that the full sample size S+P increases faster than the portion of the sample used

for estimation. The standard practice is to generate the P forecasts with recursively updated

model estimates or with models estimated on a rolling sample. To simplify the exposition in

this section, we assume that the model is estimated once on the first S observations. However,

the empirical work that follows below is done with rolling regressions. While doing so is a bit

sloppy, it is innocuous in terms of the asymptotic theory because as S →∞, the recursive and

rolling estimators have the same asymptotic distribution.

Again, let us assume that the truth is given by (1) in which there is no underlying hetero-

geneity in the slopes and one uses the sample t ∈ [1, S] to estimate the predictive equation by

pooled regression. Let β̂NS and β̂S be the pooled and time-series estimators of the slope and

ŷpooli,j = β̂NSxi,j , ŷtimei,j = β̂Sxi,j , j ∈ [S + 1, S + P ] be the predictors. Then as N,S → ∞, the
forecast errors have the representation

ŷpooli,j+1 − yi,j+1 =
(
β̂NS − β

)
xi,j + εi,j+1 = εi,j+1 +Op

(
1√
NS

)
ŷtimei,j+1 − yi,j+1 =

(
β̂S − β

)
xi,j + εi,j+1 = εi,j+1 +Op

(
1√
S

)
Hence, we have that the pooled forecast should always be more accurate than the time-series

forecast in the finite sample. Asymptotically, however, makes no difference whether one pools
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or not because there is no difference in forecast accuracy between pooled and unpooled.2

Next, let us assume that the slope coefficients vary across countries and the truth is given

by (3) and (4). The prediction errors from the pooled regression forecast are now

ŷpooli,j+1 − yi,j+1 =
(
β̂NS − βi

)
xi,j + εi,j+1,

whereas the time-series forecast errors are

ŷtimei,j+1 − yi,j+1 =
(
β̂iS − βi

)
xi,j + εi,j+1.

Asymptotically,

plimN,S,P→∞
1

P

S+P∑
t=S+1

(
ŷpooli,j+1 − yi,j+1

)2
= σ2ε+σ

2
xσ

2
β > σ2ε = plimS,P→∞

1

P

S+P∑
t=S+1

(
ŷtimei,j+1 − yi,j+1

)2
.

Asymptotically, therefore, pooling in the presence of underlying slope heterogeneity must lead

to less accurate predictions asymptotically.

The question here is why do researchers often obtain lower mean-square prediction errors

from pooled regression forecasts even when slope heterogeneity is present? At a general level,

the reason is that guidance on whether to pool or not is based on asymptotic theory which may

be inaccurate in any finite sample. To see why this may be the case, we get a clue by examining

the difference in the squared prediction errors from the pooled and time-series regressions when

there is underlying heterogeneity in the slopes. For any finite S and P, as N → ∞, this

difference is(
ŷpooli,j+1 − yi,j+1

)2
−
(
ŷtimei,j+1 − yi,j+1

)2
=

[(
β̂NS − βi

)2
−
(
β̂iS − βi

)2]
x2i,j + op (1) . (10)

Thus, in any finite sample, it is possible for
(
β̂NS − βi

)2
<
(
β̂iS − βi

)2
, in which case the

pooled predictor will perform better. This is most likely the case when the underlying dispersion

in the slope coefficients is not too large.

Probing deeper, however, we can see that for each i, the relative forecasting performance

depends on two parts: the distance of the pooled estimates β̂NS from the unknown true value

of βi, and the distance between the time series estimates β̂iS and the true value. In practice,

with a large N but relatively small S the pooled estimates are robust and do not move around
2As S →∞ regardless size of N,

plimS,P→∞
1

P

S+P∑
t=S+1

(
ŷpooli,j+1 − yi,j+1

)2
= plimS,P→∞

1

P

S+P∑
t=S+1

(
ŷtimei,j+1 − yi,j+1

)2
= σ2

ε .
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much as the time-series estimates as the length of the sample changes since its variance of β̂NS
is Op

(
N−1S−1

)
. Meanwhile the time series estimates do tend to move around as S increases

because the variance of β̂iS is Op
(
S−1

)
. Now if the pooled estimate is sufficiently stable so

that we can treat it as if it is constant, then the relative forecasting performance will depend

primarily on the variability of the time series estimator. In the next section, we explore these

ideas further with a small Monte Carlo study.

4 Monte Carlo Study

In our data generating process (DGP), the cross-sectional dimension is N = 10, and the time-

series dimension varies from S + P = 100 to 400. For each time-series length, estimation is

performed over half of the sample and prediction over the second half so that S = P. For

example, the smallest sample size that we consider is of length 100. The first 50 observations

are used to estimate the prediction model and the second 50 are reserved for forecast evaluation.

The data generating process (DGP) for our Monte Carlo work is as follows:

yi,t+1 = βixit + εi,t+1,

xit
iid∼ N (0, 1) ,

εit
iid∼ N (0, 1) .

In terms of the slope heterogeneity, we consider the following three cases considered for assign-

ment of the slope coefficients:

βi assignment

Cross-sectional unit Case 1 Case 2 Case 3

1 0.05 0.05 0.05

2 0.06 0.10 0.15

3 0.07 0.15 0.25

4 0.08 0.20 0.35

5 0.09 0.25 0.45

6 0.10 0.30 0.55

7 0.11 0.35 0.65

8 0.12 0.40 0.75

9 0.13 0.45 0.85

10 0.14 0.50 0.95
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For each experiment, 2000 replications are performed. We compute the mean square pre-

diction error from the pooled regression forecasts, the time-series regression forecast, and the

driftless random walk forecast. Our discussion is limited to these point estimates. Inference

issues, while very important, are addressed in a separate chapter of this volume (Corte and

Tsiakas (2010)).3

Table 1 shows the mean-square prediction error (MSPE) comparison between the pooled

and time-series forecasts. Bold entries indicate instances in which the MSPE of the pooled

forecasts dominate those of the time-series forecasts. We observe two very striking features,

which corroborate the implications of the asymptotic analysis in the previous section. The

pooled forecasts tend to dominate the time-series forecasts when (i) the sample size is small

in the time dimension and (ii) when the slope heterogeneity across individuals is not too large

(i.e., case 1 as opposed to case 3).

Table 2 reports the MSPE of the time-series regression forecasts relative to the driftless

random walk. Beginning with the work of Meese and Rogoff (1983), the random walk has

been the standard benchmark against which econometric forecasts are judged in the empirical

exchange rate literature. The message from Table 2 is that the alternative has to be fairly far

away from the null (βi has to be fairly sizable) before predictions from the time-series regression

model can beat the random walk, even in sample sizes as large as 200. Typically, in exchange

rate research, we have access to short time series and slope coefficient estimates tend to be

small in magnitude.

In Table 3, the MSPE of the pooled forecasts are compared to those of the random walk.

Again, the pooled forecast will generally perform well relative to the random walk when the

underlying model heterogeneity is small and when the time series is short. Notice case 3. When

there is substantial heterogeneity in the slope coefficients, the pooled forecasts dominate the

random walk in cases far from the null (large βi) and are beaten badly when the βi are small.

5 An illustration with data

In this section, we illustrate these ideas using data for US dollar exchange rates against the

currencies of Australia, Canada, Chile, Colombia, the Czech Republic, Denmark, Hungary,

Israel, South Korea, Norway, New Zealand, the Phillipines, the Russian Federation, Singapore,
3The iid assumption for xit is innocuous because the relative forecasting performance expressed in ratios

does not depend on x2i,j . With a highly serially correlated regressor the asymptotic results don’t change but in

finite samples, the relative dispersion of β̂iT to β̂NT may increase with the degrees of serial correlation. If this

is the case, the Monte Carlo results may show overly favorable results for the pooled forecasts.
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South Africa, Sweden, Taiwan, the United Kingdom, Japan, Switzerland, and the Euro Area.

The dimensions of the data set are N = 21, S + P = 132. We are using monthly observations

that extend from January 1999 through January 2010 obtained from Global Insights.4 We use

observations from January 1999 through December 2003 initially to estimate the prediction

model and to form forecasts at horizons of 1 to 24 months ahead. We then recursively update

the sample and repeat the estimation and forecast generation. Relative forecast accuracy is

measured by Theil’s U-Statistic, which is the ratio of the RMPSE of a particular model to that

of the driftless random walk.

The predictive variable is based on purchasing power parity. For country i, we set

xi,t = (pit − p0,t)− si,t,

where p is the log price level and the ‘0’ subscript refers to the US. For the time-series regression,

the k−month ahead predictive equation is

si,t+k − si,t = αi + βixi,t + εi,t+k.

For the pooled regression case with fixed-effects, the predictive equation is

si,t+k − si,t = αi + βxi,t + εi,t+k.

This is the model of Mark and Sul (2001) but without controls (time-specific dummy variables)

for a common time effect. The regression errors are in fact correlated across i and if we were

concerned with drawing inference, then it would be necessary to model the cross-sectional

dependence in the regression error. However, since we are reporting only the point estimates,

we can safely ignore this complication.

The relative prediction results are shown in Table 4. The Table shows the ratio of Theil’s

U statistic for the pooled forecast to that of the time-series forecast. We generate forecasts

at horizons 1 through 24 but we report only detailed results for horizons 1 through 6. The

last column shows the average U-statistic ratio over forecast horizons 1 through 24. Values

less than 1 indicate that the pooled forecast is more accurate in the mean-square sense. The

pooled forecast is more accurate than the time-series forecast in about half of the cases. As

can be seen from the last column, the dominance of the pooled forecasts becomes stronger at

the longer horizons.

To help identify when it is that the pooled forecast will dominate the time-series forecast,

we work with eq.(10). First, we note that the relative ranking of the mean square error for
4For New Zealand and Australia, quarterly CPI is interpolated into monthly. The fundamentals for the euro

are an aggregation of variables in the euro zone.
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currency i depends on the distance between the particular estimator (pooled or unpooled) and

the true slope value βi,

sign

{
1

P

S+P∑
t=S+1

(
ŷpooli,j+1 − yi,j+1

)2
− 1

P

S+P∑
t=S+1

(
ŷtimei,j+1 − yi,j+1

)2}
,

= sign

 1

P

P∑
p=1

{(
β̂NS+p − βi

)2
−
(
β̂iS+p − βi

)2} .

Let us call the last expression, γP,i ≡ 1
P

∑P
p=1

{(
β̂NS+p − βi

)2
−
(
β̂iS+p − βi

)2}
. Then the

pooled forecast will dominate the time-series forecast when γP,i < 0. To verify this prediction,

we compute the average γP,i for one-to-six period ahead forecasts and plot them against the

(average of ) the relative Theil’s U-statistic in Figure 1.5 The results conform to the predictions

of the theory in that the γP,i are positively correlated with the relative Theil’s U-statistics, and

the pooled forecasts tend to dominate the time-series forecasts for those i in which γP,i <

0. The figure predicts that the pooled forecasts will dominate the time-series forecasts for

Columbia, the Philippines, Taiwan, Russia, Singapore, Hungary, Denmark, and the Euro zone,

and referring back to Table 6 confirms this prediction. Predictions of these exchange rates

should be generated by the pooled panel data model. However, currencies of Sweden, the UK,

Japan, and Israel should employ time-series regression.

6 Conclusions

The empirical literature finds that out-of-sample exchange rate forecasts over the 1990s and

2000s from (pooled) panel data models often perform better than those generated from time-

series regression models. Researchers have reported these findings, even though there is sub-

stantial model heterogeneity across countries (or currencies) and asymptotic analysis tells us
5In calculating γP,i, we note that the difference in the mean square errors can be approximated as

γP,i =
1

P

P∑
p=1

{(
β̂NS+p − β̂S+P,i

)2
−
(
β̂iS+p − β̂S+P,i

)2}

=
1

P

P∑
p=1

(
β̂NS+p − βi

)2
− 1

P

P∑
p=1

(
β̂iS+p − βi

)2
− 2

1

P

P∑
p=1

(
β̂NS+p − β̂iS+p

)(
βi − β̂S+P,i

)

=
1

P

P∑
p=1

(
β̂NS+p − βi

)2
− 1

P

P∑
p=1

(
β̂iS+p − βi

)2
+Op

(
1√

S + P

)
.

as P →∞. The last step follows since
(
βi − β̂S+P,i

)
= Op

(
1√
S+P

)
but

(
β̂NS+p − β̂iS+p

)
= Op (1) . Hence, we

approximate the unobserved true value βi with the point estimate using the full sample, β̂S+P,i.
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that pooling should be inappropriate in this case.

What we have shown is that if one is interested in evaluating out-of-sample forecast ability,

pooling does not always generate more accurate forecasts than time-series regression. Pooling

dominates when there is not much heterogeneity in the model parameters. When the hetero-

geneity is great, time-series forecasts should be used. However, if one is interested in testing

for predictive ability using the full sample, pooling will result in more powerful tests as long

as the model parameters and regressors are uncorrelated with the regression errors. Under

these conditions, it makes sense to pool whether or not one believes there is underlying slope

heterogeneity.
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Figure 1. Average of Theil’s U of pooled forecast relative to time-series forecast over horizons

1 through 6 plotted against average γP,i.
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Table 1: MSPEpool/MSPEtime

P = S i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 0 i = 10

Case 1: β = (0.05, 0.06, ..., 0.14)

50 0.990 0.989 0.989 0.987 0.987 0.988 0.989 0.988 0.990 0.989

60 0.992 0.990 0.991 0.990 0.989 0.990 0.990 0.990 0.991 0.992

70 0.993 0.993 0.993 0.991 0.991 0.992 0.991 0.992 0.993 0.993

100 0.996 0.995 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995

200 0.999 0.998 0.997 0.997 0.997 0.997 0.997 0.997 0.998 0.999

Case 2: β = (0.05, 0.10, ..., 0.50)

50 1.041 1.018 1.003 0.994 0.988 0.989 0.993 1.003 1.020 1.040

60 1.044 1.021 1.005 0.994 0.991 0.990 0.996 1.006 1.022 1.043

70 1.041 1.024 1.006 0.998 0.992 0.992 0.997 1.008 1.022 1.044

100 1.046 1.025 1.010 1.000 0.994 0.995 1.000 1.010 1.026 1.045

200 1.047 1.028 1.012 1.002 0.998 0.998 1.003 1.012 1.028 1.049

Case 3: β = (0.05, 0.15, ..., 0.95)

50 1.199 1.115 1.053 1.009 0.991 0.990 1.009 1.050 1.114 1.193

60 1.192 1.116 1.053 1.014 0.993 0.993 1.011 1.056 1.116 1.195

70 1.195 1.112 1.055 1.014 0.994 0.994 1.013 1.056 1.116 1.198

100 1.201 1.117 1.057 1.017 0.996 0.997 1.017 1.056 1.116 1.200

200 1.201 1.119 1.060 1.020 0.999 1.000 1.021 1.061 1.120 1.200
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Table 2: MSPEtime/MSPEr.w

P = S i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

Case 1: β = (0.05, 0.06, ..., 0.14)

50 1.012 1.011 1.010 1.009 1.007 1.005 1.001 1.001 0.999 0.997

60 1.010 1.010 1.009 1.004 1.005 1.002 1.000 0.999 0.996 0.992

70 1.008 1.008 1.005 1.004 1.004 1.000 0.998 0.996 0.993 0.992

100 1.005 1.004 1.002 1.000 1.000 0.998 0.995 0.993 0.992 0.989

200 1.001 1.000 0.999 0.997 0.996 0.994 0.992 0.989 0.988 0.984

Case 2: β = (0.05, 0.10, ..., 0.50)

50 1.012 1.006 0.994 0.977 0.958 0.932 0.908 0.879 0.848 0.817

60 1.009 1.003 0.991 0.972 0.957 0.931 0.903 0.877 0.844 0.814

70 1.008 1.001 0.987 0.973 0.954 0.930 0.903 0.873 0.845 0.812

100 1.005 0.998 0.985 0.970 0.949 0.925 0.897 0.870 0.838 0.808

200 1.001 0.994 0.981 0.965 0.948 0.920 0.893 0.867 0.835 0.802

Case 3: β = (0.05, 0.15, ..., 0.95)

50 1.012 0.992 0.957 0.906 0.852 0.787 0.726 0.660 0.597 0.545

60 1.009 0.991 0.953 0.906 0.850 0.784 0.724 0.652 0.595 0.543

70 1.007 0.988 0.951 0.901 0.845 0.781 0.719 0.651 0.594 0.538

100 1.004 0.986 0.948 0.898 0.841 0.775 0.711 0.651 0.589 0.534

200 1.001 0.982 0.945 0.895 0.835 0.771 0.706 0.643 0.586 0.530
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Table 3: MSPEpool/MSPEr.w

P = S i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

Case 1: β = (0.05, 0.06, ..., 0.14)

50 1.001 0.999 0.997 0.996 0.993 0.992 0.988 0.988 0.987 0.985

60 1.001 0.999 1.000 0.994 0.993 0.991 0.990 0.988 0.986 0.984

70 1.001 1.000 0.997 0.995 0.994 0.991 0.989 0.987 0.986 0.984

100 1.001 0.999 0.996 0.995 0.993 0.991 0.989 0.987 0.986 0.984

200 1.000 0.998 0.996 0.994 0.992 0.991 0.989 0.987 0.985 0.983

Case 2: β = (0.05, 0.10, ..., 0.50)

50 1.053 1.024 0.998 0.971 0.946 0.920 0.900 0.878 0.860 0.843

60 1.054 1.025 0.996 0.966 0.948 0.921 0.897 0.879 0.859 0.844

70 1.050 1.025 0.994 0.972 0.947 0.922 0.899 0.877 0.860 0.843

100 1.051 1.023 0.996 0.970 0.944 0.919 0.896 0.877 0.857 0.842

200 1.048 1.022 0.994 0.968 0.946 0.918 0.895 0.877 0.858 0.840

Case 3: β = (0.05, 0.15, ..., 0.95)

50 1.215 1.109 1.012 0.917 0.844 0.778 0.728 0.686 0.655 0.637

60 1.204 1.108 1.007 0.921 0.845 0.777 0.728 0.683 0.656 0.637

70 1.204 1.100 1.006 0.915 0.840 0.775 0.726 0.682 0.655 0.635

100 1.207 1.103 1.004 0.914 0.838 0.771 0.721 0.684 0.653 0.634

200 1.203 1.100 1.003 0.914 0.835 0.770 0.719 0.681 0.654 0.633
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Table 4: Theil’s U-Statistics: Pooled/Time Series

Horizon 1 2 3 4 5 6 Avg over 24

Australia 0.994 0.989 0.996 1.007 1.020 1.041 0.841

Canada 0.958 0.975 1.009 1.010 1.014 1.042 0.899

Chile 0.955 0.991 1.014 1.022 1.043 1.082 1.083

Colombia 0.927 0.893 0.844 0.809 0.797 0.792 0.740

Czech 0.987 0.983 0.992 1.009 1.022 1.015 1.325

Denmark 0.974 0.979 0.960 0.973 0.982 0.991 0.779

Hungary 0.982 0.981 0.980 0.972 0.972 0.967 1.084

Israel 1.020 1.012 1.027 1.069 1.121 1.176 1.317

Korea 1.001 1.012 1.024 1.047 1.083 1.113 1.234

Norway 1.011 1.011 1.024 1.050 1.069 1.074 0.967

NZ 0.990 1.010 1.031 1.050 1.058 1.069 0.964

Phillipines 0.960 0.926 0.883 0.837 0.809 0.745 0.637

Russia 0.951 0.954 0.937 0.930 0.923 0.915 0.880

Singapore 0.956 0.951 0.964 0.975 0.993 0.991 0.886

S. Africa 0.995 1.033 1.079 1.106 1.139 1.170 0.967

Sweden 1.029 1.045 1.056 1.071 1.112 1.156 1.015

Taiwan 1.020 0.941 0.901 0.882 0.887 0.859 0.697

UK 1.010 1.057 1.102 1.133 1.174 1.219 1.388

Japan 1.002 1.018 1.043 1.089 1.114 1.151 1.617

Swiss 0.995 0.988 0.986 0.971 0.993 1.039 0.810

Euro 0.978 0.979 0.972 0.960 0.968 0.955 0.827
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